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PRICING BARRIER OPTIONS WITH DISCRETE

DIVIDENDS

D. JASON GIBSON AND AARON WINGO

Abstract. The presence of discrete dividends complicates the
derivation and form of pricing formulas even for vanilla options.
Existing analytic, numerical, and theoretical approximations pro-
vide results of varying quality and performance. Here, we compare
the analytic approach, developed and effective for European puts
and calls, of Buryak and Guo with the formulas, designed in the
context of barrier option pricing, of Dai and Chiu.

1. Introduction

Following Buryak and Guo [3], we focus on the analysis of a stock
process St that jumps down by dividend amounts di at times ti. At
non-dividend times, St follows a geometric Brownian motion with flat
volatility σ. In this context, we have

dSt =

(

rSt −
∑

0<ti≤T

di δ(t− ti)

)

dt+ σSt dWt, (1.1)

where r is the risk-free interest rate, δ is the Dirac delta function,
and Wt is a Wiener process. (The book by Hull [8] serves as a stan-
dard reference on these matters.) The Black-Scholes partial differential
equation

∂V

∂t
− rV + rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
= 0 (1.2)

models the dynamics of the option price. Here, S denotes the (spot)
asset price, σ denotes volatility, and r denotes the flat interest rate.
The presence of discrete dividends complicates the derivation and

form of pricing formulas even for vanilla options, let alone barrier op-
tions or more exotic instruments. Existing analytic, numerical, and
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theoretical approximations provide results of varying quality and per-
formance. One possibility, discussed by Frishling [5] and used under
the name “Model 1” for the sake of comparison by Dai and Chiu [4],
holds that the difference between the stock price and the present value
of future dividends over the life of the option follows a lognormal diffu-
sion process. More involved approaches, like those of Buryak and Guo
[3] and Dai and Chiu [4], respectively, allow more sophisticated and
sensitive incorporation of factors influencing the option price (volatil-
ity, barriers, etc.). Numerical approximations, including Monte-Carlo
methods, lattice methods, and Crank-Nicolson schemes, often provide
benchmarks for other methods, whether sophisticated or naive.
In §2, we describe the analytic approximations from Buryak and Guo

[3]: the spot volatility adjusted, strike volatility adjusted, hybrid, and
hybrid volatility adjusted approximations. The latter approximation
originates in the paper [3], where it performed well in pricing calls and
puts. In §3, we set up the analytic pricing formula, valid in the ab-
sence of discrete dividends, for up and out barrier options. In §4, the
performance of the Buryak and Guo hybrid volatility adjusted approx-
imation, adapted to the setting of barrier options, can be seen in charts
that incorporate data from Dai and Chiu [4]. In §5, we briefly sketch
directions for further work on these and related problems.

2. The analytic approximations

The conventional Black-Scholes formulas

C = S0Φ(b1)−K exp(−rT )Φ(b2),

P = K exp(−rT )Φ(b2)− S0 Φ(−b1)
(2.1)

do not provide for the possibility of stocks with discrete dividends.
Here, C and P denote Call and Put, respectively. We also have stock
(spot) price S0, strike price K, time T to maturity for the option, Φ
the cumulative Gaussian distribution function, and bi that satisfy

b1 =
1

σ
√
T

(

ln
S0

K
+

(

r +
σ2

2

)

T

)

b2 = b1 − σ
√
T .

(2.2)

2.1. Spot volatility adjusted approximation. Beneder and Vorst
[1] use an approximation that, roughly speaking, adjusts some of the
Black-Scholes parameters and then adjusts the volatility to refine the
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correction. To incorporate the dividend information, one might sub-
tract the present value of the dividends

D =
∑

0<ti≤T

di exp(−rti) (2.3)

from S0, producing the adjusted value

S̃0 = S0 −D

= S0 −
∑

0<ti≤T

di exp(−rti).
(2.4)

They observed that, provided the local volatility (of a stock pro-
cess with discrete dividends) is constant, the process without dividend-
induced jumps should then have non-constant local volatilities

