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We study a model of bacterial dynamics where two interacting random walkers perform run-and-
tumble motion on a one-dimensional lattice under mutual exclusion and find an exact expression
for the probability distribution in the steady state. This stationary distribution has a rich structure
comprising three components: a jammed component where the particles are adjacent and block
each other; an attractive component, where the probability distribution for the distance between
particles decays exponentially; and an extended component in which the distance between particles
is uniformly distributed. The emergent interaction between the particles is sufficiently strong that
even in the limit of an infinite lattice, the two walkers spend a finite fraction of time in a jammed
configuration. This may indicate the microscopic origin of motility-induced phase separation that
results from interactions between self-propelled particles of a wide variety of types.

Self-propelled particles consume energy in order to
generate persistent motion and typically self-organize
into complex structures [1]. These particles may be nat-
urally occurring, for example, birds that flock [2], or syn-
thetic, such as photoactivated colloids that form ‘living
crystals’ [3]. It has become apparent that the physics
of such active constituents may be far richer than tradi-
tional passive, equilibrium matter.

The key distinction between passive and active par-
ticles at the microscopic level is that the equations of
motion for the latter break time-reversal symmetry (also
known as detailed balance). For example, the continual
consumption of energy implies that there is no need for
individual collisions to conserve energy or momentum.
At the macroscopic scale, a robust finding is that self-
propelled particles exhibit motility-induced phase sep-
aration [4]: that is, a tendency to cluster as a conse-
quence of the particle velocity decreasing as the local
particle density increases. The propensity for clusters to
form is of great interest from a fundamental perspective,
and has given rise to a variety of theoretical and com-
putational studies [5–11]. Moreover, clustering may have
practical implications: for example, bacteria are com-
monly found in aggregates called biofilms which are an
important source of human infection [12, 13] and con-
tamination in the food industry [14].

At present, the link between the microscopic break-
ing of detailed balance and the nature of the emergent
inter-particle attraction that generates particle clusters is
obscure. With a systematic framework for determining
the macroscopic properties of condensed matter systems
far from equilibrium still proving elusive, most of the the-
oretical insights gleaned thus far have arisen by coarse-
graining over microscopic degrees of freedom to a greater
or lesser degree (see e.g. [15–18] and also [1, 4, 19, 20]
for reviews). Whilst these approaches have successfully
reproduced a number of macroscopic properties of ac-
tive matter, the initial coarse-graining step leaves one
unable to pinpoint the precise origin of these phenomena
in the underlying dynamical interactions. More recent
theoretical investigations using a microscopic approach

to generate effective interactions have also been of an ap-
proximate nature [21, 22]. It thus remains of paramount
importance to establish exact results that shed light on
the path from microscopic breaking of detailed balance
to the emergence of cluster formation.

In this work, we determine the exact analytical form
of the interaction that emerges between a pair of self-
propelled particles undergoing the run-and-tumble dy-
namics that characterizes certain bacterial species (no-
tably Escherichia coli [23, 24]). In its most idealized
form [25], run-and-tumble motion consists of a series of
straight-line runs at velocity v, interspersed by tumble
events that occur as a Poisson process with rate α and
which instantly randomize a particle’s direction of mo-
tion. Although in general, the run velocity v may depend
on the local density of bacteria or the concentration of
various chemical species in the environment [17, 25–27],
and some time is spent tumbling without moving [23], we
consider the simplest case where the velocity v is constant
at all times and the motion is in one dimension. Thus
when a tumble occurs with rate α, one of the two possible
velocities, +v or −v, is immediately adopted with equal
probability.

We also introduce a hard-core exclusion interaction be-
tween the particles: when two particles collide, the hard-
core exclusion constraint causes the particles to remain
stationary until one of them reverses its velocity (an event
that takes place at rate ω = α/2). It is this specific aspect
of the dynamics that breaks detailed balance: energy is
not conserved in these collisions.

