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ABSTRACT

A wealth of X-ray and radio observations has revealed in the past decade a grow-
ing diversity of neutron stars (NSs) with properties spanning orders of magnitude in
magnetic field strength and ages, and with emission processes explained by a range
of mechanisms dictating their radiation properties. However, serious difficulties exist
with the magneto-dipole model of isolated neutron star fields and their inferred ages,
such as a large range of observed braking indices (n, with values often <3) and a mis-
match between the neutron star and associated supernova remnant (SNR) ages. This
problem arises primarily from the assumptions of a constant magnetic field with n=3,
and an initial spin period that is much smaller than the observed current period. It
has been suggested that a solution to this problem involves magnetic field evolution,
with some NSs having magnetic fields buried within the crust by accretion of fall-
back supernova material following their birth. In this work we explore a parametric
phenomenological model for magnetic field growth that generalizes previous suggested
field evolution functions, and apply it to a variety of NSs with both secure SNR as-
sociations and known ages. We explore the flexibility of the model by recovering the
results of previous work on buried magnetic fields in young neutron stars. Our model
fits suggest that apparently disparate classes of NSs may be related to one another
through the time-evolution of the magnetic field.

Key words: stars: neutron - stars: magnetic field - stars: magnetars - stars: rotation
- ISM: supernova remnants - X-rays: stars

1 INTRODUCTION

Thanks to the advance of modern X-ray telescopes such
as Chandra and XMM-Newton, and the synergy with ra-
dio observations, we now know that isolated neutron stars
(NSs) can manifest themselves as pulsars (PSRs) with a
surface dipole magnetic field spanning more than five or-
ders of magnitude, in the ∼1010–1015 G range1. Obser-
vationally, this has led to their organization into different
classes, including 1) the rotationally-powered radio and X-
ray bright objects, like the Vela pulsar with B∼1011–1013 G,
2) the magnetically powered pulsars (or magnetars) with
B∼1014–1015 G, exceeding the QED limit of 4.4 × 1013 G
and observed primarily at high energies, 3) the highly mag-
netized pulsars (HBPs) with magnetic fields intermediate

⋆ Canada Research Chair
1 For the remainder of this work we use the equatorial surface

dipole field, B = 3.2×1019
√

P Ṗ (G), inferred from the observed
period, P (s), and period derivative, Ṗ (s s−1).

between the classical pulsars and magnetars, but still ex-
ceeding the QED limit, and 4) the Central Compact Ob-
jects (CCOs) observed only in X-rays (so far), near the
centres of supernova remnants (SNRs) and with inferred
low magnetic fields, B∼1010–1011 G. This diversity led sev-
eral authors to attempt a unification through evolution-
ary models of NSs with their properties dictated primarily
by a continuum of magnetic field strengths (see e.g. Kaspi
2010; Dall’Osso, Granot & Piran 2012; Vigano et al. 2013;
Perna et al. 2013; Mereghetti 2013; Safi-Harb 2015, and ref-
erences therein).

The magnetic field is estimated using a standard model
of neutron star evolution which assumes energy loss due to
the emission of radiation from a point-like rotating mag-
netic dipole in vacuum, providing a spin-down torque with
a braking index n = 3 (Gunn & Ostriker 1969). This pic-
ture assumes rapid rotation of the NS after birth, so the
observed period (P ) differs from the initial period (P0) by a
large amount (i.e. P0 ≪ P ) due to the constant torque acting
to slow the NS spin (Burrows & Lattimer 1988). However,
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the braking index has been measured for a small sample of
young pulsars, and all so far differ from the prediction of the
standard model with n < 3 (Espinoza et al. 2011). A lower
braking index can come about from a variety of mechanisms
including a change in the moment of inertia of the star over
time (Ho & Anderson 2012), alignment of the magnetic field
and rotation axis (Macy 1974; Lyne et al. 2013), the emis-
sion of a particle wind (Harding, Contopoulos & Kazanas
1999; Tong et al. 2013), magnetospheric effects (Michel
1991; Spitkovsky 2006) and environmental interactions
(Menou, Perna & Hernquist 2001). Another serious problem
with the standard picture concerns the NSs that are asso-
ciated with supernova remnants (SNRs). Generally, pulsar
ages found from their ‘characteristic age’ (τPSR = P/2Ṗ ) by
assuming dipole radiation and the independently measured
SNR ages are in disagreement, sometimes by orders of mag-
nitude (in particular for the CCOs)2. The observed braking
index and age discrepancy arise from the standard, and com-
monly adopted, assumption of a constant torque acting to
brake the NS over its life span.

