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A SOLUTION OF GROMOV’S HÖLDER EQUIVALENCE

PROBLEM FOR THE HEISENBERG GROUP

ROGER ZÜST

Abstract. We show that a map with Hölder exponent bigger than 1/2 from
a quasi-convex metric space with vanishing first Lipschitz homology into the

Sub-Riemannian Heisenberg group factors through a tree. In particular, if the
domain contains a disk, such a map can’t be injective. This gives an answer
to a question of Gromov for the simplest nontrivial case. The same tools allow
to improve on a result of Borisov and it is shown that an isometric immersion
of class C1,α of a Riemannian surface with positive Gauss curvature into R

3

has bounded extrinsic curvature if α > 1/2.

1. Introduction

Apart from R
3, the Heisenberg group H is the only simply-connected nilpotent

Lie group of dimension three. Equipped with the Carnot-Carathéodory distance,
(H, dcc) is a metric space for which there is a homeomorphism R

3 → H that is

locally of class C
1
2 . In [10, §2.1] Gromov showed that any topological surface in H

has Hausdorff-dimension at least three. In particular there can’t be an embedding
B2(0, 1) →֒ H of class Cα for α > 2

3 , and the question remained open whether the

same is true for α > 1
2 . It was observed by Wenger and Young [17] that Lipschitz

maps ϕ : X → H defined on a nice enough metric spaceX factor through trees. This
was extended to maps in Cα for α > 2

3 in [21]. In these notes we give an optimal
characterization for Hölder maps into the sub-Riemannian Heisenberg group.

Theorem 1.1. Let X be a quasi-convex metric space with HLip
1 (X) = 0 and ϕ :

X → H be a map of class Cα for some α > 1
2 . Then ϕ factors through a tree. In

particular, if dim(X) > 1, then ϕ can’t be an embedding.

In Theorem 4.1 we give some more details on the properties of the tree and the
maps that arise. As a particular consequence, any map ϕ : Sn → H of Hölder
regularity α > 1

2 has an extension to a map on Bn+1(0, 1) of the same regularity
in case n ≥ 2, whereas for n = 1 this is in general false, see Corollary 4.2. Along
the way, Theorem 3.4 is an improvement of [21, Theorem 1.2] and gives a necessary
and sufficient condition for Hölder maps into the plane to factor through a tree.

Related to this, at least to some extent, is a problem about isometric immersions
of surfaces. Given a Riemannian surface (M, g) with a metric g of class C2, there
is a big difference in the behavior of isometric immersions ϕ : M → R

3 of class
C1 and C2 due to curvature. The Nash-Kuiper Theorem implies that any short
embedding (or immersion) into R

3 can be approximated by isometric embeddings
(or immersions) of class C1. Extending the h-principle to Hölder classes it is shown
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2 ROGER ZÜST

in [7] that the same holds for approximations in C1,α for α < 1
5 . On the other

side, if M has positive Gauss curvature, a result of Borisov [3, 4] states that any
isometric immersion of class C1,α are of bounded extrinsic curvature for α > 2

3 and
applying results of Pogorelov, rigidity phenomena arise in this range of regularity.
Following closely the simplified proof presented in [6] we can lower the threshold
for rigidity to α > 1

2 .

Theorem 1.2. Let (M2, g) be a Riemannian surface without boundary and g be a
metric of class C2 with positive Gauss curvature. If ϕ : M → R

3 is an isometric
immersion of class C1,α for some α > 1

2 , then ϕ(M) is of locally bounded extrinsic
curvature.

From the work of Pogorelov it follows that M can be covered by open sets U
for which ϕ(U) is contained in the boundary of a convex set, [15, Theorem 8, pp.
650]. If further M ≈ S2 and ϕ is an embedding, then ϕ(M) is the boundary of a
convex set, [15, Theorem 9, pp. 650], and hence determined up to isometries of R3,
[15, Theorem 1, pp. 167].

The crucial ingredient of both proofs is the following observation which may be
interesting in its own right.

Proposition 1.3. Set Q := [0, 1]2 ⊂ R
2 and let Γ = (Γ1,Γ2) : Q → R

2 be a map
such that Γi is of class Cαi for i = 1, 2 and α1 + α2 > 1. If for any subsquare
R ⊂ Q,

∫

R2

deg(Γ, R, q) dL 2(q) ≥ 0 ,

then
deg(Γ, Q, q) ≥ 0 ,

whenever q ∈ R
2 \ Γ(∂Q).

The same is of course true with opposite signs as well and there is also a very
similar statement with strict inequalities in Corollary 3.3. The reason this condition
pops up for maps into the Heisenberg group has to do with the path lifting property.
If ϕ : Q→ H is of class Cα for α > 1

2 and Γ : Q→ R
2 is the horizontal projection,

then for all squares R ⊂ Q,
∫

R2

deg(Γ, R, q) dL 2(q) =
1

2

(
∫

∂R

Γx dΓy − Γy dΓx

)

= 0 .