Our main result is an exact expression for the steady-
state probability distribution of a pair of hard-core run-
and-tumble particles on a periodic lattice. This distri-
bution has a surprisingly rich structure, and comprises a
jammed component in which the particles are facing each
other on neighboring lattice sites, an attractive compo-
nent characterized by an exponential decay over a finite
separation length and an extended component in which
all microscopic configurations are equally likely. Most
remarkably, the particles spend a finite fraction of their
time in a jammed configuration within a scaling limit of
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FIG. 1. Simulation of Model System: A space-time plot (time
on the vertical axis) of a simulation of two run-and-tumble
random particles on a one-dimensional ring of 100 sites in the
low tumble-rate regime with particles reversing their direction
after traversing 100 lattice sites on average. The full and
dotted trajectories each represent an individual particle.

the lattice model in which the run-and-tumble dynamics
in continuous space and time is recovered. Moreover, the
dynamics in the steady state exhibit some intriguing first-
passage properties, extending what has been established
for individual non-interacting run-and-tumble particles
[28, 29].

Let us define our lattice-based model of two run-and-
tumble particles in one dimension (see [30, 31] for related
models). The particles occupy sites of a periodic one-
dimensional lattice of L sites and each has an orientation
σi = ± that indicates its direction of motion. Due to
the translational invariance of the system, a microscopic
configuration is fully specified by 1 ≤ n < L, the distance
between the two particles in units of the lattice spacing,
and the two particle velocities, σ1 and σ2. A right-moving
particle (σi = +) hops one site to the right as with rate
γ; likewise, a left-moving particle (σi = −) hops with
rate γ to the left. The exception is when the target site
is occupied by another particle, in which case hopping
is not allowed: this implements the hard-core exclusion
interaction. Particles may also reverse their velocity at
rate ω = α/2, where α is the tumbling rate, as described
above. By scaling the unit of time, we can take γ =
1 with no loss of generality. Fig. 1 illustrates the two-
particle dynamics for the case where ω � γ.

We now present exact expressions for the steady state
probability Pσ1 σ2

(n) of finding the two particles with ve-
locities σ1,σ2 and separated by n sites. These read

P++(n) =
1

Z

[
p(z)(zn + zL−n) + q(z)

]
(1)

P+−(n) =
1

Z

[
p′(z)(zn − zL−n) + q(z) + δn,1∆(z)

]
(2)

where

z = 1 + ω −
√
ω(2 + ω) (3)

p(z) = 1− z2 (4)

p′(z) =
1− z
1 + z

p(z) = (1− z)2 (5)

q(z) = (1− z)2(1− zL), (6)

∆(z) = 2(1 + z)(z − zL) (7)

Z = 4[∆(z) + (L− 1)q(z)] . (8)

The symmetries of the model imply that P++(n) =
P−−(n) and P+−(n) = P−+(L − n), and hence only
P++(n) and P+−(n) are independent. These exact ex-
pressions are obtained by solving the master equation
for the stationary probability distribution using a gener-
ating function approach (see below and Appendix A for
full details). Note that the key parameter z lies in the
range 0 < z < 1, and hence that p(z), p′(z), q(z) and
∆(z) are all positive.

Equations (1) and (2) reveal that the stationary dis-
tribution is a sum of three distinct components which we
now explicitly identify. At large separations n, L−n� 1,
we have uniform particle distribution ∝ q(z), indepen-
dent of n as for regular diffusion. This component of the
distribution fills the whole of phase space, and we refer
to it as extended. At intermediate separations, the prob-
ability distribution for the separation between particles
decays exponentially as zn with a characteristic length-
scale ξ = 1/| ln(z)|. By analogy with quantum mechan-
ical wavefunctions that have an exponentially-decaying
amplitude, we can think of this attractive component
as a bound state. Finally, there is a contribution from
the jammed configurations that have particles facing each
other on adjacent sites (separation n = 1).

Although the steady state is inherently nonequilib-
rium, we may nevertheless visualize Eqs. (1) and (2)
in the form of effective two-body potentials Vσ1σ2

(n) =
− lnPσ1σ2(n) by analogy with the Boltzmann distribu-
tion P ∝ e−V : see Fig. 2. Three distinct pieces of the
potentials corresponding to the three components of the
particle distribution are evident. At large separations,
n, L − n � 1, the effective potentials are constant. At
intermediate separations, the potentials are linear and
attractive. Finally, at the smallest separation (n = 1)
there is a nearest-neighbour delta function attractive po-
tential. This attraction is very strong when the reversal
rate ω is small.

