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SHARP INEQUALITIES FOR ONE-SIDED MUCKENHOUPT WEIGHTS

PAUL HAGELSTEIN, IOANNIS PARISSIS, AND OLLI SAARI

Abstract. Let A+
∞

denote the class of one-sided Muckenhoupt weights, namely all the weights
w for which M+ : Lp(w) → Lp,∞(w) for some p > 1, where M+ is the forward Hardy-Littlewood
maximal operator. We show that w ∈ A+

∞
if and only if there exist numerical constants γ ∈ (0, 1)

and c > 0 such that

w({x ∈ R : M+1E(x) > γ}) ≤ cw(E)

for all measurable sets E ⊂ R. Furthermore, letting

C+
w (α) ≔ sup

0<w(E)<+∞

1

w(E)
w({x ∈ R : M+1E(x) > α})

we show that for all w ∈ A+
∞

we have the asymptotic estimate C+
w (α)−1 . (1−α)

1

c[w]
A

+
∞ for α

sufficiently close to 1 and c > 0 a numerical constant, and that this estimate is best possible. We
also show that the reverse Hölder inequality for one-sided Muckenhoupt weights, previously proved
by Martín-Reyes and de la Torre, is sharp, thus providing a quantitative equivalent definition of
A+

∞
. Our methods also allow us to show that a weight w ∈ A+

∞
satisfies w ∈ A+

p for all

p > e
c[w]

A
+
∞ .

1. Introduction

We are interested in topics related to one-sided maximal operators on Euclidean spaces. Our
focus is on the one-dimensional case and the main operator under study in this paper is the
forward one-sided Hardy-Littlewood maximal operator defined by

M+f(x) ≔ sup
h>0

1

h

∫ x+h

x

|f(t)|dt, x ∈ R, f ∈ L1
loc
(R).

By a weight w we always mean a non-negative, locally integrable function on the real line. The
weights w for which M+ : Lp(w) → Lp,∞(w) have been identified and extensively studied. See for
example [9,10,11,12,14,16]. Thus it is well known that the appropriate one-sided Muckenhoupt
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class can be defined by

[w]A+
p
≔ sup

a<b<c

w(a, b)

|(a, c)|

(

σ(b, c)

|(a, c)|

)p−1

,

where σ ≔ w− 1
p−1 , and we have that M+ : Lp(w) → Lp,∞(w), 1 < p < ∞, if and only if w ∈ A+

p .

For p = 1 we also have the endpoint result that M+ : L1(w) → L1,∞(w) if and only if

[w]A+
1
≔

∥

∥

∥

∥

M−w

w

∥

∥

∥

∥

L∞(R)

< +∞,

where M−f(x) ≔ suph>0
1
h

∫x

x−h
|f(t)|dt; see for example [11, 16].

The corresponding one-sided A+
∞

class has also been studied and one can define for example

A+
∞
≔
⋃

p>1

A+
p ;

see [10]. The class A+
∞

can be defined in many other equivalent ways. Here we adopt the
definition through a Fujii-Wilson-type constant which amounts to demanding that

[w]A+
∞

≔ sup
a<b

1

w(a, b)

∫

(a,b)

M−(w1(a,b)) < +∞.

We note here that there is no standard definition for the A+
∞

constant of one-sided Muckenhoupt
weights w. The definition above appears in [12, Definition 1.7] where it is shown that w ∈ A+

∞

if and only if [w]A+
∞

< +∞. A similar definition appears in [7]. We note also that for two-sided
weights the constant above was introduced independently by Fujii [2] and Wilson [18,19]. In the
two-sided case the constant above was shown to be the appropriate quantity in order to prove
sharp weighted norm inequalities for singular integral and maximal operators; see for example [6].
Similar results for the one-sided maximal operator appear in [12].

In this paper we pursue a characterization of A+
∞

in terms of tauberian constants, in the spirit
of [3, 4]. Given a locally integrable function w ∈ A+

∞
and α ∈ (0, 1) we define

C+
w
(α) ≔ sup

0<w(E)<+∞

1

w(E)
w({x ∈ R : M+1E(x) > α}).

