
ar
X

iv
:1

60
1.

00
95

0v
1 

 [
m

at
h.

A
G

] 
 5

 J
an

 2
01

6

ODD ZETA MOTIVE AND LINEAR FORMS IN ODD ZETA VALUES

CLÉMENT DUPONT

Abstract. We study a family of mixed Tate motives over Z whose periods are linear forms in the zeta

values ζ(n). They naturally include the Beukers−Rhin−Viola integrals for ζ(2) and the Ball−Rivoal linear
forms in odd zeta values. We give a general integral formula for the coefficients of the linear forms which
allows us to predict the vanishing of the coefficients of a given parity. The main underlying result is a
geometric construction of a minimal ind-object in the category of mixed Tate motives over Z which contains
all the non-trivial extensions between simple objects.

1. Introduction

1.1. Constructing linear forms in zeta values. The study of the values at integers n > 2 of the Riemann
zeta function

ζ(n) =
∑

k>1

1

kn

goes back to Euler, who showed that the even zeta value ζ(2n) is a rational multiple of π2n. Lindemann’s
theorem thus implies that the even zeta values are transcendental numbers. It is conjectured that the odd
zeta values ζ(3), ζ(5), ζ(7), . . . are algebraically independent over Q[π].

Many of the results in the direction of this conjecture use as a key ingredient certain families of period
integrals which evaluate to linear combinations of 1 and zeta values:

(1)

∫

σ

ω = a0 + a2ζ(2) + · · ·+ anζ(n) ,

with ak ∈ Q for every k. We can cite in particular the following results (see Fischler’s Bourbaki talk [Fis04]
for a more complete survey).

− Apéry’s proof [Apé79] of the irrationality of ζ(2) and ζ(3) was simplified by Beukers [Beu79] by using a
family of integrals evaluating to linear combinations a0 + a2ζ(2) and a0 + a3ζ(3);

− Ball and Rivoal’s proof [Riv00, BR01] that infinitely many odd zeta values are irrational relies on a family
of integrals evaluating to linear forms (1) for which all the even coefficients a2, a4, a6, . . . vanish;

− Rhin and Viola’s irrationality measures [RV96, RV01] for ζ(2) and ζ(3) are built on generalizations of the
Beukers integrals and precise estimates for the coefficients a2 and a3.

In view of diophantine applications, it is crucial to have some control over the coefficients ak appearing in
linear forms (1), in particular to be able to predict the vanishing of certain coefficients.

In the present article, we study the family of integrals

(2)

∫

[0,1]n
ω with ω =

P (x1, . . . , xn)

(1− x1 · · ·xn)N
dx1 · · · dxn ,

where n > 1 and N > 0 are integers and P (x1, . . . , xn) is a polynomial with rational coefficients. This family
contains the Beukers−Rhin−Viola integrals for ζ(2) and the Ball−Rivoal integrals. We say that an algebraic
differential form ω as in (2) is integrable if the integral in (2) is absolutely convergent. Our first result is that
such integrals evaluate to linear forms in 1 and zeta values, with an integral formula for the coefficients.

Theorem 1.1. There exists a family (σ2, . . . , σn) of relative n-cycles with rational coefficients in (C∗)n −
{x1 · · ·xn = 1} such that for every integrable ω, we have

∫

[0,1]n
ω = a0(ω) + a2(ω)ζ(2) + · · ·+ an(ω)ζ(n)
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with ak(ω) a rational number for every k, given for k = 2, . . . , n by the formula

(3) ak(ω) =
1

(2iπ)k

∫

σk

ω .

The case n = k = 2 of this theorem is Rhin and Viola’s contour formula for ζ(2) [RV96, Lemma 2.6].
We note that in Theorem 1.1, the relative homology classes of the n-cycles σk are uniquely determined, see
Theorem 4.6 for a precise statement. Furthermore, they are invariant, up to a sign, by the involution

(4) τ : (x1, . . . , xn) 7→ (x−1
1 , . . . , x−1

n ) ,

which implies a general vanishing theorem for the coefficients ak(ω), as follows.

Theorem 1.2. For k = 2, . . . , n the cycle τ.σk is homologous to (−1)k−1σk. Thus, for every integrable ω:

(1) if τ. ω = ω then ak(ω) = 0 for k 6= 0 even;
(2) if τ. ω = −ω then ak(ω) = 0 for k odd.

This allows us to construct families of integrals (2) which evaluate to linear forms in 1 and odd zeta values,
or 1 and even zeta values. This is the case for the integrals (see Corollary 5.4)

∫

[0,1]n

xu1−1
1 · · ·xun−1

n (1 − x1)
v1−1 · · · (1− xn)

vn−1

(1− x1 · · ·xn)N
dx1 · · · dxn

where the integers ui, vi > 1 satisfy 2ui + vi = N + 1 for every i. Depending on the parity of the prod-
uct (n + 1)(N + 1), the form is invariant or anti-invariant and we get the vanishing of even or odd co-
efficients. This gives a geometric interpretation of the vanishing of the coefficients in the Ball−Rivoal
integrals [Riv00, BR01], which correspond to special values of the parameters ui, vi.

The fact that the vanishing of certain coefficients in the Ball−Rivoal integrals could be explained by the
existence of (anti-)invariant relative cycles was suggested to me by Rivoal during a visit at Institut Fourier,
Grenoble, in October 2015. The special role played by the involution τ was first remarked by Deligne in a
letter to Rivoal [Del01].

We note that the evaluation of the integrals (2) as linear forms in 1 and zeta values can be proved by
elementary methods; the same goes for the statement on the vanishing of even/odd coefficients (see Remark
5.3). What is more surprising, and follows from our geometric methods, is that the coefficients in the linear
forms have the integral representations (3). We hope to convince the reader that this property could be
studied for more general families of integrals, leading to a finer understanding of linear forms in zeta values.

1.2. Constructing extensions in mixed Tate motives. Recall that the category MT(Z) of mixed Tate
motives over Z is a (neutral) tannakian category of motives (with rational coefficients) defined in [DG05]
and whose abstract structure is well understood. The only simple objects in MT(Z) are the pure Tate
objects Q(−k), for k an integer, and every object in MT(Z) has a canonical weight filtration whose graded
quotients are sums of pure Tate objects. The only non-zero extension groups between the pure Tate objects
are given by

(5) Ext1MT(Z)(Q(−(2n+ 1)),Q(0)) ∼= Q (n > 1) .

Furthermore, a period matrix of the (essentially unique) non-trivial extension of Q(−(2n+ 1)) by Q(0) has
the form (

1 ζ(2n+ 1)
0 (2iπ)2n+1

)
.

The difficulty of constructing linear forms (1) with many vanishing coefficients reflects the difficulty of con-
structing objects of MT(Z) with many vanishing weight-graded quotients [Bro14, §1.4]. In particular, the
difficulty of constructing small linear forms in 1 and ζ(2n + 1) reflects the difficulty of giving a geometric
construction of the extensions (5).

In this article, we construct a minimal ind-object Zodd in the category MT(Z) which contains all the non-
trivial extensions (5). The construction goes as follows. We first define, for every integer n, an object Zn ∈
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MT(Z) whose periods include naturally all the integrals (2). More precisely, any integrable form ω defines a
class in the de Rham realization Zn,dR, and the unit n-cube [0, 1]n defines a class in the dual of the Betti
realization Z∨

n,B, the pairing between these classes being the integral (2). The technical heart of this article
is the computation of the full period matrix of Zn.

Theorem 1.3. We have a short exact sequence

0→ Q(0)→ Zn → Q(−2)⊕ · · · ⊕Q(−n)→ 0

and a period matrix for Zn is



1 ζ(2) ζ(3) · · · · · · ζ(n− 1) ζ(n)
(2iπ)2

(2iπ)3 0
. . .

. . .

0 (2iπ)n−1

(2iπ)n




·

Concretely, this theorem says that we can find a basis (v0, v2, . . . , vn) of the de Rham realization Zn,dR

(which we will compute explicitly in terms of a special family of integrable forms) and a basis (ϕ0, ϕ2, . . . , ϕn)
of the dual of the Betti realization Z∨

n,B, such that the matrix of the integrals 〈ϕi, vj〉 is the one given. The

basis element ϕ0 is the class of the unit n-cube [0, 1]n. Expressing the class [ω] ∈ Zn,dR of an integrable
form ω in the basis (v0, v2, . . . , vn) as

[ω] = a0(ω)v0 + a2(ω)v2 + · · ·+ an(ω)vn

and pairing with the dual basis of the Betti realization gives the proof of Theorem 1.1, with (σ2, . . . , σn)
representatives of the classes (ϕ2, . . . , ϕn).

The involution (4) plays an important role in the proof of Theorem 1.3. It induces a natural involution,
still denoted by τ , on the quotient Zn/Q(0) ∼= Q(−2)⊕ · · · ⊕Q(−n).

Theorem 1.4. For k = 2, . . . , n, the involution τ acts on Q(−k) by multiplication by (−1)k−1.

This readily implies Theorem 1.2. Now if we write

Zn/Q(0) = (Zn/Q(0))+ ⊕ (Zn/Q(0))−

for the decomposition into invariant and anti-invariants with respect to τ and write p : Zn → Zn/Q(0) for
the natural projection, we may set

Zodd
n := p−1((Zn/Q(0))+)

whose period matrix only contains odd zeta values in the first row. The objects Zodd
n ∈ MT(Z) form an

inductive system, and the limit
Zodd := lim

−→

n

Zodd
n

has an infinite period matrix

(6)




1 ζ(3) ζ(5) ζ(7) · · · · · · · · ·
(2iπ)3

(2iπ)5 0
(2iπ)7

. . .