The origin of the different components of the station-
ary distribution can be understood from limiting cases.
When velocity reversal is rapid, ω → ∞, we anticipate
that standard diffusion should be recovered, as memory
of a particle’s velocity is erased between each hop. If we
sum over all four velocity states we obtain the total prob-
ability that the two particles are a distance n apart, and
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FIG. 2. Logarithms of the probability distributions P++(n)
and P+−(n) for the case of L = 100 lattice sites and velocity
reversal rate ω = 0.01. These distributions have three com-
ponents: jammed (indicated), attractive (linear piece at in-
termediate separations) and extended (constant piece at large
separations).

find this in the limit ω � 1 to be

P (n) ∼ 1

L− 1

[
1 +

1

2ω

(
δn,1 + δn,L−1 − 2

L−1

)
+O

(
1
ω2

)]
(9)

At leading order, only the extended component survives,
and we thus identify repeated velocity reversal as the
physical origin of this contribution to the stationary dis-
tribution. The jammed component provides the leading
correction, whilst the attractive component does not en-
ter at order O(1/ω).

For the opposite limit, ω → 0, the limiting forms of (1)
and (2) are

P++(n) =
1

4(L− 1)
and P+−(n) =

1

4
δn,1 , (10)

with corrections of order Lω, implying that expressions
(10) are valid when ω � 1/L. In this regime, particles
hop many times between velocity reversals, and so in this
limit we expect the stationary distribution in each veloc-
ity sector to approximate that which would be reached in
the absence of any tumbling. For the case where parti-
cles are approaching (+−), the particles quickly (on the
timescale of tumbling) reach the jammed configuration,
n = 1. When they exit this state into one where both
particles have the same velocity (e.g., ++), fluctuations
in the distance traveled by each particle, generated by
the stochastic particle hopping dynamics, cause the dis-
tribution of the relative coordinate to broaden. When
this tumble rate is low, the distribution broadens to fill
the entire system, thereby generating a uniform distribu-
tion, but one that is crucially distinct from the extended
component that arises from velocity reversals. This pic-
ture of the dynamics is corroborated by the space-time
plots shown in Fig. 1. At higher tumble rates, the broad-
ening of the distribution is curtailed on the timescale of

tumbling, and is later restarted from the jammed config-
uration n = 1. This process is similar to that of diffusion
(here, of the particle separation) with stochastic reset-
ting (to the jammed configuration), which generates the
exponentially-decaying attractive component of the dis-
tribution [32]. One can thus think of this component as
an echo of the jammed configuration.

Finally, and most interestingly, we examine the scal-
ing limit ω → 0, L → ∞ with ωL held fixed, in which
run-and-tumble dynamics in continuous space and time
is recovered. To see why, we introduce the physical
system size ` and reinstate the run rate γ which had
previously set the unit of time. Then, the mean run
velocity is v = γ`/L, and the velocity reversal rate
ω = α/2γ = α`/2Lv, where α is the tumble rate de-
scribed in the introduction. Substituting into (1) and
(2), and introducing the continuous spatial separation
x = n`/L, yields the exact expressions

P++(x) =
α+ 2vδ(x) + 2vδ(`− x)

4(α`+ 4v)
(11)

P+−(x) =
α+ 4vδ(x)

4(α`+ 4v)
(12)

in the limit L → ∞ [33]. In contrast to the other two
limits considered so far, all three components of the sta-
tionary distribution survive in the scaling limit. The ex-
tended and attractive components are present in the ++
and −− sectors, Eq. (11). In particular, the lengthscale
ξ ' 1/(2ω)1/2 of the exponential decay corresponds to
a microscopically large number of lattice sites of order√
L. This is however small on the macroscopic scale,

where each unit of length comprises ∼ L lattice sites:
thus the attraction is confined to a fraction ∼ 1/

√
L of

the total system. At the same time, the amplitude of
this exponential decay diverges as

√
L, and hence this

component is manifested as the delta function appearing
in (11)—this delta function thus represents an attractive
state in which particles move together with zero separa-
tion. Meanwhile, the extended and jammed components
appear in (12), where here the delta function has its ori-
gins in the Kronecker delta that appears in (2) and repre-
sents a jammed configuration. From (12), we see that the
particles spend a fraction v/(α`+ 4v) of the time in each
of the two symmetrically-related jammed configurations
and from (11) that a fraction v/(2(α` + 4v)) is spent in
each of the four attractive states with zero separation.
Thus the total fraction of time spent in a state in which
particles are adjacent (x = 0 or `) is 4v/(α`+ 4v).

