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Abstract. Let f(n) be the smallest number such that every collection of n matchings, each of size at least

f(n), in a bipartite graph, has a full rainbow matching. Generalizing famous conjectures of Ryser, Brualdi

and Stein, Aharoni and Berger [2] conjectured that f(n) = n + 1 for every n > 1. Clemens and Ehrenmüller

[7] proved that f(n) ≤ 3
2
n + o(n). We show that the o(n) term can be reduced to a constant, namely

f(n) ≤ d 3
2
ne+ 1.

1. Introduction

Given sets F1, F2, . . . , Fn of edges in a graph, a (partial) rainbow matching is a choice of disjoint edges
from some of the Fis. In other words, it is a partial choice function whose range is a matching. If the rainbow
matching represents all Fis then we say that it is full. For a comprehensive survey on rainbow matchings and
the related subject of transversals in Latin squares see [13].

As in the abstract, we assume the graph is bipartite and define f(n) to be the least number such that if
|Fi| ≥ f(n) for all i, then there exists a full rainbow matching. A greedy choice of representatives shows that
if |Fi| ≥ 2n − 1 for all i ≤ n then there is a rainbow matching, namely f(n) ≤ 2n − 1. On the other hand,
for every n > 1 there exits a family F1, . . . , Fn of matchings of size n with no full rainbow matching: for an
arbitrary 1 ≤ k ≤ n let F1, . . . , Fk be all equal to the perfect matching in the cycle C2n consisting of the odd
edges, and let Fk+1, . . . , Fn be all equal to the perfect matching in C2n consisting of the even edges. This
shows that f(n) ≥ n+ 1 for all n > 1 (in fact, this example can be modified to produce 2n− 2 matchings of
size n with no rainbow matching of size n). In [2] it was conjectured that this bound is sharp:

Conjecture 1.1. [2] f(n) = n+ 1 for all n > 1.

If true, this would easily imply:

Conjecture 1.2. A family of n matchings in a bipartite graph, each of size n, has a rainbow matching of
size n− 1.

This strengthens a famous conjecture of Ryser-Brualdi-Stein.

Conjecture 1.3. [6, 15, 16] A partition of the edges of the complete bipartite graph Kn,n into n matchings,
each of size n, has a rainbow matching of size n− 1.

Another strengthening of the last conjecture is due to Stein:

Conjecture 1.4. [16] A partition of the edges of the complete bipartite graph Kn,n into n subsets, each of
size n, has a rainbow matching of size n− 1.

In our terminology, the weaker condition that Stein demands on sets Fi is not that they are matchings,
but that each has degree at most 1 in one side of the graph, and that jointly their degree at each vertex in
the other side is at most n. Possibly the ‘right’ requirement is even more general: that the degree at each
vertex is at most n, and that each Fi is a set, and not a multiset, namely it does not contain repeating edges.
An even more general conjecture will be presented in the last section.

Successive improvements on the trivial bound f(n) ≤ 2n− 1 were f(n) ≤ b 74nc [4], f(n) ≤ b 53nc [12] and

f(n) ≤ b 32nc + o(n) [7]. The latter was extended in [8] to general graphs, and to the more general case in
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which the sets Fi are not assumed to be matchings, but disjoint unions of cliques, each containing 3n+ o(n)
vertices. Pokrovskiy [14] showed that if we add the requirement that the n matchings are edge disjoint, then
|Fi| ≥ n+ o(n) suffices. In this note we prove:

Theorem 1.5. f(n) ≤ d 32ne+ 1.

2. Proof of Theorem 1.5

The following was shown in [12]:

Proposition 2.1. A family F = {F1, . . . , Fn} of n matchings in a bipartite graph, each of size at least b 32nc,
has a rainbow matching of size n− 1.