0
. . .

. . .




·

We call Zodd the odd zeta motive. It is uniquely determined by its period matrix since the Hodge
realization functor is fully faithful on the category MT(Z), see Theorem 2.5 below.
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1.3. Related work and open questions. This article follows the program initiated by Brown [Bro14],
which aims at explaining and possibly producing irrationality proofs for zeta values by means of algebraic
geometry. However, the motives that we are considering are different from the general motives considered
by Brown, and in particular, easier to compute. It would be interesting to determine the precise relationship
between our motives and those defined in [Bro14] in terms of the moduli spacesM0,n+3.

In another direction, an explicit description of the relative cycles σk defined in Theorem 1.1 could prove
helpful in proving quantitative results on the irrationality measures of zeta values, in the spirit of [RV96,
RV01].

It is also tempting to apply our methods to other families of integrals appearing in the literature, such as
the Beukers integrals for ζ(3) and their generalizations. One should be able, for instance, to recover Rhin
and Viola’s contour integrals for ζ(3) [RV01, Theorem 3.1]. The symmetry properties studied by Cresson,
Fischler and Rivoal [CFR08] can probably be explained geometrically via finite group actions as in the
present article. The ad-hoc long exact sequences appearing here should be replaced by more systematic
tools such as the Orlik−Solomon bi-complexes from [Dup14].

Finally, it should be possible to extend our results to a functional version of the periods (2), where one
replaces 1 − x1 · · ·xn in the denominator by 1 − z x1 · · ·xn, with z a complex parameter. Such functions
have already been considered in [Riv00, BR01]. The relevant geometric objects are variations of mixed
Hodge−Tate structures on C− {0, 1}, or mixed Tate motives over A1

Q − {0, 1}.

1.4. Contents. In §2 we recall some general facts about the categories in which the objects that we will be
considering live, and in particular the categories MT(Z) and MT(Q) of mixed Tate motives over Z and Q.
In §3 we introduce the zeta motives and examine their Betti and de Rham realizations. In §4, which is more
technical than the rest of the paper, we compute the full period matrix of the zeta motives, which allows us
to define the odd zeta motives. In §5, we apply our results to proving vanishing results for the coefficients
of some linear forms in zeta values.

1.5. Acknowledgements. Many thanks to Francis Brown, Tanguy Rivoal and Don Zagier for fruitful
discussions as well as comments and corrections on a preliminary version.

2. Mixed Tate motives and their period matrices

We recall the construction of the categories MHTS, MT(Q) and MT(Z), which sit as full subcategories of
one another, as follows:

MT(Z) →֒ MT(Q) →֒ MHTS .

2.1. Mixed Hodge−Tate structures and their period matrices.

Definition 2.1. A mixed Hodge−Tate structure is a triple H = (HdR, HB, α) consisting of:

− a finite-dimensional Q-vector space HB, together with a finite increasing filtration indexed by even inte-
gers: · · · ⊂W2(n−1)HB ⊂W2nHB ⊂ · · · ⊂ HB;

− a finite-dimensional Q-vector space HdR, together with a grading indexed by even integers: HdR =⊕
n(HdR)2n;

− an isomorphism α : HdR ⊗Q C
≃
−→ HB ⊗Q C;

which satisfy the following conditions:

− for every integer n, the isomorphism α sends (HdR)2n ⊗Q C to W2nHB ⊗Q C;

− for every integer n, it induces an isomorphism αn : (HdR)2n⊗QC
≃
−→ (W2nHB/W2(n−1)HB)⊗QC , which

sends (HdR)2n to (W2nHB/W2(n−1)HB)⊗Q (2iπ)nQ.

We callHB andHdR respectively the Betti realization and the de Rham realization of the mixed Hodge−Tate
structure, and α the comparison isomorphism. The filtration W on HB is called the weight filtration. The
grading on HdR is called the weight grading, and the corresponding filtration W2nHdR :=

⊕
k6n(HdR)2k the

weight filtration.

Remark 2.2. More classically, a mixed Hodge−Tate structure is defined to be a mixed Hodge structure [Del71,
Del74] whose weight-graded quotients are of Tate type, i.e. of type (p, p) for some integer p. One passes
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from that classical definition to Definition 2.1 by setting HB := H and HdR :=
⊕

nW2nH/W2(n−1)H . The
isomorphism α is induced by the inverses of the isomorphisms

(W2nH/W2(n−1)H)⊗Q C
∼=
←−W2nH ⊗Q C ∩ FnH ⊗Q C

(multiplied by (2iπ)n) which express the fact that the weight-graded quotients are of Tate type.

It is convenient to view the comparison isomorphism α : HdR ⊗Q C
≃
−→ HB ⊗Q C as a pairing

(7) H∨
B ⊗Q HdR −→ C , ϕ⊗ v 7→ 〈ϕ, v〉 ,

where (·)∨ denotes the linear dual. The weight filtration on H∨
B is defined by

W−2nH
∨
B := (HB/W2(n−1)HB)

∨ ,

so that we have
W−2nH

∨
B/W−2(n+1)H

∨
B
∼= (W2nHB/W2(n−1)HB)

∨ .

The pairing (7) is compatible with the weight filtrations in that we have 〈ϕ, v〉 = 0 for ϕ ∈ W−2mH
∨
B , v ∈

W2nHdR and m < n.

If we choose bases for the Q-vector spacesHdR andHB, then the matrix of α in these bases, or equivalently
the matrix of the pairing (7), is called a period matrix of the mixed Hodge−Tate structure. We will always
make the following assumptions on the choice of bases:

− the basis of HB is compatible with the weight filtration;
− the basis of HdR is compatible with the weight grading;
− for every n, the matrix of the comparison isomorphism αn in the corresponding basis is (2iπ)n times the

identity.

This implies that any period matrix is block upper-triangular with successive blocks of (2iπ)n Id on the
diagonal. Conversely, any block upper-triangular matrix with successive blocks of (2iπ)n Id on the diagonal
is a period matrix of a mixed Hodge−Tate structure.

Example 2.3. Any matrix of the form



1 ∗ ∗ ∗ ∗
0 2iπ 0 ∗ ∗
0 0 2iπ ∗ ∗
0 0 0 (2iπ)2 0
0 0 0 0 (2iπ)2




defines a mixed Hodge−Tate structure H such that HdR = (HdR)0 ⊕ (HdR)2 ⊕ (HdR)4 has graded dimen-
sion (1, 2, 2).

2.2. The category of mixed Hodge−Tate structures. We denote by MHTS the category of mixed
Hodge−Tate structures. It is a neutral tannakian category over Q, which means in particular that it is an
abelian Q-linear category equipped with a Q-linear tensor product ⊗. We note that an object H ∈ MHTS is
endowed with a canonical weight filtration W by sub-objects, such that the morphisms in MHTS are strictly
compatible with W . We have two natural fiber functors

(8) ωB : MHTS→ VectQ and ωdR : MHTS→ VectQ

into the category of finite-dimensional vector spaces, which only remember the Betti realization HB and the
de Rham realizationHdR respectively. We note that the de Rham realization functor ωdR factors through the
category of finite-dimensional graded vector spaces. The comparison isomorphisms α gives an isomorphism
between the complexifications of the two fiber functors:

(9) ωdR ⊗Q C
≃
−→ ωB ⊗Q C .

For an integer n, we denote by Q(−n) the mixed Hodge−Tate structure whose period matrix is the 1× 1
matrix ((2iπ)n). Its weight grading and filtration are concentrated in weight 2n, hence we call it the pure
Tate structure of weight 2n. For H a mixed Hodge−Tate structure, the tensor product H⊗Q(−n) is simply
denoted by H(−n) and called the n-th Tate twist of H . A period matrix of H(−n) is obtained by multiplying
a period matrix of H by (2iπ)n. The weight grading and filtration of H(−n) are those of H , shifted by 2n.
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2.3. Extensions between pure Tate structures. The pure Tate structures Q(−n) are the only simple
objects of the category MHTS. The extensions between them are easily described. Up to a Tate twist, it is
enough to describe the extensions of Q(−n) by Q(0) for some integer n. The corresponding extension group
is given by

Ext1MHTS(Q(−n),Q(0)) =

{
C/(2iπ)nQ if n > 0;

0 otherwise.

More concretely, the extension corresponding to a number z ∈ C/(2iπ)nQ has a period matrix

(
1 z
0 (2iπ)n

)
.

We note that the higher extension groups vanish: ExtrMHTS(H,H
′) = 0 for r > 2 and H , H ′ two mixed

Hodge−Tate structures.

Example 2.4. For a complex number a ∈ C − {0, 1}, the cohomology group H1(C∗, {1, a}) is an extension
ofQ(−1) byQ(0) corresponding to z = log(a) ∈ C/(2iπ)Q. It is called the Kummer extension of parameter a.

2.4. Mixed Tate motives over Q. Let MT(Q) denote the category of mixed Tate motives over Q, as
defined in [Lev93]. It is a tannakian category. There is a faithful and exact functor

(10) MT(Q)→ MHTS

into the category MHTS of mixed Hodge−Tate structures, which is called the Hodge realization functor
([DG05, §2.13], see also [Hub00, Hub04]). Composing it with the fiber functors (8) gives the de Rham and
Betti realization functors, still denoted by

(11) ωB : MT(Q)→ VectQ and ωdR : MT(Q)→ VectQ ,

and we still have a comparison isomorphism (9). We note that any object in MT(Q) is endowed with a
canonical weight filtration W by sub-objects such that the morphisms in MT(Q) are strictly compatible
with W . The realization morphisms are compatible with the weight filtrations.