We can also determine some features of the dynamics
in the scaling limit. In particular, the mean time spent in
an adjacent state after a collision can be worked out from
the fact that this state is left after exactly 2k velocity re-
versal events (k = 1, 2, . . .) with probability 2−k. This
is because particles are necessarily in the jammed state
when they collide, the first reversal always causes the par-
ticles to both move at speed v whilst remaining adjacent,
and the next reversal either causes the particles to move
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apart or to re-enter a jammed configuration, each with
equal probability. Since the total velocity reversal rate is
2ω = α, it follows that the mean time between reversals
is 1/α, and the mean time spent in an adjacent state is
4/α. Comparing this with the result given above for the
total fraction of the time spent in such a state, we de-
duce that the mean time between entering and leaving a
non-adjacent state is `/v (a result that is confirmed with
an explicit first-passage time calculation in Appendix B).
Intriguingly, this result is independent of the tumble rate
α, despite the fact that particles must typically tumble
over this lifetime: otherwise, the time spent in this state
would be close to its minimum value `/2v.

We now outline the derivation of Eqs. (1) and (2). The
starting point is the set of master equations that govern
the time evolution of the probabilities in the different
velocity sectors:

Ṗ++(n) = P++(n− 1)In>1 + P++(n+ 1)IL−n>1

+ ω[P+−(n) + P−+(n)]

− P++(n)[2ω + In>1 + IL−n>1] (13)

Ṗ+−(n) = 2P+−(n+ 1)IL−n>1 + ω[P++(n) + P−−(n)]

− P+−(n)[2ω + 2In>1] (14)

along with counterparts for P−+(n) and P−−(n) which
follow from the symmetries P−−(n) = P++(n) and
P−+(n) = P+−(L − n). In these equations the indi-
cator Ik>1 = 1 if k > 1 and is zero otherwise. One
can, of course, check that Eqs. (1) and (2), supple-
mented with (3)–(8), give the stationary solution of these
equations. To actually construct the stationary solu-
tion, we introduce the generating functions Gσ1σ2

(x) =∑L−1
n=1 x

nPσ1σ2
(n). Packaging these generating func-

tions into a vector G(x), and performing the appropri-
ate summations, we obtain a linear system A(x)G(x) =
b(x) where the elements of b do not involve the func-
tions Gσ1σ2

(x). Then, it remains to evaluate G(x) =
A−1(x)b(x).

In order to obtain (1) and (2) one must invert G(x).
However, one still needs to fix P++(1) and P+−(1) , which
are not a priori known. These constants are fixed by not-
ing that A−1(x) has poles at x = 1, x = z and x = 1/z,
where z and 1/z are the two roots of the symmetric poly-
nomial x2− 2(1 +ω)x+ 1 = 0. This implies an apparent
divergence in the generating functions Gσ1σ2(x) which is
inconsistent with the fact that these functions are poly-
nomials of degree L − 1 and finite for all x. Therefore,
the poles in A−1(x) must be canceled by zeros in the
numerator b(x). This nontrivial pole-zero cancelation
implies one relation between the two constants, P++(1)
and P+−(1). The other required relation is given by
the normalization of probability. Fixing the constants
(see Appendix A for details), one finds that the poles
of A−1(x) at x = 1, z and 1/z correspond to a constant
term and terms in zn and z−n in Pσ1σ2

(n), respectively,
as in Eqs. (1) and (2).

We conclude by considering how knowledge of an exact
two-particle potential may bear on a many-body system.

FIG. 3. Space-time plots (time on the vertical axis) of 60
hard-core particles undergoing symmetric random walks (left)
and run-and-tumble motion (right) on a lattice of 300 sites.
The initial condition and the particle hop rate is the same in
both cases. In the run-and-tumble dynamics, ω = 0.01. The
clustering of particles induced by the nonequilibrium run-and-
tumble dynamics is clearly evident (see also [30, 31]).

In Fig. 3 we compare simulations of hard-core particles
in one dimension that hop with equal probability to the
left or the right in each timestep (left panel) with the
run-and-tumble dynamics that is the focus of this work
(right panel). The former dynamics is a diffusion process
that satisfies detailed balance: this system relaxes to a
homogeneous steady state in which all configurations are
equally likely. Strikingly, breaking detailed balance by
introducing run-and-tumble dynamics causes an inhomo-
geneous steady state with multiple clusters to appear (see
also [30, 31]). Our calculations suggest that the jamming
and attraction of pairs of particles may be responsible for
this effect. An important open question is whether one
can use the analytical form of the two-body interaction,
Eqs. (1) and (2), to construct a quantitative model of the
many-body state.