Proof of Theorem 1.5. Let R be a rainbow matching of maximal size. By Proposition 2.1 |R| ≥ n − 1.
Assume, for contradiction, that |R| = n− 1. Without loss of generality we may assume that R∩Fn = ∅. For
each i = 1, . . . , n− 1 let Fi ∩R = {ri} and ri = {ui, wi} where ui ∈ U and wi ∈W . Let X ⊂ U and Y ⊂W
be the sets of vertices of G not covered by R. Let FYn be the subset of Fn consisting of edges matching
vertices in Y . Since R has maximal size, FYn matches vertices in Y to U \X. Let U ′ be the set of vertices in
U \X that are matched by FYn . Let R′ be the subset of R that matches the elements in U ′ and let W ′ be
the set of vertices in W that are matched by R′. Our strategy is to replace some edges in R′ by edges having
one endpoint in X and the other endpoint in W \ Y , thus freeing vertices in U ′. This will allow us to add an
edge from FYn to the rainbow matching.

Let ` = |FYn |. Since |W \ Y | = n− 1 and |Fn| = d3n/2e+ 1 we have ` ≥ dn/2e+ 2. So,

(1) |R′| ≥ dn/2e+ 2.

Define,
F ′ = {Fi ∈ F|Fi ∩R′ 6= ∅}.

Notation 2.2. For each Fi ∈ F ′ let ei be the edge of FYn such that ei ∩ ri 6= ∅. Let yi be the endpoint of ei
in Y (Figure 1).

Figure 1

Claim 1. For every Fi ∈ F ′ the matching Fi has at most one edge between X and Y .

Proof. Suppose Fi has two edges e and f between X and Y . The edge ei is disjoint from one of them, say e.
Thus, (R \ {ri}) ∪ {ei, e} is a rainbow matching of size n, contradicting the maximality of R (Figure 2(a)).

�

Corollary 2.3. Each Fi ∈ F ′ has at least ` − 1 ≥ dn/2e + 1 edges with one endpoint in X and the other
endpoint in W \ Y and at least dn/2e+ 1 edges with one endpoint in Y and the other endpoint in U \X.

Remark 2.4. In all the figures below, dashed lines represent edges that are candidates to be removed from
the rainbow matching, and solid and dotted lines represent edges that are candidates for being added in.
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(a) (b)

Figure 2

Notation 2.5. For each Fi ∈ F ′ let FYi be the subset of Fi consisting of edges with one endpoint in Y \ {yi}
and the other in U \ X. Let U∗ be the union of U ′ and the set of vertices in U \ X that are endpoints of
edges in

⋃
{FYi | Fi ∈ F}. Let R∗ be the subset of R that matches the elements in U∗. Let W ∗ be the set of

vertices in W that are matched by R∗. We define

F∗ = {Fj ∈ F|Fj ∩R∗ 6= ∅}.

(Note that U ′ ⊂ U∗, W ′ ⊂W ∗, R′ ⊂ R∗ and F ′ ⊂ F∗.) Let F ′′ = F∗ \ F ′ and let d = |F ′′| (it is possible
that d = 0).

Claim 2. Each F ∈ F ′′ has at least ` − 2 ≥ dn/2e edges with one endpoint in X and the other endpoint in
W \ Y and at least dn/2e edges with one endpoint in Y and the other endpoint in U \X.

Proof. Let Fj ∈ F ′′. We show that Fj has at most two edges between X and Y . By the definition of F∗,
there exists Fi ∈ F ′ and an edge f ∈ Fi such that f ∩ rj = {uj} ⊂ U \X and the other endpoint y of f is in
Y \ {yi}. Now suppose Fj has three edges between X and Y . Then one of them, say e, has an endpoint in
Y \ {yi, y}. We can now augment R by taking R \ {ri, rj} ∪ {f, ei, e} (Figure 2(b)). �

Claim 3. Each Fi ∈ F∗ has at least d+ 3 edges with one endpoint in X and the other endpoint in W ∗.

Proof. We know that |R∗| = |R′| + d. Hence, by (1), we have |R \ R∗| ≤ n − 1 − (dn/2e + 2 + d) =
bn/2c − d − 3. By Claim 2, the edges of Fi with one endpoint in X and the other endpoint in W \ Y meet
at least dn/2e − (bn/2c − d− 3) ≥ d+ 3 edges of R∗. �

We shall inductively choose edges f1, f2, . . . , fi and r1, r2, . . . , ri, ri+1, as follows. Without loss of generality
we assume that F1 ∈ F ′. By Claim 3, there exists f1 ∈ F1 connecting a vertex x1 ∈ X and a vertex in W ∗.
Denote this vertex by w2, and without loss of generality we may assume that w2 ∈ r2, where r2 ∈ R∗ ∩ F2.
Again, by Claim 3, F2 has at least d+2 edges with one endpoint in X\{x1} and the other endpoint in W ∗. Let
f2 ∈ F2 be such an edge. We continue this way, choosing at each step an edge fi, disjoint from all fj , j < i,
and belonging to the same matching as ri, with endpoints in X and in W ∗, and an edge ri+1 ∈ R∗, such
that fi ∩ ri+1 ∩W ∗ 6= ∅. The process ends when we have obtain a set of disjoint edges F = {f1, f2, . . . , fm},
each with endpoints in X and in W ∗, and a set of distinct edges P = {r1, r2, . . . , rm, rm+1} ⊆ R∗ such that
fi ∩ ri+1 ∩W ∗ 6= ∅ for i = 1, . . . ,m, and for each i, fi and ri belong to the same matching (without loss of
generality we assume that fi, ri ∈ Fi for i = 1, . . . ,m, and rm+1 ∈ Fm+1), so that one of two options holds:

(1) m < d + 3 and the matching Fm+1 has an edge fm+1 with one endpoint in X \ (f1 ∪ f2 ∪ . . . ∪ fm)
such fm+1 ∩ rt ∩W ∗ 6= ∅ for some t ∈ {1, . . . ,m}, or

(2) m = d+ 3.

(Note that by Claim 3 one of these two options must hold.)

In Case (1) the partial rainbow matching R can be augmented as follows: If Fi ∈ F ′ for some i ∈
{t, . . . ,m + 1}, then (R \ {rt, . . . , rm+1}) ∪ {ft, . . . , fm+1, ei} is a full rainbow matching (Figure 3(a)). If
Fi ∈ F ′′ for all i ∈ {t, . . . , i + 1}, then, by the definition of F∗, there exists Fj ∈ F ′ and an edge e ∈ FYj
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so that e ∩ rt ∈ U∗. In this case (R \ {rt, . . . , rm+1, rj}) ∪ {ft, . . . , fm+1, e, ej} is a full rainbow matching
(Figure 3(b)). (Note that e and ej are disjoint by the definition of FYj .)

(a) (b)

Figure 3

In Case (2) let Q = (R \ P )∪F . Then, Q is a partial rainbow matching of size n− 2, since it excludes the
matchings Fm+1 and Fn. We shall augment Q with edges from Fm+1 and Fn respectively, having endpoints
in Y and U∗.

Claim 4. If Fi ∈ F ′, then the size of the set {e ∈ FYi : e ∩ (∪mj=1rj) 6= ∅} is at least 2.

Proof. Let U i be the set of endpoints in U \X of the edges in FYi . Note that |U i| ≥ ` − 1 (Corollary 2.3),
U i ⊂ U∗ (since Fi ∈ F ′), and |U∗| = `+ d. Recall that for each edge rj ∈ R ∩ Fj its endpoint in U \X was
denoted uj . Since |U∗ \ {u1, . . . , um}| = `+ d−m = `+ d− (d+ 3) = `− 3, the claim follows. �

There are two sub-cases to consider: (2a) Fm+1 ∈ F ′, and (2b) Fm+1 ∈ F ′′.

(2a) Assume Fm+1 ∈ F ′. By Claim 4, there exists and edge e ∈ Fm+1 connecting a vertex in Y \ {ym+1}
with some ut, which is the endpoint in U of some rt ∈ P \ {rm+1}. Since m = d+ 3 and |P | = m+ 1 = d+ 4,
at least four of the edges in P are in R′ (actually, three are enough in this case). For at least one of these
four edges, say ri, its corresponding ei (the edge of FYn meeting ri in U) avoids both endpoints of e. Then,
Q ∪ {e, ei} is a rainbow matching of size n (Figure 4(a)).