Deciding whether a given mixed Hodge−Tate structure is in the essential image of the realization functor
(10) is generally difficult. One can at least say that for every integer n, the object Q(−n) is the realization
of a mixed Tate motive over Q denoted by Q(−n) as well, and called the pure Tate motive of weight 2n. The
extension groups between these objects are computed by the rational K-theory of Q [Lev93, §4] and hence
given by

(12) Ext1MT(Q)(Q(−n),Q(0)) =






⊕
p primeQ if n = 1;

Q if n is odd > 3;

0 otherwise.

As in the category MHTS, the higher extension groups vanish in the category MT(Q). The morphisms

(13) Ext1MT(Q)(Q(−n),Q(0)) −→ Ext1MHTS(Q(−n),Q(0)) ∼= C/(2iπ)nQ

induced by (10) are easy to describe. For n = 1, the image of the direct summand indexed by a prime p is
the line spanned by log(p). For n > 3 odd, the image is the line spanned by ζ(n). Thus, the morphism (13)
is injective for every n. This implies the following theorem [DG05, Proposition 2.14].

Theorem 2.5. The realization functor (10) is fully faithful.

This theorem is very helpful, since it allows one to compute in the category MT(Q) with period matrices;
in other words, a mixed Tate motive over Q is uniquely determined by its period matrix.
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2.5. Mixed Tate motives over Z. Let MT(Z) denote the category of mixed Tate motives over Z, as
defined in [DG05]. By definition, it is a full tannakian subcategory

MT(Z) →֒ MT(Q)

of the category of mixed Tate motives over Q, which contains the pure Tate motives Q(−n) for every
integer n. It satisfies the following properties:
1. Ext1MT(Z)(Q(−1),Q(0)) = 0;

2. the natural morphism Ext1MT(Z)(Q(−n),Q(0))→ Ext1MT(Q)(Q(−n),Q(0)) is an isomorphism for n 6= 1.

As in the categories MHTS and MT(Q), the higher extension groups vanish in the category MT(Z).

For n odd> 3, there is an essentially unique non-trivial extension ofQ(−n) byQ(0) in the categoryMT(Q),
which actually lives in MT(Z). A period matrix for such an extension is

(
1 ζ(n)
0 (2iπ)n

)
.

Apart from the case n = 3 (see [Bro14, Corollary 11.3] or Proposition 4.11 below), we do not know of any
geometric construction of these extensions.

3. Definition of the zeta motives Zn

We define the zeta motives Zn and explain how to define elements of their Betti and de Rham realizations.
In particular, we define the classes of the Eulerian differential forms, which are elements of the de Rham
realization Zn,dR constructed out of the family of Eulerian polynomials. We also note that the zeta motives
fit into an inductive system · · · → Zn−1 → Zn → · · · which is compatible with the Eulerian differential
forms.

3.1. The definition. Let n > 1 be an integer. In the affine n-space Xn = An
Q we consider the hypersurfaces

An = {x1 · · ·xn = 1} and

Bn =
⋃

16i6n

{xi = 0} ∪
⋃

16i6n

{xi = 1} .

The union An ∪Bn is almost a normal crossing divisor inside Xn: around the point Pn = (1, . . . , 1), it looks
like z1 · · · zn(z1 + · · ·+ zn) = 0 (set xi = exp(zi)). Let

πn : X̃n → Xn

be the blow-up along Pn, and En = π−1
n (Pn) be the exceptional divisor. We denote respectively by Ãn

and B̃n the strict transforms of An and Bn along πn. The union Ãn ∪ B̃n ∪ En is a simple normal crossing

divisor inside X̃n.
There is an object Zn ∈ MT(Q), which we may denote by

Zn = Hn(X̃n − Ãn, (B̃n ∪ En)− (B̃n ∪ En) ∩ Ãn) ,

such that its Betti and de Rham realizations (11) are (? ∈ {B, dR})

Zn,? = Hn
? (X̃n − Ãn, (B̃n ∪ En)− (B̃n ∪ En) ∩ Ãn) .

We now give the precise definition of Zn, along the lines of [Gon02, Proposition 3.6]. Let us write Y =

X̃n− Ãn and ∂Y = (B̃n∪En)− (B̃n∪En)∩ Ãn, viewed as schemes defined over Q. We have a decomposition
into smooth irreducible components ∂Y =

⋃
i ∂iY , where i runs in a set of cardinality 2n + 1. For a

set I = {i1, . . . , ir} of indices, we denote by ∂IY = ∂i1Y ∩ · · · ∩ ∂irY the corresponding intersection; it is
either empty or a smooth subvariety of X of codimension r.

We thus get a complex

(14) · · · →
⊔

|I|=3

∂IY →
⊔

|I|=2

∂IY →
⊔

|I|=1

∂IY → Y → 0

in Voevodsky’s triangulated category DM(Q) of mixed motives over Q, see [Voe00]. The differentials are
the alternating sums of the natural closed immersions. One readily checks that the complex (14) lives in
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the triangulated Tate subcategory DMT(Q), which has a natural t-structure whose heart is MT(Q) [Lev93].
By definition, the object Zn in MT(Q) is the n-th cohomology group of the complex (14) with respect to
this t-structure.

Definition 3.1. For n > 1, we call Zn ∈ MT(Q) the n-th zeta motive.

Note that for n = 1, the blow-up map π1 : X̃1 → X1 is an isomorphism and Ã1 = ∅, so that we
get Z1 = H1(A1

Q, {0, 1}).

Remark 3.2. We will prove in Proposition 4.12 that Zn is actually an object of the full subcategoryMT(Z) →֒
MT(Q). It would be possible, but a little technical, to prove directly from the definition by using the

criterion [GM04, Proposition 4.3] on some compactification of X̃n − Ãn.

3.2. Betti and de Rham realizations, 1. We now give a first description of the Betti and de Rham
realizations of the zeta motive Zn.

We let C• denote the functor of singular chains with rational coefficients on topological spaces. By
definition, the dual of the Betti realization Z∨

n,B is the n-th homology group of the total complex of the
double complex

(15)

//
⊕

|I|=2

C0(∂IY (C)) //
⊕

|I|=1

C0(∂IY (C)) // C0(Y (C))

//

OO

⊕

|I|=1

C1(∂IY (C)) //

OO

C1(Y (C))

OO

//

OO

C2(Y (C))

OO

OO

obtained by applying the functor C• to the complex (14). One readily verifies that this complex is quasi-
isomorphic to the quotient complex C•(Y (C))/C•(∂Y (C)), classically used to define the relative homology

groups HB
• (Y, ∂Y ) = Hsing

• (Y (C), ∂Y (C)).
We let Ω•

∂IY
denote the complex of sheaves of algebraic differential forms on the smooth variety ∂IY ,

extended by zero to Y . By definition, the de Rham realization Zn,dR is the hypercohomology of the total
complex of the double complex of sheaves

(16)

⊕

|I|=2

Ω0
∂IY

oo

��

⊕

|I|=1

Ω0
∂IY

oo

��

Ω0
Y

oo

��⊕

|I|=1

Ω1
∂IY

oo

��

Ω1
Y

oo

��
Ω2

Y
oo

��

where the vertical arrows are the exterior derivatives and the horizontal arrows are the alternating sums
of the natural restriction maps as in the complex (14).
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The comparison morphism between the Betti and de Rham realizations of Zn is induced, after complex-
ification, by the morphism from the double complex (16) to the double complex (15) given by integration.
Note that one first has to replace (15) by the double complex of sheaves of singular cochains.

3.3. Betti and de Rham realizations, 2. We now give a description of the Betti and de Rham realizations

of Zn that allow to work directly in the affine space Xn and do not require to work in the blow-up X̃n. The
justification of the blow-up process goes as follows. Suppose that one wants to find a motive whose periods
include all absolutely convergent integrals of the form

(17)

∫

[0,1]n

P (x1, . . . , xn)

(1− x1 · · ·xn)N
dx1 · · · dxn

where P (x1, . . . , xn) is a polynomial with rational coefficients, and N > 0 is an integer. On the Betti side,
the blow-up process is required in order to have a class that represents the integration domain [0, 1]n; on
the de Rham side, the blow-up process is required in order to only consider absolutely convergent integrals
of the form (17). This is made precise by Propositions 3.3 and 3.5 below.

We start with the Betti realization. Let us write
◦

An = An −Pn and note that this is not a closed subset,
but only a locally closed subset, of Xn.

Proposition 3.3. The blow-up morphism πn : X̃n → Xn induces an isomorphism

Z∨
n,B

∼=
−→ Hsing

n (Xn(C)−
◦

An(C), Bn(C)−Bn(C) ∩
◦

An(C)) .

Proof. The blow-up morphism πn is the contraction of the exceptional divisor En onto the point Pn. Thus,
this is a consequence of the classical excision theorem in singular homology, see for instance [Hat02, Propo-
sition 2.22]. �

As a consequence of Proposition 3.3, we see that the unit n-square �n = [0, 1]n ⊂ Xn(C)−
◦

An(C) defines
a class

[�n] ∈ Z
∨
n,B .