The relevance of the jammed and attractive compo-
nents of the two-body interaction to the many-body sys-
tem might also be tested by establishing their robustness
to additional features of bacterial dynamics. These in-
clude spending some time being stationary whilst tum-
bling [23], varying the run velocity in response to the
presence of chemicals in the environment [26, 27] or hy-
drodynamic interactions between the particles [34]. An-
other key question is whether jammed configurations re-
main pivotal in higher spatial dimension, since it is well-
established that diffusion is recurrent only in two or fewer
dimensions [35]. The greatest insights of all would come
from an exact solution of the full many-body dynamics.
This, however, remains a theoretical challenge.
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Appendix A: Derivation of the stationary
distribution

In the main text, the master equations for P++(n) and
P−−(n) were given as

Ṗ++(n) = P++(n− 1)In>1 + P++(n+ 1)IL−n>1

+ ω[P+−(n) + P−+(n)]

− P++(n)[2ω + In>1 + IL−n>1] (A1)

Ṗ+−(n) = 2P+−(n+ 1)IL−n>1 + ω[P++(n) + P−−(n)]

− P+−(n)[2ω + 2In>1] . (A2)

Introducing the generating function Gσ1σ2(x) =∑L−1
n=1 x

nPσ1σ2
(x) we find

Ġ++(x) = (x+ x−1 − 2[1 + ω])G++(x)

− (1− x)(1− xL−1)P++(1)

+ ω[G+−(x) +G−+(x)] (A3)

Ġ+−(x) = 2(x−1 − [1 + ω])G+−(x)

− 2(1− x)P+−(1)

+ ω[G++(x) +G−−(x)] (A4)

where we have used the fact that P++(L− 1) = P++(1).
More generally, the symmetries P++(n) = P−−(n) =
P++(L − n) and P+−(n) = P−+(L − n) in the sta-
tionary probability distribution translate to symmetries
G++(x) = G−−(x) = xLG++(x−1) and G+−(x) =
xLG−+(x−1) in the stationary values of their generating
functions. By exploiting these symmetries, we find from
(A3) and (A4) that the stationary generating functions
must be the solution of the linear system

 µ(x) + ν(x) ω ω
ω ν(x) 0
ω 0 µ(x)

 G++(x)
G+−(x)
G−−(x)

 =

(1− x)

 (1− xL−1)P++(1)
P+−(1)

−xL−1P+−(1)

 (A5)

where µ(x) = x − (1 + ω) and ν(x) = x−1 − (1 + ω) =
µ(1/x). The inverse of the matrix appearing on the left-
hand side of this expression is

x2

(1 + ω)(x− z)(x− 1
z )(1− x)(x− 1)

× µν −µω −νω
−µω µ(µ+ ν)− ω2 ω2

−νω ω2 ν(µ+ ν)− ω2

 , (A6)

where z and 1/z are the two roots of x2 − 2(1 + ω)x+ 1
and recalling that µ and ν are functions of x.

This yields, for example,

G++(x) =
x2

(1 + ω)(x− 1)(x− z)(x− 1
z )
×{

µ(x)ν(x)[1− xL−1]P++(1)+

ω[ν(x)xL−1 − µ(x)]P+−(1)
}
. (A7)

For general values of P++(1) and P+−(1), this gives an
infinite series in x. However, it must terminate at or-
der xL−1, due to the original definition of the generating
function. In particular, this implies that G++(x) should
not diverge in the limits x→ 1, x→ z or x→ 1/z. Since
ν(1) = µ(1), we already have that the x = 1 pole is can-
celed by a zero in the numerator. For this also to be the
case at x = z, we must have

µ(z)ν(z)P++(1)− ωµ(z)P+−(1) =

zL−1 [µ(z)ν(z)P++(1)− ων(z)P+−(1)] . (A8)

Since µ(x) = ν(1/x), we find that the pole at x = 1/z is
also canceled if this relation holds. Furthermore, using
the fact that µ(z) = −ν(z) = 1

2 (z − 1/z) and that ω =

(z − 1)2/2z, one can determine that

P++(1)

P+−(1)
=

1 + zL−1

1− zL−1
(1− z)2
1− z2 . (A9)