The growing evidence for NSs with X-ray luminosity
in excess of their spin-down energy presents another diffi-
culty for the standard scenario. Some of these objects are
thought to be powered by the dissipation of magnetic en-
ergy rather than spin-down losses, examples of which include
the anomalous X-ray pulsars (AXPs) and some soft gamma-
ray repeaters (SGRs), unified under the class of ‘magnetars’
(Duncan & Thompson 1992; Usov 1992; Paczynski 1992).
These are X-ray bright objects that are slowly rotating pul-
sars with exceptionally high magnetic fields and normally
discovered through their bursting activity. However, a neat
classification scheme for these objects proves elusive in the
light of the discovery of ‘low-B magnetars’ (e.g. Rea et al.
2010), and an HBP having behaved like a magnetar, yet
thought to be a rotation-powered pulsar powering a bright
pulsar wind nebula (Kumar & Safi-Harb 2008; Gavriil et al.
2008). The situation is further complicated by the cen-
tral compact objects (CCOs) with extremely low fields,
dubbed as ‘anti-magnetars’ (Gotthelf & Halpern 2009), yet
still show an X-ray luminosity in excess of their spin-down
energy. One recent interpretation for these objects is the
suppression of their external field through magnetic field
burial (Bernal, Lee & Page 2010; Ho 2011; Vigano & Pons
2012; Bogdanov 2014), also implied by spectroscopic mod-
els of these objects (Ho & Heinke 2009). In this scenario,
the accretion of supernova fall-back material occurs follow-
ing the birth of the NS. This period of vigorous accretion
has the effect of burying the dipole magnetic field compo-
nent within the NS crust, reducing the spin-down energy loss
and making the NS appear significantly older than its asso-
ciated SNR. In this alternative model of NS evolution, field
growth is needed to explain the initially small braking index
and low surface fields, while a decaying toroidal component
is invoked to explain the excess X-ray luminosity (Ho 2012).
The field burial scenario has been most recently described
in significant detail by Ho (2015), who performed detailed
calculations of the fall-back accretion process, including the

2 See http://www.physics.umanitoba.ca/snr/SNRcat for the
high-energy catalogue of SNRs which compiles all known ages
of SNRs and associated PSRs (Ferrand & Safi-Harb 2012).

inner structure of the NS, conductivity of the NS crust and
a realistic equation of state. Besides an internal decaying
toroidal component, the dipole field component also de-
cays on large time-scales (Dall’Osso, Granot & Piran 2012;
Vigano et al. 2013). The decaying external field is described
by a parameterized model given by Colpi, Geppert & Page
(2000), expanded on by Dall’Osso, Granot & Piran (2012)
and used to describe the evolution of the AXP 1E 2259+586
by Nakano et al. (2015).

In this paper we present a phenomenological parame-
terized family of models for magnetic field evolution in the
NS population. Our model unifies the description of mag-

netic field growth and decay by making use of variations
on the parametric forms from Dall’Osso, Granot & Piran
(2012) and Colpi, Geppert & Page (2000), which we de-
rive in Section 2. This model also reproduces the results of
Negreiros & Bernal (2015) for exponential field growth and
replicates the findings of Dall’Osso, Granot & Piran (2012)
for decaying fields. We fit our model to the observations of
various NSs in Section 3, testing our model against the de-
tailed physical predictions found by Ho (2015). We discuss
the results of our fits in Section 4. Finally, our conclusions
are summarized in Section 5.

2 THEORY AND PARAMETER SPACE

EXPLORATION

The standard model for NS spin-down from energy loss due
to the emission of dipole radiation assumes a constant mag-

netic field B ∝
√

PṖ , where P and Ṗ are the period and
period derivative, respectively. However, we are interested
in the dynamical evolution of the magnetic field

B(t) = Bjfj(t), (1)

where the time-dependence has been gathered into the func-
tion fj(t) and Bj is a constant reference field value, either
the initial field strength in decay models (denoted by sub-
script D) or final field strength in growth models (labelled
as G). We use the differential equation

PṖ = bB2, (2)

with b = constant, and do not consider the effect of spin-
axis field alignment. Integrating this equation from the NSs
birth at t = 0 to an arbitrary later time t, we find

P 2 = P 2
0 + 2bB2

j F
2
j (3)

where we have denoted the integral

F 2
j =

∫ t

0

f2
j (t

′)dt′. (4)

From here on we will generally suppress the time-
dependence of the function f for notational simplicity. The
period derivative is

Ṗ =
bB2

j f
2
j

P
(5)

and we express the characteristic age, τ , as

τ =
P

2Ṗ
=

P 2

2bB2
j f

2
j

(6)
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where we have used equation 5. Inserting equation 3 in this
expression gives us

τ =
P 2
0

2bB2
j f

2
j

+
F 2
j

f2
j

. (7)

Including a time-dependent field introduces an important
distinction between the characteristic age τ and the model
time t. The model time represents the amount of time
elapsed from the birth of the NS to the present, and thus
represents the “true” age of the NS. The characteristic age
is the age that is determined from the period and period
derivative of the NS (equation 6), which differs from the
true age due to the time-dependence of P and Ṗ . These dy-
namical quantities also introduce a time-dependence of the
braking index n = 2−PṖ/P̈ . Using equation 3, the braking
index is given by

n = 3− 4τ
ḟj
fj
. (8)

If the field decays ḟj is negative and n > 3, while field growth
has positive ḟj and leads to a braking index n < 3 as ob-
served in many young NSs. In the case of fj = 1, F 2

j = t,
and these formulae reduce to the standard spin-down from
dipole radiation with a constant field.

Dall’Osso, Granot & Piran (2012) use a parametriza-
tion to study field decay that was introduced by
Colpi, Geppert & Page (2000):

dB

dt
= −aB(t)1+α = −

B(t)

τD
(9)

where α is the decay index that describes how rapidly
the decay proceeds and a is a normalization parameter re-
lated to the specific physical mechanisms involved in the
decay (e.g. Hall drift, ambipolar diffusion). The quantity
τD = [aB(t)α]−1 is the decay time-scale, which itself is time-
dependent. The magnetic field described by these equations
can be conveniently written as

B(t) = BD

{

(

1 + α t
τm

)

−
1
α , α 6= 0, 2

exp
(

− t
τm

)

, α = 0
(10)

where BD is the initial field which decays over time, and
τm = τD(0) is the initial field decay time-scale. Note that
the time-dependence of the decaying field given in equation
10, B(t) = BDfD(t), is contained entirely within the dimen-
sionless function fD(t). This well-known parametrization is
extremely useful as it can also be used to construct a model
of field growth.

