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Abstract

We consider the problem of learning decision
rules for prediction with feature budget con-
straint. In particular, we are interested in prun-
ing an ensemble of decision trees to reduce ex-
pected feature cost while maintaining high pre-

majority of queries and expensive features are extracted
for only a small number of difficult queries. Many ap-
proaches have been proposed by various authors to solve
such test-time budget constraint proble@ap & Koller,

2011 Xuetal, 2012 Trapeznikov & Saligrama2013
Wang et al.2014ha; Nan et al, 2014 Wang et al.2015.

diction accuracy for any test example. We pro-
pose a novel 0-1 integer program formulation for
ensemble pruning. Our pruning formulation is
general - it takes any ensemble of decision trees
as input. By explicitly accounting for feature-
sharing across trees together with accuracy/cost
trade-off, our method is able to significantly re-
duce feature cost by pruning subtrees that intro-
duce more loss in terms of feature cost than bene-
fit in terms of prediction accuracy gain. Theoret-
ically, we prove that a linear programming relax-
ation produces the exact solution of the original
integer program. This allows us to use efficient
convex optimization tools to obtain an optimally
pruned ensemble for any given budget. Empiri-
cally, we see that our pruning algorithm signifi-
cantly improves the performance of the state of
the art ensemble method BudgetRF.

Nan et al. Nan et al, 2015 proposed a novel random for-
est approach for test-time feature cost reduction. During
training, an ensemble of decision trees are built based on
random subsampling the training data for each decision
tree. A class oidmissible(essentially monotone and su-
permodular) impurity functions together with the cost of
each feature are used to greedily determine the data split at
each internal node of the decision trees. During prediction
atest example is run through each of the trees in the ensem-
ble and the majority label is assigned to the test example.
Such a simple strategy is shown to yield a worst-case cost
at mostO (log(n)) times the optimal cost for each decision
tree built onn training samples. Empirically, it is shown

to have state-of-the-art performance in terms of predietio
cost tradeoff.

The trees in these budgeted random forests are built inde-
pendently, ignoring the fact that repeated use of the same
feature does not incur repeated feature acquisition cost. W
exploit interdependencies among the ensemble of trees to
achieve better accuracy - cost tradeoff. Theoretically, we

1. Introduction propose a general ensemble pruning formulation that solves

Many modern applications of supervised machine Iearninghe accuracy-cost tradeoff exactly; empirically, we demon

face the challenge of test-time budget constraints. For e Strate significant improvement.

ample, in internet search enginé&h@pelle et ), features  The focus of this paper is on pruning ensembles of deci-
of the query-document pair are extracted whenever a usajion trees. We assume an ensemble of decision trees are
enters a query at the cost of some CPU time in order t@jiven as inputs; such an ensemble can be obtained using
rank the relevant documents. The ranking has to be donghe algorithm proposed by Nan et aNdn et al, 2015 or

in milliseconds to be displayed to the user, making it im-any other decision tree ensemble method. Our main con-
possible to extract computationally expensive features fotribution is the development of an efficient algorithm for

all documents. Rather than simply excluding these compupruning an ensemble of decision trees to explicitly trafleof
tationally expensive features, an adaptive decision mile iprediction accuracy and feature cost.

needed, so that only cheap features are extracted for the
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2. Related Work standard terminology:

Although decision tree pruning has been studied extenp(h) = set of predecessor nodes/ot= set of nodes (ex-
sively to improve generalization performance, we are nogludingh) that lie on the path from the root node/io
aware of any existing pruning method that takes into ac-r

= subtree of/ that is rooted at nodk.
count the feature costs.

