
ar
X

iv
:1

60
1.

00
95

5v
1

 [s
ta

t.M
L]

 5
 J

an
 2

01
6

Optimally Pruning Decision Tree Ensembles With Feature Cost

Feng Nan FNAN@BU.EDU

Joseph Wang JOEWANG@BU.EDU

Venkatesh Saligrama SRV@BU.EDU

Boston University, 8 Saint Mary’s Street, Boston, MA

Abstract

We consider the problem of learning decision
rules for prediction with feature budget con-
straint. In particular, we are interested in prun-
ing an ensemble of decision trees to reduce ex-
pected feature cost while maintaining high pre-
diction accuracy for any test example. We pro-
pose a novel 0-1 integer program formulation for
ensemble pruning. Our pruning formulation is
general - it takes any ensemble of decision trees
as input. By explicitly accounting for feature-
sharing across trees together with accuracy/cost
trade-off, our method is able to significantly re-
duce feature cost by pruning subtrees that intro-
duce more loss in terms of feature cost than bene-
fit in terms of prediction accuracy gain. Theoret-
ically, we prove that a linear programming relax-
ation produces the exact solution of the original
integer program. This allows us to use efficient
convex optimization tools to obtain an optimally
pruned ensemble for any given budget. Empiri-
cally, we see that our pruning algorithm signifi-
cantly improves the performance of the state of
the art ensemble method BudgetRF.

1. Introduction

Many modern applications of supervised machine learning
face the challenge of test-time budget constraints. For ex-
ample, in internet search engines (Chapelle et al.), features
of the query-document pair are extracted whenever a user
enters a query at the cost of some CPU time in order to
rank the relevant documents. The ranking has to be done
in milliseconds to be displayed to the user, making it im-
possible to extract computationally expensive features for
all documents. Rather than simply excluding these compu-
tationally expensive features, an adaptive decision rule is
needed, so that only cheap features are extracted for the

majority of queries and expensive features are extracted
for only a small number of difficult queries. Many ap-
proaches have been proposed by various authors to solve
such test-time budget constraint problem (Gao & Koller,
2011; Xu et al., 2012; Trapeznikov & Saligrama, 2013;
Wang et al., 2014b;a; Nan et al., 2014; Wang et al., 2015).

Nan et al. (Nan et al., 2015) proposed a novel random for-
est approach for test-time feature cost reduction. During
training, an ensemble of decision trees are built based on
random subsampling the training data for each decision
tree. A class ofadmissible(essentially monotone and su-
permodular) impurity functions together with the cost of
each feature are used to greedily determine the data split at
each internal node of the decision trees. During prediction,
a test example is run through each of the trees in the ensem-
ble and the majority label is assigned to the test example.
Such a simple strategy is shown to yield a worst-case cost
at mostO (log(n)) times the optimal cost for each decision
tree built onn training samples. Empirically, it is shown
to have state-of-the-art performance in terms of prediction-
cost tradeoff.

The trees in these budgeted random forests are built inde-
pendently, ignoring the fact that repeated use of the same
feature does not incur repeated feature acquisition cost. We
exploit interdependencies among the ensemble of trees to
achieve better accuracy - cost tradeoff. Theoretically, we
propose a general ensemble pruning formulation that solves
the accuracy-cost tradeoff exactly; empirically, we demon-
strate significant improvement.

The focus of this paper is on pruning ensembles of deci-
sion trees. We assume an ensemble of decision trees are
given as inputs; such an ensemble can be obtained using
the algorithm proposed by Nan et al. (Nan et al., 2015) or
any other decision tree ensemble method. Our main con-
tribution is the development of an efficient algorithm for
pruning an ensemble of decision trees to explicitly tradeoff
prediction accuracy and feature cost.

http://arxiv.org/abs/1601.00955v1

Optimally Pruning Decision Tree Ensembles With Feature Cost

2. Related Work

Although decision tree pruning has been studied exten-
sively to improve generalization performance, we are not
aware of any existing pruning method that takes into ac-
count the feature costs.

A popular heuristic for pruning to reduce generalization
error is Cost-Complexity Pruning (CCP), introduced by
Breiman et al. (Breiman et al., 1984). It defines acost-
complexitymeasure for each subtree of the decision tree as
sum of two terms: the number of misclassified examples in
the subtree plus the number of leaves in the subtree times a
tradeoff parameter. This measure is also computed when
the subtree is pruned to become a leaf. As the tradeoff
parameter increases, more emphasis is given to reducing
the size of the subtree compared to minizing the number
of misclassified examples. The CCP algorithm iteratively
selects the subtree with the lowest cost-complexity mea-
sure if it were pruned as the tradeoff parameter gradually
increases. At each iteration the selected subtree is pruned
and the cost-complexity measures are re-computed for the
next iteration. Each pruned tree produced in this proce-
dure is optimal with respect to size - no other subtree of
the same number of leaves would have a lower misclassi-
fication rate than the one obtained by this procedure. As
pointed out by Li et al. (Li et al., 2001), CCP has undesir-
able “jumps” in the sequence of pruned tree sizes. To alle-
viate this, they proposed a Dynamic-Program-based Prun-
ing (DPP) method for binary trees. The DPP algorithm is
able to obtain optimally pruned trees of all sizes, however,
faces the curse of dimensionality when pruning an ensem-
ble of decision trees and taking feature cost into account.

