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The well observed inward drift of current carrying runaway electrons during runaway

plateau regime after disruption is studied by considering the phase space dynamic

of runaways in a large aspect ratio toroidal system. We consider the case where the

toroidal field is unperturbed and the toroidal symmetry of the system is preserved.

The invariance of canonical angular momentum in such system requires runaways to

drift horizontally in configuration space for any given change in momentum space.

The dynamic of this drift can be obtained by taking the variation of canonical angular

momentum. It is then found that runaway electrons will always drift inward as long

as they are decelerating. This drift motion is essentially non-linear, since the current

is carried by runaways themselves, and any runaway drift relative to the magnetic

axis will cause further displacement of the axis itself. A simplified analytical model is

constructed to describe such inward drift both in ideal wall case and no wall case, and

the runaway current center displacement as a function of parallel momentum variation

is obtained. The time scale of such displacement is estimated by considering effective

radiation drag, which shows reasonable agreement with observed displacement time

scale. This indicates that the phase space dynamic studied here plays a major role

in the horizontal displacement of runaway electrons during plateau regime.
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I. INTRODUCTION

Large quantity of relativistic runaway electrons is one of the most feared by-product of

tokamak disruption, especially for large devices with higher total plasma current and higher

poloidal magnetic flux1. Those highly relativistic electrons are the direct result of high

toroidal inductive field during disruption, which in turn is the consequence of drastically aris-

ing bulk plasma resistivity as the thermal energy is mostly lost after thermal quench2,3. If left

unchecked, runaway electrons can multiply exponentially by Coulomb-collision avalanche1,

and up to 70% of initial plasma current can be converted into relativistic runaway current,

forming the so called “runaway current plateau”4. Furthermore, the high energy electrons

will keep being accelerated until effective radiation drag from synchrotron radiation and

bremsstrahlung radiation finally balance the toroidal inductive field5–7. This will result in a

highly anisotropic relativistic electron beam with energy on the order of tens of MeVs8, as

well as a ”bump on the tail” kind of distribution function in the momentum-space9–11.

The evolution of runaway electrons in momentum-space has been under substantial inves-

tigation during past decades5–7,12–14. However, the corresponding evolution in configuration

space has not received due attention. During the aforementioned runaway current plateau, it

is widely observed that there is a gradual inward drift of runaway current15–17. This inward

drift will ultimately result in the intersection between runaway electrons and the wall, caus-

ing tremendous damage to the first wall due to its localized way of energy deposition18. The

reason of this displacement is attributed to the force imbalance under externally generated

vertical field16, while the possible role played by the dynamic of relativistic electrons in a

self-generated magnetic field has not been fully explored.

Similar horizontal drift of runaway orbit has been studied using test particle model19.

It is found that the conservation of canonical angular momentum of runaway electrons

will induce a trajectory drift to compensate any change in mechanical angular momentum,

resulting in horizontal motion if runaways are accelerated or decelerated. This horizontal

drift is directional, as opposed to the diffusion-like behavior of stochastic scattering22,23.

However, the result of Ref. 19 can not be directly applied to the aforementioned inward

drift, due to the fact that the current during plateau regime is carried by runaway electrons

themselves. Thus its crucial for us to go beyond test particle model and consider the runaway
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orbit drift as an nonlinear process, so that any drift relative to the magnetic axis will result

in further displacement of axis itself.

In this paper, the aforementioned inward drift is studied by considering the current carry-

ing runaway electrons in an 2D equilibrium during runaway plateau regime. Those runaways

are being decelerated by effective radiation drag as the original inductive accelerating field is

greatly reduced during plateau20. It is found that the runaway current always move inward

due to the requirement of canonical angular momentum conservation if their momentum is

decreasing. It is also found that the eddy current and the vertical field are important in

stabilizing this inward drift. In the absence of both, the runaways will not stop until it hit

the first wall even for very small amount of momentum loss. A characteristic time scale

is estimated by considering the synchrotron radiation and bremsstrahlung radiation drag,

and the result is found to reasonably agree with experimental observations. This agreement

indicates the inward drift motion we discuss here plays an important role in understanding

runaway displacement during plateau regime.

The rest of the paper will be arranged as follows. In Section II, the transit orbit of

runaway electrons will be given by seeking its constant canonical angular momentum of

runaways. In Section III, we consider the displacement of runaway current center for any

variation of parallel momentum. The zeroth order drift of runaway current will be given

as a function of runaway momentum change for both ideally conducting wall case and no

wall case. Further, a characteristic time scale of such drift will be estimated using effective

radiation drag. In Section IV, a conclusion of the work will be given.