There are a number of properties the dimensionless
function fG(t) must have in order to describe NS field
growth. The growth must be bounded in time, in that the
field begins at some minimum value and attains an asymp-
totic maximum value as time increases. This requires that
the derivative of the field growth function is always pos-
itive and decreases to approach zero as t becomes large.
Furthermore, fG(t) should be parameterized in terms of a
small number of quantities whose meaning has a clear phys-
ical interpretation. In fact, the field decay function fD(t)
has attractive features that make it useful to also describe
the derivative of a growing field dfG/dt. First, the function
decreases from a maximum fD(0) = 1 and becomes van-
ishingly small for large t. This bounded behaviour fulfills

the exact criteria that is required to describe the deriva-
tive of a field dfG/dt that begins at a minimum value and
grows to approach a constant strength as t increases. Sec-
ond, fD(t) is stated in terms of two parameters that have
a well understood interpretation. The index α controls the
rate at which fD(t) changes with respect to t, with lower
values giving the field evolution an exponential behaviour,
and larger values slow the evolution providing a softer de-
cay. The parameter τm controls the time-scale over which
the magnetic field evolves. Therefore, let us consider the
following basic form based on the field decay fD(t) from
Dall’Osso, Granot & Piran (2012), with an appropriate nor-
malization, as

dfG
dt

=
(1− α)

τm
fD (11)

where fG is the time-dependent part of the growing field
and fD contains the time-dependency of the decaying field
model, normalized by the factor (1 − α)/τm. Due to this
normalization, growing fields require the field index to be
in the range 0 ≤ α < 1. Equation 11 results in a field that
evolves in time as B(t) = BGfG(t), where

fG(t) = ǫ+

{

1−
(

1 + α t
τm

)
α−1
α , 0 < α < 1

1− exp
(

− t
τm

)

, α = 0
. (12)

In the above expression the integration constant ǫ controls
the initial field

B0 = BGǫ (13)

in terms of the asymptotic value at large t, BG. The growth
model uses the boundary condition Bj = BG as the asymp-
totic field strength, and the decay model uses Bj = BD

as the initial field. In terms of fields buried by fall-back
accretion, the smaller ǫ is, the deeper the field has been
buried within the NS, and the larger the difference between
the initial and asymptotic field strength. The time-scale τm
determines how long the field takes to emerge from the
compact object. The field given by equation 12 describes
a family of solutions in terms of the field index α. When
α = 0 the field evolves exponentially, which is particularly
significant as this form was proposed by Negreiros & Bernal
(2015) to describe growing NS fields. When 0 < α < 1,
field growth occurs more slowly. Since the parameters of
our growth model are given by the widely studied decaying
field parametrization of Dall’Osso, Granot & Piran (2012)
and Colpi, Geppert & Page (2000), we find this representa-
tion to be particularly intuitive.

The period P and characteristic age τ given by equa-
tions 3 and 7 depend on the integral of f2

G (equation 4).
With the time-dependence from equation 12, we write

F 2
G =

∫ t

0
f2
G(t

′)dt′ = (1 + ǫ)2t

−
2(1+ǫ)τm

2α−1

[

(

1 + α t
τm

)
2α−1

α − 1
]

+ τm
3α−2

[

(

1 + α t
τm

)
3α−2

α − 1
]

.

(14)

We give the special cases of this equation in the limits α →

1/2 and α → 2/3, and summarize the connection between
the field decay and growth models in Table 1.

The model as stated has six parameters: the field index
α, growth factor ǫ, time-scale τm, asymptotic field BG, the
initial period P0 and the model time t. The model time can

c© 2015 RAS, MNRAS 000, 1–12
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be treated as a free parameter to vary between the lower and
upper SNR age limits, τSNR- and τSNR+, respectively, or can
be fixed before beginning the optimization. The model then
outputs the quantities we want to fit to the observed val-
ues: the period, period derivative and braking index (at the
present time). The standard fitting problem is to vary the
input parameters to produce a match with the output and
the observed values. Thus, the problem is under constrained,
in that there are fewer fit quantities than parameters, lead-
ing to a family of solutions. However, a closer inspection
shows that the previously stated input parameters are not
truly independent. In fact, a simplification can be achieved
by changing our modeling approach.

Instead of fitting for P and Ṗ , let us assume their ob-
served values a priori. We then know the magnetic field at
the present time, which we call Bt, by equation 2, and also
by definition the characteristic age τ = τPSR. With the def-
inition of the growing field in equation 1, we can solve for
the model time t as a function of the present-day field Bt

and the four parameters (α, ǫ, τm, BG):

t =

{

τm
α

[

(

1 + ǫ − Bt
BG

) α

α−1 − 1
]

, 0 < α < 1

−τm ln
(

1 + ǫ− Bt
BG

)

, α = 0
. (15)

Once we have calculated t, we find f and ḟ using equation 12,
and obtain the braking index n at the current time through
equation 8. The parameters are then varied to match n and
t to the observed values. Knowledge of the characteristic
age allows us to state the initial period as a function of the
parameters, given by solving equation 7:

P0 =
√

2bB2
G (τPSRf2

G − F 2
G). (16)

Restating the problem in this way is advantageous because
it allows us to eliminate what was previously considered a
free parameter, and treats the SNR age and braking index
as quantities to fit. The simplification we introduce comes
from reducing the number of parameters to a small enough
set that a quantitative description of the model parameter
space can be given, as described further below. The intro-
duction of additional physics beyond the phenomenological
field growth also helps further simplify the situation.