Generally, pruning is not considered when constructing
random forests as overfitting is avoided by constructing
an ensemble of trees. The ensemble approach is a strong
approach to avoiding overfitting, however test-time budget
constraint problems require consideration of both cost and
accuracy.

Kulkarni and Sinha (Kulkarni & Sinha, 2012) provide a
survey of methods to prune random forests in order to re-
duce ensemble size. However, these methods do not ex-
plicitly account for feature costs.

3. Background and Notations

A training sampleS = {(x(i), y(i)) : i = 1, . . . , N} is gen-
erated i.i.d. from an unknown distribution, wherex(i) ∈
ℜK is the feature vector with a cost assigned to each of the
K features andy(i) is the label for theith example. In the
case of multi-class classificationy ∈ {1, . . . ,M}, where
M is the number of classes. Given a decision treeT , we
index the nodes ash ∈ {1, . . . , |T |}, where node1 repre-
sents the root node. For anyh ∈ T , we define the following

standard terminology:

p(h) ≡ set of predecessor nodes ofh ≡ set of nodes (ex-
cludingh) that lie on the path from the root node toh.

Th ≡ subtree ofT that is rooted at nodeh.

T̃ ≡ set of leaf nodes of treeT .

b(h) ≡ set of brother (sibling) nodes ofh ≡ set of nodes
who share the same immediate parent node ash.

Sh ≡ the set of examples inS routed to or throughh onT .

Predh ≡ predicted label at nodeh onT based on the class
distribution ofSh. It is equal to the class with the most
number of training examples ath.

eh ≡ number of misclassified examples inSh based on
Predh. It is equal to

∑

i∈Sh
1[y(i) 6=Predh].

Finally, the corresponding definitions forT can be ex-
tended to an ensemble ofT decision trees{Tt : t =
1, . . . , T } by adding an subscriptt.

The process of pruningT at h involvescollapsingTh and
makingh a leaf node. We say a pruned treeTPrune, having
T̃Pruneas its set of leaf nodes, is avalid pruned tree ofT if
(1) TPrune is a subtree ofT containing root node 1 and (2)
for anyh 6= 1 contained inTPrune, the sibling nodesb(h)
must also be contained inTPrune.

For a given treeT , let us define the following binary vari-
able for each nodeh ∈ T

zh =

{

1 if nodeh is a leaf in the pruned tree,
0 otherwise.

Proposition 1 of (Sherali et al., 2009) showed that the fol-
lowing set of constraints completely characterize the set of
valid pruned trees ofT .

zh +
∑

u∈p(h)

zu = 1 ∀h ∈ T̃ ,

zh ∈ {0, 1} ∀h ∈ T .

A common decision tree pruning objective is to keep the
probability of prediction error in the pruned tree as low as
possible while reducing the number of tree nodes. Given a
decision treeT , it is easy to see that the overall probability
of prediction error is of the pruned treeTPrune is

1

N

∑

h∈T

ehzh. (1)

Therefore a decision tree pruning problem can be formu-
lated as the following integer program

min
zh

1
N

∑

h∈T ehzh

s.t. zh +
∑

u∈p(h) zu = 1 ∀h ∈ T̃ ,

zh ∈ {0, 1} ∀h ∈ T .

(IP0)

Optimally Pruning Decision Tree Ensembles With Feature Cost

By showing that the constraint matrix can be turned into
a network matrix form, (Sherali et al., 2009) showed the
above integer problem can be solved exactly by linear pro-
gram relaxation.

4. Pruning with Feature Costs

Suppose the feature costs are given by{ck : k =
1, . . . ,K}. The feature cost incurred by an example is the
total costs ofuniquefeatures it encounters in all trees. This
is because we assume whenever a feature is acquired its
value is cached and subsequent usage incurs no additional
cost. Specifically, the cost of classifying an examplei on
decision treeT is given by

c(T ,x(i)) =

K
∑

k=1

ck1[featurek is used byx(i) in T] =

K
∑

k=1

ckwk,i,

where the binary variableswk,i serve as the indicator vari-
ables:

wk,i =

{

1 if featurek is used byx(i) in T ,

0 otherwise.

Similarly, the cost of classifyingx(i) on an ensemble ofT
trees is

c(T[T],x
(i)) =

K
∑

k=1

ck1[featurek is used byx(i) in anyTt,t=1,...,T].