II. TRANSIT ORBIT OF RUNAWAY ELECTRONS

We consider a large aspect ratio toroidal system with major radius R, while R0 is defined

as major radius corresponding to the geometry center of the poloidal cross section of the

system. For simplicity, we consider the first wall to be a rectangle toroid elongated along

Z direction. Let the short side of the rectangle be 2a, while the long side of it be 4a. The

inverse aspect ratio ǫ ≡ a/R0 is a small number. Four walls of the toroid are designated by

numbers respectively.

A schematic plot of the system of interest is shown in Fig. 1 along with two coordinate
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FIG. 1. A schematic plot for the cross section of the system of interest. The ideal wall is seen as

a rectangle toroid as shown in the figure by the black solid lines. The red dashed circle represent

the cross section of runaway torus on this RZ plane. The two coordinate system (R,−φ,Z) and

(r, θ, φ) are also shown in the figure.

systems (R,−φ, Z) and (r, θ, φ). It should be noted that R0 does not necessarily correspond

to the runaway current center. Since we are primarily interested in the orbit drift of run-

aways, no velocity space instabilities will be discussed. Also, since the vertical stability of

the runaway current is essentially a equilibrium problem which is a separate topic from what

we are concerned here, it will not be treated in our consideration as well.

We will obtain the transit orbit of runaway electrons by seeking its constant canonical

angular momentum surface. An easy way to see how this is done is to realize that the par-

allel momentum p‖ is a near-constant across the transit orbit for runaway electrons, as the

variation of perpendicular kinetic energy ∆ (µB) is of O (ǫ3) comparing to p‖c if we assume

p⊥/p‖ ∼ ǫ. Thus the invariance of canonical angular momentum pφ
(

p‖, R,−φ, Z
)

defines a

2D trajectory surface in configuration space for runaway electrons. A more rigorous consid-

eration would write p‖ as a function of Hamiltonian H and configuration space coordinates:

p‖ (H,R,−φ, Z), then we have pφ = pφ (H,R,−φ, Z). The invariance of H and pφ in time

again defines the trajectory surface21.

In our consideration, all of the runaways are assumed to be located on a torus with minor

radius aR, and with a single energy and pitch angle. While this is certainly not realistic, it

serves to demonstrate the most fundamental physical idea. In reality, the runaway electrons
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have a distribution both in configuration space and in velocity space, but the well known

hollowed image of runaway radiation strongly suggest a hollowed spatial profile which peaks

at certain minor radius17,24,25, justifying our spatial assumption for the runaways as a zeroth

order approximation. On the other hand, the single energy assumption is intended to mimic

the “bump on tail” distribution of runaways in velocity space, as well as to greatly simplify

the model. The effect of eddy current as a result of current center motion is taken into

account by considering a simplified ideally conducting wall. This ideally conducting wall

will stabilize current displacement, thus serving as a maximum stabilization scenario. In

real tokamak, it’s effect will be reduced by finite resistivity.

Since assuming all the runaways are of the same energy and pitch angle, its sufficient for

us to write down the Lagrangian of a single runaway electron to describe dynamic of the

whole runaway torus. We write down the relativistic guiding center Lagrangian for runaways

as follows19:

L (x, ẋ, t) =
[

e (AR +Aw +Ad +Aex +Ac) + p‖b̂
]

· ẋ− γmc2. (1)

Here, e is the charge of electron, m is electron mass, c is the speed of light, b̂ denotes the

direction of magnetic field which is largely in toroidal direction due to the strong toroidal

guiding field. γ is the relativistic factor:

γ =

√

1 +
p2‖

m2c2
+

2µB

mc2
. (2)

B stand for the magnetic field, and the magnetic momentum is µ ≡ p2⊥/2mB, while p‖ and

p⊥ are the momentum parallel and perpendicular to the field line, respectively.