σ̃S(S,D, t) = σ(T )
S

S −D
(S)
j

, (2.5)

where

D
(S)
j =

N
∑

i=j(t)

di exp(−rti), (2.6)

with N being the number of dividend payments in (0, T ) and the sum
restricted to include only those payments occurring after time t, with
j(t) the index of the first dividend payment at or after time t.
In light of this volatility adjustment, the corresponding variance can

be averaged on (0, T ), yielding

σS = σ

√

√

√

√

(

S

S −D
(S)
1

)2
t1
T

+
∑

1<j≤N

(

S

S −D
(S)
j

)2
tj − tj−1

T
+

T − TN

T
,

(2.7)
with tN being the time of the last dividend payment in (0, T ).
Replacing S0 by S̃0 and σ by σS in (2.1) and in (2.2) yields

C = S̃0Φ(b1)−K exp(−rT )Φ(b2),

P = K exp(−rT )Φ(b2)− S̃0 Φ(−b1)
(2.8)

and

b1 =
1

σS

√
T

(

ln
S̃0

K
+

(

r +
σ2
S

2

)

T

)

b2 = b1 − σS

√
T .

(2.9)

Call the above scheme the spot volatility adjusted approximation, the
spot VA approximation.
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2.2. Strike volatility adjusted approximation. Buryak and Guo
[3] introduce a different approximation based on the set-up of Beneder
and Vorst [1]. First, following Frishling’s description [5] of a strike
approximation, they modify the strike price from K to K̃ by setting

K̃ = K +
∑

0<ti≤T

di exp(r(T − ti)), (2.10)

a natural analog of (2.4).
Next, the volatilities get adjusted by considering the non-constant

local volatilities

σ̃K(S,D, t) = σ(T )
S

S +D
(K)
j

, (2.11)

where

D
(K)
j =

j(t)
∑

i=1

di exp(−rti), (2.12)

with N being the number of dividend payments in (0, T ) and the sum
restricted to include only those payments occurring before time t, with
j(t) the index of the first dividend payment at or before time t. With
this volatility adjustment, the corresponding variance can be averaged
on (0, T ), yielding

σK = σ

√

√

√

√

t1
T

+
∑

1≤j<N

(

S

S +D
(K)
j

)2
tj+1 − tj

T
+

(

S

S +D
(K)
N

)2
T − tN

T
,

(2.13)
with tN being the time of the last dividend payment in (0, T ).

Replacing K by K̃ and σ by σK in (2.1) and in (2.2) yields

C = S0Φ(b1)− K̃ exp(−rT )Φ(b2),

P = K̃ exp(−rT )Φ(b2)− S0 Φ(−b1)
(2.14)

and

b1 =
1

σK

√
T

(

ln
S0

K̃
+

(

r +
σ2
K

2

)

T

)

b2 = b1 − σK

√
T .

(2.15)

Call the above scheme the strike volatility adjusted approximation, the
strike VA approximation.
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2.3. Hybrid approximation. Bos and Vandermark [2] offered a dif-
ferent approximation, one supported with some theoretical analysis.
Specifically, take

C = S0Φ(b1)−K exp(−rT )Φ(b2),

P = K exp(−rT )Φ(b2)− S0Φ(−b1),
(2.16)

with

S0 = S0 −DS

K = K +DK exp(rT ).
(2.17)

Here,

DS =
∑

0<ti≤T

T − ti
T

di exp(−rti)

DK =
∑

0<ti≤T

ti
T
di exp(−rti).

(2.18)

In contrast with the Spot VA and Strike VA approximations described
above, this method does not adjust the volatility. Call the above
scheme the hybrid approximation.