In a pruned treeTPrune we can encode the conditions for
wk,i’s using the leaf indicator variablezh’s. If zh = 1 for
some nodeh, then the examples that are routed toh must
have used all the features in the predecessor nodesp(h).
We usek ∼ p(h) to denote featurek is used in any pre-
decessor ofh. Then for each featurek and examplei, we
must havewk,i ≥ zh for all nodesh such thati ∈ Sh and
k ∼ p(h). Combining the error term (1) and feature cost in
the objective, we arrive at the following integer program:

min
zh,wk,i

1
N

∑

h∈N

ehzh + λ

K
∑

k=1

ck(
1

N

N
∑

i=1

wk,i)

s.t. zh +
∑

u∈p(h) zu = 1 ∀h ∈ T̃ ,

zh ∈ {0, 1} ∀h ∈ T ,

wk,i ≥ zh ∀h : i ∈ Sh ∧ k ∼ p(h),
∀k ∈ [K], ∀i ∈ S,

wk,i ∈ {0, 1} ∀k ∈ [K], ∀i ∈ S.
(IP1)

Again, the constraintwk,i ≥ zh ensures that ifh is a leaf
node in the pruned tree (zh = 1) and theith example en-
counters featurek along the way before arriving ath then
wk,i must be 1.

Unfortunately, unlike (IP0), the constraint set in (IP1) has
fractional extreme points, leading to possibly fractionalso-
lutions to the relaxed problem. Consider Tree 1 in Figure
1. Feature 1 is used at the root node and feature 2 is used at
node 3. There are 7 variables (assuming there is only one
example and it goes to leaf 4):

z1, z2, z3, z4, z5, w1,1, w2,1.

The LP relaxed constraints are:

z1 + z3 + z4 = 1, z1 + z3 + z5 = 1, z1 + z2 = 1,

w1,1 ≥ z4, w1,1 ≥ z3, w2,1 ≥ z4, 0 ≤ z ≤ 1.

The following is a basic feasible solution:

z1 = 0, z2 = 1, z3 = z4 = z5 = 0.5, w1,1 = w2,1 = 0.5,

because the following set of 7 constraints are active:

z1 + z3 + z4 = 1, z1 + z3 + z5 = 1,

w1,1 ≥ z4, w1,1 ≥ z3, w2,1 ≥ z4, z1 = 0, z2 = 1.

Even if we were to interpret the fractional solution ofzh as
probabilities ofh being a leaf node, we see an issue with
this formulation: the example has0.5 probability of stop-
ping at node 3 or 4 (z3 = z4 = 0.5). In both cases feature
1 at the root node has to be used; butw1,1 = 0.5 indicates
that it’s only being used half of the times, which is undesir-
able at all.

We have seen the LP relaxation of (IP1) fails to capture
the desired behavior of the integer program. We now ex-
amine an alternative formulation and show that the optimal
solution of its LP relaxation is exactly that of the integer
program.

Given a treeT , featurek and examplex(i), let uk,i be the
first node associated with featurek on the root-to-leaf path
the example follows inT . Clearly, featurek is used byx(i)

if and only if none of the nodes between root anduk,i is
leaf. In terms of constraints, we have

wk,i + zuk,i
+

∑

h∈p(uk,i)

zh = 1 (2)

as long as featurek is used byx(i) in T . Intuitively, this
constraint ensures that for the binary variablewk,i to be
non-zero, the tree cannot be pruned before the featurek

is obtained (the summation in the constraint equal to zero)
and the featurek must be used in order to split the data (the
termzuk,i

in the constraint equal to zero).

Optimally Pruning Decision Tree Ensembles With Feature Cost

For a given treeT we arrive at the following formulation.

min
zh,wk,i

1
N

∑

h∈N

ehzh + λ

K
∑

k=1

ck(
1

N

N
∑

i=1

wk,i)

s.t. zh +
∑

u∈p(h) zu = 1 ∀h ∈ T̃ ,

zh ∈ {0, 1} ∀h ∈ T ,

wk,i + zuk,i
+

∑

h∈p(uk,i)

zh = 1, ∀k ∈ Ki, ∀i ∈ S,

wk,i ∈ {0, 1} ∀k ∈ [K], ∀i ∈ S,

(IP2)
whereKi denotes the set of features theith example uses
on treeT .