On the other hand, if g is a Riemannian metric on Q ⊂ R
2 of class C2 with Gauss

curvature κ ≥ 0 and ϕ : Q → R
3 is a C1,α-isometric immersion for some α > 1

2 ,
then

∫

S2

deg(Γ, R, q) dH 2(q) =

∫

R

κ(p) dH 2
g (p) ≥ 0 ,

where Γ : Q → S2 is the associated Gauss map, compare with the proof of Propo-
sition 5.2. In case α > 2

3 , Proposition 1.3 follows immediately from Lemma 2.1
because the following change of variables formula holds for Lipschitz test functions
f ,

∫

f(q) deg(Γ, Q, q) = lim
k→∞

∑

bR∈R∈Pk(Q)

(f ◦ Γ)(bR)
∫

deg(Γ, R, q) .(1.1)

In the general case, the idea for the proof of Proposition 1.3 is to consider Γ as a
map on S2 by gluing together two copies of Q along the equator. For a Lipschitz
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test function f : S2 → R, the map Γ×f : S2 → R
3 contains information about Γ by

means of its winding number function q 7→ w(Γ×f, q). It is shown in Proposition 2.4
that w(Γ × f, ·) is in L1(R3). A simple homological calculation is then used in
Lemma 3.1 to investigate

∫

R3 w(Γ×f, q) dq with respect to perturbations of f . The

reason this seems to work for α > 1
2 but in (1.1) it does not, is that therein we sum

over f ◦ Γ and even if f is Lipschitz, this composition is in general only as regular
as Γ.

The bulk of the work is contained in the technical part, Section 2, where the
theory of currents is used to show that under the right conditions these winding
number functions are integrable. Although more general than we need, Theorem 2.2
gives meaning to the push-forward ϕ#T if the coordinate functions of the map
ϕ : X → R

n are Hölder continuous with varying regularity and T ∈ Nm,c(X)
is a normal metric current with compact support. The benefit of allowing the
coordinate functions to have varying regularity is precisely that we can work with
maps like Γ× f mentioned above.

2. Mapping degree and currents

Before we proceed we recall some definitions that are used in the main theorems.
Let (X, dX) be a metric space. (X, d) is C-quasi-convex if for any two points x, x′ ∈
X there is a curve γ : [0, 1] → X connecting x and x′ of length ℓ(γ) ≤ CdX(x, x′).

With HLip
k (X) we denote the kth singular Lipschitz homology group of X . A metric

space (T, dT ) is called a tree if it is uniquely arc-connected. This means that for
any two points p, p′ ∈ T there is an injective curve γ : [0, 1] → T connecting x with
x′ and any other such curve is a reparametrization of γ. If σ : R≥0 → R≥0 is a
homeomorphism (with σ(0) = 0), then ϕ : (X, dX) → (Y, dY ) is σ-continuous in
case dY (ϕ(x), ϕ(x

′)) ≤ σ(dX(x, x′)) holds for all x.x′ ∈ X . The σ-variation of a
curve γ : [a, b] → (X, dX) is given by

Vσ(γ) := sup
n−1
∑

i=1

σ−1(dX(γ(ti), γ(ti+1))) ,

where the supremum is taken over all finite sequences a ≤ t1 ≤ . . . tn ≤ b. If γ is
σ-continuous, then one can check that Vσ(γ) ≤ |b − a|.

A map ϕ : X → Y between metric spaces is called Hölder continuous of regularity
α > 0 if there is a constant H ≥ 0 such that for all x, x′ ∈ X ,

dY (ϕ(x), ϕ(x
′)) ≤ HdX(x, x′)α .

The infimum over all such H is denoted by Hα(ϕ) and Hα(X,Y ) is the set of all
Hölder continuous maps of regularity α from X to Y . For Y = R we abbreviate

Hα(X) := Hα(X,R). We write ϕk
α−→ ϕ if a sequence ϕk in Hα(X,Y ) converges

uniformly limk→∞ supx∈X dY (ϕk(x), ϕ(x)) = 0 and supk H
α(ϕk) < ∞. The limit

satisfies Hα(ϕ) ≤ lim infk H
α(ϕn) and hence ϕ ∈ Hα(X,Y ).

Given two functions f ∈ Hα([a, b]) and g ∈ Hβ([a, b]) with α + β > 1, it follows

from a result of Young [18] that the Riemann-Stieltjes integral
∫ b

a
f dg is well defined

and satisfies

(2.1)

∣

∣

∣

∣

∣

∫ b

a

f dg − f(c)(g(b)− g(a))

∣

∣

∣

∣

∣

≤ C Hα(f)Hβ(g)|b− a|α+β ,
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for any c ∈ [a, b] and some constant C = C(α, β). Moreover, if fk
α−→ f and

gk
β−→ g, then

(2.2) lim
k→∞

∫ b

a

fk dgk =

∫ b

a

f dg .

The Riemann-Stieltjes integral over Hölder functions can be generalized to higher
dimensions. For a rectangle Q ⊂ R

2 we denote by Pk(Q) the partition of Q into
4k similar rectangles. Given functions f, g1, g2 : Q→ R we define the approximate
functionals

IQ,k(f, g
1, g2) :=

∑

R∈Pk(Q)

f(bR)

∫

∂R

g1 dg2 ,

where bR is the barycenter of R (any other point in R would work as well for
our purposes) and assuming the integrals inside the sum make sense. They are
to be understood as Riemann-Stieltjes integrals running counterclockwise around
the boundary of the indicated rectangle. In particular, if g1 and g2 have a large
enough Hölder exponent, then IQ,k(f, g

1, g2) is well defined for all k by the result
of Young mentioned above. The following lemma is the two-dimensional case of
[20, Theorem 3.2].

Lemma 2.1. Let α, β1, β2 ∈ (0, 1] with α+ β1 + β2 > 2. Then the limit functional

IQ : Hα(Q)×Hβ1(Q)×Hβ2(Q) → R ,

IQ(f, g
1, g2) := lim

k→∞
IQ,k(f, g

1, g2) ,

is well defined. Further, IQ satisfies and is uniquely determined by the following
properties:

(1) IQ is linear in each argument,
(2) IQ(f, g

1, g2) =
∫

Q
f detD(g1, g2) dL 2 =

∫

Q
f g1 ∧ g2 if all three functions

are Lipschitz,

(3) IQ(fk, g
1
k, g

2
k) → IQ(f, g

1, g2) if fk
α−→ f and gik

βi−→ gi for i = 1, 2.