- . .. T =setof leaf nodes of treg.
A popular heuristic for pruning to reduce generalization

error is Cost-Complexity Pruning (CCP), introduced by b(h) = set of brother (sibling) nodes &f = set of nodes
Breiman et al. Breiman etal.1984. It defines acost- Who share the same immediate parent node as
complexitymeasure for each subtree of the decision tree ag,
sum of two terms: the number of misclassified examples in
the subtree plus the number of leaves in the subtree timesRred, = predicted label at node on 7 based on the class
tradeoff parameter. This measure is also computed whe#listribution of Sj,. It is equal to the class with the most
the subtree is pruned to become a leaf. As the tradeoffumber of training examples at

parar_neter increases, more emphasis i_s _g_iven to reducinegl = number of misclassified examples ff, based on
the size of the subtree compared to minizing the numbe'g,redl_ Itis equal to3 1 . _

of misclassified examples. The CCP algorithm iteratively [y #Pred,]

selects the subtree with the lowest cost-complexity meaFinally, the corresponding definitions fof can be ex-
sure if it were pruned as the tradeoff parameter graduallyended to an ensemble @f decision trees(7; : t =
increases. At each iteration the selected subtree is pruned. .. 7'} by adding an subscript

and the cost-complexity measures are re-computed for th‘?h f _ th invol lapsingT:. and
next iteration. Each pruned tree produced in this proce- € process of pruning at  involvescollapsing7;, an

dure is optimal with respect to size - no other subtree O{paklngh a leaf node. We say a pruned tré@une having

the same number of leaves would have a lower misclassiﬁruneas its set of leaf nodes, isvalid pruned tree off” if

fication rate than the one obtained by this procedure. A%l) Teruneis @ subtree of” containing root node 1 and (2)

pointed out by Li et al. I(i et al., 2001, CCP has undesir- oranyh # 1 contained inenne the sibling nodes(h)

able “jumps” in the sequence of pruned tree sizes. To aIIeEnUSt also be contained prune

viate this, they proposed a Dynamic-Program-based PrurFor a given tre€T, let us define the following binary vari-
ing (DPP) method for binary trees. The DPP algorithm isable for each node € T

able to obtain optimally pruned trees of all sizes, however, 1

faces the curse of dimensionality when pruning an ensem- 2n = {

ble of decision trees and taking feature cost into account.
Proposition 1 of $herali et al.2009 showed that the fol-

Generally, pruning is not considered when constructingq,ing set of constraints completely characterize the set o
random forests as overfitting is avoided by constructing,)iq pruned trees of .

an ensemble of trees. The ensemble approach is a strong

= the set of examples ifi routed to or through on7.

€S

if nodeh is a leaf in the pruned tree
0 otherwise

approach to avoiding overfitting, however test-time budget zn + Z Z2y =1 VheT,
constraint problems require consideration of both cost and u€p(h)
accuracy.

Zh € {0,1} VYheT.
Kulkarni and Sinha Kulkarni & Sinhg 2012 provide a o _ S
survey of methods to prune random forests in order to re& Common decision tree pruning objective is to keep the

duce ensemble size. However. these methods do not eRrobability of prediction error in the pruned tree as low as
plicitly account for feature costs. possible while reducing the number of tree nodes. Given a

decision tre€T, it is easy to see that the overall probability

. of prediction error is of the pruned tr&@yuneis
3. Background and Notations P P Prune

1
Atraining samples = {(x(?),y®):i=1,..., N}isgen- N Z €hZh- @)
erated i.i.d. from an unknown distribution, whex€&) < heT
R is the feature vector with a cost assigned to each of th

N , &herefore a decision tree pruning problem can be formu-
K features and?) is the label for theth example. In the

lated as the following integer program

case of multi-class classificatigne {1,..., M}, where )

M is the number of classes. Given a decision ffeeve Hzlin N ZheT €nZh

index the nodes as < {1,...,|7|}, where nodd repre- stz + Y oy Zu=1 Vhe T (IPO)
L u€p u ’

sents the root node. For ahye T, we define the following e 0,1} VheT.
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By showing that the constraint matrix can be turned intoUnfortunately, unlike IP0), the constraint set inP1) has

a network matrix form, $herali et al. 2009 showed the fractional extreme points, leading to possibly fractiosal

above integer problem can be solved exactly by linear prolutions to the relaxed problem. Consider Tree 1 in Figure

gram relaxation. 1. Feature 1is used at the root node and feature 2 is used at
node 3. There are 7 variables (assuming there is only one

4. Pruning with Feature Costs example and it goes to leaf 4):

Suppose the feature costs are given fay, : &
1,...,K}. The feature cost incurred by an example is the

total costs oluiniquefeatures it encounters in all trees. This )

is because we assume whenever a feature is acquired i[§1€ LP relaxed constraints are:
value is cached and subsequent usage incurs no additional