To actually invert the generating function, we first note
that

G++(x) =
x

1 + ω

xJ(x)

(x− 1)(x− z)(x− 1
z )

+ xLH++(x)

(A10)
where

J(x) = µ(x)ν(x)P++(1)− ωµ(x)P+−(1) (A11)

is quadratic in x and H++(x) is some power series in x.
Now P++(n) is given by the coefficient of the xn term in
G++(x). Since n < L, it follows that none of the terms
in H++(x) contribute to the P++(n) of interest. In other
words, to access P++(n), we read off the coefficient of xn

in the first term of (A10). Since J(x) is quadratic, and
the denominator is cubic, we can apply a partial fraction
decomposition to find

G++(x) =
x

1 + ω

[
J(1)

(1− z)( 1
z − 1)(1− x)

+

1

(z − 1)( 1
z − z)

(
zJ(1/z)

1− zx +
J(z)

1− x/z

)]
+ xLH++(x)

(A12)

Now, from (A8) and the fact that µ(x) = ν(1/x) it follows
that J(z) = zL−1J(1/z). This implies that we can write

G++(x) =
x

1 + ω

[
J(1)

(1− z)( 1
z − 1)(1− x)

+

J(1/z)

(z − 1)( 1
z − z)

(
z

1− zx +
zL−1

1− x/z

)]
+ xLH++(x)

(A13)
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which has the structure

G++(x) = x

[
a(z)

1− x +
b(z)z

1− zx +
b(z)zL−1

1− x/z

]
+ xLH++(x)

(A14)
where

a(z) =
J(1)

(1 + ω)( 1
z − 1)(1− z) (A15)

=
(1− z)2(1− zL)

(1 + z)(1 + z2)(1− zL−1)
P+−(1) (A16)

and

b(z) =
J(1/z)

(1 + ω)(z − 1)( 1
z − z)

(A17)

=
1− z

(1 + z2)(1− zL−1)
P+−(1) . (A18)

Here we have used (A9) to express everything in terms
of a single unknown constant P+−(1) that will be fixed
by normalization. Taking

P+−(1) =
(1 + z)(1 + z2)(1− zL−1)

Z
(A19)

and reading off the coefficient of zn in (A14) yields

P++(n) =
1

Z

[
q(z) + p(z)(zn + zL−n)

]
(A20)

where the functions p(z) = Zb(z) and q(z) = Za(z) have
the functional forms that are given in the main text.

The inversion of G+−(x) proceeds similarly, with a
subtlety arising from the jamming occurring in this sec-
tor. Here we find that

G+−(x) = − x

1 + ω

xK(x)

(x− 1)(x− z)(x− 1
z )

+

xµ(x)P+−(1)

(1 + ω)(x− 1)
+ xLH+−(x) (A21)

where

K(x) = ω[µ(x)P++(1) + ωP+−(1)] , (A22)

which is again quadratic in x. The additional term that
appears in the generating function would be cubic in x if
it were brought over a common denominator: this would
not then be amenable to a partial fraction decomposition.
The significance of the extra term is that it can ascribe
an anomalously large weight to the jammed configurate.

To see this we perform the partial fraction decomposi-
tion, which gives analogously to (A12),

G+−(x) =
x

1 + ω

[(
(1 + ω)P+−(1)− K(1)

(1− z)( 1
z − 1)

− xP+−(1)

)
1

1− x+

1

(1− z)( 1
z − z)

(
zK(1/z)

1− zx +
K(z)

1− x/z

)]
+ xLH+−(x) . (A23)

Using (A8), along with the facts that µ(x) = ν(1/x) and
µ(z) = −ν(z), one can show that K(z) = −zL−1K(1/z).
This implies that G+−(x) has the structure

G+−(x) =

x

[
a′(z) + c′(z)− xc′(z)

1− x +
b′(z)z

1− zx −
b′(z)zL−1

1− x/z

]
+ xLH++(x) (A24)

where

a′(z) = P+−(1)− K(1)

(1 + ω)(1− z)( 1
z − 1)

− P+−(1)

1 + ω

(A25)

= a(z) (A26)

b′(z) =
1

1 + ω

K(1/z)

(1− z)( 1
z − z)

(A27)

=
(1− z)2

(1 + z)(1 + z2)(1− zL−1)
P+−(1) (A28)

c′(z) =
P+−(1)

1 + ω
=

2z

1 + z2
P+−(1) . (A29)

Substituting in (A19) and reading off the coefficient of
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zn in (A24) finally yields

P+−(1) =
1

Z

[
p′(z)(zn − zL−n) + q(z) + δn,1∆(z)

]
(A30)

where p′(z) = Zb′(z), q(z) = Za(z) and ∆(z) = Zc′(z)
once again have the functional forms that are given in the
main text. Expressions for P−−(n) and P−+(n) follow
from the symmetries P−−(n) = P++(n) and P−+(n) =
P+−(L− n).