The proof of this lemma is rather straightforward and uses the estimate (2.1)
in order to show that (IQ,k(f, g

1, g2))k converges geometrically to some limit. The
continuity property of IQ is then a consequence of the continuity of the one dimen-
sional Riemann-Stieltjes integrals (2.2). Iteratively it is possible to define similar
functionals over higher dimensional boxes, but we won’t need this here.

The functional IQ is closely related to those that appear in the theory of currents
in metric spaces. Such a theory was introduced by Ambrosio and Kirchheim [1]
extending the classical theory as described in the monograph of Federer [9]. Since in
combination with Hölder maps some currents with infinite mass emerge naturally,
we also refer to the theory of Lang [12] which does not rely on the finite mass
assumption in its development. Following [12], a current T ∈ Dm(X) with compact
support in a metric space X is a multilinear functional T : Lip(X)m+1 → R that
satisfies:

(1) T (f, g1, . . . , gm) = 0 whenever some gi is constant in the neighborhood of
spt(f);

(2) There is a compact set K ⊂ X such that T (f, g1, . . . , gm) = 0 whenever
spt(f) and K are disjoint;
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(3) limk→∞ T (fk, g
1
k, . . . , g

m
k ) = T (f, g1, . . . , gm) if fk

1−→ f and gik
1−→ gi for

all i. That is, the functions converge uniformly with bounded Lipschitz
constants.

For w ∈ L1(Rn) with compact support we write JwK for the current in Dn(R
n)

defined by

JwK(f, g1, . . . , gn) := JwK(f g1 ∧ · · · ∧ gn) :=
∫

Rn

w f detD(g1, . . . , gn) dL n .

Similarly, for a compact oriented Lipschitz manifold Mm, or a bounded measurable
subset of Rm, we write [[M ]] for the m-dimensional current induced by integrating
m-forms over M . In this sense, the functional IQ of Lemma 2.1 is the continuous
extension of [[Q]] to Hölder test functions with respect to an appropriate topology.
If M ⊂ R

n is a closed submanifold of codimension one, there is some connection
between the winding number function q 7→ w(ϕ, q) of ϕ : M → R

n and the push-
forward ϕ#JMK as we will see in Proposition 2.4. Most properties of the mapping
degree and the winding number we need can be found for example in [14]. Here is
a short summary. Let ϕ : U → R

n be a smooth map defined on a bounded open
set U ⊂ R

n. If q is a regular value, the local degree of ϕ at q is defined by

deg (ϕ,U, q) :=
∑

p∈ϕ−1(q)∩U

sign(det(Dϕp)) .

By Sard’s Theorem, the regular values form a set of full Lebesgue measure. More-
over, if ϕ has a smooth extension to a neighborhood of Ū , deg (ϕ,U, ·) is locally
constant and homotopy invariant on regular values outside ϕ(∂U), [14, Proposi-
tions IV.1.2, IV.1.4]. This allows to define the local degree for continuous maps
ϕ : Ū → R

n and points q ∈ R
n \ϕ(∂U) by approximation, [14, Proposition IV.2.2].

We will make use of the following properties of the local degree:

(Homotopy invariance): Let H : [0, 1] × Ū → R
n and γ : [0, 1] → R

n be
continuous maps. If γ(t) /∈ Ht(∂U) for all t, then deg (Ht, U, γ(t)) doesn’t
depend on t, [14, Proposition IV.2.4].

(Local invariance): The map q 7→ deg (ϕ,U, q) is locally constant on R
n \

ϕ(∂U). This follows from homotopy invariance or by smooth approxima-
tion.

(Additivity property): If U1, U2 ⊂ U are two disjoint open sets and q /∈
ϕ(Ū \ U1 ∪ U2), then

deg (ϕ,U, q) = deg (ϕ,U1, q) + deg (ϕ,U2, q) .

This is immediate by smooth approximation.
(Winding number): Let ϕ : ∂U → R

n+1 be a continuous map and q ∈ R
n \

ϕ(X). Then the local degree deg (ϕ̄, U, q) doesn’t depend on the continuous
extension ϕ̄ : Ū → R

n of ϕ, [14, Proposition IV.4.1]. This number is called
the winding number of ϕ at q and denoted by w(ϕ, q).

(Homological degree): The homological degree deg(f) of a map f : Sn →
Sn is the integer that satisfies f∗(g) = deg(f)g for all g ∈ Hn(S

n) ≈ Z. If
ϕ : Sn → R

n+1 is continuous and q ∈ R
n+1 \ ϕ(Sn), then

w(ϕ, q) = deg(ϕq) ,

where ϕq : Sn → Sn is defined by ϕq(p) := ϕ(p)−q
|ϕ(p)−q| . This follows for

example from [14, Proposition IV.4.6] and [2, Corollary IV.7.5].
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As defined in [1, Proposition 2.7] or [12, Definition 4.1], the mass of a current
T ∈ Dm(X) with compact support in a metric space X can be defined by

M(T ) := sup
∑

λ∈Λ

T (fλ, g
1
λ, . . . , g

m
λ ) ,

where the supremum ranges over all finite collections {(fλ, g1λ, . . . , gmλ )}λ∈Λ, of
Lip(X)m+1 that satisfy

∑

λ∈Λ |fλ| ≤ 1 and Lip(giλ) ≤ 1 for all i and λ. In case
X = R

n we can estimate the mass of T by

(2.3) M(T ) ≤
∑

λ∈Λ(n,m)

sup
|fλ|≤1

T
(

fλ, π
λ(i), . . . , πλ(m)

)

,

where Λ(n,m) is the collection of all strictly increasing functions from {1, . . . ,m}
to {1, . . . , n}, πi : Rn → R denotes the ith coordinate function πi(p) = pi and
each fλ ∈ Lip(Rn) satisfies ‖fλ‖∞ ≤ 1. This estimate follows from a smoothing
argument for Lipschitz function and the chain rule for currents, compare with [12,
Theorem 5.5]. For T ∈ Nm,c(R

n) (this means that T ∈ Dm(Rn) has compact
support and N(T ) := M(T ) +M(∂T ) <∞) define

F(T ) := inf{M(T − ∂S) +M(S) : S ∈ Nm+1,c(R
n)} .