(2b) Assume Fm+1 ∈ F ′′ and let FYm+1 be the subset of Fm+1 consisting of edges having one endpoint in

Y and one endpoint in U \X. By Claim 2, |FYm+1| ≥ dn/2e. Since |R \R′| ≤ n− 1− (dn/2e+ 2) = bn/2c− 3,

there is an edge e ∈ FYm+1 sharing an endpoint with an edge rs ∈ R′. Assume first that s ∈ {1, . . . ,m}. As
in the previous paragraph, there exists ei disjoint from rs and e, so that Q ∪ {e, ei} is a rainbow matching
of size n. Now assume that s 6∈ {1, . . . ,m} and let again e be the edge of Fm+1 sharing an endpoint with rs.
Since rs ∈ R′, there exists, by Claim 4, an edge e′ ∈ FYs , disjoint from e, sharing an endpoint with some rt
with t ∈ {1, . . . ,m}. Since |P ∩R′| ≥ 4, there exists an edge ei ∈ FYn , avoiding both endpoints of e′ and the
endpoint of e in Y , such that ui ∈ {u1, . . . , um+1}. Then, Q \ {rt} ∪ {e, e′, ei} is a rainbow matching of size
n (Figure 4(b)). This completes the proof.

(a) (b)

Figure 4

�
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3. Related conjectures on matchings in 3-partite hypergraphs

A rainbow matching for sets Fi of edges in a graph is in fact a matching in a 3-uniform hypergraph, with
a special set of vertices, each representing a set Fi. A hypergraph is called simple if it does not contain
repeating edges. If we want to indicate explicitly that a hypergraph is not necessarily simple, we say that
it is a multihypergraph. Given a hypergraph H and a set S of vertices, let ∆H(S) = maxs∈S degH(s) and
δH(S) = mins∈S degH(s). Let ν(H) be the maximal size of a matching in H.

Re-phrased in hypergraph terminology, Conjecture 1.2 may be substantially generalized.

Conjecture 3.1. Let H be a simple tripartite hypergraph with sides A,B,C. If δH(A) ≥ ∆H(B ∪ C) then

ν(H) ≥ δH(A)− 1

δH(A)
|A|.

This strengthens Conjecture 1.4, and would also imply generalizations of the following theorem of Drisko:

Theorem 3.2. [9] 2n− 1 matchings of size n in a bipartite graph have a partial rainbow matching of size n.

To obtain this theorem from the conjecture, duplicate the set V \A, calling x′ the duplicate of every vertex
x, and adding, for every edge axy, the edge ax′y′. In fact, it is possible that Conjecture 3.1 may be true for
all 3-uniform hypergraphs in which every edge meets the special set A at precisely one vertex. This case of
the conjecture would imply the following conjecture of Barat, Gyarfas and Sarkozy:

Conjecture 3.3. [5] 2n matchings of size n in a general graph have a partial rainbow matching of size n.

In [3] the following was proved:

Theorem 3.4. Let H be an r-uniform hypergraph in which there is a set A of vertices such that every edge
meets A at precisely one vertex. For every subset A′ of A let K[A′] = {f ⊆ V \A | f ∪{a} ∈ H for some a ∈
A′}. If ν∗(K[A′]) > (r − 1)(|A′| − 1) for every subset A′ of A then ν(H) = |A|.

Here ν∗(K) denotes the fractional matching number of the hypergraph K, which is defined as

ν∗(K) = max{
∑

e∈E(K)

f(e) | f : E(K)→ R+,
∑
v∈e

f(e) ≤ 1 for every v ∈ V (K)}.

Using this theorem the following can be proved:

Theorem 3.5. Let H be a 3-uniform hypergraph in which there is a set A of vertices such that every edge

meets A at precisely one vertex. If δH(A) ≥ ∆H(V \A) then ν(H) ≥ |A|2 .

Here topology can possibly go a bit further. In the case that H is 3-partite with A being one of the
sides, Theorem 3.5 follows directly from the result of [1] that in a 3-partite hypergraph τ ≤ 2ν. In [10, 11] a
characterization of the equality case in this theorem was proved, from which it follows that if δH(A) > 2 then

in case of equality in Theorem 3.5 the hypergraph is not simple: in fact every edge repeats at least δH(A)
2

times. This poses the following challenge:

Use the methods of [10, 11] to prove that if H is simple and 3-partite, with A one of its sides and δH(A) > 2

and δH(A) ≥ ∆H(V \A), then ν(H) ≥ |A|(1+ε)2 for some positive number ε.
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