2.4. Hybrid volatility adjusted approximation. A new method
described by Buryak and Guo takes the Hybrid approximation above
as a starting point, but then also adjusts the volatilities in a manner
related to the volatility adjustment schemes mentioned earlier. A key
difference between this new method and those other methods lies in the
individual treatment of the DS and DK terms, where the discounted
dividend stream D satisfies D = DS +DK .
Specifically, the volatilities get adjusted by considering the non-

constant local volatilities

σ̃S(S,D, t) = σ(T )
S

S −D
(S)
j

, (2.19)

where

D
(S)
j =

N
∑

i=j(t)

T − ti
T

di exp(−rti), (2.20)

and

σ̃K(S,D, t) = σ(T )
S

S +D
(K)
j

, (2.21)
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where

D
(K)
j =

j(t)
∑

i=1

ti
T
di exp(−rti). (2.22)

Here, with N being the number of dividend payments in (0, T ), the spot
sum gets restricted to include only those payments occurring after time
t, with j(t) the index of the first dividend payment at or after time t,
and the strike sum restricted to include only those payments occurring
before time t, with j(t) the index of the first dividend payment at or
before time t.
In both instances, the corresponding variance can be averaged on

(0, T ),

σS = σ

√

√

√

√

(

S

S −D
(S)
1

)2
t1
T

+
∑

1<j≤N

(

S

S −D
(S)
j

)2
tj − tj−1

T
+

T − TN

T

= σ(1 + ε
(h)
S ),

(2.23)

and

σK = σ

√

√

√

√

t1
T

+
∑

1≤j<N

(

S

S +D
(K)
j

)2
tj+1 − tj

T
+

(

S

S +D
(K)
N

)2
T − tN

T

= σ(1− ε
(h)
K ),

(2.24)

with tN being the time of the last dividend payment in (0, T ).
Finally, set

σH = σ(1 + ǫ
(h)
S )(1− ǫ

(h)
K ), (2.25)

and use the set-up described by (2.16). For calls, this approximation
then requires no further adjustments. Puts require further adjustment.
(See the Buryak-Guo [3] discussion of Liquidator and Survivor divi-
dend policies, based on considerations described in Haug [6].) Call this
scheme the hybrid VA approximation.

3. Barrier options

We follow the books of Haug [7] and Levy [9], and we use the nota-
tional structure of Haug.
An up and out call option ceases to exist when the asset price reaches

or goes above the barrier level B. For the up and out call, we follow the
formulas available on p.152–153 of Haug [6] (also see (9.77) in Levy [9]).
These formulas, in turn, originate in the work of Merton [10] and Reiner
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and Rubinstein [11]. The up and out call option pays max(S −K, 0)
if S < B holds for all times up to T , and, otherwise, it pays a rebate
R. Then

CK>B = F

CK<B = A−B + C −D + F,
(3.1)

where

A = φSe(b−r)TΦ(φx1)− φKe−rTΦ(φx1 − φσ
√
T )

B = φSe(b−r)TΦ(φx2)− φKe−rTΦ(φx2 − φσ
√
T )

C = φSe(b−r)T

(

B

S

)2(µ+1)

Φ(ηy1)− φKe−rT

(

B

S

)2µ

Φ(ηy1 − ησ
√
T )

D = φSe(b−r)T

(

B

S

)2(µ+1)

Φ(ηy2)− φKe−rT

(

B

S

)2µ

Φ(ηy2 − ησ
√
T )

F = R

[

(

B

S

)µ+λ

Φ(ηz) +

(

B

S

)µ−λ

Φ(ηz − 2ηλσ
√
T )

]

,

(3.2)

and

x1 =
ln(S/K)

σ
√
T

+ (1 + µ)σ
√
T x2 =

ln(S/B)

σ
√
T

+ (1 + µ)σ
√
T

(3.3)

y1 =
ln(B2/(SK))

σ
√
T

+ (1 + µ)σ
√
T y2 =

ln(B/S)

σ
√
T

+ (1 + µ)σ
√
T

(3.4)

z =
ln(B/S)

σ
√
T

+ λσ
√
T (3.5)

µ =
b− σ2

2

σ2
λ =

√

µ2 +
2r

σ2
. (3.6)

4. Performance

We compare the Hybrid VA approach, applying the adjusted spot,
strike, and volatility parameters described in Section 2.4 to the bar-
rier option formulas in Section 3, with some work from Dai and Chiu
[4]. The Hybrid VA and HVA Error columns are new, and the other
columns first appear in the work of Dai and Chiu.
The details of this test example appear first in their Figure 2 on

page 1377, and it provides the default values for our later comparisons.
There, the risk-free rate is 3%, the volatility is 20%, the strike price
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is 50, the barrier is 65, and the time to maturity is 1 year. A discrete
dividend 1 is paid at 0.5 year. We use Maximum Absolute Error and
Root-Mean-Squared Error as performance indicators.