21,22, %3, %4, Z57w1,17w2,1-

cost. Specifically, the cost of classifying an examptan
decision tre€f is given by

K

K

(1)) — E — E .

oT,x) = ck]l[featurek is used byx () in 7] — Cr Wk,
k=1 k=1

where the binary variables;, ; serve as the indicator vari-
ables:

{ 1
Wg,i = 0

Similarly, the cost of classifying(" on an ensemble 6f
treesis

if featurek is used by in T,
otherwise

K

-3
C(,T[T] X ) - el [featurek is used byx (%) in anyT,,t:l,...,T]'
k=1

In a pruned tre€/prune We can encode the conditions for
wy, ;'S using the leaf indicator variablg,’s. If z;, = 1 for
some node:, then the examples that are routedhtonust
have used all the features in the predecessor npdes
We usek ~ p(h) to denote featuré is used in any pre-
decessor of.. Then for each feature and examplée, we
must havewy, ; > z;, for all nodesh such that < S}, and

k ~ p(h). Combining the error termilf and feature costin
the objective, we arrive at the following integer program:

K N
RUINE D DREEY BCICD DI
' heN k=1 i=1
st zp+ Zuep(h) zo=1 YheT,
zp € {0,1} VheT,
Wk,i 2 Zh Vh:i€ Sy, ANk~ p(h),
Vk € [K],Vi € S,
wy,; € {0,1} Vk € [K],Vi € S.

(IP1)
Again, the constraintv;, ; > zp ensures that if: is a leaf
node in the pruned tree;( = 1) and theith example en-
counters featuré along the way before arriving @&t then
wg,; must be 1.

z1+z3t+z=1lz1+23+25=1,21 + 20 =1,

w11 > 24, W11 > 23, W21 > 24,0 <2 < 1.

The following is a basic feasible solution:
zZ1 = 0,22 = 1,23 =24 = 25 = 0.5,w171 = W2,1 = 0.5,
because the following set of 7 constraints are active:

z21+23+z24=1,21+ 23+ 25 =1,

W11 > 24, W11 > 23, W21 > 24,21 = 0,20 = 1.

Even if we were to interpret the fractional solution:gfas
probabilities ofh being a leaf node, we see an issue with
this formulation: the example h&s5 probability of stop-
ping at node 3 or 44; = z; = 0.5). In both cases feature
1 at the root node has to be used; yt; = 0.5 indicates
that it's only being used half of the times, which is undesir-
able at all.

We have seen the LP relaxation dPQ) fails to capture
the desired behavior of the integer program. We now ex-
amine an alternative formulation and show that the optimal
solution of its LP relaxation is exactly that of the integer
program.

Given a treeT, featurek and examplec(?), letu,, ; be the

first node associated with featuken the root-to-leaf path

the example follows iy Clearly, feature: is used byx (")

if and only if none of the nodes between root and; is

leaf. In terms of constraints, we have
Wh,i + 2wy, + Z zn =1 (2)

hep(ug,i)

as long as featurg is used byx(") in 7. Intuitively, this
constraint ensures that for the binary variablg, to be
non-zero, the tree cannot be pruned before the fedture
is obtained (the summation in the constraint equal to zero)
and the featuré must be used in order to split the data (the
termz,, , in the constraint equal to zero).
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For a given treg we arrive at the following formulation. a @
N
min Z enzn + A Z cr(—= Z Wk,i) a @ a @
e heN N3 y
st zh—i-zueph)zu—l VheT, (4)(5) @@@@
Zp € {0,1} Yh €T,

Witz + Y m=LVke K, Vi€S, (2) Tree 1 (b) Tree 2

hep(uk,i) . .. .
w; € 0,1} Vk € [K,Vie S Figure 1.An ensemble of two decision trees with node numbers