With Fm(Rn) we denote those metric currents in Dm(Rn) with compact support
that are in the closure of Nm,c(R

n) with respect to F, compare with [9, §4.1.12].
Note that the metric definition of mass may differ from the classical one in [9], but
it is stated in [12, Theorem 5.5] that these two norms are comparable and that
the space Fm(Rn) agrees with the classical definition of flat chains. Similarly, for
T ∈ Im,c(R

n) (this means that T ∈ Dm(Rn) is an integral current with compact
support) we define

F (T ) := inf{M(T − ∂S) +M(S) : S ∈ Im+1,c(R
n)} .

With Fm(Rn) we denote those metric currents in Dm(Rn) with compact support
in the closure of Im,c(R

n) with respect to F , compare with [9, §4.1.24]. It is easy to
check that both F and F define norms. The following theorem is a generalization
of [19, Proposition 4.4].

Theorem 2.2. Let (X, d) be a metric space, T ∈ Nm,c(X) (or T ∈ Im,c(X)) for
some integer m ≥ 1 and let ϕ = (ϕ1, . . . , ϕn) : X → R

n be a map with coordinate
functions ϕi ∈ Hαi(X) for αi ∈ (0, 1] and i = 1, . . . , n. If

σ(m) := min
λ∈Λ(n,m+1)

αλ(1) + · · ·+ αλ(m+1) > m ,

then ϕ#T is a well defined element of Fm(Rn) (or Fm(Rn)) in the sense that
ϕk#T converges with respect to F (or F ) to ϕ#T whenever ϕk ∈ Lip(X,Rn) and

ϕik
αi−→ ϕi for all i. Moreover, there is a constant C = C(m,n, σ(m)) with the

following property: If ϕ1, ϕ2 : X → R
n, δ ∈ [0, 1] and H ≥ 1 satisfy for all i,

(A) max{Hαi(ϕi1),H
αi(ϕi2)} ≤ H,

(B) ‖ϕi1 − ϕi2‖∞ ≤ Hδαi ,

then there are R ∈ Fm(Rn)∩Mm(Rn) and S ∈ Fm+1(R
n)∩Mm+1(R

n) (respectively
R ∈ Rm,c(R

n) and S ∈ Rm+1,c(R
n)) such that

(1) ϕ1#T − ϕ2#T = R+ ∂S;

(2) M(R) +M(S) ≤ CHm+1 N(T )δσ(m)−m;
(3) spt(R) ∪ spt(S) ⊂ B(ϕ1(spt(T )), 10

√
nHδα), where α := mini αi;
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(4) if ∂T = 0, then R = 0.

Proof. We formulate the proof for T ∈ Nm,c(X). Replacing F with F and normal
currents with integral currents wherever they appear, the proof for T ∈ Im,c(X) is
the same if not indicated otherwise. Because T has compact support we can assume
that X is compact by restricting the functions to the support of T . Let 0 ≤ a <
b ≤ 1. As in [16, Theorem 5.2], which is an adaption of the cone construction in [1,
Proposition 10.2], the functional [[a, b]]× T on Lip([0, 1]×X)m+2 defined by

([[a, b]]× T )(f, g1, . . . , gm+1)

:=

m+1
∑

i=1

(−1)i+1

∫ b

a

T
(

ft∂tg
i
t, g

1
t , . . . , g

i−1
t , gi+1

t , . . . , gm+1
t

)

dt

is an element of Nm+1([0, 1] × X). For convenience sake we put the ℓ1 metric on
the product [0, 1]×X . This construction of a product with an interval has similar
properties to the classical one in [9, §4.1.8]. For example,

(2.4) ∂([[a, b]]× T ) = ([[b]]× T )− ([[a]]× T )− ([[a, b]]× ∂T ),

where for any t ∈ [0, 1] the current [[t]]× T in Nm([0, 1]×X) is given by

([[t]] × T )(f, g1, . . . , gm) := T (ft, g
1
t , . . . , g

m
t ) .

From the definition of mass and of [[a, b]]× T it is clear that

(2.5) M([[a, b]]× T ) ≤ (m+ 1)(b− a)M(T ) .