We call C+
w
(α) the sharp weighted tauberian constant of M+. It is obvious that C+

w
(α) < +∞

for all α ∈ (0, 1) whenever M+ : Lp(w) → Lp,∞(w). In this paper we show that an apparently
much weaker converse to this statement holds, namely that C+

w
(αo) < +∞ for a single value

αo ∈ (0, 1) already implies that M+ : Lp(w) → Lp(w) for sufficiently large p > 1 and thus that
w ∈ A+

∞
. This is the content of our main theorem.

Theorem 1.1. Let w be a non-negative, locally integrable function on the real line. The following
are equivalent:

(i) We have that w ∈ A+
∞

.
(ii) There exists δ > 0 such that C+

w
(α) − 1 . (1− α)δ as α → 1−.

(iii) There exists αo ∈ (0, 1) such that C+
w
(αo) < +∞.
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The study of asymptotic estimates of the type C+
w
(α) − 1 . (1 − α)δ as α → 1− has a small

history. In [17], Solyanik proved corresponding estimates for the usual Hardy-Littlewood maximal
function with respect to axes parallel cubes in Rn, both in its centered and non-centered version, as
well as for the strong maximal function. In [5] the first two authors continued these investigations
and introduced the term Solyanik estimate to indicate the validity of limα→1− C(α) = 1, whenever
C(α) denotes the sharp tauberian constant with respect to some geometric maximal operator.
Finally, in [4], Solyanik estimates are shown to hold in the classical (two-sided) weighted setting
and in fact they characterize the usual A∞ class of Muckenhoupt weights.

Going back to our main result above and assuming that w ∈ A+
∞

we can give a very precise
version of the Solyanik estimate (ii).

Corollary 1.2. Let w ∈ A+
∞

be a one-sided Muckenhoupt weight on the real line. There exists
a numerical constant c > 0 such that

C+
w
(α) − 1 . (1− α)

(c[w]
A+
∞

)−1

for all 1 > α > 1− e
−c[w]

A+
∞

with the implicit constant independent of everything. Furthermore this estimate is optimal up to
numerical constants; if w is a locally integrable function that satisfies

C+
w
(α) − 1 . (1− α)

1
β whenever 1 > α > 1− e−β

for some constant β > 1 then w ∈ A+
∞

and [w]A+
∞

. β.

We note in passing that the sharpness direction in Corollary 1.2 above relies on exhibiting a
sharp reverse Hölder inequality for one-sided Muckenhoupt weights. The validity of the reverse
Hölder inequality is actually proved in [12]. We show in Theorem 3.2 that the reverse Hölder
inequality of [12] is best possible, which in turn allows to prove the optimality of the Solyanik
estimate in the corollary above.

Secondly, it is of some importance to note that our method of proof together with the corollary
above allows us to conclude a quantitative embedding of A+

∞
into A+

p .

Corollary 1.3. Let w ∈ A+
∞

be a one-sided Muckenhoupt weight on the real line and denote by
[w]A+

∞

its Fujii-Wilson constant. Then there exists a numerical constant c > 0 such that w ∈ A+
p

for all p > e
c[w]

A+
∞ and [w]A+

p
≤ exp(exp(c[w]A+

∞

)).

We close this introductory section with a few comments concerning our motivation for studying
these estimates. In [7, 15] the third author has considered higher dimensional weighted norm
inequalities for one-sided maximal operators. These arise naturally in the study of solutions of
appropriate doubly nonlinear partial differential equations. Other approaches to defining and
studying higher dimensional one-sided maximal operators appear for example in [1],[8], and [13].
A common feature of all these studies is that, in the higher dimensional case, the connection
between the one-sided classes A+

p and A+
∞

remains elusive. This should be contrasted to the
one-dimensional case where we have a full analogue of the two-sided Muckenhoupt theory.

It is customary for most of the one-dimensional papers studying A+
∞

in the literature to set
everything up with respect to some other measure g and thus study the classes A+

p (g). This setup
is particularly suited for some symmetry arguments that allow one to show that a weight in A+

∞
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belongs to A+
p for some p > 1. This approach does not seem to be available in higher dimensions

as many general results that hold for arbitrary measures in one-dimension fail in higher dimensions.
The current paper avoids this setup and thus proposes another self-contained strategy for proving
that

⋃

p>1 A
+
p = A+

∞
. We plan to pursue the higher dimensional analogues in a future work.