(IP2) and associated feature in subscripts

where K; denotes the set of features thbk example uses

on tree7 . form:
z1 z2 z3 zZa z5 w§li wg{
Fromtreetoensemble: we generalizelP2) to ensemble r 11 0 0 0 O 0
pruning with tree index: z,(f) indicates whether nodein T2 10 1 1 0 O 0
T; is a leaf; w,(f)z indicates whether featurk is used by "8 10 1.0 1 0 o 1
the ith example in7;; wy,; indicates whether featureis T4 10 1.0 0 0 1
used by theth example in any of th@ treesTy, ..., Tr; s L0 0 0 0 1 0
Ut k,q IS the first node that associated with feathren the o tree 1 and
root-to-leaf path the example follows . Note that we
L - i SN
minimize the average empirical probability of error across 6 T Z8  Zo F10 A1 Z12 Wy Wy,
all trees, which corresponds to the error of predictiontase = (1 1 1 0 0 0 0 0 0
on averaging the leaf distributions across the ensemblefor = | 1 1 0 1 0 0 0 0 0
a given example. s 10 0 0 1 1 0 0 0
T4 1 0 0 0 1 0 1 0 0 ’
N rs 1 0 0 0 1 0 O 0 1
(P?m(t) L Z S 00+ /\ch Zwk) s\ 1 0 0 0 0 0 0 1 0
P W t LhenN® © Vi for tree 2. Through row operations they can be turned into
s.t. + Duep(n) Fu = WL € Ti,Vt € [T],  network matrices, where there is exactly two non-zeros in
) e {0,1} Vh e T;,Vt € [T],  eachcolumn,aland-al.
w“’ AL 2 A= amoam o om a ] wl)
heplur ) o (=1 -1 0 0 0 0 0
Vk e K, ;,Vi e SVt € [T], — 0 1 -1 -1 0 0 0
wiy € {0,1} Vk € [K],Vi e Svi e [T], mers | 00 0 1 -1 0 0
w,i>1<wkz Vk € [K],Vi € SVt € [T, s | 0 0 0 0 1 0 -1 |
wy; € {0,1} Vk € [K],Vi € S. mers | 0O 0 1 0 0 -1 1
(IP3) 1 0 0 0 0 1 0
) ) ) for tree 1 and
Lemma4.1 The equality constraints inIP3) can be
turned into an equivalent network matrix form for each oz a2 om0 wn E wl) wg)
tree. -7 -1 -1 -1 0 0 0 0 0 0
ri—T2 0 0 1 -1 0 0 0 0 0
Proof This is simply due to an observation thaf can T2 ¢ 1 0 1 -1 -120 0 0
be regarded as just anothewariable for a fictitious child "~ 6.0 o0 o0 0 1 -10 0
node ofu, ;; and the rest of proof follows directly from ™7™ o o0 0 0 0 0 1 0 -1
the construction in Proposition 3 dbferali et al.2009. TsTTe o0 0 o 1 0 0 -1 1
e 1 0 0 0 0 0 0 1 0

Figure 1 illustrate such a construction. For simplicity we for tree 2. Note the above transformation to network matri-
consider only one example being routed to nodes 4 and 1&es can always be done as long as the nodes are numbered
respectively on the two trees. The equality constraints irin a pre-order fashion. Now we are ready to state the main
(IP3) can be separated based on the trees and put in matrtkeoretical result of this paper.
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Theorem 4.2 The linear program relaxation ofIP3) has
only integral optimal solutions.

Proof Denote the equality constraints dP@) with index
set J;.

They can be divided into each tree. Each con-

where() denotes the constraint set ®#g). Let opt be the
optimal value of [P1). Then we have

TZZ

opt=  min max

4wy 16Q 220

straint matrix inJ; associated with a tree can be turned t=1 heN

into a network matrix according to Lemndal Stacking A K 1 & B

these matrices leads to a larger network matrix. Denote + (kz Ck N - wii — B))
. . . . =1 =

the w,(fi < wy,; constraints with index sef,. Consider ;

e - (1) . 1 () (1)
the constraint matrix for,. Eachw; only appears once = max y )TDGQ (ﬁ Z Z ezl
in Jo, which means the column correspondingdﬁi has ’ t=1 heN
only one element equal to 1 and the rest equal to 0. If we K 1 &
arrange the constraints i, such that for any giverk, i +/\(Z Ckﬁ Zwk i — B))