Set H := maxiH
αi(ϕi) and define ϕ̃ : [0, 1]×X → R

m coordinate-wise by

ϕ̃it(x) := inf
y∈X

ϕi(y) +Htαi−1d(x, y) ,

This construction to approximate Hölder functions with Lipschitz functions is de-
scribed in the appendix of [11] written by Semmes. The following properties are
direct. For a proof see [11, Theorem B.6.16] or [20, Lemma 2.2]. For all i and
t ∈ (0, 1]:

ϕ̃it(x) = inf{ϕi(y) +Htαi−1d(x, y) : y ∈ B(x, t)} ;(2.6)

Lip(ϕ̃it) ≤ Htαi−1 ;(2.7)

‖ϕ̃it − ϕi‖∞ ≤ Htαi .(2.8)

Using (2.6), we see that for any fixed x ∈ X and i, the function t 7→ ϕ̃it(x) is
Hs2s

αi−2
1 -Lipschitz on [s1, s2] in case 0 < s1 < s2 ≤ 1. Together with (2.7),

and the fact that we have chosen the ℓ1-metric on [0, 1] × X , each function ϕ̃i is
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2Hsαi−1-Lipschitz on [s, 2s]×X for all s ∈ (0, 12 ]. Hence with (2.3) and (2.5),

M (ϕ̃#([[s, 2s]]× T ))

≤
∑

λ∈Λ(n,m+1)

sup
|fλ|≤1

ϕ̃#([[s, 2s]]× T )
(

fλ, π
λ(1), . . . , πλ(m+1)

)

=
∑

λ∈Λ(n,m+1)

sup
|fλ|≤1

([[s, 2s]]× T )
(

fλ ◦ ϕ̃, ϕ̃λ(1), . . . , ϕ̃λ(m+1)
)

≤
∑

λ∈Λ(n,m+1)

M ([[s, 2s]]× T )
m+1
∏

i=1

Lip
(

ϕ̃λ(i)|[s,2s]×X
)

≤
∑

λ∈Λ(n,m+1)

(m+ 1)sM(T )(2H)m+1sαλ(1)+···+αλ(m+1)−(m+1)

≤
(

n

m+ 1

)

(m+ 1)(2H)m+1 M(T )sσ(m)−m .(2.9)

The hypothesis σ(m) > m now implies that (ϕ̃#([[2
−k, 1]] × T ))k∈N is a Cauchy

sequence in Mm+1(R
m) equipped with the norm M. This sequence converges to

a current ϕ̃#([[0, 1]]× T ) ∈ Mm+1(R
n) because (Mm+1(R

n),M) is a Banach space
by [12, Proposition 4.2]. As a result, ϕ̃#([[0, 1]] × T ) ∈ Fm+1(R

n) ∩ Mm+1(R
n).

In case T ∈ Im,c(X), ϕ̃#([[0, 1]]× T ) ∈ Rm+1,c(R
n) by [9, §4.1.17] and [9, §4.1.24].

The same reasoning applies to the boundary ∂T . Note that σ(m) > m implies that

σ(m− 1)− (m− 1) = min
λ∈Λ(n,m)

αλ(1) + · · ·+ αλ(m) − (m− 1)

≥ σ(m)−m > 0 ,(2.10)

which is the appropriate hypothesis in order to obtain similar estimates for ∂T in
place of T . We abbreviate ϕ̃k := ϕ̃2−k . From (2.4) it follows that

ϕ̃k#T = ϕ̃#([[2
−k]]× T )

= ϕ̃#

(

[[1]]× T − ([[2−k, 1]]× ∂T )− ∂([[2−k, 1]]× T )
)

= ϕ̃#([[1]]× T )− ϕ̃#

(

[[2−k, 1]]× ∂T
)

− ∂ϕ̃#

(

[[2−k, 1]]× T
)

→ ϕ̃#([[1]]× T )− ϕ̃#([[0, 1]]× ∂T )− ∂ϕ̃#([[0, 1]]× T ) ,

where convergence is with respect to F. The limit of the sequence ϕ̃k#T , we
denote it by ϕ̃#T , is hence a current in Fm(Rn). From (2.9) and (2.10) it follows
that there is a constant C1 depending on m, n and σ(m) such that for Rϕ,k :=
ϕ̃#

(

[[0, 2−k]]× ∂T
)

and Sϕ,k := ϕ̃#

(

[[0, 2−k]]× T
)

we have ∂Rϕ,k = 0 in case ∂T =
0,

(2.11) ϕ̃k#T − ϕ̃#T = Rϕ,k + ∂Sϕ,k ,

(2.12) M(Rϕ,k) +M(Sϕ,k) ≤ C1 max{1, H}m+1N(T )2k(m−σ(m)) ,

(2.13) spt(Rϕ,k) ∪ spt(Sϕ,k) ⊂ B(ϕ(spt(T )),
√
nH2−kα) .

In order for ϕ̃# to be useful it should agree with the usual definition of the push-
forward ϕ#T if ϕ is Lipschitz. In this case we can choose some L for which L ≥
Hαi(ϕi) for all i. This is possible because diam(X) < ∞ implies that Lip(X) ⊂
Hα(X) for any α. Let t0 be such that Ltαi−1 ≥ Lip(ϕi) for all t ∈ (0, t0] and all i
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(if αi = 1, then Ltαi−1 = L ≥ Lip(ϕi)). For such a t ∈ (0, t0], x, y ∈ X and i, there
holds

ϕi(y) + Ltαi−1d(x, y) ≥ ϕi(y) + Lip(ϕi)d(x, y) ≥ ϕi(x) .

Hence, if ϕ ∈ Lip(X,Rn), then ϕ̃t = ϕ if t is small enough, and therefore

(2.14) ϕ̃#T = ϕ#T .

In the next step we show that the definition of ϕ̃#T doesn’t depend on the particular
approximating sequence ϕ̃2−k of ϕ.

Consider to maps ψ0, ψ1 ∈ Lip(X,Rn) and a constant L > 0 with ‖ψi0−ψi1‖∞ ≤
Lǫαi and Lip(ψij) ≤ Lǫαi−1 for all i = 1, . . . , n and j = 0, 1. We want to estimate
F(ψ1#T − ψ0#T ). Let ψ : [0, 1]×X → R

n be the linear homotopy

ψ(t, x) := tψ1(x) + (1 − t)ψ0(x) .