From tree to ensemble: we generalize (IP2) to ensemble
pruning with tree indext: z(t)h indicates whether nodeh in

Tt is a leaf;w(t)
k,i indicates whether featurek is used by

the ith example inTt; wk,i indicates whether featurek is
used by theith example in any of theT treesT1, . . . , TT ;
ut,k,i is the first node that associated with featurek on the
root-to-leaf path the example follows inTt. Note that we
minimize the average empirical probability of error across
all trees, which corresponds to the error of prediction based
on averaging the leaf distributions across the ensemble for
a given example.

min
z
(t)
h

,w
(t)
k,i

1
NT

T
∑

t=1

∑

h∈N (t)

e
(t)
h z

(t)
h + λ

K
∑

k=1

ck(
1

N

N
∑

i=1

wk,i)

s.t. z
(t)
h +

∑

u∈p(h) z
(t)
u = 1 ∀h ∈ T̃t, ∀t ∈ [T],

z
(t)
h ∈ {0, 1} ∀h ∈ Tt, ∀t ∈ [T],

w
(t)
k,i + z(t)ut,k,i

+
∑

h∈p(ut,k,i)

z
(t)
h = 1,

∀k ∈ Kt,i, ∀i ∈ S, ∀t ∈ [T],

w
(t)
k,i ∈ {0, 1} ∀k ∈ [K], ∀i ∈ S∀t ∈ [T],

w
(t)
k,i ≤ wk,i ∀k ∈ [K], ∀i ∈ S∀t ∈ [T],

wk,i ∈ {0, 1} ∀k ∈ [K], ∀i ∈ S.

(IP3)

Lemma 4.1 The equality constraints in(IP3) can be
turned into an equivalent network matrix form for each
tree.

Proof This is simply due to an observation thatw
(t)
k,i can

be regarded as just anotherz variable for a fictitious child
node ofut,k,i and the rest of proof follows directly from
the construction in Proposition 3 of (Sherali et al., 2009).

Figure1 illustrate such a construction. For simplicity we
consider only one example being routed to nodes 4 and 11
respectively on the two trees. The equality constraints in
(IP3) can be separated based on the trees and put in matrix

11

32

54

2

(a) Tree 1

62

103

1211

71

98

(b) Tree 2

Figure 1.An ensemble of two decision trees with node numbers
and associated feature in subscripts

form:













z1 z2 z3 z4 z5 w
(1)
1,1 w

(1)
2,1

r1 1 1 0 0 0 0 0
r2 1 0 1 1 0 0 0
r3 1 0 1 0 1 0 0
r4 1 0 1 0 0 0 1
r5 1 0 0 0 0 1 0













,

for tree 1 and

















z6 z7 z8 z9 z10 z11 z12 w
(2)
2,1 w

(2)
3,1

r1 1 1 1 0 0 0 0 0 0
r2 1 1 0 1 0 0 0 0 0
r3 1 0 0 0 1 1 0 0 0
r4 1 0 0 0 1 0 1 0 0
r5 1 0 0 0 1 0 0 0 1
r6 1 0 0 0 0 0 0 1 0

















,

for tree 2. Through row operations they can be turned into
network matrices, where there is exactly two non-zeros in
each column, a 1 and a−1.

















z1 z2 z3 z4 z5 w
(1)
1,1 w

(1)
2,1

−r1 −1 −1 0 0 0 0 0
r1−r2 0 1 −1 −1 0 0 0
r2−r3 0 0 0 1 −1 0 0
r3−r4 0 0 0 0 1 0 −1
r4−r5 0 0 1 0 0 −1 1
r5 1 0 0 0 0 1 0

















,

for tree 1 and





















z6 z7 z8 z9 z10 z11 z12 w
(2)
2,1 w

(2)
3,1

−r1 −1 −1 −1 0 0 0 0 0 0
r1−r2 0 0 1 −1 0 0 0 0 0
r2−r3 0 1 0 1 −1 −1 0 0 0
r3−r4 0 0 0 0 0 1 −1 0 0
r4−r5 0 0 0 0 0 0 1 0 −1
r5−r6 0 0 0 0 1 0 0 −1 1
r6 1 0 0 0 0 0 0 1 0





















for tree 2. Note the above transformation to network matri-
ces can always be done as long as the nodes are numbered
in a pre-order fashion. Now we are ready to state the main
theoretical result of this paper.

Optimally Pruning Decision Tree Ensembles With Feature Cost

Theorem 4.2 The linear program relaxation of(IP3) has
only integral optimal solutions.

Proof Denote the equality constraints of (IP3) with index
set J1. They can be divided into each tree. Each con-
straint matrix inJ1 associated with a tree can be turned
into a network matrix according to Lemma4.1. Stacking
these matrices leads to a larger network matrix. Denote
thew

(t)
k,i ≤ wk,i constraints with index setJ2. Consider

the constraint matrix forJ2. Eachw(t)
k,i only appears once

in J2, which means the column corresponding tow
(t)
k,i has

only one element equal to 1 and the rest equal to 0. If we
arrange the constraints inJ2 such that for any givenk, i
w

(t)
k,i ≤ wk,i are put together fort ∈ [T], the constraint

matrix forJ2 has interval structure such that the non-zeros
in each column appear consecutively. Finally, putting the
network matrix fromJ1 and the matrix fromJ2 together.
AssignJ1 and the odd rows ofJ2 to the first partitionQ1

and assign the even rows ofJ2 to the second partitionQ2.
Note the upper bound constraints on the variables can be
ignored as this is an minimization problem. We conclude
that the constraint matrix of (IP3) is totally unimodular ac-
cording to Theorem 2.7, Part 3 of (Nemhauser & Wolsey,
1988) with partitionQ1 andQ2. By Proposition 2.1 and
2.2, Part 3 of (Nemhauser & Wolsey, 1988) we can con-
clude the proof.