2. Notation

We use the letters C, c to denote generic positive constants which might change even in
the same line of text. We write A . B if A ≤ CB and A h B if A . B and B . A.
Throughout the text w is a nonnegative, locally integrable function on the real line and we write
w(a, b) ≔

∫
(a,b)

w(t)dt. Finally, given β ∈ (0, 1) and an interval (a, b) ⊂ R we say that a

function f : (a, b) → R lies in the local Hölder class Cβ(a, b) if for all compact K ⊂ (a, b) and
all x, y ∈ K we have that |f(x) − f(y)| .K |x − y|β for all x, y ∈ K.

3. Preliminaries

In this section we collect classical results about one-sided Muckenhoupt weights that we will
need throughout the paper.

The first is a version of the classical rising sun lemma adjusted to our setup and is a minor
modification of [16, Lemma 2.1].

Lemma 3.1. Let λ > 0 and f ≥ 0 with compact support. Then

{x ∈ R : M+f(x) > λ} =
⋃

j

(aj, bj)

where the intervals {(aj, bj)}j are pairwise disjoint and for every j we have that
> bj
x

f > λ for all

x ∈ (aj, bj). In particular
> bj
aj

f = λ for all j.

Proof. Let Eλ ≔ {x ∈ R : M+f(x) > λ}. By [16], we have that Eλ =
⋃

j(aj, bj) where {(aj, bj)}j is

a disjoint collection such that
> bj
aj

f = λ for every j and such that
> bj
x

f ≥ λ whenever x ∈ (aj, bj)

for some j. Now, for every x ∈ (aj, bj) there exists r > x such that
> r
x
f > λ. If r = bj then

we are done. If r > bj then since
> r
bj
f ≤ λ we can conclude again that

> bj
x

f > λ. Finally,

if r < bj we consider the maximal s ≥ r such that
> s
r
f ≥ λ. Necessarily s ≥ b due to the

maximality of s. From this and the fact that
> s
bj
f ≤ λ we conclude that

> bj
r

f ≥ λ. Thus
∫bj
x
f =

∫r

x
f+

∫bj
r
f > λ(bj − x) and we are done. �

Whenever we have a one-sided weight w ∈ A+
∞

we will need to use quantitative estimates of
the type

w(E)

w(a, c)
.

( |E|

|(b, c)|

)δ
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whenever a < b < c and E ⊆ (a, b). In fact it is well known that the estimate above provides
an equivalent definition for the class A+

∞
; see for example [10]. Another equivalent way to define

A+
∞

goes through the validity of appropriate reverse Hölder inequalities.
The following theorem summarizes these equivalences. Note that the direct implications (i) and

(ii) below are directly taken from [12]. The optimality of these estimates for w ∈ A+
∞

, contained
in (iii), appears to be new as the authors in [12] didn’t pursue this direction.

Theorem 3.2. Let w be a nonnegative, locally integrable function on R. Then the following
hold.

(i) If w ∈ A+
∞

then for 0 < ǫ ≤ 1
2[w]

A+
∞

and for all a < b < c we have the one-sided reverse

Hölder inequality

|(b, c)|ǫ
∫

(a,b)

w1+ǫ ≤ 2

( ∫

(a,c)

w

)1+ǫ

.

(ii) If w ∈ A+
∞

then for 0 < ǫ ≤ 1
2[w]

A+
∞

and for all a < b < c and for all measurable sets

E ⊆ (a, b) we have

w(E)

w(a, c)
≤ 2

( |E|

|(b, c)|

)
ǫ

1+ǫ ≤ 2
( |E|

|(b, c)|

)

1
3[w]

A+
∞ .

(iii) Conversely, if the conclusion of (i) or (ii) holds for some 0 < ǫ < 1 then w ∈ A+
∞

and
[w]A+

∞

.
1
ǫ
; thus (i), (ii) are best possible up to numerical constants.

Proof. The statement and proof of (i) is [12, Theorem 3.4]. Part (ii) follows trivially by an
application of the standard Hölder inequality.