(t k=1 i=1

wk)Z < wy,; are put together fot € [T7], the constraint
matrix for J has interval structure such that the non-zerossy the definition off(\) we have
in each column appear consecutively. Finally, putting the
network matrix from.J; and the matrix from/J; together.
AssignJ; and the odd rows of, to the first partition@, ;
and assign the even rows #f to the second partitio-. = fF(A) =

Note the upper bound constraints on the variables can be 1 KL (t) . .
ignored as this is an minimization problem. We conclude =~ NT Z Z eh Zh TAB-N'B
that the constraint matrix of3) is totally unimodular ac- t=1 heN®

opt= Iilgé(f()\) — AB

cording to Theorem 2.7, Part 3 diiémhauser & Wolsey T -
1988 with partition @Q; and Q.. By Proposition 2.1 and Z Z eh Z
2.2, Part 3 of Nemhauser & Wolseyl1988 we can con- =1 heN(®

clude the proof. Thus we obtain the desired inequality.

We say a pruned tree @f is optimalfor a given budget con- ) _

straint if it has the lowest empirical error among all pruned COMPlexity:  The number o, variables is at most x
trees of7 that satisfy the budget constrain. | Tmax» Where|Tmay is the maX|mum number of nodes in a
tree. The number oa‘u(t) variables is at moslv x T' x
Kmax, WhereKmax is the maximum number of features an
example uses in a tree. The numberugf; variables is
at mostN x min{T x Kmax K}. In total there ard” x
Proof Let the optimal value ofIP3) be f(X). AsAin- |7, 4+ N x T x Kmaxt N x min{T x Kmax, K } variables.

creases, a higher penalty is applied to the feature COSthe number sz(t i Zuep(h (t) — 1 constraints is at

compared to the classification error; therefore, the op-

timal solution will have feature cost decreasing to 0 agMostT’ x | Tmaxl, where|Tmay| is the maximum number of

a function of \. Let \* be such that the feature cost leaf nodes in any tree. The numbermf + Zut ki T

Corollary 4.3 The linear program relaxation ofiP3) pro-
duces aroptimally pruned tredor a given budgeB.

Yo er(% X, wi ;) = B. Therefore, > hep(unr i) %h > — 1 constraints is at mosY x T’ x Kmax
T N The number Ofw,(m. < wy,; constraints is again at most
— NL Z Z el (0" 4\ Z en(= Z“’Z-,i) N x T x Kmax Intotal there are at mogt x _|7~_?nax| +2x
t=1 he N () i:l N x T x Kmax constraints besides the positivity constraints
T on all variables.
Z Z eh th)* + \*B.
=1 heN®)

5. Parallel Ensemble Pruning

On the other hand, consideP@) with explicit budgetcon- | this section we further explore the special structure

straint: of (IP3) and show that it admits a Dantzig-Wolfe de-
composition that can be massively parallelized. The key
min . Z Z eh Zh observation i§ that pruning each tree is a ;hortest-path
20 wPe e . (LP1)  problem on directed graphs that can be eff|C|entIy solved

Zk:l cu(% Zf\’:lwkﬂi) <B (O(|T|?)). First, group the var|able$zh ,w,(c)Z,Vh €
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Ti,Vk € K,;,¥i € S} into a vectord® for each tree
T, t=1,...,
ing to the first 4 sets of (LP-relaxed) constraints|id3) for

tree7;:
D =100 = (P Wiz + Y 20 =1vheT,
u€p(h)
wh+20 + S P =1vVke k., Vies,

hep(urkw)
A0 > 0,w) > 0,h € Ty, Vk € Ky, Vi € [N]}.

Thus, the LP relaxation of?3) can be re-written as

N
pin, XA A ey )
Zp o k‘L t=1 heT: =1
st. 00 ¢ p®) vt € [T7,
W) < wii Vk € [K],Vi € SVt € [T,
wg,; >0 Vk € [K],Vi € S.
(LP2)
Let 6" i = ., I, be the extreme points d?(*), Any

point in P*) can be written as a convex combination of

. I, (t) 5(t t
these extreme point${*) = >°°* | )9 ) D a( ) =
1, a§t) > 0. Thus we re-writel(P2) in terms of the extreme
points of P(*):

Iy

S el (')+A2m

min

N
Z W,i)