Appendix B: First-passage time calculation of the
mean time spent in a nonadjacant state

Our aim here is to calculate the mean time T̄d that
the particles spend in a nonadjacant state (i.e., one with
separation x > 0) after it is entered. Here we work di-
rectly in the scaling limit of the model where particles
move ballistically with velocity v and tumble at rate α.
Recall that tumbling leads to a velocity reversal with
probability 1

2 . More generally we are interested in the

mean first-passage time T̄A(x) for two particles that are
approaching with separation x and closing speed 2v to
reach the state of zero separation. Then, T̄d = T̄A(L).

A differential equation that this quantity must satisfy
is obtained by considering what happens in a short time
interval δt when the particles are approaching with sepa-
ration x. With probability e−αδt the particles run with-
out either reversing its velocity. If this happens, the par-
ticle separation decreases to x − 2vδt. Alternatively, a
velocity reversal occurs at a time δt′ which is distributed
as αe−αδt

′
. When this happens, a state in which the two

particles are moving in the same direction with constant
separation x − 2τδt′. By introducing the mean time for
two particles following each other at separation x to meet
as T̄F (x), we have

T̄A(x) = e−αδt
[
δt+ T̄A(x− 2vδt)

]
+∫ δt

0

d(δt′)αe−αδt
′ [
δt′ + T̄F (x− 2vδt′)

]
. (B1)

Taylor expanding the right-hand side, and dropping
terms of order (δt)2 and higher, we find

T̄A(x) = T̄A(x)+[
1− 2v

d

dx
T̄A(x) + α

(
T̄F (x)− T̄A(x)

)]
δt . (B2)

Now, while particles are following each other at the same
velocity, they maintain their separation until one of them
reverses its velocity. The mean time until this happens is
1
α , at which time the particles with equal probability ei-
ther start approaching each other at separation x or start
receding from each other at separation x. By symmetry,
this latter state is the same as approaching at separation

L− x, and so

T̄F (x) =
1

2τ
+

1

2

[
T̄A(x) + T̄A(L− x)

]
. (B3)

Now, substituting this into (B2) we arrive at

d

dx
T̄A(x) =

1

v
+

α

4v

[
T̄A(L− x)− T̄A(x)

]
. (B4)

To solve this equation we introduce the decomposition

T̄A(x) = F (x) +G(x) (B5)

where F (L−x) = F (x) and G(L−x) = −G(x). That is,

F (x) =
1

2

[
T̄A(x) + T̄A(L− x)

]
(B6)

G(x) =
1

2

[
T̄A(x)− T̄A(L− x)

]
. (B7)

Then

dF

dx
=

1

2

[
d

dx
T̄A(x)− d

dx
T̄A(L− x)

]
= − α

2v
G(x) (B8)

dG

dx
=

1

2

[
d

dx
T̄A(x) +

d

dx
T̄A(L− x)

]
=

1

v
. (B9)

Hence,

G(x) = G0 +
x

v
(B10)

=⇒ F (x) = F0 −
τG0x

v
− αx2

4v2
. (B11)

The constant G0 is fixed by the symmetry G(L − x) =
−G(x), that is

G0 +
L− x
v

= −G0 −
x

v
=⇒ G0 = − L

2v
. (B12)

We then find that F (x) = F (L− x) for any value of the
constant F0, since

F (x) = F0 +
α(L− x)

4v2
. (B13)

The remaining constant F0 is fixed using the boundary
condition at zero separation, T̄A(0) = 0. This implies
that

T̄A(x) =
x

v
+
αx(L− x)

4v2
. (B14)

In particular, mean time between entering and exiting a
nonadjacent state is

T̄d = T̄A(L) =
L

v
, (B15)

thereby confirming the tumble-rate independence that
was obtained by alternative means in the main text.
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