When viewed in X̃n(C) − Ãn(C), it is the class of the strict transform �̃n, which has the combinatorial
structure of an n-cube truncated at one of its vertices.

We now turn to a description of the de Rham realization of Zn. Instead of giving a general description in
terms of algebraic differential forms on Xn −An, we will only give a way of defining many classes in Zn,dR,
which will turn out to be enough.

Definition 3.4. An algebraic differential n-form on Xn −An is said to be integrable if it can be written as
a linear combination of forms of the type

(18) ω =
(1− x1)

v1−1 · · · (1− xn)
vn−1f(x1, . . . , xn)

(1 − x1 · · ·xn)N
dx1 · · · dxn

with v1, . . . , vn > 1 and N > 0 integers such that v1 + · · · + vn > N + 1, and f(x1, . . . , xn) a polynomial
with rational coefficients.

The terminology is justified by the following proposition.

Proposition 3.5. Let ω be an algebraic differential n-form on Xn−An. If ω is integrable, then π∗
n(ω) does

not have a pole along En, and thus defines a class in Zn,dR. In particular, the integral
∫

�̃n

π∗
n(ω) =

∫

�n

ω

is absolutely convergent and is a period of Zn.
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Proof. We write ω as in (18). We note that the only problem for absolute convergence is around the
point (1, . . . , 1). Let us thus make the change of variables yi = 1 − xi for i = 1, . . . , n, and g(y1, . . . , yn) =
(−1)n f(x1, . . . , xn). We write h(y1, . . . , yn) = 1− (1 − y1) · · · (1 − yn) so that we have

ω =
yv1−1
1 · · · yvn−1

n g(y1, . . . , yn)

h(y1, . . . , yn)N
dy1 · · · dyn .

There are n natural affine charts for the blow-up πn : X̃n → Xn of the point (0, . . . , 0), and by symmetry it

is enough to work in the first one. We then have local coordinates (z1, . . . , zn) on X̃n, which are linked to
the coordinates (y1, . . . , yn) = πn(z1, . . . , zn) by the formula

(y1, . . . , yn) = (z1, z1z2, . . . , z1zn) .

The problem of convergence occurs in the neighborhood of the exceptional divisor En, which is defined by
the equation z1 = 0. Since h(0, . . . , 0) = 0, we may write

h(z1, z1z2, . . . , z1zn) = z1 h̃(z1, . . . , zn)

with h̃(z1, . . . , zn) a polynomial such that h̃(0, . . . , 0) = 1. The strict transform Ãn of An is thus defined by

the equation h̃(z1, . . . , zn) = 0. We note that we have dy1 · · · dyn = zn−1
1 dz1 · · · dzn, so that we can write

π∗
n(ω) =

zv1−1
1 (z1z2)

v2−1 · · · (z1zn)
vn−1g(z1, z1z2, . . . , z1zn)

zN1 h̃(z1, . . . , zn)
N

zn−1
1 dz1 · · · dzn = zv1+···+vn−N−1

1 Ω ,

where Ω has a pole along Ãn but not along En. The claim follows. �

We make an abuse of notation and denote by

[ω] ∈ Zn,dR

the class of the pullback π∗
n(ω) for ω integrable, so that the comparison isomorphism reads

〈[�n], [ω]〉 =

∫

�n

ω .

We note the converse of Proposition 3.5, that we will not use.

Proposition 3.6. Let ω be an algebraic differential n-form on Xn −An. If the integral
∫
�n

ω is absolutely

convergent, then ω is integrable.

Proof. In the coordinates yi = 1− xi, we write

ω =
P (y1, . . . , yn)

h(y1, . . . , yn)N
dy1 · · · dyn

with P (y1, . . . , yn) a polynomial with rational coefficients. If the integral
∫
�n

ω is absolutely convergent in the

neighborhood of the point (0, · · · , 0), then after the change of variables φ(z1, . . . , zn) = (z1, z1z2, . . . , z1zn)
we get an absolutely convergent integral in the nieghborhood of z1 = 0. We write, as in the proof of
Proposition 3.5:

φ∗(ω) =
P (z1, z1z2, . . . , z1zn)

zN−n+1
1 h̃(z1, . . . , zn)N

dz1 · · · dzn .

Let us write

P (y1, . . . , yn) =
∑

a

λa y
a1−1
1 · · · yan−1

n

with λa ∈ Q for every multi-index a = (a1, . . . , an). We then have

P (z1, z1z2, . . . , z1zn) =
∑

a

λa z
a1+···+an−n
1 za2−1

2 · · · zan−1
n .

Let v denote the smallest integer such that there exists a multi-index a with |a| := a1 + · · · + an = v. We
then have an equivalence

P (z1, z1z2, . . . , z1zn) ∼z1→0 z
v−n
1 Q(z2, . . . , zn)
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where Q(z2, . . . , zn) =
∑

|a|=v λa z
a2−1
2 · · · zan−1

n . We then have

φ∗(ω) ∼z1→0 z
v−N−1
1 dz1

Q(z2, . . . , zn)

(1 + z2 + · · ·+ zn)N
dz2 · · · dzn .

This gives an absolutely convergent integral in the neighborhood of z1 = 0 if and only if v > N + 1, which
is exactly the integrability condition. �

3.4. The Eulerian differential forms. Recall that the family of Eulerian polynomials Er(x), r > 0, is
defined by the equation

(19)
Er(x)

(1 − x)r+1
=
∑

k>0

(k + 1)rxk .

If r > 1 this is equivalent to

Er(x)

(1− x)r+1
=

1

x

(
x
d

dx

)r
1

1− x
·

For instance, we have E0(x) = E1(x) = 1, E2(x) = 1 + x, E3(x) = 1 + 4x + x2. The Eulerian polynomials
satisfy the recurrence relation

(20) Er+1(x) = x(1− x)E′
r(x) + (1 + rx)Er(x) .

For integers n > 2 and d = 2, . . . , n, we define a differential form

ω(d)
n =

En−d(x1 · · ·xn)

(1− x1 · · ·xn)n−d+1
dx1 · · · dxn.

Note that ω
(n)
n =

dx1 · · · dxn
1− x1 · · ·xn

.

Lemma 3.7. The form ω
(d)
n defines a class [ω

(d)
n ] ∈ Zn,dR and we have

(21) 〈[�n], [ω
(d)
n ]〉 =

∫

�n

ω(d)
n = ζ(d) .

Proof. The first statement follows from Proposition 3.5. The computation of the period is then straightfor-
ward using the definition (19) of Eulerian polynomials:

∫

�n

ω(d)
n =

∑

k>0

(k + 1)n−d

∫

[0,1]n
(x1 · · ·xn)

k dx1 · · · dxn =
∑

k>0

(k + 1)−d = ζ(d) .

�

For every n > 0, we define ω
(0)
n = dx1 · · · dxn; we also have the class of [ω

(0)
n ] ∈ Zn,dR, whose pairing with

the class �n is

〈[�n], [ω
(0)
n ]〉 =

∫

�n

ω(0)
n = 1 .

We call the differential forms ω
(d)
n , for d = 0, 2, . . . , n, the Eulerian differential forms.

3.5. An inductive system. For n > 2 there are natural morphisms

(22) in : Zn−1 → Zn

in the category MT(Q), that we now define. We fix the identification Xn−1 = {xn = 1} ⊂ Xn, which implies
the equality An−1 = An ∩Xn−1. Let us set

B′
n =

⋃

16i6n

{xi = 0} ∪
⋃

16i6n−1

{xi = 1} ,

so that we have Bn = B′
n ∪Xn−1, and Bn−1 = B′

n ∩Xn−1.
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In the blow-up X̃n, we thus get an embedding X̃n−1 ⊂ X̃n and identifications Ãn−1 = Ãn∩X̃n−1, B̃n−1 =

B̃′
n ∩ X̃n−1 and En−1 = En ∩ X̃n−1. Thus, the complex in DM(Q) that we have used to define Zn−1 is the

subcomplex

(23) · · · →
⊔

|I|=3

∂IY ⊂X̃n−1

∂IY →
⊔

|I|=2

∂IY⊂X̃n−1

∂IY → X̃n−1 → 0→ 0

of the complex (14) that we have used to define Zn, shifted by 1. Taking the n-th cohomology groups with
respect to the t-structure gives the morphism (22).

In Betti and de Rham realizations, the morphism (22) is also induced by the inclusion of double subcom-
plexes of (15) and (16).

Remark 3.8. There are signs in the differentials of the complexes (14), (15), (16), that we leave to the reader.
This also induces signs on the different components of the inclusions of subcomplexes such as (23).

We define the ind-motive
Z = lim

−→

n

Zn ,

viewed as an ind-object in the category MT(Q), and simply call it the zeta motive.

If the signs are chosen consistently (see Remark 3.8), then the map i∨n,B : Z∨
n,B → Z

∨
n−1,B sends the

class [�n−1] to the class [�n]. This allows us to define a class

[�] ∈ Z∨
B := lim

←−

n

Z∨
n,B .

Loosely speaking, if σ is a chain on X̃n(C) − Ãn(C) whose boundary is on B̃n(C) ∪ En(C), then i∨n,B([σ])

is the class of “the component of the boundary of σ that lives on X̃n−1(C)”. According to Proposition 3.3,

one can also work with chains on Xn(C)−
◦

An(C).

The next proposition shows that the Eulerian differential forms ω
(d)
n are compatible with the inductive

structure on the zeta motives.

Proposition 3.9. For integers n > 2 and d = 0, 2, . . . , n − 1, the map in,dR : Zn−1,dR → Zn,dR sends the

class [ω
(d)
n−1] to the class [ω

(d)
n ].