We describe the model parameter space by fixing the
values of the field index α and the growth factor ǫ. For a
given calculation we hold these values constant. Next, we
form a grid of τm and BG values and calculate t and n
for each (τm, BG) pair using equation 15 and 8. The re-
gions of parameter space containing solutions with t and n
within the observed limits are found by contouring these
two-dimensional functions to find the level curves corre-
sponding to τSNR+ and τSNR-, and the measured limits on
n. Solutions that satisfy the constraints live in the regions
between these level curves. Solutions in the region where the
sets intersect satisfy both of the constraints simultaneously.
Changing the values of α and ǫ affects the morphology of
the intersection regions. Using this approach we study the
regions of the parameter space that give physically realis-
tic solutions without the need for an external optimization
routine. For the remainder of this study we will use this
contouring approach for a variety of field index in the range
0.1 ≤ α ≤ 0.9 and growth factor 0.001 ≤ ǫ ≤ 0.1. In practice,
we find that solutions with ǫ < 10−3 do not significantly vary
from one another for a given α, so we do not consider any ǫ

lower than this. Moreover, the largest asymptotic fields also
typically correspond to small ǫ for a given α, so we choose
ǫ = 0.1 as an upper limit that still allows a significant field
growth, though in general all ǫ < 1 can be used. As a fi-
nal point, we note that equation 16 can produce unphysical
complex valued P0. Thus, we impose a further constraint
from the initial period:

y = τPSRf
2
G − F 2

G ≥ 0 (17)

with the equality corresponding to the limit P0 = 0. This
provides a boundary between the physical and unphysical
solutions in the parameter space. Therefore along with t
and n, we also produce the corresponding y on the (τm,
BG) grid, and find the level curve y = 0 using a contouring
method. The unphysical region can then also be excluded
by intersection.

As an example, in Figure 1 we show the parameter
space for the Vela pulsar, PSR B0833–45, which has a mea-
sured braking index and associated SNR age. On the left we
show the (τm, BG) parameter space using only the age con-
straint from the associated SNR. The lower limit τSNR− is
the dashed blue line, and the upper limit τSNR+ is the solid
blue line. The region between the curves is the parameter
space area that obeys the age constraint, and is colored red.
On the right we show the same region of parameter space,
but include the braking index contours, denoted as green
lines. Since the braking index is known to high accuracy,
the red colored regions satisfying both constraints simulta-
neously is significantly reduced. The lower group in both
panels has α = 0.1, ǫ = 0.1, and the upper group α = 0.9,
ǫ = 0.001. Note that there is degeneracy between the groups
of solutions for a given τm depending on the chosen field in-
dex α. Thus, while this method does not provide a unique
solution, it allows us to quantify the regions of parameter
space that contain physical solutions given a constant α and
ǫ pair as input. We investigate the differences between the
low and high α cases to study the limiting behaviour of the
field growth model. Generally, the solutions that have ob-
served fields close to the asymptotic field BG are near the
end of their evolution. The α = 0.1, ǫ = 0.1 solutions with
the lowest asymptotic fields have nearly finished their evo-
lution and will grow by only ≈ 1% over the next few kyr.
The braking index of these solutions will rapidly grow to
the dipole value n = 3 over this span of time. The solutions
with α = 0.9 and ǫ = 0.001 have significantly larger asymp-
totic fields that are more than an order of magnitude higher
than the low α solutions. These NSs will take a significantly
longer span of time for their fields to evolve to the final state
and reach braking index n = 3. For these solutions the field
growth significantly outlasts the observable life of the SNR
and will appear as a highly magnetized, isolated NS with no
apparent SNR association.

3 MODEL FITTING AND NEUTRON STAR

EVOLUTION

Let us investigate the consequences of field growth in
NSs using two initial approaches. First, we vary the field

c© 2015 RAS, MNRAS 000, 1–12
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Figure 1. Parameter constraint plots for the Vela pulsar, PSR B0833–45. The left panel shows the parameter space region that satisfies
the age constraint (red). The lower SNR age limit is the blue dashed line, and the solid blue line is the upper SNR age limit. On the
right the same region of parameter space is shown but we include the braking index constraints (green curves). The red region shows the
intersecting set, which satisfies both the age constraint and the braking index constraint. The lower group in both panels has α = 0.1,
ǫ = 0.1, and the upper group α = 0.9, ǫ = 0.001. The horizontal black line in both panels marks the observed dipole field.
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Figure 2. Fits to HBP J1734–3333 for a variety of field index α. The vertical dashed line marks the adopted age t = 2.07 kyr, chosen to
facilitate comparison with the result from Ho (2015). The horizontal dashed lines mark the observed quantities. In the luminosity plot
(lower right panel) the horizontal dotted line marks the spin-down energy loss rate and the horizontal dashed line marks the observed
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index α to demonstrate how this parameter affects the time
evolution. Second, since this field growth model is phe-
nomenological in nature, we investigate how well it can re-
produce the results of numerical simulations, such as the
detailed modeling of the burial and emergence of the mag-
netic fields in young accreting NSs explored recently by Ho
(2015). That study focused on the young NSs with braking
indices n < 2, in particular the rotation-powered pulsars
PSR J0537–6910 associated with the LMC SNR N157B, the
Vela pulsar B0833–45, and the HBP J1734–3333 which has
a proposed association with G354.8–0.8 (Manchester et al.
2002). We note that the relationship between this SNR and
HBP J1734–3333 is tenuous and may be the result of a coin-
cidental alignment. We list these systems in Table 2, along
with a carefully selected list of other NSs that are (1) se-