We say a pruned tree ofT is optimalfor a given budget con-
straint if it has the lowest empirical error among all pruned
trees ofT that satisfy the budget constrain.

Corollary 4.3 The linear program relaxation of(IP3) pro-
duces anoptimally pruned treefor a given budgetB.

Proof Let the optimal value of (IP3) be f(λ). As λ in-
creases, a higher penalty is applied to the feature cost
compared to the classification error; therefore, the op-
timal solution will have feature cost decreasing to 0 as
a function of λ. Let λ∗ be such that the feature cost
∑K

k=1 ck(
1
N

∑N

i=1 w
∗
k,i) = B. Therefore,

f(λ∗) =
1

NT

T
∑

t=1

∑

h∈N (t)

e
(t)
h z

(t)∗
h + λ∗

K
∑

k=1

ck(
1

N

N
∑

i=1

w∗
k,i)

=
1

NT

T
∑

t=1

∑

h∈N (t)

e
(t)
h z

(t)∗
h + λ∗B.

On the other hand, consider (IP3) with explicit budget con-
straint:

min
z
(t)
h

,w
(t)
k,i

∈Q

1
NT

T
∑

t=1

∑

h∈N (t)

e
(t)
h z

(t)
h

s.t.
∑K

k=1 ck(
1
N

∑N

i=1 wk,i) ≤ B

, (LP1)

whereQ denotes the constraint set of (IP3). Let opt be the
optimal value of (LP1). Then we have

opt= min
z
(t)
h

,wk,i∈Q

max
λ≥0

(
1

NT

T
∑

t=1

∑

h∈N

e
(t)
h z

(t)
h

+λ(

K
∑

k=1

ck
1

N

N
∑

i=1

wk,i −B))

= max
λ≥0

min
z
(t)
h

,wk,i∈Q

(
1

NT

T
∑

t=1

∑

h∈N

e
(t)
h z

(t)
h

+λ(

K
∑

k=1

ck
1

N

N
∑

i=1

wk,i −B)).

By the definition off(λ) we have

opt= max
λ≥0

f(λ)− λB

≥ f(λ∗)− λ∗B

=
1

NT

T
∑

t=1

∑

h∈N (t)

e
(t)
h z

(t)∗
h + λ∗B − λ∗B

=
1

NT

T
∑

t=1

∑

h∈N (t)

e
(t)
h z

(t)∗
h

Thus we obtain the desired inequality.

Complexity: The number ofz(t)h variables is at mostT ×
|Tmax|, where|Tmax| is the maximum number of nodes in a

tree. The number ofw(t)
k,i variables is at mostN × T ×

Kmax, whereKmax is the maximum number of features an
example uses in a tree. The number ofwk,i variables is
at mostN × min{T × Kmax,K}. In total there areT ×
|Tmax|+N×T×Kmax+N×min{T×Kmax,K} variables.

The number ofz(t)h +
∑

u∈p(h) z
(t)
u = 1 constraints is at

mostT × |T̃max|, where|T̃max| is the maximum number of
leaf nodes in any tree. The number ofw

(t)
k,i + z

(t)
ut,k,i

+
∑

h∈p(ut,k,i)
z
(t)
h = 1 constraints is at mostN ×T ×Kmax.

The number ofw(t)
k,i ≤ wk,i constraints is again at most

N × T ×Kmax. In total there are at mostT × |T̃max|+ 2×
N×T ×Kmax constraints besides the positivity constraints
on all variables.

5. Parallel Ensemble Pruning

In this section we further explore the special structure
of (IP3) and show that it admits a Dantzig-Wolfe de-
composition that can be massively parallelized. The key
observation is that pruning each tree is a shortest-path
problem on directed graphs that can be efficiently solved
(O(|T̃ |2)). First, group the variables{z(t)h , w

(t)
k,i, ∀h ∈

Optimally Pruning Decision Tree Ensembles With Feature Cost

T̃t, ∀k ∈ Kt,i, ∀i ∈ S} into a vectorθ(t) for each tree
Tt, t = 1, . . . , T . LetPt denote the feasible set correspond-
ing to the first 4 sets of (LP-relaxed) constraints in (IP3) for
treeTt:

P (t) = {θ(t) = (z
(t)
h , w

(t)
k,i)|z

(t)
h +

∑

u∈p(h)

z(t)u = 1, ∀h ∈ T̃t,

w
(t)
k,i + z(t)ut,k,i

+
∑

h∈p(ut,k,i)

z
(t)
h = 1, ∀k ∈ Kt,i, ∀i ∈ S,

z
(t)
h ≥ 0, w

(t)
k,i ≥ 0, ∀h ∈ Tt, ∀k ∈ Kt,i, ∀i ∈ [N]}.