@ Wi N t=1heT; j=1 —
st. Y aal)  <w;  Vie S,Vk € [K],vt € [T,
shal? =160 >0 vt e [T],
W, > 0 Vk € [K],Vi € S,
(LP3)

Whereé,(fé is the jth extreme point value of the nodeon

tree7; andw,(fz ; Is thejth extreme point value ob,(fz. In
a more compact form, we can writeR3) as

K N
(glm — Z Z O, é_gt) +A Z Ck(% Z W)
k=1 i=1

YWhk,i t 1j=1

pWwa DIDFD
J J
I 1 Ir 0
(1) (T)
S.I.Zaj 0 +...+Zaj 0
J=1 : J=1 :
0 1
Dyyw Dys 0
0 0 1
I I R O B 1
0 0 1
ol > 0,vt € [T),) € [I]
wg,i > 0,Vk € [K],Vi € [N],
(LP4)

whereD() is the constant matrix selecting thg’) |
ponents oﬂj

. com-
; w is the vector ofwy, ;'s ands is the vec-

T. Let P, denote the feasible set correspond-

tor of slack variable&,(cfi’s. The number of equality con-
straints is at mosN x T' x Kmax+ T', much less than the
number of constraints inlP3). However, the number of
variables can be huge.

The Danzig-Wolfe algorithm works as follows. Start with
a feasible basisB of (LP4) and a dual vectop’
(d',r1,...,77) = cgB~!, whereq corresponds to the
constraints involvingu’s andry, . . ., rr corresponds to the
convexity constraints of tha’s. For each tree, solve the
sub-problem

OPT; =min (¢, —q'DW)x
x (SUB1)

subjectto  x e PO,

If OPT; < r:, and the extreme poilﬁft) is optimal to the
above sub-problem then it is easy to check that the reduced

cost for the variablezlg.t) is less than 0O:
[ p®Hw
J
0
c;é;t) — [ qg n rr } 1
L 0 J

= (Cé — q/D(t))éj(t) - < 0.

Therefore, generate column

(DWW 0,...,1,...,0)"

*

and bring it into basis. Note due to the network matrix
structure (Lemmat.1), these subproblems can be solved
very efficiently. Similarly, check the reduced costs for all
wg,;'S and s,(f)zs and if any of them are negative, gen-
erate the corresponding columns and bring them into the
basis. For the above decomposition, the main computa-
tional burden of pruning individual trees can be distriloute
to separate computional nodes that communicate to adjust
for shared features. This can lead to dramatic efficiency
improvement when the number of trees in the ensemble
becomes large. Efficient implementation of the Dantzig-
Wolfe decomposition has been shown to yield significant
speedup through parallelismgbboth 2007).

6. Experiments

We test our pruning algorithm on a number of bench-
mark datasets to show its advantage. Our pruning
takes the ensembles from BudgetRF algoritiNarg et al,
2015 as input. The datasets are CIFARizhevsky
2009 MiniBooNE, Forest Covertype, Sonar and Heart
(Frank & Asuncion.
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no pruning ens.pru.low ind.pru.low ens.pru.high ind.pru.high

MiniB cost | 37.06710.3108 | (68.24)25.296@0.3157 | (95.02)35.22190.3667 | (43.17)16.00180.2498 | (55.19)20.45840.1270
error | 0.0725t0.0004 0.07240.0005 0.072%:0.0004 0.0766t0.0004 0.0766t0.0008

Forest cost | 13.9005-0.04908 | (88.10)12.24630.0834 | (93.24)12.96040.1004 (65.16)9.057%0.6481 (78.82)10.956%0.0729
error | 0.1122-0.0009 0.1135+0.0010 0.113%-0.0010 0.1220:0.0025 0.1228-0.0010

Cifar cost | 186.5456:1.3180 | (92.40)172.37201.8741 | (93.02)173.52551.4516 | (75.39)140.63082.5059 | (77.89)145.29382.4797
error | 0.3152-0.0031 0.3165+0.0021 0.3158:0.0024 0.322%-0.0026 0.32360.0016

Sonar cost | 49.9715+1.1103 | (45.20)22.58683.9528 | (74.31)37.13552.0425 (16.48)8.23491.7930 (28.11)14.04791.6909
error | 0.153%0.0641 0.1838-0.0722 0.189Q-0.0691 0.212%-0.0668 0.213%-0.0676