curely associated with SNRs (thus providing an indepen-
dent estimate of the true age) and (2) with ‘extremal’ fields,
namely from the class of magnetars, HBPs and CCOs.

For the purpose of illustrating the effect that changing
α has on the field evolution we consider the HBP J1734–
3333 as an example and use the age derived in Ho (2015),
t = 2.07 kyr. We arbitrarily set the initial field to a typical
NS field strength, B0 = 1011 G, which fixes ǫ for a given
BG by equation 13. We generate a family of curves using a
constant field index that spans the full range 0 ≤ α < 1.
For each value of α we follow the standard model fitting
approach, treating the time-scale τm, asymptotic field BG

and initial period P0 as fit parameters, which are varied nu-
merically. The results are shown in Fig. 2, where we plot
the period, period derivative, characteristic age, magnetic
field, braking index and luminosity as functions of time for
each of the α values, matching to the observed P , dP/dt
and n. The horizontal dashed lines represent the observed
values and the vertical dashed line is the adopted current
age t. In the luminosity panel we show the spin-down lu-
minosity (Ė) as a horizontal dotted line and the 2–10 keV
X-ray luminosity (Lx) as a dashed line. We call attention to
two important features of this figure. First, the characteris-
tic age decays rapidly from an initially high value regardless
of α. This general behaviour provides an explanation for
young NSs that have a characteristic age larger than the
corresponding SNR age. Second, the large characteristic age
at early times gives a negative braking index at early times
through equation 8, which allows the field growth scenario
to explain the observations of objects with n < 0, such as
PSR J0537–6910 with n = −1.5 (Middleditch et al. 2006).
The field index α smoothly controls how quickly the braking
index reaches the asymptotic value n = 3.

Next, we use our field growth model and contour ap-
proach to recover the quantitative behaviour of the detailed
simulation performed by Ho (2015). We assume the value
of the asymptotic field and age derived in that work a pri-
ori, and then we treat the timescale 0.1 ≤ τm ≤ 10 kyr and
field index 0 ≤ α ≤ 0.99 as free parameters. We construct a
grid of parameter values (τm, α) and calculate t and n for
each. Then we find the level sets of these functions at the
derived age and mean braking index. The intersection of the
two curves gives a unique τm and α pair. With ǫ = 0.0021
we find P0 = 1.0597 s, compared to 1.06 s given by Ho
(2015). The initial period does not change significantly for
lower ǫ. The discrepancy grows slowly as ǫ is increased. Us-
ing the contour approach we find the parameters necessary

for our model to reproduce the evolutionary trajectories of
PSR J1734–3333, PSR B0833–45 and PSR J0537–6910 from
Ho (2015). The details of the fits are given in Table 3 and
marked with an asterisk. It is a testament to the flexibility
and usefulness of the parametric form that we were able to
recover the behaviour of a simulation involving detailed and
complex physical processes.

Finally, we apply the contour method to the remaining
HBPs and PSRs listed in Table 3, including the braking in-
dex when possible. We follow the prescription outlined for
contouring in section 2, holding α and ǫ constant and find-
ing the level sets of t and n as functions of the timescale τm
and asymptotic field BG. We do not consider any asymptotic
field strength greater than the maximum observed magnetar
field, BG = 2.4× 1015 G, of SGR 1806–20 (Nakagawa et al.
2009). For each system shown in Table 1 we provide exam-
ple solutions with large and small asymptotic fields in Table
2, and plot the trajectories of these example solutions in
the P − Ṗ phase space in Figure 3. In this plot the evo-
lutionary trajectories of the SGRs are given as green lines,
the HBPs as red lines, the PSRs yellow lines and the CCOs
as blue lines. The HBP J1846–0258 is marked by a light
gray diamond, HBP J1119–6127 is a dark gray diamond and
HBP J1734–3333 is a white diamond. The PSRs J0537–6910
and B0833–45 are marked by gray and white stars, respec-
tively. Markers that are black represent objects with X-ray
luminosity in excess of spin-down luminosity. The parame-
ters that describe the trajectories shown in this figure are
likewise given in Table 3. Note that we do not provide an
example trajectory for HBP J1119–6127, which will be dis-
cussed in the next section.