S(0) MC Dai-Chiu Model1 Hybrid VA DC Error M1 Error HVA Error
46 1.1265 1.1260 1.1336 1.0717 0.0005 0.0071 0.0548
48 1.3456 1.3427 1.3641 1.2736 0.0029 0.0184 0.0720
50 1.5054 1.5026 1.5417 1.4219 0.0028 0.0363 0.0835
52 1.5829 1.5796 1.6401 1.4938 0.0033 0.0572 0.0891
54 1.5661 1.5571 1.6422 1.4758 0.0089 0.0762 0.0903
56 1.4389 1.4310 1.5423 1.3649 0.0079 0.1034 0.0740
58 1.2112 1.2093 1.3463 1.1686 0.0019 0.1352 0.0426
60 0.9164 0.9106 1.0700 0.9030 0.0059 0.1536 0.0134
62 0.5667 0.5602 0.7358 0.5898 0.0065 0.1691 0.0231
64 0.1932 0.1868 0.3697 0.2529 0.0065 0.1765 0.0597

MAE 0.0089 0.1765 0.0903
RMSE 0.0054 0.1109 0.0654

Table 1. Varying initial stock price for barrier call, sin-
gle discrete dividend

As shown in Table 1, as the initial stock price, S(0), increased, the
Model1 formula tended to increase in error as compared with the HVA
model, which maintained some stability in its error magnitude. The
RMSE and MAE of each model’s performance indicate this as well.

d1 MC Dai-Chiu Model1 Hybrid VA DC Error M1 Error HVA Error
0.3 1.5759 1.5730 1.5857 1.5467 0.0029 0.0098 0.0292
0.6 1.5438 1.5435 1.5680 1.4928 0.0003 0.0242 0.0510
0.9 1.5202 1.5129 1.5486 1.4395 0.0073 0.0283 0.0807
1.2 1.4868 1.4815 1.5273 1.3870 0.0053 0.0405 0.0998
1.5 1.4478 1.4493 1.5044 1.3353 0.0015 0.0566 0.1125
1.8 1.4147 1.4163 1.4798 1.2844 0.0017 0.0652 0.1303
2.1 1.3843 1.3828 1.4538 1.2345 0.0015 0.0695 0.1498
2.4 1.3459 1.3488 1.4262 1.1855 0.0030 0.0804 0.1604

MAE 0.0073 0.0804 0.1604
RMSE 0.0036 0.0523 0.1105

Table 2. Varying payout amounts for barrier call, single
discrete dividend
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However, with Table 2, the HVA error in this case increased while the
Model1 error remained relatively flat as the payout amounts increased.
The MAE and RMSE of each show a drastic difference, with the HVA
error reflecting around double the size in comparison with the Model1
error.

σ MC Dai-Chiu Model1 Hybrid VA DC Error M1 Error HVA Error
0.1 2.0707 2.0756 2.0612 2.0412 0.0049 0.0094 0.0295
0.2 1.5054 1.5026 1.5417 1.4219 0.0028 0.0363 0.0835
0.3 0.7215 0.7167 0.7534 0.6742 0.0047 0.0320 0.0473
0.4 0.3625 0.3611 0.3846 0.3395 0.0014 0.0221 0.0230
0.5 0.2035 0.1998 0.2144 0.1881 0.0037 0.0109 0.0154
0.6 0.1205 0.1197 0.1292 0.1129 0.0007 0.0087 0.0076
0.7 0.0767 0.0764 0.0827 0.0721 0.0003 0.0060 0.0046
0.8 0.0526 0.0511 0.0556 0.0483 0.0014 0.0030 0.0042
0.9 0.0366 0.0356 0.0388 0.0337 0.0010 0.0021 0.0001
1.0 0.0255 0.0255 0.0279 0.0242 0.0000 0.0024 0.0013