We now look at the contribution from vector potentials term by term, AR is the vector

potential generated by the runaway current, Aw is the vector potential corresponding to eddy

current generated in a ideally conducting wall as a reaction to runaway current motion. Thus

AR +Aw describe the total vector potential of a runaway current loop surrounded by the

first wall. Ad represents the effective vector potential changed due to effective radiation

drag, such that we have5,7

Ed = −
∂Ad

∂t
, (3)

while the value of Ed is given by

Ed = Esd + Ebd, (4)
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Esd =
2

3
re
mc2

e

(

√

γ2 − 1

γ

)3

γ4

(

1

R2
c

+
sin4 θ

ρ2g

)

, (5)

Ebd =
4

137
ne (Zeff + 1) r2e

mc2

e
γ

(

ln 2γ −
1

3

)

. (6)

Here, Esd and Ebd stand for the effective drag field from synchrotron radiation and

bremsstrahlung radiation respectively. In the above equations, re = e2/4πǫ0mc2 is the

classical electron radius, ρg = p⊥/eB0 is the electron gyro-radius, Rc is the major radius of

runaway current center, sinθ = p⊥/p is the pitch angle, ne is the remnant plasma density

after disruption and Zeff is the effective charge of remnant plasma. Apart form those

contributions, Aex corresponds to an additional toroidal electric field which is generated by

external coil and has the following form:

Eex (R) = −
∂Aex

∂t
, (7)

Eex = Eex0
R0

R
φ̂. (8)

We should point out that, since we are considering runaway electrons with high energy, the

current carried by those electrons is just:

IR = NRec. (9)

Here, NR is the total runaway population. Hence we know that the kinetic energy change

of those electrons will only have minimal impact on the current itself, so that the inductive

electric field from the change of poloidal magnetic flux is negligible. In a more realistic

consideration, the distribution of runaways in velocity space has to be considered, and there

may be small inductive field exist due to low energy runaways slowing down thus reducing

the runaway current. However, those inductive field would be much smaller than the toroidal

field at the beginning of current quench due to the much slower current decay rate. Last,

there is an additional contribution Ac representing the constant magnetic field imposed by

external coils, which include a toroidal field along φ direction and a vertical field along Z

direction:

Bc = BT +BZ , (10)

BT = −
BT0R0

R
φ̂, BZ = BZ0ẑ. (11)
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So that Ac can be chosen to have the following form:

Ac =
1

2
ln

(

R

R0

)

R0BT0ẑ −
R0BT0z

2R
R̂ +

1

2
BZ0Rφ̂. (12)

Only the φ component of Ac will contribute to the trajectory of runaway electrons. The

constant BZ0 is chosen so that at the beginning of the runaway plateau the runaway current

center coincide with the geometry center of the system R0.

Now the vector potential contribution from the runaway current itself will be write down

explicitly. We assume a priori that the radial variation of runaway orbit along θ direction

is of O (ǫaR), so that the poloidal cross-section of runaway orbit can be approximated as a

circle. Hence the magnetic field directly generated by the runaway current is axis-symmetric

with regard to the runaway current center in the large aspect ratio limit. We will check the

validity of this assumption a posteriori. This yields the following simple contribution:

Bθ =
µ0IR
2πr

θ̂, (13)

AR = −
µ0IR
2π

R0

R

[

ln
∣

∣

∣

r

a

∣

∣

∣
K (r − aR) + ln

∣

∣

∣

aR
a

∣

∣

∣
I (r − aR)

]

φ̂, (14)

K (x) = 1, (x ≥ 0) ; K (x) = 0, (x < 0) ; I (x) = 1−K (x) . (15)

Here, r is the minor radius of runaway electrons relative to the runaway current center. The

step function K and I represent the fact that there is no current within the runaway torus,

thus the runaway current contribution to the poloidal field is zero within the torus, and

the vector potential have a simple R0/R behavior. Further, the response from the ideally

conducting wall will be treated by simple magnetic image method. We treat the movement d

of runaway current IR effectively as adding a pair of new current, one at the original position

of the current and with value −IR which cancels the original current, the other at distance

d and with value IR which represents the moved current. The image currents corresponding

to those two effective currents then represent the eddy current contribution to current center

displacement. A schematic plot of this treatment is shown in Fig. 2.