In Fig. 4 we plot the characteristic age against the
model time, following the same conventions as Fig. 3. De-
spite the apparent similarity of many of the trajectories in
the P -Ṗ phase space, the τ–t plot clearly shows the differ-
ence between these objects as a function of time. It’s worth
noting that the time evolution of the CCOs characteristic
age explains the apparent large discrepancy between the pul-
sars adopted ages (appearing very old) and their associated
young SNRs. In particular, for the three systems shown, the
PSR and SNR ages match at times equal to or exceeding
∼ 104.5 years, by which time the SNR would have mostly
dissipated. Therefore, the characteristic age for these objects
considered won’t reflect their true age as long as they are
within their SNRs. This feature, along with the low asymp-
totic field strength (see Table 3), also leads to the suggestion
that CCOs could be ancestors of ‘old’ isolated radio pulsars
as long as they overcome the accretion or field-growth phase
(which would explain their X-ray dominant emission) and
their surface field grows to the critical limit required for
radio emission. The late time evolution of the CCOs may
also link them to the class of objects known as X-ray dim
isolated NSs (XDINS; Haberl 2004). These are radio-quiet
X-ray pulsars with long periods (3.45 to 11.37 s) and no ap-
parent SNR associations. Some of these objects are believed
to have high magnetic fields in excess of 1013 G.
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Figure 3. Phase space plot of evolutionary trajectories P–Ṗ . The thin black dashed diagonal lines denote constant characteristic age
from 100 yr (upper left) to 1 Gyr (lower right). The dotted black diagonal lines represent an increasing magnetic dipole field, from 1011

G (lower left) to 1015 G (upper right). Black symbols represent sources that have x-ray luminosity in excess of spin down luminosity. The
low asymptotic field trajectories are marked as solid lines, and the high field solutions from Table 3 are dashed lines. The evolutionary
tracks for HBPs are red, SGRs are green, PSRs are yellow and the CCOs denoted with blue. HBP J1846–0258 is marked by a light gray
diamond and the post-outburst trajectory is shown. HBP J1734–3333 is a white diamond and HBP J1119–6127 is a dark gray diamond
(note that this object is not accompanied with a trajectory). The PSRs J0537–6910 and B0833–45 are marked by gray and white stars.

4 DISCUSSION

The P -Ṗ phase space trajectories shown in Fig. 3 demon-
strate possible evolutionary links between the apparently
diverse set of NSs shown in Table 3. As the NS fields grow,
they evolve from the bottom of the figure upward, pass-
ing through the region of the phase space inhabited by the
CCOs. Thus the PSRs J0537–6910 and B0833–45, and the
HBPs J1846–0258 and J1734–3333 may have undergone a
similar CCO stage during their evolution. The trajectories
of these HBPs carry them toward the current position of
AXP 1E2259+586. If HBPs and AXPs are related through
evolution then field decay must begin once the buried field
has emerged, raising the braking index to values n > 3.
We have also fit the CCOs to explore their potential future
behaviour, and note that RX J0822.0–4300 has asymptotic
behaviour for both large and small fields which is very close
to PSR B0833–45. However, the time-evolution of these ob-
jects is dramatically different as seen in Fig. 4. Thus, objects
like the HBPs may pass through the CCO stage relatively
quickly, whereas objects such as CCO 1E 1207.4–5209 spend
a more significant portion of their lives in this state. Finally,
we note that CCO CXOU J185238.6+004020 requires an
extremely low asymptotic field, with BG < 6.9 × 1011 G.

Thus, even after the field emerges from this NS it remains
relatively low.

Since the SGRs 0527–66 and 1627–41 have character-
istic ages less than the upper SNR age limit, we have also
examined these objects using the growth model. However,
the field growth mechanism is not generally expected to play
a role in the evolution of the SGRs, since their characteris-
tic ages are only smaller than the upper limit of the asso-
ciated SNR age, and no lower limits are known. Moreover,
these systems do not have a measured braking index, which
is crucial in making the case for field growth (n < 3) or
field decay (n > 3). Additionally, field decay has been pro-
posed to explain the SGRs energetics as it has for AXPs,
although their X-ray luminosity is not consistently larger
than their spin-down energy. Due to the lack of a lower age
limit, we consider solutions that produce τPSR < t ≤ τSNR+.
Generally solutions that satisfy this condition with large
BG require a longer growth time-scale for a given α and
ǫ pair, so we can find large fields BG > 2.0 × 1015 G pro-
vided we consider sufficiently large τm. We plot the evolution
of two example solutions in Figures 3 and 4. Interestingly,
both SGR 1627–41 and SGR 0527–66 reach similar states
in the limit of large asymptotic fields shown in Fig. 3, and
the trajectories imply the SGR fields are still evolving. A
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Figure 4. Evolutionary trajectories plotted by NS characteristic age against model time for the systems shown in Table 3. The SNR
ages are represented as horizontal lines. The markers are placed at the mean value, or at the extreme when no upper or lower limit exists.
The low asymptotic field trajectories are marked as solid lines, and the high field solutions from table 3 are dashed lines. Colors are the
same as in Fig. 3. The thick black line is τPSR = t.

lower limit for the SNR age would significantly constrain
these results, provided that τSNR− > τPSR. For completion
we attempted fits to the AXPs as well, but these required
unrealistically high initial spin periods. We stress that de-
spite these interesting fits, field decay is necessary to rec-
oncile the characteristic and SNR ages of the AXPs. This
conclusion is supported by results from the literature (e.g.
Nakano et al. 2015), and is implied for the SGRs evolution
as well (Dall’Osso, Granot & Piran 2012).