For all i and t ∈ (0, 1) there holds ‖∂tψit‖∞ ≤ Lǫαi and Lip(ψit) ≤ Lǫαi−1. For each
λ ∈ Λ(n,m+ 1) set

ψ̂λ,it :=
(

ψ
λ(1)
t , . . . , ψ

λ(i−1)
t , ψ

λ(i+1)
t , . . . , ψ

λ(m+1)
t

)

.

Similar to (2.9),

M (ψ#([[0, 1]]× T )) ≤
∑

λ∈Λ(n,m+1)

sup
|fλ|≤1

ψ#([[0, 1]]× T )
(

fλ, π
λ(1), . . . , πλ(m+1)

)

=
∑

λ∈Λ(n,m+1)

sup
|fλ|≤1

m+1
∑

i=1

(−1)i+1

∫ 1

0

T
(

fλ,t∂tψ
λ(i)
t , ψ̂λ,it

)

dt

≤
∑

λ∈Λ(n,m+1)

m+1
∑

i=1

M(T )
∥

∥

∥
∂tψ

λ(i)
t

∥

∥

∥

∞

∏

j 6=i

Lip
(

ψ
λ(j)
t

)

≤
(

n

m+ 1

)

(m+ 1)Lm+1 M(T )ǫσ(m)−m .

The estimate (2.10) allows to obtain similar bounds for the boundary ∂T and we
conclude that there is a constant C2 depending onm and n such that for the currents
Rψ0,ψ1

:= ψ#([[0, 1]]× ∂T ) ∈ Nm,c(R
n) and Sψ0,ψ1

:= ψ#([[0, 1]]× T ) ∈ Nm+1,c(R
n)

we have Rψ0,ψ1 = 0 if ∂T = 0 and further

(2.15) ψ1#T − ψ0#T = Rψ0,ψ1 + ∂Sψ0,ψ1 ,

(2.16) M(Rψ0,ψ1) +M(Sψ0,ψ1) ≤ C2 max{1, L}m+1N(T )ǫσ(m)−m ,

(2.17) spt(Rψ0,ψ1) ∪ spt(Sψ0,ψ1) ⊂ B(ψ1(spt(T )),
√
nLǫα) .

Assume that γ : X → R
n satisfies G := maxiH

αi(γi) <∞ and there are constants
δ ∈ (0, 1] and H̄ ≥ max{1, H,G} such that ‖γi − ϕi‖∞ ≤ H̄δαi for all i. Let k ≥ 0
be the unique integer such that 2−k−1 ≤ δ ≤ 2−k. Then for all i we obtain from
(2.8),

‖γ̃ik − ϕ̃ik‖∞ ≤ ‖γ̃ik − γi‖∞ + ‖γi − ϕi‖∞ + ‖ϕ̃ik − ϕ̃i‖∞
≤ G2−kαi + H̄δαi +H2−kαi

≤ 3H̄2−kαi .(2.18)
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Also, (2.7) implies for all i,

max
{

Lip(ϕ̃ik),Lip(γ̃
i
k)
}

≤ H̄δαi−1 ≤ H̄2(k+1)(1−αi)

≤ 2H̄2−k(αi−1) .(2.19)

With (2.12), (2.16), (2.18) and (2.19) we obtain R ∈ Fm(Rn) ∩ Mm(Rn) and
S ∈ Fm+1(R

n) ∩Mm+1(R
n) (respectively, R ∈ Rm,c(R

n) and S ∈ Rm+1,c(R
n) if

T ∈ Im,c(X)) with γ̃#T − ϕ̃#T = R+ ∂S and

M(R) +M(S) ≤ M(Rγ,k +Rϕk,γk −Rϕ,k) +M(Sγ,k + Sϕk,γk − Sϕ,k)

≤ (2C1H̄
m+1 + C2(3H̄)m+1)N(T )2k(m−σ(m))

≤ C3H̄
m+1N(T )δσ(m)−m .(2.20)

for some constant C3 depending on m, n and σ(m). It is also clear that R = 0 in
case ∂T = 0. For any point x ∈ spt(R) ∪ spt(S) it follows from (2.13), (2.17) and
(2.18) that

dist(x, ϕ(spt(T ))) ≤ 5
√
nH̄2−kα ≤ 10

√
nH̄δα .

Let ϕk ∈ Lip(X,Rn) be a sequence such that ϕik
αi−→ ϕi for all i. With (2.14) and

(2.20) we conclude that ϕk#T converges to ϕ̃#T with respect to F. Hence ϕ̃#T
doesn’t depend on the particular approximating sequence used in its definition.
This justifies to use the notation ϕ#T for ϕ̃#T and finishes the theorem. �

The following is a direct consequence Theorem 2.2.

Corollary 2.3. Assume that T ∈ Nn−1,c(X) satisfies ∂T = 0 and let ϕ =
(ϕ1, . . . , ϕn) : X → R

n be a map with ϕi ∈ Hαi(X) and
∑

i αi > n − 1. Then
there is a unique wϕ ∈ L1

c(R
n) such that ∂[[wϕ]] = ϕ#T . If T ∈ In−1,c(X), then

wϕ ∈ L1
c(R

n,Z). Moreover, if ϕk : X → R
n is a sequence with ϕik

αi−→ ϕ for all i,
then

lim
k→∞

∫

Rn

|wϕk
− wϕ| dL n = 0 .

Proof. If we set ϕ1 = ϕ and ϕ2 = 0 in Theorem 2.2, we obtain a current S ∈
Fn(R

n) ∩Mn(R
n), respectively S ∈ Rn,c(R

n) if T ∈ In−1,c(X), with ∂S = ϕ#T .
By [9, §4.1.18], S can be represented by an integrable function wϕ ∈ L1

c(R
n).