Let us move to the proof of (iii). First we observe that the validity of (ii) for some 0 < ǫ < 1
implies the reverse Hölder inequality

|(b, c)|
ǫ
2

∫

(a,b)

w1+ǫ/2 ≤ 6

( ∫

(a,c)

w

)1+ǫ/2

To see this we can assume that w(a, c)/|(b, c)| = 1. Setting Eλ ≔ {x ∈ (a, b) : w(x) > λ} we
have

|Eλ|

|(b, c)|
≤

1

λ

w(Eλ)

w(a, c)
≤ 2

1

λ

|Eλ|
ǫ

1+ǫ

|(b, c)|
ǫ

1+ǫ

and thus we have proved the estimate

|Eλ|

|(b, c)|
≤ 21+ǫ 1

λ1+ǫ
.
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Using (ii) again this implies w(Eλ)

w(a,c)
≤ 21+ǫ 1

λǫ
. Now

∫

(a,b)

w1+ǫ/2 =

∫

(a,b)

w
ǫ
2w ≤ w(a, b) +

ǫ

2

∫
∞

1

λǫ/2−1w(Eλ)dλ

≤ w(a, b) + 2ǫǫ

∫
∞

1

w(a, c)

λ1+ǫ/2
dλ ≤ 5w(a, c) = 5|(b, c)|.

This shows the claimed reverse Hölder inequality.
Now we show that a reverse Hölder inequality with exponent 1+ ǫ implies that [w]A+

∞

. 1/ǫ.
For this fix a < b < c and set r ≔ 1 + ǫ. We write (a, b) = ∪∞

j=1Ij where Ij = (xj, xj+1], and

x0 ≔ a, x1 ≔
a+b
2

and xj ≔
xj−1+b

2
.

Assuming that a reverse Hölder inequality, as in (i), holds with exponent r = 1+ ǫ we can use
the bound ‖M−‖Lr→Lr . r ′ to estimate

∫

(a,b)

M−(w1(a,b)) ≤
∞∑

j=1

∫

(a,b)

M−(w1Ij) =

∞∑

j=1

∫

∪k≥jIk

M−(w1Ij)

. r ′

∞∑

j=1

∣

∣

∣

⋃

k≥j

Ik
∣

∣

∣

1
r ′

( ∫

Ij

wr

)
1
r

h r ′

∞∑

j=1

|Ij|
1
r ′

( ∫

Ij∪Ij+1

w

)

|Ij+1|
− 1

r ′ . r ′w(a, b)

and thus [w]A+
∞

. r ′
h

1
ǫ

as we wanted. �

4. Proof of the main theorem

We divide the proof of the main theorem into two parts. In the first part we show Corollary 1.2
which also shows that (i) implies (ii) in Theorem 1.1.

Proof of Corollary 1.2. Let E ⊂ R be a compact subset of the real line with 0 < w(E) < +∞
and let α > 0. We use Lemma 3.1 to write

{x ∈ R : M+1E(x) > α} =
⋃

j

(aj, bj),

where
> bj
x

χE > α for all x ∈ (aj, bj) and
> bj
aj

χE = α for each j. Let (a, b) ∈ {(aj, bj)}j. By

Lemma 3.1 we have that
> b
a

1E = α and
> b
x

1E > α for all x ∈ (a, b). Using an idea from

[9] we choose an increasing sequence {xk}
∞

k=0 such that x0 ≔ a, (a, b) = ∪k≥1(xk−1, xk], and
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∫xk
xk−1

1E =
∫b

xk
1E for all k ≥ 1. Then we can estimate for all k ≥ 1

w((xk−1, xk] \ E) =
w((xk−1, xk] \ E)

w(xk−1, xk+1)
w(xk−1, xk+1)

.

(

|(xk−1, b) \ E|

|(xk, xk+1)|

)
1

3[w]
A+
∞ w(xk−1, xk+1)

by (ii) of Theorem 3.2. By Lemma 3.1 we can conclude that |(xk−1, b) \ E| ≤ 1−α
α

∫b

xk−1
1E.

Remembering the definition of the sequence {xk}k we can further calculate
∫ b

xk−1

1E =

∫ xk

xk−1

1E +

∫ b

xk

1E = 2

∫b

xk

1E.

By a single recursion of this formula and another use of the definition of the sequence {xk}k we
thus have∫b

xk−1

1E = 4

∫b

xk+1

1E = 4

∫ xk+1

xk

1E ≤ 4(xk+1 − xk).

We have proved that

w((xk−1, xk] \ E) . (1− α)
(3[w]

A+
∞

)−1

w(xk−1, xk+1).