Proof. Since all the differential forms that we are manipulating have no poles along the exceptional divi-
sors En−1 and En, it is safe to do the computations in the affine spaces Xn−1 and Xn; we leave it to

the reader to turn them into computations in X̃n−1 and X̃n by working in local charts as in the proof of
Proposition 3.5. Let us assume first that d ∈ {2, . . . , n− 1}. We put

η
(d)
n−1 =

xnEn−1−d(x1 · · ·xn)

(1− x1 · · ·xn)n−d
dx1 · · · dxn−1 ,

viewed as a form on Xn. Then we have (η
(d)
n−1)|Xn−1

= ω
(d)
n−1 and (η

(d)
n−1)|B′n−1

= 0. A diagram chase in the

double complex (16) shows that in,dR([ω
(d)
n−1]) is the class of

(−1)n−1 (d(η
(d)
n−1))

(the sign is here to be consistent with the Betti version, see Remark 3.8). We have

(−1)n−1 d(η
(d)
n−1) =

∂

∂xn

(
xnEn−1−d(x1 · · ·xn)

(1 − x1 · · ·xn)n−d

)
dx1 · · · dxn

and one easily sees that setting x = x1 · · ·xn we have

∂

∂xn

(
xnEn−1−d(x1 · · ·xn)

(1− x1 · · ·xn)n−d

)
=
x(1− x)E′

n−1−d(x) + (1 + (n− 1− d)x)En−1−d(x)

(1− x)n−d+1
.

Using the recurrence relation (20), one then concludes that

(−1)n−1d(η
(d)
n−1) =

En−d(x1 · · ·xn)

(1− x1 · · ·xn)n−d+1
dx1 · · · dxn = ω(d)

n .
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For d = 0, this is the same computation with η
(0)
n = xn dx1 · · · dxn−1 and

(−1)n−1d(η
(0)
n−1) = dx1 · · · dxn = ω(0)

n .

�

Proposition 3.9 allows us to unambiguously define classes

[ω(d)] ∈ Z∞,dR

for d = 0, 2, 3, . . .

Remark 3.10. The proof of Proposition 3.9 can be thought of as a cohomological version of the relation
∫

�n

ω(d)
n =

∫

�n−1

ω
(d)
n−1,

which may be proved using Stokes’ theorem and the recurrence relation (20).

Proposition 3.11. For integers n > 1 and d = 0, 2, . . . , n, the class of [ω
(d)
n ] lives in the pure weight 2d

component of Zn,dR.

Proof. For d = 0, Proposition 3.9 and the fact that the maps in,dR are compatible with the weight gradings
implies that it is enough to do the proof for n = 1; this case is easy since Z1 = Q(0) only has weight 0.
We now turn to the case d = 2, . . . , n. Thanks to Proposition 3.9 and the fact that the maps in,dR are
compatible with the weight gradings, it is enough to check it for d = n. We have to show that the class

of π∗
n(ω

(n)
n ) is in FnZn,dR. By the construction of the Hodge filtration [Del71], it is enough to prove that

there is an embedding X̃n − Ãn ⊂ Yn such that
(1) Yn is a smooth projective variety;

(2) the divisor at infinity ∂Yn = Yn − (X̃n − Ãn) is a normal crossing divisor;

(3) the differential form ω
(n)
n has logarithmic poles along ∂Yn.

One can choose Yn =M0,n+3. The embedding of X̃n − Ãn is described in [Bro09, §2], and the divisor at

infinity ∂Yn is a union of irreducible components of the normal crossing divisor ∂M0,n+3. The differen-

tial form ω
(n)
n is thus, after the change of variables (t1, . . . , tn) = (x1 · · ·xn, x2 · · ·xn, . . . , xn−1xn, xn), the

form Ω(1, 0, . . . , 0) of [GM04], which has logarithmic poles along ∂M0,n+3. �

3.6. A long exact sequence. We now show that the morphism in : Zn−1 → Zn fits into a long exact
sequence. We first define objects of MT(Q):

Zk
n = Hk(X̃n − Ãn, (B̃n ∪En)− (B̃n ∪En)∩ Ãn) and ′Zk

n = Hk(X̃n− Ãn, (B̃
′
n ∪En)− (B̃′

n ∪En)∩ Ãn) ,

so that Zn = Zn
n . We leave it to the reader to fill in the technical definitions of these objects by mimicking

that of Zn from §3.1.

Proposition 3.12. For n > 2, we have a long exact sequence in MT(Q):

(24) · · · → Zk−1
n−1 → Z

k
n →

′Zk
n → Z

k
n−1 → Z

k+1
n → · · ·

Proof. The objects Z•
n−1, Z

•
n and ′Z•

n are defined via objects in DMT(Q) that we denote by Cn−1, Cn

and ′Cn respectively, Cn being the complex (14) and Cn−1 the subcomplex (23). Now there is an obvious
exact triangle

Cn−1[−1] −→ Cn −→
′Cn

+1
−→ ,

in DMT(Q), which gives the desired long exact sequence after taking the cohomology with respect to the t-
structure. �

4. Computation of the zeta motives Zn

This section is the technical heart of this article, where we compute (Theorem 4.6) the full period matrix of
the zeta motives Zn. The main difficulty is showing that the motives Tn, introduced below, are semi-simple.
For that we use the involution τ defined in the introduction and the computation of the extension groups
in the category MT(Q). We conclude with the definition of the odd zeta motive and the computation of its
period matrix.
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4.1. The Gysin long exact sequence. Since the divisor An is smooth, it is natural to decompose the
motives Zk

n thanks to a Gysin long exact sequence. In the next Proposition, the definition of the ob-
jects H•(Xn, Bn) and H

•(An, Bn ∩An) of MT(Q) is similar to that of Zn from §3.1.

Proposition 4.1. For n > 1, we have a long exact sequence in MT(Q):

(25) · · · → Hk(Xn, Bn)→ Z
k
n → Hk−1(An, Bn ∩ An)(−1)→ Hk+1(Xn, Bn)→ Z

k+1
n → · · ·

Proof. Recall [Voe00, (3.5.4)] the existence of a Gysin exact triangle in the category DM(Q). For the

pair (X̃n, Ãn), it reads (with cohomological conventions)

X̃n −→ X̃n − Ãn −→ Ãn(−1)[−1]
+1
−→

and is an exact triangle in the category DMT(Q). Applying this triangle to every pair (∂IY, ∂IY ∩ Ãn) in
the complex (14) and taking the cohomology with respect to the t-structure leads to a long exact sequence

· · · → Hk(X̃n, B̃n∪En)→ Hk(X̃n−Ãn, (B̃n∪En)−(B̃n∪En)∩Ãn)→ Hk−1(Ãn, (B̃n∪En)∩Ãn)(−1)→ · · ·

in MT(Q). One concludes with the fact that the natural morphisms

Hk(X̃n, B̃n ∪ En)→ Hk(Xn, Bn) and Hk−1(Ãn, (B̃n ∪ En) ∩ Ãn)→ Hk−1(An, Bn ∩ An)

are isomorphisms. This can be checked in the Betti realization, where it is a consequence of the excision
theorem as in the proof of Proposition 3.3. �

4.2. The motives H•(Xn, Bn). The computation of the motives H•(Xn, Bn) appearing in the long exact
sequence (25) is relatively easy.

Proposition 4.2. (1) We have Hk(Xn, Bn) = 0 for k 6= n, and an isomorphism Hn(Xn, Bn) ∼= Q(0).
(2) A basis for the de Rham realization Hn

dR(Xn, Bn) is the class of the form dx1 · · · dxn.
(3) A basis for the Betti realization HB

n (Xn, Bn) is the class of the unit n-cube �n = [0, 1]n.

Proof. If (1) is proved then proving (2) and (3) amounts to showing that the classes of dx1 · · · dxn and
of �n are non-zero. This is clear since their pairing is

∫
�n

dx1 · · · dxn = 1 6= 0. Let us write X = Xn

and ∂X = Bn =
⋃2n

i=1 ∂iX where ∂iX is either some {xj = 0} or some {xj = 1}. Then H•(Xn, Bn) is
defined from the complex of varieties

· · · →
⊔

|I|=3

∂IX →
⊔

|I|=2

∂IX →
⊔

|I|=1

∂IX → X → 0

similar to (14). There is a natural spectral sequence

Ep,q
1 =

⊕

|I|=p

Hq(∂IX) ⇒ Hp+q(X, ∂X)

in MT(Q) where the differential on the E1 page in the alternating sum of the natural restrictions. Since all
the varieties ∂IX are affine spaces, we have Hq(∂IX) = 0 for q 6= 0 and H0(∂IX) ∼= Q(0). Thus, the only
non-zero row is q = 0 and the spectral sequence degenerates at E2. In the Betti realization, the row q = 0
is the complex computing the cellular cohomology of the unit n-cube [0, 1]n, shifted by n, and claim (1)
follows. �

4.3. The motives H•(An, Bn ∩ An). For n > 1, we realize the n-torus as Tn = {x1 · · ·xn+1 = 1}, and we
have subtori T n−1

i = {xi = 1} ⊂ T n for i = 1, . . . , n+ 1. We define

T k
n = Hk(T n,

⋃
16i6n+1 T

n−1
i ) and ′T k

n = Hk(T n,
⋃

16i6n T
n−1
i ) ,

which are objects in MT(Q) (whose definition is similar to that of Zn from §3.1) and write Tn = T n
n , ′Tn =

′T n
n . We then have

Hk−1(An, Bn ∩ An) ∼= T
k−1
n−1 .