HBP J1846–0258 presents an interesting case since the
braking index has been observed to decrease from n = 2.64
to n = 2.16 (Livingstone et al. 2006, 2011) following an
outburst and spectral changes in 2008 (Gavriil et al. 2008;
Kumar & Safi-Harb 2008). This braking index change was
not accompanied by a change in luminosity or pulse pro-
file which is difficult to explain on such short time-scales,
but may represent a re-organization of the magnetosphere
(Archibald et al. 2015). We fit the pre- and post-outburst
configurations of the system which we label as A (n = 2.64)
and B(n = 2.16). However, we were not able to find any re-
gion of parameter space through our contour methods that
could simultaneously satisfy both pre- and post-outburst
configurations. This may not be the case if the field in-
dex were allowed to vary in time, but with constant α
field growth cannot neatly explain the behaviour of this NS.
The HBP J1846–0258 is a complicated case, particularly be-

cause of the presence of a bright pulsar wind nebula pow-
ered by this object. This nebula implies wind-braking likely
plays an important role in the evolution of this NS. For
α = 0.99 and minimum ǫ = 0.019, we find a maximum field
BG = 6.5× 1014 G on a growth timescale 9.2 kyr. Changing
α and ǫ results in a lower field on shorter time-scales. For a
given pair of α and ǫ the system can be well constrained by
the period condition and the SNR age, though low remnant
ages are generally favored.

Finally, there was a problem fitting to HBP J1119–
6127. For this system we were not able to simultane-
ously fit both the age of the associated SNR G292.2–
0.5 (Kumar, Safi-Harb & Gonzalez 2012), and the observed
braking index n = 2.684 (Weltevrede, Johnston & Espinoza
2011). With the SNR age constraint the derived braking in-
dex is n ≈ 1.8 assuming t = 4.2 kyr. Alternatively, with the
braking index constraint in place the derived age was found
to be close to the characteristic age, and cannot be recon-
ciled with the observed SNR age. Intriguingly, a low value
for the braking index of J1119–6127 was also proposed by
Kumar, Safi-Harb & Gonzalez (2012), who suggested that
the braking index may have recently changed from a lower
value n < 2. Since neither of these scenarios satisfies the
constraints we have not included an evolutionary track for
HBP J1119–6127 in Figs. 3 and 4, and also exclude it from
our summary of solutions in Table 3. We plan to investigate
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HBP J1119–6127 with other emission mechanisms in future
work.

It is also relevant that many of the systems in-
cluded in Table 3 have large initial spin periods (i.e.
P0 ≈ 1 s, and approaching P for many systems), which
are higher than expected for the traditional magnetar
model (Duncan & Thompson 1992). This is notable be-
cause a problem with the magnetar model is the lack of
super-energetic SNRs which would be expected from an
SNR hosting a rapidly spinning proto-NS (for example,
Vink & Kuiper 2006; Safi-Harb & Kumar 2013).

5 CONCLUSIONS

We have devised a flexible and conveniently parameter-
ized model for a growing magnetic field, which is based
on the parametric forms used by Colpi, Geppert & Page
(2000) and refined by Dall’Osso, Granot & Piran (2012).
This parametrization can accommodate a variety of field
time-dependence in addition to the exponential model sug-
gested by Negreiros & Bernal (2015), and the interpretation
of the parameters is straightforward. By including the ob-
servationally measured period and period derivative and as-
suming the field index and growth parameter ǫ constant
we are able to study the portions of the parameter space
containing solutions which reproduce the observables, with-
out the need for an external optimization routine. We have
shown that this phenomenological model is able to reproduce
the detailed simulations of field growth by Ho (2015) to high
accuracy. By fitting the HBPs securely associated with SNRs
with known ages and measured braking indices, we found in-
teresting evolutionary trajectories for the systems in phase
space. We conclude that if field growth is significant in the
life cycle of HBPs then they may be closely related to the
CCOs early in their evolutionary histories. The end result
of the field growth in CCOs may connect these objects to
the HBPs and XDINSs. We also investigate the possibility
of field growth in SGRs, however the behaviour of these sys-
tems are largely unconstrained due to the absence of a lower
SNR age limit and lack of measured braking index.

Field growth is not applicable to the AXPs, which re-
quire field decay to explain the observed difference in PSR
and SNR ages, and a growing field is not necessary to ex-
plain the SGRs, provided that the characteristic age is larger
than the true SNR age. Thus, in the context of magnetic field
evolution, we conclude that both field growth and decay pro-
cesses are required to explain the diverse population of NSs.
Once the field has reached its asymptotic value field decay
may begin, increasing the braking index to values n > 3
later in life. Thus, the time-dependency of magnetic fields
provides an interesting avenue to unify the population of
NSs, and in particular explain the apparently large char-
acteristic ages for systems associated with relatively young
SNRs.

While this evolutionary picture is simple and based on
a phenomenological model, there are many emission mech-
anisms which have been proposed in the literature to solve
the braking index and PSR-SNR age discrepancy problems.
The field growth model was shown to be ineffective in ex-
plaining the constraints present in the HBP J1119–6127 and
the time evolution of HBP J1846–0258, both of which are as-

sociated with pulsar wind nebulae. In a follow-up paper, we
will thoroughly investigate alternatives to the physical emis-
sion mechanisms at work in these and various other classes
of objects and the subsequent implications for the PSR-SNR
association and evolution.
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Table 1. A summary of the time-dependent functions for describing magnetic field decay and growth.