Summing over k ≥ 1 we conclude that for every j we have

w((aj, bj) \ E)) . (1− α)
(3[w]

A+
∞

)−1

w(aj, bj).

Summing over j we get the desired estimate

C+
w
(α) − 1 . (1− α)

(c[w]
A+
∞

)−1

whenever α > 1− e
−c[w]

A+
∞ , for some numerical constant c > 1.

We now proceed to exhibit the optimality of the Solyanik estimate just proved. For this let us

assume that we have an estimate C+
w
(α) − 1 . (1− α)

1
β for α > 1− e−β. We will prove that for

all a < b < c and measurable E ⊂ (a, b) we have the estimate

w(E)

w(a, c)
.

(

|E|

|(b, c)|

)
1
β

By Theorem 3.2 this will imply that w ∈ A+
∞

and [w]A+
∞

. β as claimed.
We now fix real numbers a < b < c and consider a measurable set E ⊆ (a, b). We set

E ′
≔ (a, c) \ E and consider two cases.
If |E|/|(b, c)| ≥ e−β then

w(E)

w(a, c)
≤ 1 = ee−1 ≤ e

(

|E|

|(b, c)|

)
1
β

and we are done.
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In the complementary case we have for all x ∈ (a, b)

M+1E ′(x) ≥
|E ′ ∩ (x, c)|

|(x, c)|
=

|(b, c)|+ |(x, b)|− |(x, b) ∩ E|

|(x, c)|
≥ 1−

|(x, b) ∩ E|

|(x, c)|

≥ 1−
|E|

|(b, c)|
> 1− e−β.

Obviously M+1E ′ = 1 on (b, c) and thus (a, c) ⊆
{
x ∈ R : M+1E ′(x) ≥ 1 − |E|/|b, c|

}
. As

1− |E|/|(b, c)| > 1− e−β we can use the assumed Solyanik estimate to conclude that

w(a, c) ≤ C+
w

(

1− |E|/|(b, c)|
)

w(E ′) = C+
w

(

1− |E|/|(b, c)|
)

(w(a, c) −w(E))

and thus

w(E) ≤
(

C+
w

(

1− |E|/|(b, c)|
)

− 1
)

w(a, c) .
( |E|

|(b, c)|

)
1
βw(a, c)

as we wanted. �

It is trivial that (ii) implies (iii) in Theorem 1.1 so we move on to prove that (iii) implies (i). It
will clearly suffice to show the following.

Proposition 4.1. Suppose that w is a non-negative, locally integrable function that satisfies
C+

w
(αo) < +∞ for some αo ∈ (0, 1). Then M+ is of restricted weak type (p, p) with respect to

w for p = log C+
w
(αo)/ log(1/αo), with constant C+

w
(αo)

1
p .

The proof of Proposition 4.1 relies on the notion of the Halo extension of a set E, defined as
follows. Given λ ∈ (0, 1) the Halo extension of E is

H+
λ (E) ≔ {x ∈ R : M+1E(x) > λ}.

We also set H+,0
λ (E) ≔ E and for a positive integer k > 1

H+,k
λ (E) ≔ H+

λ (H
+,k−1
λ (E)).

The heart of the matter is the following lemma.

Lemma 4.2. Let 0 < λ < α < 1 and E ⊂ R be a measurable set with 0 < w(E) < +∞. Then

H+
λ (E) ⊆ H+,N

α (E),

where

N =

⌈

log 1
λ

log 1
α

⌉

.

Here ⌈x⌉ denotes the smallest integer which is no less than x.

Proof. Let (a, b) be one of the component intervals of H+
λ (E) provided by Lemma 3.1. The same

lemma allows us to write H+
α (E) as the union of disjoint intervals ∪j(ξj, ηj), where

> ηj
ξj

χE = α.
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Since λ < α < 1 we have that a, b < (ξj, ηj) for any j. Indeed, if say a ∈ (ξj, ηj) then there
exists some h > 0 such that

αh <

∫a+h

a

1E ≤ λh

since a < H+
λ (E). This however contradicts the condition λ < α. Similarly we see that b < (ξj, ηj).