This yields:

Aw = A(+)
w +A(−)

w , (16)

A(+)
w =

µ0IR
2π

R0

R

(

ln

∣

∣

∣

∣

∣

r
(+)
1

a

∣

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

∣

r
(+)
2

a

∣

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

∣

r
(+)
3

a

∣

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

∣

r
(+)
4

a

∣

∣

∣

∣

∣

)

φ̂, (17)

A(−)
w = −

µ0IR
2π

R0

R

(

ln

∣

∣

∣

∣

∣

r
(−)
1

a

∣

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

∣

r
(−)
2

a

∣

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

∣

r
(−)
3

a

∣

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

∣

r
(−)
4

a

∣

∣

∣

∣

∣

)

φ̂. (18)
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FIG. 2. A schematic plot for the treatment of current center displacement. The displaced current

is effectively represented by adding two new current with value −IR and IR respectively.

Here, r
(±)
i represents the distance between runaway and the positive and negative image

current centers generated by corresponding wall as designated in Fig. 1 respectively. For

leading order contribution, it would be well enough for us to just take the four pairs of

“primary” image currents directly corresponds to the current center displacement.

Finally, using above equations, Eq. 1 can be rewritten as follows:

L = prṙ + pθθ̇ + pφφ̇−H, (19)

pr =
1

2
e ln

(

R

R0

)

R0B0 sin θ − e
R0B0z

2R
cos θ, (20)

pθ =
1

2
e ln

(

R

R0

)

R0B0r cos θ − e
R0B0rz

2R
sin θ + (p+ eAd) r sinα, (21)

pφ =

[

e

(

AR + Aw + Aex +
1

2
BZ0R

)

+
(

p‖ + eAd

)

cosα

]

R, (22)

H = mc2

√

1 +
p2‖

m2c2
+

2µB

mc2
. (23)

Here, α is defined as tanα = Bθ/BT , so that cosα ∼ 1 for a large aspect ratio torus, and it

can be approximately seen as a constant. It can be seen from Eq. 19 that there is no explicit

dependence on φ in the Lagrangian, so that:

∂L

∂φ
=

d

dt

∂L

∂φ̇
=

d

dt
pφ = 0. (24)
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That is, the symmetry of the system demands the canonical angular momentum of runaway

electron to be a invariant in time. This invariant will define the surface of runaway orbit in

configuration space.

Due to the symmetry along φ direction, this system is essentially 2D. It would be con-

venience for us to express the 2D poloidal plane in terms of Cartesian coordinates for the

purpose of studying runaway orbit projection in this plane. We choose x to coincide with R,

and y to coincide with Z. x = 0 corresponds to R = R0, and y = 0 corresponds to Z = 0.

Hence the r and r
(±)
i variables in Eq. 14 and Eq. 16 can be expressed as:

r =

√

(x− d)2 + y2, (25)

r
(+)
1 =

√

[x+ (2a+ d)]2 + y2, r
(+)
2 =

√

(x− d)2 + (y − 4a)2, (26)

r
(+)
3 =

√

[x− (2a− d)]2 + y2, r
(+)
4 =

√

(x− d)2 + (y + 4a)2, (27)

r
(−)
1 =

√

(x+ 2a)2 + y2, r
(−)
2 =

√

x2 + (y − 4a)2, (28)

r
(−)
3 =

√

(x− 2a)2 + y2, r
(−)
4 =

√

x2 + (y + 4a)2. (29)

Here, d ≡ Rc − R0 is the displacement of runaway current center relative to the geometric

center of the system. Substituting Eq. 25 into Eq. 14 and Eq. 16, we then can seek the

constant canonical angular momentum surface for runaways with a given momentum p‖ by

simply solving Eq. 22. This surface defines the runaway orbit in the magnetic field considered

in our model. In this section, we will consider the displaced runaway orbit for changing

parallel momentum as a sequence of stationary trajectory surfaces with time dependent

terms dropped, each surface corresponds to a different parallel momentum and a different

displacement. Direct impression of runaway orbit drift with respect to a given change in

parallel momentum can then be obtained by comparing the original runaway orbit at the

beginning of plateau with the decelerated one, as shown in Fig. 3 and Fig. 4 respectively.

The runaway current IR acts as a given parameter and does not change in time. The

radius of runaway torus is aR = 0.4a. Further, the variation of p‖ due to the inhomogeneity

of magnetic field is negligible as γmec
2 ≫ µB.