Heart cost | 12.167Q-0.2341 (73.26)8.91330.7524 (96.20)11.70520.2742 (47.75)5.80942.5589 (75.86)9.2302%0.7036
error | 0.172%-0.0756 0.171%0.0727 0.1719-0.0680 0.197%-0.0807 0.1973:0.0724

Table 1.Comparison of no pruning, ensemble pruning and individwahimg in terms of average feature costs and test error. Two
different error levels for both ensemble and individualmng methods are reported. Cost of the pruned trees are gpeoted as
percentages of the cost of the unpruned trees in parenthesis

Note the cost of each feature is 1 uniformly in all datasetof accuracy.
and therefore cost is equivalent to the average number qf

) n
unigue features used for each example. For each dataset

ethsemble of 90 trees. Because of the small sizes, we per-
we present the average cost and average error on test de% a

. ) : orm 10-fold cross validation to obtain training/test $pli
in Table1. As a baseline, we provide the performance Ofand report the mean as well as standard deviation of test
BudgetRF without pruning in the third column of Taldle P

. cost and error over 100 repeated runs. Again we observe
The results of our proposed ensemble pruning methods arg . ; . .
the effectiveness of our pruning algorithm. For example in

in columns 4 and 6 under the title “ens.pru.”. We also com- .

) : Heart the ensemble pruning uses 73% of the unpruned cost
pare to the same pruning algorithm that we propose but ap- . .
plied to individual trees separately rather than the emirémthoutlosmg accuracy.
ensemble. The results are given in column 5 and 7 of Tabl&Ve observe that ensemble pruning always performs bet-
1 under the title “ind.pru.”. Intuitively, pruning as an en- ter than individual pruning: fixing the error levels, Table
semble exploits the interdependencies among trees, poteh-shows that ensemble pruning always incurs less feature
tially leading to better accuracy-cost trade-offs comgaoe  cost than individual pruning. The advantage is quite signif
pruning individual trees separately. We present pruning reicant in most of the datasets. This is expected because prun-
sults at two different error levels: low and high. A low error ing individual trees does not exploit the inter-dependesici
level corresponds to little pruning with an implicitly laag ~ among trees.
average cost, while a high error level corresponds to prun-
ing away much of the original trees, reducing the average; conclusion
cost at the expense of reduced classification performance.

For ease of comparison, we match the error levels for botl%gNe propose a novel ensemble pruning formulation with

ensemble and individual pruning methods and focus on th eature C.OStS involving a 0-1 |.nteger brogram. Wg prove
. . at the linear program relaxation produces the optimal so-
difference in cost. We also compute the costas a percenta%e

. tion to the original integer program. This allows us to
of the cost of the unpruned ensemble, shown in parenthesis . o . .
in Tablel. use efficient convex optimization tools to obtain the opti-

mally pruned ensemble for any given budget. Our pruning
In MiniBooNE, Forest and CIFAR datasets, we run Bud-formulation is general - it can take any ensemble of deci-
getRF to obtain an ensemble of 40 trees following the giversion trees as input. As the pruning formulation explicitly
training/validation/test data splitdNén et al, 2015. We  account for feature sharing across trees together with-accu
report the mean and standard deviations based on 10 reacy/cost trade-off, it is able to significantly reduce tegat
peated runs. We observe that ensemble pruning reducesst by pruning subtrees that introduce more loss in terms
cost of the BudgetRF ensembles significantly while keep-of feature cost than benefit in terms of prediction accuracy
ing the same level of test error. For example, the unprunedain. Empirically we see that our pruning algorithm indeed
ensemble on MiniBooNE uses about 37 features on an awsignificantly improves the performance of the state of the
erage test example with an average test error of 0.0725; oart ensemble method BudgetRF.
ensemble pruning method reduces the average number of
features to about 25, about 68% of the unpruned cost, wit
test error 0.0724. Further reduction of the cost3§; of PREferenceS
the original budget maintains approximately the same leveBreiman, Leo, Friedman, Jerome, Stone, Charles J, and

Olshen, Richard A.Classification and regression trees

Sonar and Heart datasets, we run BudgetRF to obtain an
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