MAE 0.0049 0.0363 0.0835
RMSE 0.0027 0.0178 0.0331

Table 3. Varying volatility for barrier call, single dis-
crete dividend

In Table 3, both models performed well, with the Model1 approach
doing slightly better.

t1 MC Dai-Chiu Model1 Hybrid VA DC Error M1 Error HVA Error
0.1 1.5425 1.5378 1.5408 1.5165 0.0047 0.0016 0.0260
0.2 1.5347 1.5335 1.5410 1.4926 0.0012 0.0063 0.0401
0.3 1.5291 1.5262 1.5412 1.4689 0.0029 0.0121 0.0602
0.4 1.5236 1.5160 1.5415 1.4453 0.0076 0.0179 0.0783
0.5 1.5054 1.5026 1.5417 1.4219 0.0028 0.0363 0.0835
0.6 1.4903 1.4861 1.5419 1.3986 0.0042 0.0516 0.0917
0.7 1.4737 1.4658 1.5421 1.3756 0.0079 0.0684 0.0981
0.8 1.4391 1.4399 1.5423 1.3527 0.0007 0.1032 0.0864
0.9 1.4036 1.4029 1.5425 1.3300 0.0007 0.1389 0.0736

MAE 0.0079 0.1389 0.0981
RMSE 0.0042 0.0625 0.0745

Table 4. Varying payout times for a barrier call, single
discrete dividend
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Table 4 shows that increasing the date of payouts does not yield much
better model performance when evaluating either HVA or Model1. The
RMSE of each are almost identical, and the MAE values are not much
different.

S(0) MC Dai-Chiu Model1 Hybrid VA DC Error M1 Error HVA Error
46 0.9156 0.9122 0.9493 0.8126 0.0034 0.0338 0.1030
48 1.0033 1.0028 1.0619 0.8907 0.0005 0.0586 0.1126
50 1.0538 1.0493 1.1322 0.9307 0.0045 0.0783 0.1231
52 1.0484 1.0438 1.1519 0.9276 0.0046 0.1035 0.1208
54 0.9880 0.9843 1.1178 0.8806 0.0037 0.1298 0.1074
56 0.8771 0.8737 1.0316 0.7924 0.0035 0.1545 0.0847
58 0.7241 0.7192 0.8990 0.6692 0.0049 0.1749 0.0549
60 0.5364 0.5315 0.7287 0.5189 0.0049 0.1924 0.0175
62 0.3249 0.3233 0.5317 0.3508 0.0016 0.2068 0.0259
64 0.1104 0.1077 0.3192 0.1744 0.0032 0.2088 0.0640

MAE 0.0049 0.2088 0.1231
RMSE 0.0038 0.1470 0.0893

Table 5. Varying initial stock price for barrier call, two
discrete dividends

When studying the difference between the two models, Model1 and
HVA, in the situation of changing S(0) for a barrier call with two
dividend payouts, the differences in the errors become apparent. Both
performed poorly, but the HVA error was smaller in magnitude.

d1 = d2 MC Dai-Chiu Model1 Hybrid VA DC Error M1 Error HVA Error
0.3 1.1305 1.1238 1.1514 1.0841 0.0067 0.0210 0.0464
0.6 1.0948 1.0933 1.1462 1.0173 0.0015 0.0514 0.0775
0.9 1.0585 1.0606 1.1364 0.9521 0.0021 0.0780 0.1064
1.2 1.0279 1.0269 1.1222 0.8885 0.0010 0.0943 0.1394
1.5 0.9864 0.9897 1.1038 0.8267 0.0033 0.1174 0.1597
1.8 0.9552 0.9535 1.0812 0.7670 0.0018 0.1260 0.1882
2.1 0.9147 0.9156 1.0548 0.7095 0.0009 0.1401 0.2052
2.4 0.8769 0.8772 1.0247 0.6542 0.0003 0.1478 0.2227

MAE 0.0068 0.1478 0.2227
RMSE 0.0029 0.1056 0.1547

Table 6. Varying payout amounts for barrier call, two
discrete dividends
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When changing the payout amounts for two discrete dividend pay-
outs in a barrier call, again both did poorly, but, in this instance, in
contrast with Table 6 just before, Model1 yielded tighter results.