In Fig. 3, the runaway orbit at the beginning of runaway plateau is shown. The runaway

electron parallel momentum is set to be p‖0 = 2eµ0IR
2π

R0

a
, the constant vertical field is chosen

as BZ0 = −p‖0/eR0 so that the runaway current center will be at R0. For runaway current

on the order of IR ∼ 0.1 MA, the aforementioned choice of parallel momentum corresponds

9
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FIG. 3. The runaway electron orbit cross-section in the poloidal plane at the beginning of runaway

plateau with relativistic factor γ = 100 and IR ∼ 0.1 MA. (a) The comparison between runaway

orbit with current center at R0 and a circle with minor radius 0.4a. The black solid line represents

the runaway orbit, and the red dashed line the analytical circle. (b) The runaway orbit in the

background of total vector potential contour, which is represented by black dashed lines. The

black dot in both figures denotes the position of runaway current center.

to a relativistic factor γ = 100. The inverse aspect ratio is chosen as ǫ = 0.2. The runaway

orbit is compared with a analytical circle with minor radius being 0.4a in Fig. 3 (a). In Fig. 3

(b), the orbit is put in the background of vector potential contour. The sudden change in

the field behavior within the runaway torus is due to the step functions in Eq. 14, and will
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not affect the runaway orbit in any way. Then we consider the case when the runaways have

decelerated due to radiation drag. The relativistic factor is now γ ≃ 68, the displacement

is found by calculating the constant pφ contour iteratively so that the geometric center of

orbit matches the current center position R0 + d. The comparison between the orbit and a

analytical circle with minor radius 0.4a is also shown in Fig. 4, as well as the total vector

potential contour.

The most important feature obtained from this comparison is that runaway electrons will

drift inward as long as they are decelerating, which will contribute to the inward runaway

current drift observed in runaway plateau regime. The detailed dynamic of this inward drift

will be discussed in Section III. Also, it can be seen that the deviation of runaway transit orbit

from circle is less than O (ǫ) comparing to aR, justifying our assumption that the runaway

orbit cross-section can be approximated as a circle even with substantial displacement.

III. INWARD DRIFT OF RUNAWAY ELECTRON TRANSIT ORBIT

The runaway orbit for a given p‖ is demonstrated in Section II by iteratively seeking the

constant pφ surface. The explicit time dependence of this orbit is dropped. However, we are

also interested in the dynamic of runaway orbit drift which is more relevant to the control

of current displacement. That is, we wish to know analytically how much the displacement

would be for a given change in runaway momentum ∆p‖. The time scale of this displacement

is also of interest.

This dynamic can be get by considering the energy equation for runaways along with

the invariance of canonical angular momentum. We write down the leading order change of

runaway electron energy for one time period as19:

∆
(

γmec
2
)

≃ e (Eex0 + Ed)R0φ̇
(0)∆t, (30)

where

φ̇(0) =
p‖

γR0me

. (31)

Here, ∆t is a small time period, and any other ∆f denotes the change of quantity f with

regard to the unperturbed quantity. Most notably, we take x = R−R0 as the relative major

radial position of an arbitrary point on the transit orbit surface by the time t, then ∆x
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FIG. 4. The runaway electron orbit cross-section in the poloidal plane when current center dis-

placement is d = −0.5a, corresponding γ ≃ 68 with the same IR. (a) The comparison between

runaway orbit with current center at R0 and a circle with minor radius 0.4a. The black solid line

represents the runaway orbit, and the red dashed line the analytical circle. (b) The runaway orbit

in the background of total vector potential contour, which is represented by black dashed lines.

The black dot in both figures denotes the position of runaway current center.

would be the change of x for a time period ∆t. A schematic plot for d, x, ∆d and ∆x is

shown in Fig. 5. Hence we can write the change of parallel momentum for one time period

12
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t+Δt

xΔx

(0,0)

FIG. 5. A schematic plot for the runaway transit orbit at time t and t +∆t, with current center

displacement d and d+∆d respectively. The relative major radial position x for a arbitrary point

on the transit orbit surface, and its displacement ∆x after ∆t is also shown on the plot.

up to O (ǫ) as:

∆p‖ = e (Eex0 + Ed)∆t +
meµBT0∆x

p‖R0

. (32)

Meanwhile, the variation of pφ = const provides the following relation for a given change

in runaway parallel momentum ∆p‖:

e∆ [(AR + Aw)R] + eBZ0R∆x− e (Eex0 + Ed)R0∆t+∆p‖R + p‖∆x = 0. (33)

Combining the evolution of runaway energy and invariance of its canonical angular mo-

mentum will then yield the dynamic of runaway current center displacement. It would be

convenient to discuss the two extreme case where the time scale of runaway displacement

is much shorter than the resistive time scale of the wall, and, conversely, the displacement

time scale is much longer than the resistive time scale. In the former case, the eddy current

from wall plays a crucial role in stabilizing the displacement of current center. In the latter

case, this role will be undertaken by the constant vertical magnetic field.