By mimicking the proof of Proposition 3.12, one produces a long exact sequence in MT(Q):

(26) · · · → T k−1
n−1 → T

k
n →

′T k
n → T

k
n−1 → T

k+1
n → · · ·

Proposition 4.3. (1) We have ′T k
n = 0 for k 6= n, and an isomorphism ′Tn ∼= Hn(T n) ∼= Q(−n).
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(2) We have T k
n = 0 for k 6= n, and short exact sequences in MT(Q):

(27) 0→ Tn−1 → Tn → Hn(T n)→ 0 .

Proof. If (1) is proved then (2) follows from the long exact sequence (26). We choose coordinates (x1, . . . , xn)
on T n. Let us write, for I ⊂ {1, . . . , n}, TI = {∀i ∈ I , xi = 1}. It is a subtorus of T n = T∅ of codimension
the cardinality of I. By mimicking the proof of Proposition 4.2, one produces a spectral sequence

Ep,q
1 =

⊕

|I|=p

Hq(TI) ⇒
′T p+q

n

in MT(Q), where the differential on the E1 page in the alternating sum of the natural restrictions. We note
that the row q = n only contains

E0,n
1 = Hn(T n) ∼= H1(T 1)⊗n ∼= Q(−1)⊗n = Q(−n) .

Thus, we are done if we prove that the rows q = 0, . . . , n− 1 are all exact. We work in de Rham realization
for simplicity. For I ⊂ {1, . . . , n}, we put

Λ•(I) = Λ•(e1, . . . , en)/(ei , i ∈ I) .

Then we have natural identifications H•(TI) ∼= Λ•(I), and thus

Ep,q
1
∼=
⊕

|I|=p

Λq(I) ,

where the differential d1 : Ep,q
1 → Ep+1,q

1 is the alternating sum of the natural quotient maps

Λq(I) ։ Λq(I ∪ {i})

for i /∈ I. We have natural splittings Λ•(I∪{i}) →֒ Λ•(I), which give (with proper signs) a map h : Ep+1,q
1 →

Ep,q
1 . One then easily shows that we have dh + hd = (n − q) id, thus h defines a contracting homotopy for

the complex E•,q
1 for q = 0, . . . , n− 1, and we are done. �

We note that we have T0 = H0(pt, pt) = 0, so that Proposition 4.3 implies that we have

grWk Tn =

{
Q(−k) if k ∈ {1, . . . , n};

0 otherwise.

In the next proposition, we will prove that the weight filtration of Tn actually splits in MT(Q). For that we
introduce the involution τ which acts on the tori T n by

τ : (x1, . . . , xn+1) 7→ (x−1
1 , . . . , x−1

n+1) .

This induces an involution, still denoted by τ , on the objects T k
n and ′T k

n of MT(Q), such that all the maps
in the long exact sequence (26) commute with τ .

Proposition 4.4. (1) The short exact sequences (27) split in MT(Q), hence we have isomorphisms:

Tn ∼= Q(−1)⊕Q(−2)⊕ · · · ⊕Q(−n) .

In other words, a period matrix for Tn is the diagonal matrix Diag(2iπ, (2iπ)2, . . . , (2iπ)n).
(2) The involution τ acts on the direct summand Q(−k) of Tn by multiplication by (−1)k.

Proof. We prove the proposition by induction on n, the case n = 0 being trivial. We first note that τ
acts on H1(T 1) by multiplication by −1. It is enough to prove it in de Rham realization, where it follows
from τ. dlog(x1) = −dlog(x1). Thus, τ acts on grWn Tn

∼= Hn(T n) = H1(T 1)⊗n by multiplication by (−1)n,
and we are left with proving (1).

Thanks to the induction hypothesis, there exists a basis (w1, . . . , wn−1) (resp. (ψ1, . . . , ψn−1)) of Tn−1,dR

(resp. T ∨
n−1,B) which is compatible with the weight grading (resp. filtration) and satisfies τ.wk = (−1)kwk

(resp. τ.ψk = (−1)kψk) for every k. We assume for simplicity that we have 〈ψk, wk〉 = (2iπ)k for ev-
ery k. Thanks to the short exact sequence (27), we can complete it to get a basis (w1, . . . , wn−1, wn)
(resp. (ψ1, . . . , ψn−1, ψn)) of Tn,dR (resp. T ∨

n,B) such that the following conditions are verified:

(a) (w1, . . . , wn) (resp. (ψ1, . . . , ψn)) is compatible with the weight grading (resp. filtration);
(b) 〈ψk, wk〉 = (2iπ)k for every k = 1, . . . , n;
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(c) τ.wk = (−1)kwk (resp. τ.ψk = (−1)kψk) for every k = 1, . . . , n;

For k = 1, . . . , n− 1 we put pk := 〈ψk, wn〉, so that the period matrix of Tn in these bases is



2iπ 0 p1
(2iπ)2 p2

. . .
...

. . .
...

0 (2iπ)n−1 pn−1

(2iπ)n




·

We compute

pk = 〈ψk, wn〉 = (−1)k〈τ.ψk, wn〉 = (−1)k〈ψk, τ.wn〉 = (−1)k+n〈ψk, wn〉 = (−1)k+npk

where we have used the fact the pairing 〈·, ·〉 is compatible with τ . This implies that pn−2i+1 = 0 for
every i > 0.

Now the period matrix for Tn/Wn−3Tn is the matrix



(2iπ)n−2 0 pn−2

0 (2iπ)n−1 0
0 0 (2iπ)n




Thus, Tn/Wn−3Tn is the direct sum of Q(−(n− 1)) and an extension of Q(−n) by Q(−(n− 2)). By (12), all
such extensions are trivial, hence pn−2 = λ(2iπ)n with λ a rational number. If we replace ψn−2 by ψn−2−λψn,
we can thus assume that we have pn−2 = 0. Note that conditions (a), (b), (c) are still verified. By looking
at Tn/Wn−5Tn and using the fact that all extensions of Q(−n) by Q(−(n − 4)) are trivial, we can assume
that we have pn−4 = 0. By induction, we can assume that we have pn−2i = 0 for every i > 0, hence the
period matrix of Tn is the diagonal matrix Diag(2iπ, (2iπ)2, . . . , (2iπ)n) and we are done. �

4.4. The structure of the zeta motives. We can now determine the structure of the zeta motives Zn,
for n > 1.

Theorem 4.5. (1) We have a short exact sequence in MT(Q):

(28) 0→ Q(0)→ Zn → Tn−1(−1)→ 0 ,

with Tn−1(−1) ∼= Q(−2)⊕ · · · ⊕Q(−n).
(2) We have a short exact sequence in MT(Q):

(29) 0→ Zn−1
in−→ Zn → Q(−n)→ 0 .

(3) These short exact sequences fit into a commutative diagram

(30)

0

��

0

��

0

��
0 // Q(0)

=

��

// Zn−1

in−1

��

// Tn−2(−1)

��

// 0

0 // Q(0)

��

// Zn

��

// Tn−1(−1)

��

// 0

0 // 0

��

// Q(−n)

��

= // Q(−n)

��

// 0

0 0 0

where all rows and columns are exact.
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Proof. Assertion (1) follows from Propositions 4.1, 4.2 and 4.4. The commutativity of (30) follows from the
compatibility of the long exact sequences (24) and (26). A diagram chase implies that (29) is exact. �

Theorem 4.6. (1) The classes

vd := [ω(d)
n ] (d = 0, 2, . . . , n)

of the Eulerian differential forms provides a basis (v0, v2, . . . , vn) of the de Rham realization Zn,dR

which is compatible with the weight grading.
(2) There exists a unique basis (ϕ0, ϕ2, . . . , ϕn) for the dual of the Betti realization Z∨

n,B which is com-

patible with the weight filtration and such that the period matrix for Zn with bases (v0, v2, . . . , vn)
and (ϕ0, ϕ2, . . . , ϕn) is

(31)




1 ζ(2) ζ(3) · · · · · · ζ(n− 1) ζ(n)
(2iπ)2

(2iπ)3 0
. . .

. . .

0 (2iπ)n−1

(2iπ)n




·

Proof. (1) Proposition 3.11 implies that vd is in the pure weight 2d component of Zn,dR. Thus, it is
enough to show that it is non-zero, which is a consequence of the equality 〈[�n], vd〉 = ζ(d) 6= 0.

(2) We put ϕ0 = [�n]. Let (ψ1, . . . , ψn−1) be a basis of T ∨
n−1,B for which the period matrix is diagonal,

as in Proposition 4.4. Let p denote the morphism Zn → Tn−1(−1), and let us consider the transpose
of its Betti realization p∨B : T ∨

n−1,B → Z
∨
n,B. Then we can put ϕd = p∨B(ψd−1) for d = 2, . . . , n.

The fact that this gives a basis of Z∨
n,B is a consequence of the short exact sequence (28). The fact

that the period matrix is as required follows from Lemma 3.7 and Proposition 4.4. The uniqueness
statement is obvious.

�

We have already noted that the classes vd are compatible with the inductive system of the zeta motives.
By the uniqueness statement in Theorem 4.6, this is also the case for the classes σd, and the zeta motive Z
has an infinite period matrix




1 ζ(2) ζ(3) ζ(4) · · · · · · · · ·
(2iπ)2

(2iπ)3 0
(2iπ)4

. . .