Thus, the LP relaxation of (IP3) can be re-written as

min
z
(t)
h

,w
(t)
k,i

1
NT

T
∑

t=1

∑

h∈Tt

e
(t)
h z

(t)
h + λ

K
∑

k=1

ck(
1

N

N
∑

i=1

wk,i)

s.t. θ(t) ∈ P (t) ∀t ∈ [T],

w
(t)
k,i ≤ wk,i ∀k ∈ [K], ∀i ∈ S∀t ∈ [T],

wk,i ≥ 0 ∀k ∈ [K], ∀i ∈ S.

(LP2)
Let θ̂(t)i ,i = 1, . . . , It be the extreme points ofP (t). Any
point in P (t) can be written as a convex combination of
these extreme points:θ(t) =

∑It
j=1 α

(t)
j θ̂

(t)
j ,

∑It
j=1 α

(t)
j =

1, α
(t)
j ≥ 0. Thus we re-write (LP2) in terms of the extreme

points ofP (t):

min
α

(t)
j

,wk,i

1
NT

T
∑

t=1

∑

h∈Tt

It
∑

j=1

e
(t)
h α

(t)
j ẑ

(t)
h,j + λ

K
∑

k=1

ck(
1

N

N
∑

i=1

wk,i)

s.t.
∑It

j=1 α
(t)
j ŵ

(t)
k,i,j ≤ wk,i ∀i ∈ S, ∀k ∈ [K], ∀t ∈ [T],

∑It
j=1 α

(t)
j = 1, α

(t)
j ≥ 0, ∀t ∈ [T],

wk,i ≥ 0 ∀k ∈ [K], ∀i ∈ S,

(LP3)
whereẑ(t)h,j is thejth extreme point value of the nodeh on

treeTt andŵ(t)
k,i,j is thejth extreme point value ofw(t)

k,i. In
a more compact form, we can write (LP3) as

min
α

(t)
i

,wk,i

1

NT

T
∑

t=1

It
∑

j=1

α
(t)
j c′tθ̂

(t)
j + λ

K
∑

k=1

ck(
1

N

N
∑

i=1

wk,i)

s.t.
I1
∑

j=1

α
(1)
j















D(1)θ̂
(1)
j

1
0
...
0















+ · · ·+

IT
∑

j=1

α
(T)
j















D(T)θ̂
(T)
j

0
0
...
1















+















Dww

0
0
...
0















+















Dss

0
0
...
0















=















0

1
1
...
1















,

α
(t)
j ≥ 0, ∀t ∈ [T], ∀j ∈ [It]

wk,i ≥ 0, ∀k ∈ [K], ∀i ∈ [N],

(LP4)
whereD(t) is the constant matrix selecting thêw(t)

k,i,j com-

ponents of̂θ(t)j ; w is the vector ofwk,i’s ands is the vec-

tor of slack variabless(t)k,i’s. The number of equality con-
straints is at mostN × T ×Kmax+ T , much less than the
number of constraints in (IP3). However, the number of
variables can be huge.

The Danzig-Wolfe algorithm works as follows. Start with
a feasible basisB of (LP4) and a dual vectorp′ =
(q′, r1, . . . , rT) = c′BB

−1, whereq corresponds to the
constraints involvingw’s andr1, . . . , rT corresponds to the
convexity constraints of theα’s. For each treet, solve the
sub-problem

OPTt =min
x

(c′t − q′D(t))x

subject to x(t) ∈ P (t).
(SUB1)

If OPTt < rt, and the extreme point̂x(t)
i is optimal to the

above sub-problem then it is easy to check that the reduced
cost for the variableα(t)

j is less than 0:

c′tθ̂
(t)
j −

[

q′ r1 . . . rT
]





















D(t)θ̂
(t)
j

0
...
1
...
0





















= (c′t − q′D(t))θ̂
(t)
j − rt < 0.

Therefore, generate column

(D(t)θ̂
(t)
i , 0, . . . , 1, . . . , 0)T

and bring it into basis. Note due to the network matrix
structure (Lemma4.1), these subproblems can be solved
very efficiently. Similarly, check the reduced costs for all
wk,i’s and s

(t)
k,i’s, and if any of them are negative, gen-

erate the corresponding columns and bring them into the
basis. For the above decomposition, the main computa-
tional burden of pruning individual trees can be distributed
to separate computional nodes that communicate to adjust
for shared features. This can lead to dramatic efficiency
improvement when the number of trees in the ensemble
becomes large. Efficient implementation of the Dantzig-
Wolfe decomposition has been shown to yield significant
speedup through parallelism (Tebboth, 2001).