Observed properties of NSs

PSR P Ṗ n τPSR SNR τSNR− τSNR+

(s) (10−11s s−1) (kyr) (kyr) (kyr)

AXP 1E 1841–045 11.783 3.930 4.750 G27.4+0.0 (Kes 73) 0.750 2.100 [1]
AXP 1E 2259+586 6.979 4.843e− 2 228.317 G109.1-01.0 (CTB 109) 10.000 16.000 [2]

CXOU J171405.7–381031 3.825 6.400 0.947 G348.7+00.3 0.350 3.150 [3]

SGR 0526–66 8.054 3.800 3.358 N49 − 4.800 [4]
SGR 1627–41 2.595 1.900 2.164 G337.3–0.1 − 5.000 [5]

HBP J1119–6127 0.408 0.400 2.684± 0.002 [14] 1.616 G292.2–0.5 4.200 7.100 [6]
HBP J1734–3333 1.170 0.228 0.9± 0.2 [15] 8.131 G354.8–0.8 1.300 − [7]

HBP J1846–0258 A 0.325 0.709 2.64± 0.01 [16] 0.726 G029.7–0.3 (Kes 75) 0.900 4.300 [8]
HBP J1846–0258 B 0.327 0.711 2.16± 0.13 [17] 0.728

PSR J0537–6910 0.016 0.518 −1.5± 0.1 [18] 4.925 N157B 1.000 5.000 [9]
PSR B0833–45 0.089 1.250 1.4± 0.2 [19] 11.319 G263.9–03.3 (Vela) 5.400 16.000 [10]

RX J0822.0–4300 0.112 8.300e− 4 213.799 G260.4–3.4 (Puppis A) 3.700 5.200 [11]
1E 1207.4–5209 0.424 6.600e− 6 1.018e5 G296.5 +10.0 (PKS 1209–51/52) 2.000 20.000 [12]

CXOU J185238.6+004020 0.105 8.680e− 7 1.917e5 G033.6+00.1 (Kes 79) 5.400 7.500 [13]

Table 2. For a given PSR, P is the period, Ṗ the period derivative. The characteristic age is τPSR and the lower and upper
SNR age limits are τSNR- and τSNR+, respectively. The SNR ages have been compiled in the U. of Manitoba’s High-Energy SNR
Catalogue (SNRcat, http://www.physics.umanitoba.ca/snr/SNRcat/). References to SNR ages in this table are [1]: Kumar et al.
(2014), [2]: Nakano et al. (2015), [3]: Nakamura et al. (2009), [4]: Park et al. (2012), [5]: Corbel, Chapuis, Dame & Durouchoux
(1999), [6]: Kumar, Safi-Harb & Gonzalez (2012), [7]: Ho & Anderson (2012), [8]: Gotthelf, Vasisht, Boylan-Kolchin & Torii (2000), [9]:
Wang & Gotthelf (1998), [10]: Page et al. (2009), [11]: Becker et al. (2012) , [12]: Zavlin et al. (2000), [13]: Sun et al. (2004). References to
the braking indices included here are [14]: Weltevrede, Johnston & Espinoza (2011), [15]: Espinoza et al. (2011), [16]: Livingstone et al.
(2006), [17]: Livingstone et al. (2011), [18]: Middleditch et al. (2006), [19]: Lyne et al. (1996).

c© 2015 RAS, MNRAS 000, 1–12

http://www.physics.umanitoba.ca/snr/SNRcat/


Magnetic field Evolution 11

Fit Parameters

PSR α ǫ τm BG P0 t

(kyr) (1013 G) (s) (kyr)

SGR 0526–66 0.100 0.100 1.642 56.035 3.246 4.786
0.900 0.001 0.438 240.000 3.689 4.779

SGR 1627–41 0.100 0.100 1.261 22.488 0.090 3.677
0.900 0.001 3.201 240.000 0.477 4.981

HBP J1734–3333 0.100 0.100 1.193 5.231 1.012 3.477
* 0.6328 0.002 0.085 6.500 1.060 2.070

0.900 0.001 10.000 75.236 0.838 9.939

HBP J1846–0258 A 0.100 0.001 0.074 4.932 0.247 0.433
0.900 0.100 6.718 43.273 0.007 0.810

HBP J1846–0258 B 0.100 0.100 0.286 4.880 0.187 0.833
0.900 0.100 3.102 43.187 0.225 0.430

PSR J0537–6910 0.100 0.100 0.372 0.094 0.015 1.007
* 0.5248 0.053 0.921 0.170 0.015 1.950

0.900 0.001 10.000 2.942 0.014 3.564

PSR B0833–45 0.100 0.100 2.254 0.338 0.073 6.570
* 0.541 0.005 2.709 0.550 0.065 10.200

0.900 0.001 10.000 3.586 0.058 15.738

RX J0822.0–4300 0.100 0.100 1.783 0.098 0.111 5.200
0.900 0.001 10.000 3.010 0.112 3.702

1E 1207.4–5200 0.100 0.001 6.860 0.017 0.420 20.000
0.900 0.001 10.000 0.880 0.424 2.004

CXOU J185238.6+004020 0.100 0.100 2.572 0.003 0.105 7.500
0.900 0.001 10.000 0.069 0.105 5.401

Table 3. Fit parameters of the NSs plotted in Figs. 3 and 4. The solutions with low and high asymptotic fields are listed, and solutions
that recover the parameters of Ho (2015) are marked with an asterisk.
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