This is obvious in case S ∈ Rn,c(R
n). The constancy theorem [9, §4.1.7] implies

that this filling is unique among all classical currents. Let ϕk be a sequence as in
the statement. By the constancy theorem, [[wϕk

− wϕ]] is the unique filling with
compact support of ϕk#T −ϕ#T . Hence the mass estimate of Theorem 2.2 applies
to [[wϕk

− wϕ]] and therefore
∫

Rn

|wϕk
− wϕ| dL n = M([[wϕk

− wϕ]]) → 0 ,

for k → ∞. �

The perimeter of a L n-measurable set B ⊂ R
n is equal to

P (B) := sup

{
∫

B

div(ψ) dL n : ψ ∈ C1
c (R

n,Rn), ‖ψ‖∞ ≤ 1

}

.

By [12, Theorem 7.2] we get the identity

M(∂[[B]]) = P (B) .
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For example, if the topological boundary of B ⊂ R
n satisfies

H
n−1(∂B) <∞ ,

then B has finite perimeter. See for example [9, Theorem 4.5.11] for this and
related properties of the perimeter. As an application of Theorem 2.2 we can relate
currents induced by Hölder maps with the winding number function and obtain
an integrability condition on the latter. The following is a generalization of [19,
Proposition 4.6].

Proposition 2.4. Let U ⊂ R
n be a bounded open set with finite perimeter. Let

ϕ = (ϕ1, . . . , ϕn) : ∂U → R
n be a map such that ϕi ∈ Hαi(∂U) and

∑

i αi > n− 1.
Then ϕ#(∂[[U ]]) has a unique filling that is given by [[wϕ]] for some wϕ ∈ L1

c(R
n,Z)

and moreover wϕ = w(ϕ, ·) almost everywhere on R
n \ϕ(∂U). If H n−1(∂U) <∞,

then L n(ϕ(∂U)) = 0 and wϕ = w(ϕ, ·) almost everywhere. This means that

w(ϕ, ·) ∈ L1
c(R

n,Z) , and ϕ#(∂[[U ]]) = [[w(ϕ, ·)]] .(2.21)

If ϕk : ∂U → R
n is a sequence that satisfies ϕik

αi−→ ϕi for all i, then M([[wϕk
]] −

[[wϕ]]) → 0, respectively if H n−1(∂U) <∞, then

(2.22)

∫

Rn

|w(ϕk, q)− w(ϕ, q)| dL n(q) → 0 .

Proof. First note that (2.21) follows from the general case if we can show that
L n(im(ϕ)) = 0 whenever H n−1(∂U) < ∞. The finiteness of H n−1(∂U) implies
that there is some C > 0 such that for all δ > 0 there is a finite covering of
∂U by balls Bn(x1, r1), . . . ,B

n(xk, rk) with ri ≤ δ and
∑

i r
n−1
i ≤ C. Each set

ϕ(B(xi, ri) ∩ ∂U) is contained in the box

ϕ(xi) +
(

[−Hrα1

i , Hrα1

i ]× · · · × [−Hrαn

i , Hrαn

i ]
)

,

where H := maxiH
αi(ϕi). Hence

L
n(ϕ(∂U)) ≤

∑

i

(2Hrα1

i ) . . . (2Hrαn

i ) ≤ (2H)n
∑

i

rα1+···+αn

i

≤ (2H)nδα1+···+αn−(n−1)
∑

i

rn−1
i

≤ (2H)nCδα1+···+αn−(n−1) ,

and this converges to zero provided δ does. It is interesting to note that this estimate
is very similar to the one obtained in (2.9) within the proof of Theorem 2.2.

The current [[U ]] is an integer rectifiable current with finite boundary mass
M(∂[[U ]]) = P (U) < ∞. The boundary rectifiability theorem, see for exam-
ple [12, Theorem 8.7] or [9, Theorem 4.2.16], implies that ∂[[U ]] is an element of
In−1(R

n). As a consequence of Corollary 2.3, there is a unique wϕ ∈ L1
c(R

n,Z)
with ∂[[wϕ]] = ϕ#(∂[[U ]]).

If ψ : R
n → R

n is a smooth map, then ψ#[[U ]] = [[deg (ψ,U, ·)]] and hence
deg (ψ,U, ·) = wψ . This is a consequence of the change of variables formula [9,
Theorem 3.2.3(2)] and the definition of the local degree for smooth maps. If f :
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R
n → R is smooth (or Lipschitz), then

ψ#[[U ]](f dπ1 ∧ · · · ∧ dπn) =
∫

U

f ◦ ψ det(Dψp) dL
n(p)

=

∫

Rn

f(q)
∑

p∈ψ−1(q)∩U

sign(det(Dψp)) dL
n(q)

=

∫

Rn

f(q) deg (ψ,U, q) dL n(q)

= [[deg (ψ,U, ·)]](f dπ1 ∧ · · · ∧ dπn) .(2.23)

Using the McShane-Whitney extension theorem we can extend ϕ to a map
ϕ̄ : R

n → R
n with maxiH

αi(ϕ̄i) < ∞. Smoothing each function ϕ̄i appropri-
ately by convolution with a mollifier, we can construct an approximating sequence
ϕk ∈ C∞(Rn,Rn) with supi,k H

αi(ϕik) < ∞ and limk→∞ ‖ϕk − ϕ̄‖∞ = 0. From
Corollary 2.3 we obtain

(2.24) lim
k→∞

M([[deg (ϕk, U, ·)]]− [[wϕ]]) = 0 .