A. Runaway drift dynamic with ideally conducting wall

Here, we consider the case where the time scale of runaway displacement is much shorter

than the resistive time of the wall. Thus the wall can be seen as ideally conducting as studied

in Section II.
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Since we are considering the scenario where current is carried by runaway electrons them-

selves, the displacement of current center d also changes along with the position of runaways

x. We have the following relation upon taking the circular cross-section approximation of

runaway torus:

∆d ≃ ∆x. (34)

Hence we can proceed to write down the variation of runaway contribution:

e∆(ARR) = −e
µ0IRR0

2π

∆r

aR
= −e

µ0IRR0

2π

(x− d) (∆x−∆d)

a2R
≃ 0. (35)

It can be seen that the contribution from runaway current itself vanishes. This has the

important implication that, unlike the poloidal field generated by background plasma current

in Ref. 19, the poloidal field directly generated by runaway torus will not stabilize the orbit

drift. That is, if there is not wall current or external vertical field, the orbital drift of

runaway electron will not stop until it hit the first wall.

The contribution from eddy current is:

∆
(

A(±)
w R

)

= ±
µ0IRR0

2π

[

∆r
(±)
1

r
(±)
1

+
∆r

(±)
2

r
(±)
2

+
∆r

(±)
3

r
(±)
3

+
∆r

(±)
4

r
(±)
4

]

. (36)

The variation of A
(−)
w is straight forward as the position of image current has no dependence

on the actual current displacement d. Hence, we have:

∆r
(−)
1

r
(−)
1

=
(x+ 2a)

(x+ 2a)2 + y2
∆x,

∆r
(−)
2

r
(−)
2

=
x

x2 + (y − 4a)2
∆x, (37)

∆r
(−)
3

r
(−)
3

=
(x− 2a)

(x− 2a)2 + y2
∆x,

∆r
(−)
4

r
(−)
4

=
x

x2 + (y + 4a)2
∆x. (38)

One the other hand, the displacement of current center d must be considered for A
(+)
w , so

that we have:

∆r
(+)
1

r
(+)
1

=
2 [x− d+ 2 (a+ d)]

[(x− d) + 2 (a + d)]2 + a2R − (x− d)2
∆x,

∆r
(+)
2

r
(+)
2

= 0, (39)

∆r
(+)
3

r
(+)
3

=
2 [x− d− 2 (a− d)]

[(x− d)− 2 (a− d)]2 + a2R − (x− d)2
∆x,

∆r
(+)
4

r
(+)
4

= 0. (40)

Recall that we can approximate the poloidal cross-section of runaway orbit as a circle, so

that y ≃
√

a2R − (x− d)2. Also recall that aR and a are all constant. Hence we can write:

Λ (x, d) ≡
∑

i

±
∆r

(±)
i

r
(±)
i

(∆x)−1 . (41)
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This new function Λ is a function of the major radial position of runaways x and the current

center displacement d. In the limit of |x− d| being small, Λ reduce to the zeroth order

approximation Λ(0) (d) which is a function of d alone.

Now we now can simplify Eq. 33 into:

e
µ0IRR0

2π
Λ (x, d)∆x+ eBZ0R∆x+ e (Eex0 + Ed) x∆t +

meµBT0∆x

p‖R0

R + p‖∆x = 0.

(42)

Recall that BZ0 = −p‖0/eR0 is required for the current center being at R0 for t = 0, we

have:

e
µ0IRR0

2π
Λ (x, d)∆x−

(

p‖0 − p‖
)

∆x− p‖0
x

R0
∆x+

meµBT0

p2‖

R

R0
p‖∆x = −e (Eex0 + Ed) x∆t.