0
. . .

. . .




·

4.5. Classes in the Betti realization. We now explain how to work with the classes (ϕ2, . . . , ϕn) in the
dual of the Betti realization Z∨

n,B. The subtlety here is that these classes can be represented by relative
cycles which are invariant, up to a sign, by τ , but that τ does not act on the motive Zn. We thus introduce
a motive Z∗

n on which τ acts, such that the classes (ϕ2, . . . , ϕn) are images of classes in Z∗,∨
n,B.

We put

X∗
n = Xn −

⋃

16i6n

{xi = 0} = (A1
Q − {0})

n and B∗
n = X∗

n ∩
⋃

16i6n

{xi = 1} .

We then define, with the obvious notations:

Z∗
n = Hn(X̃∗

n − Ãn, (B̃
∗
n ∪ En)− (B̃∗

n ∪ En) ∩ Ãn) ,
17



viewed as an object ofMT(Q). Since An does not meet the coordinate hyperplanes {xi = 0}, the morphism p :
Zn → Tn−1(−1) factors through Z

∗
n:

(32) Zn −→ Z
∗
n

p∗

−→ Tn−1(−1) .

Proposition 4.7. The morphism Zn → Z
∗
n fits into a short exact sequence

0→ Q(0)→ Zn ⊕Q(−n)→ Z∗
n → 0

in MT(Q).

Proof. By mimicking the proof of Theorem 4.5, we see that there is a short exact sequence

0→ Q(−n)→ Z∗
n → Tn−1(−1)→ 0 .

We then have a commutative diagram

0 // Q(0)

0

��

// Zn
//

��

Tn−1(−1) //

=

��

0

0 // Q(−n) // Z∗
n

// Tn−1(−1) // 0

which finishes the proof. �

Note that this implies that Z∗
n is isomorphic to Q(−1)⊕ · · · ⊕Q(−(n− 1))⊕Q(−n)⊕2.

In the proof of Theorem 4.6, we defined the classes ϕk ∈ Z
∨
n,B, for k = 2, . . . , n, in the image of the

morphism p∨B : T ∨
n−1,B → Z

∨
n,B. In view of the factorization (32), we have classes

ϕ∗
k ∈ Z

∗,∨
n,B (k = 2, . . . , n) .

The reason for introducing Z∗
n is that it is naturally endowed with an involution τ , induced by (x1, . . . , xn) 7→

(x−1
1 , . . . , x−1

n ). This is not the case for Zn.

Lemma 4.8. We have the equality τ.ϕ∗
k = (−1)k−1ϕ∗

k in Z∗∨

n,B.

Proof. This is obvious from the proof of Theorem 4.6 since the morphism p∨B : T ∨
n−1,B → Z

∗,∨
n,B is compatible

with the involutions τ . �

Note that the morphism p∗,∨B : T ∨
n−1,B → Z

∨
n,B can be described explicitly in the following way. Let f :

T → An(C) be the boundary of a tubular neighborhood of An(C) in X∗
n(C), which means that locally T

looks like the product S1 × An(C). If α is the representative of a (n − 1)-cycle on An(C) with boundary
on An(C) ∩Bn(C), then p

∗,∨
B ([α]) is the class of f−1(α).

Lemma 4.9. The class ϕn ∈ Z
∨
n,B can be represented by the cycle (S1)n → Xn(C) − An(C) given by the

equations

(33) |x1| = ρ1, . . . , |xn−1| = ρn−1,

∣∣∣∣xn −
1

x1 · · ·xn−1

∣∣∣∣ = ρn ,

for any choice of ρ1, . . . , ρn−1, ρn > 0.

Proof. The homology class of these cycles obviously does not depend on the parameters ρ1, . . . , ρn, so we
can assume that we have ρ1 · · · ρn 6= 1. This way, the cycle (33) lives in X∗

n(C) − An(C). Note that

the domain T defined by the equation
∣∣∣xn − 1

x1···xn−1

∣∣∣ = ρn is the boundary of a tubular neighborhood

of An(C), the map f : T → An(C) being given by (x1, . . . , xn) 7→ (x1, . . . , xn−1,
1

x1···xn−1

). With the

notations of the proof of Theorem 4.6, the homology class ψn−1 ∈ T
∨
n−1,B can obviously be represented by

the cycle |x1| = ρ1, . . . , |xn−1| = ρn−1, hence the result. �
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4.6. The odd zeta motive. Let us write Tn−1 = T +
n−1⊕T

−
n−1 for the decomposition into direct summands

on which the involution τ acts positively or negatively, and let us write p : Zn → Tn−1(−1) for the surjection
appearing in the short exact sequence (28).

Definition 4.10. The n-th odd zeta motive Zodd
n is the object of MT(Q) defined by

Zodd
n := p−1(T +

n−1(−1)) .

We obviously have a short exact sequence

(34) 0→ Q(0)→ Zodd
n → T +

n−1(−1)→ 0

with

T +
n−1(−1)

∼=
⊕

362k+16n

Q(−(2k + 1)) .

We note that there are morphisms

ioddn : Zodd
n−1 → Z

odd
n

such that iodd2n is an isomorphism for every integer n. The limit

Zodd := lim
−→

n

Zodd
n

is an ind-object in MT(Q) that we simply call the odd zeta motive.

Proposition 4.11. (1) We have a direct sum decomposition

(35) Zn
∼= Zodd

n ⊕
⊕

262k6n

Q(−2k) .

(2) A period matrix for Zodd
2n+1 = Zodd

2n+2 is

(36)




1 ζ(3) ζ(5) · · · · · · ζ(2n− 1) ζ(2n+ 1)
(2iπ)3

(2iπ)5 0
. . .

. . .

0 (2iπ)2n−1

(2iπ)2n+1




·

Proposition 4.11 implies that the odd zeta motive Zodd has an infinite period matrix (6).

Proof. A basis for Zodd
n,dR is given by v0 and the v2k+1, for 3 6 2k+1 6 n, and a basis for Zodd,∨

n,B is given by ϕ0

and the ϕ2k+1, for 3 6 2k + 1 6 n. This gives the desired shape for the period matrix (36). Now, Euler’s
solution to the Basel problem implies that we have ζ(2k) = λ2k(2iπ)

2k for every integer k > 1, with λ2k =
− B2k

2(2k)! ∈ Q. Thus, we may replace the basis (ϕ0, ϕ2, . . . , ϕn) of Theorem 4.6 by the basis (ϕ′
0, ϕ2, . . . , ϕn)

with

ϕ′
0 = ϕ0 −

∑

262k6n

λ2k ϕ2k

to get a period matrix similar to (31) where the even zeta values ζ(2k) in the first row are replaced by 0.
This implies the direct sum decomposition (35). �

We finish by proving that all the objects in MT(Q) considered earlier actually live in the full subcate-
gory MT(Z).

Proposition 4.12. The zeta motives Zn and the odd zeta motives Zodd
n are objects of the category MT(Z).
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Proof. Thanks to the direct sum decomposition (35), it is enough to prove it for the odd zeta motives. Let us
recall the definition [DG05, Définition 1.4] of the category MT(Z). According to the Tannakian formalism,
the de Rham realization functor MT(Q)→ grVectQ induces an equivalence of categories

MT(Q) ∼= grRep(gdR)

between MT(Q) and the category of graded finite-dimensional representations of a graded Lie algebra gdR.
The degree in gdR is half the weight. This Lie algebra is non-positively graded. The category MT(Z) is
defined as the full subcategory of MT(Q) consisting on objects H such that the degree −1 component gdR−1

acts trivially on HdR. This is trivially the case for Zodd
n , which is concentrated in weights 0 and 2(2k + 1)

with 2k + 1 > 3 by the short exact sequence (34). �

Remark 4.13. A tannakian interpretation of the odd zeta motive goes as follows. Let g∨ be the graded
dual of the fundamental Lie algebra g of the Tannakian category MT(Z). It is an ind-object in MT(Z),
independent of the choice of a fiber functor [Del89, Définition 6.1]. Then one has a short exact sequence

0→ Q(0)→ g∨ → u∨ → 0 ,

where u is the pro-unipotent radical of g. One views Zodd inside the exact subsequence

0→ Q(0)→ Zodd → (uab)∨ → 0 ,

where (uab)∨ ∼=
⊕

k>1 Q(−(2k + 1)) is the dual of the abelianization of u.

5. Linear forms in odd/even zeta values

We apply our results from the previous section to prove Theorems 1.1 and 1.2 from the Introduction.

5.1. Vanishing of coefficients.

Theorem 5.1. For ω an integrable algebraic differential form on Xn −An, we have

(37)

∫

[0,1]n
ω = a0(ω) + a2(ω)ζ(2) + · · ·+ an(ω)ζ(n)

with ak(ω) a rational number for every k, given for k = 2, . . . , n by the formula

(38) ak(ω) =
1

(2iπ)k
〈ϕk, [ω]〉 .

Proof. According to Proposition 3.5, the class [ω] defines an element in Zn,dR, hence we may write

[ω] = a0(ω)v0 + a2(ω)v2 + · · ·+ an(ω)vn

with ak(ω) ∈ Q for every k. Pairing with the class ϕ0 = [�n] gives the equality (37), and pairing with the
class ϕk, k = 2, . . . , n, gives the equality (38). �

If we represent the class ϕk by a relative cycle σk, then (38) becomes

ak(ω) =
1

(2iπ)k

∫

σk

ω .