Thus H+
α(E) ∩ (a, b) = ∪j∈J(ξj, ηj). For x ∈ (a, b) \ H+

α(E) let Jx ≔ {j ∈ J : ξj > x}. Then if
x ∈ (a, b) \ H+

α (E) we can calculate

|H+
α(E) ∩ (x, b)| =

∑

j∈Jx

|(ξj, ηj)| =
1

α

∣

∣

∣

⋃

j∈Jx

(ξj, ηj) ∩ E
∣

∣

∣ =
1

α
|E ∩ (x, b)| >

λ

α
|(x, b)|,

the last inequality following by Lemma 3.1. Thus (a, b) ⊆ H+
λ
α

(H+
α(E)) and accordingly H+

λ (E) ⊆

H+
λ
α

(H+
α (E)).

Let K ≥ 1 be the smallest integer such that λ/αK > α. Iterating the estimate above we
conclude that

H+
λ (E) ⊆ H+

λ

αK

(H+,K
α (E)) ⊆ H+,K+1

α (E).

Note that K satisfies λ/αK−1 < α and thus K+ 1 = ⌈log(1/λ)/ log(1/α)⌉. �

We can now give the proof of Proposition 4.1.

Proof of Proposition 4.1. Let λ ∈ (0, 1). Since C+
w
(αo) < +∞ we trivially get that for all λ > αo

and every E ⊂ R

w({x ∈ R : M+1E(x) > λ}) ≤ C+
w
(αo)w(E) ≤

C+
w
(αo)

λq
w(E)

for any q ≥ 1. It thus suffices to consider the case 0 < λ < αo < 1. Let 1 > α > αo. Then for
any set S ⊂ R we have

w(H+
α(S)) ≤ C+

w
(αo)w(S).

By Lemma 4.2 applied for α > λ > 0 we can conclude that

w(H+
λ (E)) ≤ C+

w
(αo)

Nw(E)

with N = ⌈log 1
λ
/log 1

α
⌉ ≤ log 1

λ
/log 1

α
+ 1. We get

w({x ∈ R : M+1E(x) > λ}) ≤ C+
w
(αo)

(1

λ

)

log C
+
w
(αo)

log 1
α w(E)

for all α > αo. Letting α → α+
o we conclude that M+ is of restricted weak type (p, p) with

respect to w for p = log C+
w
(αo)/ log(1/αo), with constant C+

w
(αo)

1
p . �

We conclude this section with the proof of Corollary 1.3



10 PAUL HAGELSTEIN, IOANNIS PARISSIS, AND OLLI SAARI

Proof of Corollary 1.3. Assuming that w ∈ A+
∞

with constant [w]A+
∞

, Theorem 1.1 implies that

C+
w
(αo) . 1 for αo = 1−e

−c[w]
A+
∞ , and c > 1 is a numerical constant. Now Proposition 4.1 implies

that M+ is of restricted weak type (p, p) with respect to w for p h (log(1/αo))
−1
h e

c[w]
A+
∞ and

thus w ∈ A+
p for p > e

c[w]
A+
∞ . By carefully examining the interpolation constants and using the

estimate

‖M+‖Lp(w)→Lp(w) & [w]
1
p

A+
p

which is contained in [12, Theorem 1.4] we can conclude that [w]A+
p

≤ ee
c[w]

A+
∞ for some numerical

constant c > 0. See also [4, p. 21] for the details of this calculation. �

5. Local Hölder continuity

The methods of this paper easily imply that C+
w

is locally Hölder continuous on (0, 1) whenever
w ∈ A+

∞
.

Corollary 5.1. There exists a numerical constant c > 1 such that for all w ∈ A+
∞

we have

C+
w

∈ C
1

c[w]
A+
∞ (0, 1).

Proof. Let E ⊂ R and 0 < λ < α < 1. By the proof of Lemma 4.2 we have that

H+
λ (E) ⊆ H+

λ
α

(H+
α(E)).

We conclude that

0 < C+
w
(λ) − C+

w
(λ/α) ≤ C+

w
(λ/α)(C+

w
(α) − 1).

Using Corollary 1.2 we get that for all 0 < x < y < 1 we have

|C+
w
(x) − C+

w
(y)| . C+

w
(y)

(y− x

x

)

1
c[w]

A+
∞

for some numerical constant c > 0. The local Hölder continuity of C+
w

follows immediately from
the estimate above. �
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