(43)

Simple observation by iteratively seeking the constant pφ surface indicates that
∣

∣p‖0 − p‖
∣

∣ ∼
∣

∣eµ0IRR0

2π
Λ (x, d)

∣

∣ for significant displacement of current center. Based on this estimation,

order analysis assuming p‖0 ∼ O (1) then yield the following ordering:

e
µ0IRR0

2π
Λ (x, d) ∼

(

p‖0 − p‖
)

∼ O

(
∣

∣

∣

∣

d

a

∣

∣

∣

∣

)

, (44)

p‖0
x

R0
∼ O

(

ǫ

∣

∣

∣

∣

d

a

∣

∣

∣

∣

)

, (45)

meµBT0

p2‖

R

R0

p‖ ∼ O
(

ǫ2
)

. (46)

Hence, to the lowest order, we have:

e
µ0IRR0

2π
Λ (x, d)∆x−

(

p‖0 − p‖
)

∆x = −e (Eex0 + Ed) x∆t. (47)

Due to the complicity of Λ (x, d) and the contribution from parallel momentum term, it

is hard to write a comprehensive expression of the drift rate ∆x/∆t analytically. However,

Eq. 32 and Eq. 47 can be solved as two first order ODE if we only consider the dominant

contributions. We define the following normalized parallel momentum and a new time scale

for momentum change:

p̄‖ ≡

(

e
µ0IR
2π

R0

a

)−1

p‖, (48)

τ−1
p ≡ (Eex0 + Ed)

(

µ0IRR0

2πa

)−1

. (49)
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So that we can write down the evolution of current center displacement by taking the zeroth

order approximation:

∆x

∆t
≃

∆d

∆t
= τ−1

p

[(

p̄‖0 − p̄‖
)

− aΛ(0) (d)
]−1

d, (50)

∆p̄‖
∆t

= τ−1
p . (51)

It is noteworthy that, in a retrospective point of view, the runaway displacement does not

really depends on the time history of momentum change. Combining Eq. 50 and Eq. 51, we

can get a simple first order ODE regarding runaway displacement d and parallel momentum:

∆d

∆p̄‖
=
[(

p̄‖0 − p̄‖
)

− aΛ(0) (d)
]−1

d. (52)

Thus runaway displacement is purely a function of the change in parallel momentum and is

virtually independent of detailed models regarding how the parallel momentum is changed,

which only affect the time scale of said displacement. In a more realistic model with finite

resistive wall, however, the momentum change rate may be important if it is comparable

with the inverse resistive time of the wall.

Eq. 52 can be solved by simple 4th order Runge-Kutta method26 to get the relation

between p‖ and d. Using this relationship, the velocity of runaway drift motion can be

obtained using Eq. 50. For simplicity, we consider a special case where τ−1
p is a constant, so

that the drift velocity ∆d/∆t can be simply plotted as a function of d. An example case with

runaway torus radius aR = 0.3 is presented in Fig. 7. Both the velocity of current center

drift ∆x/∆t and the parallel momentum p‖ as functions of current center displacement d

is shown. It can be seen that for significant displacement of current center p‖0 − p‖ ∼ p‖0,

confirming our previous ordering analysis. It can also be seen that the drift velocity is on

the order of a/τp when the current center is away from the ideally conducting wall. When

closing to the wall, its motion is stabilized by the strong magnetic field provided by the wall

current.

To estimate the time scale of this drift motion, especially the motion far away from wall,

we now estimate the magnitude of τp. For our case considered here, µ0IRR0

2πa
= 1×10−1V ·s/m,

and the effective drag field can be estimated using Eq. 3 - Eq. 6 with γ ∼ 100, BT0 ∼ 3T

and p⊥/p‖ ∼ ǫ. The resulting effective drag field is on the order of 1.19 V/m. Hence the

characteristic time scale of runaway orbit drift is τd ∼ τp ≃ 8.4 × 10−2s. This time scale
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FIG. 6. (a) The velocity of current center drift as a function of current displacement. (b) The

variation of parallel momentum as a function of current center displacement.

reasonably agree with experimental observation, where the current center moves one third

of the minor radius in 25ms17. This corresponds to a time scale about 8.75× 10−2s.

As a further note, the displacement of the left and right extreme points of the runaway

torus can be studied by considering Λ (x, d) rather than Λ(0) (d) in Eq. 50. The position of

left and right extreme point of torus as functions of current center displacement are shown

in Fig. 6. It can be seen that apart from the drift along with the current center, there are

additional next order motion which tend to “squeeze” the cross-section of runaway orbit.

This corresponds to the deformation of runaway cross-section seen in Fig. 4.
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FIG. 7. The position of current center and both extreme points of the runaway torus as functions

of the current center displacement. It can be seen that there is only minimal deformation of the

circular even for significant displacement of current center.