In view of Lemma 4.9, we see that the case n = k = 2 of Theorem 5.1 is Rhin and Viola’s contour integral
for ζ(2) [RV96, Lemma 2.6].

Theorem 5.2. For ω an integrable algebraic differential form on Xn −An, we have:

(1) if τ. ω = ω then ak(ω) = 0 for k 6= 0 even;
(2) if τ. ω = −ω then ak(ω) = 0 for k odd.

Proof. Let us assume that we have τ.ω = ω, and let us write [ω]∗ for the class of ω in Z∗
n,dR. We have τ.[ω]∗ =

[ω]∗. The pairing between Z∗
n,dR and Z∗,∨

n,B is compatible with τ , hence we have

(2iπ)k ak(ω) = 〈[ϕ
∗
k, [ω]

∗]〉 = 〈ϕ∗
k, τ.[ω]

∗〉 = 〈τ.ϕ∗
k, [ω]

∗〉 = (−1)k−1〈ϕ∗
k, [ω]

∗〉 = (−1)k−1(2iπ)k ak(ω) ,

where we have used Lemma 4.8. This implies that ak(ω) = 0 if k 6= 0 is even. The second case is similar. �
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Let us write an integrable form as

(39) ω =
P (x1, . . . , xn)

(1− x1 · · ·xn)N
dx1 · · · dxn

with P (x1, . . . , xn) a polynomial with rational coefficients and N > 0 an integer. Then we have

(40) τ.ω = ±ω ⇔ P (x1, . . . , xn) = ±(−1)
N+n(x1 · · ·xn)

N−2P (x−1
1 , . . . , x−1

n ) .

Remark 5.3. We note that apart from the integral formula (38) for the coefficients, there is a direct proof of
Theorems 5.1 and 5.2 which goes as follows. Expanding (1 − x1 · · ·xn)

−N as a series allows one to rewrite
the integral of any integrable algebraic differential form (39) as the sum of a convergent series

∑

k>0

R(k) ,

where R(k) is a rational function with rational coefficients and poles in {−1,−2, . . .}. By decomposing R(k)
into partial fractions, one easily sees that the sum evaluates to a linear combination a0+a2ζ(2)+ · · ·+anζ(n)
with ak ∈ Q for every k. The vanishing of the even/odd coefficients comes from the comparison of R(−k−N)
and R(k) as in [BR01], see also [Zud04, §8]. One can show that the coefficients of the linear forms that we
get in this way are the same as the ones defined by Theorem 5.1. This was suggested by Don Zagier.

5.2. The Ball−Rivoal integrals. We apply Theorems 5.1 and 5.2 to a special family of integrals.

Corollary 5.4. Let u1, . . . , un, v1, . . . , vn > 1 and N > 0 be integers such that v1 + · · ·+ vn > N + 1. Then
the integral

(41)

∫

[0,1]n

xu1−1
1 · · ·xun−1

d (1 − x1)
v1−1 · · · (1− xn)

vn−1

(1− x1 · · ·xn)N
dx1 · · · dxn

is absolutely convergent and evaluates to a linear combination

a0 + a2ζ(2) + a3ζ(3) + · · ·+ anζ(n).

If furthermore we have 2ui + vi = N + 1 for every i, then we get:

(1) if (n+ 1)(N + 1) is odd then ak = 0 for k 6= 0 even;
(2) if (n+ 1)(N + 1) is even then ak = 0 for k odd.

Proof. This is a direction application of Theorem 5.2. The polynomial P (x1, . . . , xn) = xu1−1
1 · · ·xun−1

d (1−
x1)

v1−1 · · · (1 − xn)
vn−1 satisfies

P (x1, . . . , xn) = (−1)n+v1+···+vnx2u1+v1−3
1 · · ·x2un+vn−3

n P (x−1
1 , . . . , x−1

n ) .

Let us assume that we have 2ui + vi = N + 1 for every i, then v1 + · · ·+ vn ≡ n(N + 1) mod 2 and we get

P (x1, . . . , xn) = −(−1)
(n+1)(N+1)(−1)N+n(x1 · · ·xn)

N−2P (x−1
1 , . . . , x−1

n ) ,

hence the result, in view of (40). �

Corollary 5.4 applies in particular to the special case

N = (2r + 1)m+ 2, ui = rm + 1, vi = m+ 1

for some integer parameters r,m > 0 satisfying n(m + 1) > (2r + 1)m + 3. We then recover the integrals
considered by Ball and Rivoal [BR01, Lemme 2]. The vanishing of the coefficients is [BR01, Lemme 1]. The
notations (a, n, r) in [BR01] correspond to our notations (n− 1,m, r).

The integrals (41) can be expressed as generalized hypergeometric series
(

n∏

i=1

(ui − 1)!(vi − 1)!

(ui + vi − 1)!

)

n+1Fn

(
u1, . . . , un, N

u1 + v1, . . . , un + vn
; 1

)
=

∏n

i=1(vi − 1)!

(N − 1)!

∑

k>0

(k)u1
· · · (k)un

(k + 1)N−1

(k)u1+v1 · · · (k)un+vn

.

If 2ui + vi = N + 1 then the corresponding generalized hypergeometric series is said to be well-poised.
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5.3. Weight drop. In the context of Theorem 5.1, we say that the integral
∫
[0,1]n

ω has weight drop if the

highest weight coefficient an(ω) vanishes. This amounts to saying that the class [ω] actually lives in the
step W2(n−1)Zn,dR of the weight filtration, hence the terminology. We give a sufficient condition for this
phenomenon to happen.

Lemma 5.5. Let u, v > 1 and N > 0 be integers such that u+ v 6 N . Then there exists a polynomial P (t)
with rational coefficients such that

∫ 1

0

xu−1(1− x)v−1

(1− tx)N
dx =

P (t)

(1 − t)N−v

for every 0 6 t < 1.

Proof. We can write

xu−1(1− x)v−1 =

u+v−2∑

k=0

ak(t)(1 − tx)
k

with ak(t) a Laurent polynomial with rational coefficients for every k. We then have

xu−1(1 − x)v−1

(1 − tx)N
=

u+v−2∑

k=0

ak(t)

(1− tx)N−k

and all the powers of (1 − tx) appearing in the denominators are > N − (u + v − 2) > N − u − v + 2 > 2.
Thus, we may integrate and get

∫ 1

0

xu−1(1− x)v−1

(1− tx)N
dx =

Q(t)

(1− t)N−1

with Q(t) a Laurent polynomial with rational coefficients. The left-hand side has a limit when t tends to 0,
so Q(t) has to be a polynomial. To conclude, it is enough to show that

(1 − t)N−v

∫ 1

0

xu−1(1− x)v−1

(1− tx)N
dx

is bounded when t approaches 1. We make the change of variables s = 1− t, y = 1−x, and consider integrals

sN−v

∫ 1

0

(1 − y)u−1yv−1

(y + s− ys)N
dy

with s approaching 0. Since (1−y)u−1 6 1 and y+s−ys > 1
2 (y+s), it is enough to prove that the quantities

sN−v

∫ 1

0

yv−1

(y + s)N
dy

are bounded when s approaches 0. This equals

sN−v

∫ 1

0

(
y

y + s

)v−1
1

(y + s)N−v+1
dy 6 sN−v

∫ 1

0

1

(y + s)N−v+1
dy =

1

N − v

(
1−

(
s

1 + s

)N−v
)

and we are done. �

Proposition 5.6. Let u1, . . . , un, v1, . . . , vn > 1 and N > 0 be integers such that v1 + · · ·+ vn > N +1. Let
us assume that there exists i ∈ {1, . . . , N} such that

ui + vi 6 N .

Then the integral ∫

[0,1]n

xu1−1
1 · · ·xun−1

n (1 − x1)
v1−1 · · · (1− xn)

vn−1

(1− x1 · · ·xn)N
dx1 · · · dxn

is absolutely convergent and evaluates to a linear combination

a0 + a2ζ(2) + a3ζ(3) + · · ·+ an−1ζ(n− 1)

with ai ∈ Q for every i.
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Proof. By symmetry, we can assume that un+ vn 6 N . Therefore, applying Lemma 5.5 to the variables x =
xn and t = x1 · · ·xn−1 in the integral leads to the (n− 1)-dimensional integral

∫

[0,1]n−1

xu1−1
1 · · ·x

un−1−1
n−1 (1− x1)

v1−1 · · · (1− xn−1)
vn−1−1P (x1 · · ·xn−1)

(1 − x1 · · ·xn−1)N−vn
dx1 · · · dxn−1 .

Since v1 + · · ·+ vn−1 > N − vn + 1, one can then conclude thanks to Theorem 5.2. �

Note that Proposition 5.6 applies in particular if for every i, 2ui + vi = N + 1. This gives in particular a
geometric interpretation of the weight drop in the Ball−Rivoal integrals [Riv00, BR01]. Note that a careful
analysis of the degree of the polynomial P (t) in Lemma 5.5 can lead to sufficient conditions for the vanishing
of more highest weight coefficients.
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[Del74] P. Deligne. Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math., (44):5–77, 1974.
[Del89] P. Deligne. Le groupe fondamental de la droite projective moins trois points. In Galois groups over Q (Berkeley, CA,

1987), volume 16 of Math. Sci. Res. Inst. Publ., pages 79–297. Springer, New York, 1989.
[Del01] P. Deligne. Letter to T. Rivoal. Princeton, 17 Feb. 2001.

[DG05] P. Deligne and A. B. Goncharov. Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. École Norm. Sup. (4),
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