6. Experiments

We test our pruning algorithm on a number of bench-
mark datasets to show its advantage. Our pruning
takes the ensembles from BudgetRF algorithm (Nan et al.,
2015) as input. The datasets are CIFARKrizhevsky,
2009, MiniBooNE, Forest Covertype, Sonar and Heart
(Frank & Asuncion).

Optimally Pruning Decision Tree Ensembles With Feature Cost

no pruning ens.pru.low ind.pru.low ens.pru.high ind.pru.high

MiniB
cost 37.0671±0.3108 (68.24)25.2960±0.3157 (95.02)35.2219±0.3667 (43.17)16.0018±0.2498 (55.19)20.4584±0.1270

error 0.0725±0.0004 0.0724±0.0005 0.0727±0.0004 0.0766±0.0004 0.0766±0.0008

Forest
cost 13.9005±0.0498 (88.10)12.2463±0.0834 (93.24)12.9604±0.1004 (65.16)9.0577±0.6481 (78.82)10.9565±0.0729

error 0.1122±0.0009 0.1135±0.0010 0.1137±0.0010 0.1220±0.0025 0.1228±0.0010

Cifar
cost 186.5456±1.3180 (92.40)172.3720±1.8741 (93.02)173.5255±1.4516 (75.39)140.6308±2.5059 (77.89)145.2933±2.4797

error 0.3152±0.0031 0.3165±0.0021 0.3158±0.0024 0.3227±0.0026 0.3236±0.0016

Sonar
cost 49.9715±1.1103 (45.20)22.5860±3.9528 (74.31)37.1355±2.0425 (16.48)8.2349±1.7930 (28.11)14.0479±1.6909

error 0.1539±0.0641 0.1838±0.0722 0.1890±0.0691 0.2121±0.0668 0.2139±0.0676

Heart
cost 12.1670±0.2341 (73.26)8.9133±0.7524 (96.20)11.7052±0.2742 (47.75)5.8094±2.5589 (75.86)9.2301±0.7036

error 0.1721±0.0756 0.1711±0.0727 0.1719±0.0680 0.1977±0.0807 0.1973±0.0724

Table 1.Comparison of no pruning, ensemble pruning and individual pruning in terms of average feature costs and test error. Two
different error levels for both ensemble and individual pruning methods are reported. Cost of the pruned trees are also reported as
percentages of the cost of the unpruned trees in parenthesis.

Note the cost of each feature is 1 uniformly in all datasets
and therefore cost is equivalent to the average number of
unique features used for each example. For each dataset,
we present the average cost and average error on test data
in Table1. As a baseline, we provide the performance of
BudgetRF without pruning in the third column of Table1.
The results of our proposed ensemble pruning methods are
in columns 4 and 6 under the title “ens.pru.”. We also com-
pare to the same pruning algorithm that we propose but ap-
plied to individual trees separately rather than the entire
ensemble. The results are given in column 5 and 7 of Table
1 under the title “ind.pru.”. Intuitively, pruning as an en-
semble exploits the interdependencies among trees, poten-
tially leading to better accuracy-cost trade-offs compared to
pruning individual trees separately. We present pruning re-
sults at two different error levels: low and high. A low error
level corresponds to little pruning with an implicitly larger
average cost, while a high error level corresponds to prun-
ing away much of the original trees, reducing the average
cost at the expense of reduced classification performance.

For ease of comparison, we match the error levels for both
ensemble and individual pruning methods and focus on the
difference in cost. We also compute the cost as a percentage
of the cost of the unpruned ensemble, shown in parenthesis
in Table1.

In MiniBooNE, Forest and CIFAR datasets, we run Bud-
getRF to obtain an ensemble of 40 trees following the given
training/validation/test data splits (Nan et al., 2015). We
report the mean and standard deviations based on 10 re-
peated runs. We observe that ensemble pruning reduces
cost of the BudgetRF ensembles significantly while keep-
ing the same level of test error. For example, the unpruned
ensemble on MiniBooNE uses about 37 features on an av-
erage test example with an average test error of 0.0725; our
ensemble pruning method reduces the average number of
features to about 25, about 68% of the unpruned cost, with
test error 0.0724. Further reduction of the cost to43% of
the original budget maintains approximately the same level

of accuracy.

In Sonar and Heart datasets, we run BudgetRF to obtain an
ensemble of 90 trees. Because of the small sizes, we per-
form 10-fold cross validation to obtain training/test splits
and report the mean as well as standard deviation of test
cost and error over 100 repeated runs. Again we observe
the effectiveness of our pruning algorithm. For example in
Heart the ensemble pruning uses 73% of the unpruned cost
without losing accuracy.