5. Further Work

The tables in Section 4 show that the method of Dai and Chiu hand-
ily outperforms the Hybrid VA method. It can also be seen that the
Model 1 approach and the Hybrid VA approach each have strengths in
certain parameter regions, but neither really compete with the method
of Dai and Chiu.
The paper of Buryak and Guo [3] introduces the Hybrid VA to price

European calls and puts, and, for that purpose, the method performs
reasonably well. Because their approach doesn’t see or make use of
barrier information, it should not be surprising that the modified spot,
strike, and volatility information on their own do not perform as well
for barrier options. Further, the sharp results of the method of Dai and
Chiu, while derived with solid theoretical justification, also require non-
trivial calculations to deduce. In particular, their paper [4] treats only
the single- and double-dividend cases in detail.
It would be interesting to modify or to refine the Hybrid VA method

in a manner that shows greater sensitivity to the context of barrier op-
tions, say by incorporating the barrier value. Ideally, an improvement
would retain the analytic flavor of the existing Hybrid VA method of
Buryak and Guo and would achieve results closer to the method of Dai
and Chiu (and to numerical benchmarks like Monte Carlo methods or
Crank-Nicolson schemes).

References

[1] Reimer Beneder and Ton Vorst. Options on dividend paying stocks. In Recent
developments in mathematical finance (Shanghai, 2001), pages 204–217. World
Sci. Publ., River Edge, NJ, 2002.

[2] Michael Bos and Stephen Vandermark. Finessing fixed dividends. Risk Maga-
zine, pages 157–158, September 2002.

[3] Alexander Buryak and Ivan Guo. New analytic approach to address put-call
parity violation due to discrete dividends. Appl. Math. Finance, 19(1):37–58,
2012.

[4] Tian-Shyr Dai and Chun-Yuan Chiu. Pricing barrier stock options with discrete
dividends by approximating analytical formulae. Quant. Finance, 14(8):1367–
1382, 2014.

[5] Volf Frishling. A discrete question. Risk Magazine, pages 115–116, January
2002.



12 D. JASON GIBSON AND AARON WINGO

[6] Espen G. Haug, Jørgen Haug, and Alan Lewis. Back to basics: a new approach
to the discrete dividend problem. Wilmott Magazine, pages 37–47, September
2003.

[7] Espen Gaarder Haug. The complete guide to option pricing formulas. McGraw-
Hill, New York, 1998.

[8] John C. Hull. Options, futures, and other derivatives. Pearson, Prentice Hall,
Upper Saddle River (N.J.), 2006.

[9] George Levy. Computational finance: Numerical Methods for Pricing Financial
Instruments. Elsevier Butterworth-Heinemann, 200Wheeler Road, Burlington,
MA 01803, 2004.

[10] Robert C. Merton. Theory of rational option pricing. Bell J. Econom. and
Management Sci., 4:141–183, 1973.

[11] Eric Reiner and Mark Rubinstein. Breaking down the barriers. Risk Magazine,
pages 28–35, September 1991.

Department of Mathematics and Statistics, Eastern Kentucky Uni-

versity, KY 40475, USA

E-mail address : jason.gibson@eku.edu

Department of Mathematics and Statistics, Eastern Kentucky Uni-

versity, KY 40475, USA

E-mail address : aaron wingo@mymail.eku.edu


	1. Introduction
	2. The analytic approximations
	3. Barrier options
	4. Performance
	5. Further Work
	References