B. Runaway drift dynamic with highly resistive wall

Another interesting scenario is the case where the time scale of current center drift is

much longer than the resistive time scale of the wall. In this case, the wall can be seen as

magnetically transparent. That is, there is no response from wall current to the change of

magnetic field within the vessel.

Under this consideration, Eq. 43 becomes:

− p‖0
x

R0
∆x+

meµBT0

p2‖

R

R0
p‖∆x = −e (Eex0 + Ed)x∆t. (53)

Following a similar ordering analysis carried out in the previous section, we have:

− p‖0
x

R0
∼ O

(

ǫ

∣

∣

∣

∣

d

a

∣

∣

∣

∣

)

, (54)

meµBT0

p2‖

R

R0
p‖ ∼ O

(

ǫ2
)

. (55)

Hence the dominant contribution now is:

p̄‖0
1

R0
∆x = τ−1

p ∆t. (56)

∆p̄‖ = τ−1
p ∆t. (57)
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The relationship between runaway displacement and parallel momentum change is then

simply:

∆x

∆p̄‖
=

∆d

∆p̄‖
=

R0

p̄‖0
. (58)

And the drift velocity of runaway electrons is also very simple:

∆x

∆t
=

∆d

∆t
=

e (Eex0 + Ed)R0

p‖0
. (59)

This result is essentially along the same line with the scenario studied bu Guan et al. in

Ref. 19, as both cases concerns the drift of runaway electrons in a prescribed magnetic field.

The only difference is that Guan et al. studied the outward drift of accelerating runaways in

a constant poloidal field carried by plasma current, while here we are looking at the inward

drift of decelerating runaways in a constant vertical field sustained by external coils.

The time scale of this drift motion can again be estimated by considering runaway elec-

trons with γ ∼ 100, B ∼ 3T and R0 ∼ 2m. The effective drag field is again 1.19 V/m,

as is in the previous section. The time scale for current center drifting across the vessel

is then τd ∼ 2.5 × 10−2s. This times scale is of O (ǫ) comparing to the time scale of the

ideally conducting case. This is consistent with the fact that the LHS of Eq. 56 is of O (ǫ)

comparing to the LHS of Eq. 47.

IV. DISCUSSION AND CONCLUSION

The inward drift of runaway current center during runaway plateau is studied in this

paper. This horizontal drift motion is required by the conservation of canonical angular

momentum to balance any change of parallel mechanical momentum of runaway electrons.

We are mainly interested in the plateau regime after disruption where most of the current

is carried by runaway electrons themselves. In this consideration, for any drift of runaway

electron relative to the field line, the current center itself will also drift. Since the magnetic

field lines is generated by this runaway current, the resulting current center drift motion is

essentially non-linear, as oppose to the linear drift motion of test particle runaways studied

in previous works19.

The runaway transit orbit surface is obtained by seeking the constant canonical angular

momentum surface in a unperturbed 2D equilibrium. It is found that runaways will always
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drift inward as long as they are losing momentum. The eddy current and external vertical

field are found to play a crucial role in stabilizing this horizontal drift, without which the

runaways will not stop until they hit the first wall even for small amount of momentum loss.

The dynamic of this inward drift is analyzed by taking the variation of canonical angular

momentum and electron energy, which yield a first order ODE describing the trajectory dis-

placement for any given change in parallel momentum. The time scale of such displacement

is estimated by using models of effective radiation drag. The time scale thus calculated

reasonably agrees with experimental observation.

It is noteworthy that the horizontal drift we discussed here has drastically different physics

with the force imbalance along major radius, which has been invoked when discussing the

observed inward motion during plateau regime16. The fundamental physics here is the con-

servation of canonical angular momentum, which can not be recovered by simply considering

the runaway current as an ordinary current carrying circuit. An easy way to see this is by

considering a runaway torus in perfect force balance. We then consider a certain loss of par-

allel momentum, with minimal decrease in the velocity of runaways. The change in J ×B

force balance is negligible, but the runaways will still drift inward to preserve their canonical

angular momentum. Hence our study here provided a new powerful mechanism which may

play an important role in analyzing runaway motions during plateau regime.

Strong simplification has been made to ensure the runaway current drift we concerned

here to be analytically tractable. In a more realistic consideration, various more complicated

model such as finite distribution of runaways in phase space and the impact of finite resistive

wall should be included. Tracking the evolution of thus more complicated model require

numerical tools, and it is left for future works.
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