We observe that ensemble pruning always performs bet-
ter than individual pruning: fixing the error levels, Table
1 shows that ensemble pruning always incurs less feature
cost than individual pruning. The advantage is quite signif-
icant in most of the datasets. This is expected because prun-
ing individual trees does not exploit the inter-dependencies
among trees.

7. Conclusion

We propose a novel ensemble pruning formulation with
feature costs involving a 0-1 integer program. We prove
that the linear program relaxation produces the optimal so-
lution to the original integer program. This allows us to
use efficient convex optimization tools to obtain the opti-
mally pruned ensemble for any given budget. Our pruning
formulation is general - it can take any ensemble of deci-
sion trees as input. As the pruning formulation explicitly
account for feature sharing across trees together with accu-
racy/cost trade-off, it is able to significantly reduce feature
cost by pruning subtrees that introduce more loss in terms
of feature cost than benefit in terms of prediction accuracy
gain. Empirically we see that our pruning algorithm indeed
significantly improves the performance of the state of the
art ensemble method BudgetRF.

References

Breiman, Leo, Friedman, Jerome, Stone, Charles J, and
Olshen, Richard A.Classification and regression trees.

Optimally Pruning Decision Tree Ensembles With Feature Cost

CRC press, 1984.

Chapelle, O, Chang, Y, and Liu, T (eds.).Proceedings of
the Yahoo! Learning to Rank Challenge, held at ICML
2010, Haifa, Israel, June 25, 2010.

Frank, A. and Asuncion, A. UCI machine learning reposi-
tory.

Gao, T. and Koller, D. Active classification based on value
of classifier. InAdvances in Neural Information Process-
ing Systems (NIPS 2011), 2011.

Krizhevsky, Alex. Learning Multiple Layers of Features
from Tiny Images. Master’s thesis, 2009.

Kulkarni, V.Y. and Sinha, P.K. Pruning of random forest
classifiers: A survey and future directions. InData Sci-
ence Engineering (ICDSE), 2012 International Confer-
ence on, pp. 64–68, July 2012. doi: 10.1109/ICDSE.
2012.6282329.

Li, Xiao-Bai, Sweigart, James, Teng, James, Donohue,
Joan, and Thombs, Lori. A dynamic programming based
pruning method for decision trees.INFORMS J. on Com-
puting, 13(4):332–344, September 2001. ISSN 1526-
5528.

Nan, F, Wang, J, Trapeznikov, K, and Saligrama, V. Fast
margin-based cost-sensitive classification. InIEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing, ICASSP 2014, Florence, Italy, May 4-9,
2014, 2014.

Nan, Feng, Wang, Joseph, and Saligrama, Venkatesh.
Feature-budgeted random forest. In Blei, David and
Bach, Francis (eds.),Proceedings of the 32nd Interna-
tional Conference on Machine Learning (ICML-15), pp.
1983–1991. JMLR Workshop and Conference Proceed-
ings, 2015.

Nemhauser, George L. and Wolsey, Laurence A.Integer
and Combinatorial Optimization. Wiley-Interscience,
New York, NY, USA, 1988. ISBN 0-471-82819-X.

Sherali, Hanif D., Hobeika, Antoine G., and Jeenanunta,
Chawalit. An optimal constrained pruning strategy for
decision trees. INFORMS Journal on Computing, 21
(1):49–61, 2009. doi: 10.1287/ijoc.1080.0278. URL
http://dx.doi.org/10.1287/ijoc.1080.0278.

Tebboth, James Richard. A computational study of dantzig-
wolfe decomposition. 2001.

Trapeznikov, K and Saligrama, V. Supervised sequential
classification under budget constraints. InInternational
Conference on Artificial Intelligence and Statistics, pp.
581–589, 2013.

Wang, J., Bolukbasi, T., Trapeznikov, K, and Saligrama, V.
Model selection by linear programming. InEuropean
Conference on Computer Vision, pp. 647–662, 2014a.

Wang, J, Trapeznikov, K, and Saligrama, V. An lp for se-
quential learning under budgets. InInternational Con-
ference on Artificial Intelligence and Statistics, 2014b.

Wang, Joseph, Trapeznikov, Kirill, and Saligrama,
Venkatesh. Efficient learning by directed acyclic graph
for resource constrained prediction. In Cortes, C.,
Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R.,
and Garnett, R. (eds.),Advances in Neural Information
Processing Systems 28, pp. 2143–2151. Curran Asso-
ciates, Inc., 2015.

Xu, Zhixiang Eddie, Weinberger, Kilian Q., and Chapelle,
Olivier. The greedy miser: Learning under test-time bud-
gets. InProceedings of the 29th International Confer-
ence on Machine Learning, ICML, 2012.

http://dx.doi.org/10.1287/ijoc.1080.0278