Let B(q, r) ⊂ R
n \ ϕ(∂U). Since ϕk|∂U converges uniformly to ϕ, there is an

integer k0 ≥ 1 such that B(q, r) ⊂ R
n \ ϕk(∂U) and deg (ϕk, U, q

′) = w(ϕ, q) for all
q′ ∈ B(q, r) and all k ≥ k1. This is a consequence of the homotopy invariance of
the local degree. Hence, for all k ≥ k0,

(2.25) [[deg (ϕk, U, ·)]]⌊B(q, r) = w(ϕ, q)[[B(q, r)]] .

Since spt(ϕ#(∂[[U ]])) ⊂ ϕ(∂U) (this is true for Lipschitz maps and by approximation
also for ϕ), the constancy theorem implies that there is an integer m ∈ Z such that
[[wϕ]]⌊B(q, r) = m[[B(q, r)]]. The convergence of mass (2.24) and (2.25) force that
m = w(ϕ, q). Since the winding number is locally constant and the above holds for
all balls B(q, r) ⊂ R

n \ϕ(∂U), we conclude that [[wϕ]]⌊ϕ(∂U)c = [[w(ϕ, q)]]⌊ϕ(∂U)c.
The last statement (2.22) follows directly from Corollary 2.3. �

The results of this section are more general than what is needed in the progress.
Collecting the tools so far, we combine the push-forwards of currents with the
Riemann-Stieltjes integrals. Fixing some notation first, set B+ := {(x, y, z) ∈ S2 :
z ≥ 0} and B− := {(x, y, z) ∈ S2 : z ≥ 0} to be the northern and southern
hemispheres with intersection B+∩B− = S1. Set Q := [0, 1]2 and let ψ+ : Q→ B+

and ψ− : Q→ B− be two bi-Lipschitz maps with ψ+#[[Q]] + ψ−#[[Q]] = [[S2]].

Corollary 2.5. If ϕ : [0, 1] → R
n with ϕi ∈ Hαi([0, 1]) for i = 1, 2 and α1+α2 > 1,

then

ϕ#[[0, 1]](π
1 dπ2) =

∫ 1

0

ϕ1 dϕ2 .

If ϕ : S1 → R
2 with ϕi ∈ Hαi([0, 1]) for i = 1, 2 and α1 + α2 > 1, then

ϕ#[[S
1]](π1 dπ2) =

∫

S1

ϕ1 dϕ2 =

∫

R2

w(ϕ, q) dL 2(q) .

If ϕ : Q = [0, 1]2 → R
3 with ϕi ∈ Hαi(Q) for i = 1, 2, 3 and α1 + α2 + α3 > 2, then

ϕ#[[Q]](π1 dπ2 ∧ dπ3) = IQ(ϕ
1, ϕ2, ϕ2) .
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If ϕ : S2 → R
3 with ϕi ∈ Hαi(S2) for i = 1, 2, 3 and α1 + α2 + α3 > 2, then

ϕ#[[S
2]](π1 dπ2 ∧ dπ3) =

∑

i=+,−

IQ(ϕ
1 ◦ ψi, ϕ2 ◦ ψi, ϕ3 ◦ ψi)

=

∫

R3

w(ϕ, q) dL 3(q) .

Proof. These statements are true for Lipschitz maps and with appropriate approx-
imations they follow from (2.2), Lemma 2.1, Theorem 2.2 and Proposition 2.4.
Here is a proof of the last identity, the others are similar. If ϕk ∈ Lip(S2,R3) is a

sequence with ϕik
αi−→ ϕi for all i, then

∫

R3

w(ϕk, q) dL
3(q) = [[w(ϕk, ·)]](dπ1 ∧ dπ2 ∧ dπ3)

= ∂[[w(ϕk, ·)]](π1 dπ2 ∧ dπ3)

= ϕk#[[S
2]](π1 dπ2 ∧ dπ3)

=
∑

i=+,−

(ϕk ◦ ψi)#[[Q]](π1 dπ2 ∧ dπ3)

=
∑

i=+,−

[[Q]](ϕ1
k ◦ ψi d(ϕ2

k ◦ ψi) ∧ d(ϕ3
k ◦ ψi))

=
∑

i=+,−

IQ(ϕ
1
k ◦ ψi, ϕ2

k ◦ ψi, ϕ3
k ◦ ψi) .

Taking the limit, the result follows from Lemma 2.1 and Proposition 2.4. �

3. Winding number testing

The lemma below examines the behavior of the integrated winding number func-
tion with respect to some well chosen test functions.

Lemma 3.1. Let γ : S1 → R
2 be a closed curve and γ̄ : S2 → R

2 be an extension
with γ̄i ∈ Hαi(S2) for i = 1, 2 and α1 + α2 > 1. If there is a point c ∈ R

2 \ γ(S1)
with

w(γ, c) < 0 ,

then there are Lipschitz functions f1, f2 : S2 → R with f1 = f2 on B− and f1 ≥ f2
on B+ such that

∫

R3

w(γ̄ × f1, q) dL
3(q) <

∫

R3

w(γ̄ × f2, q) dL
3(q) .

Proof. Fix some r > 0 with B(c, r) ⊂ R
2 \γ(S1) and let g : R2 → R be the function

g(q) := max{r − |q − c|, 0} .
This function has support in B(c, r) and parametrizes a cone over this disk. Let
f : S2 → R be the function given by

f(p) :=

{

+g(γ̄(p)) if p ∈ B+ ,
−g(γ̄(p)) if p ∈ B− .

This function is well defined since g(q) = 0 if q ∈ γ̄(B+ ∩ B−). Consider the
product map ϕ := γ̄×f : S2 → R

3. By construction ϕ is continuous, (c, 0) /∈ ϕ(S2)
and ϕ(B±) ⊂ R

2 × R±. Accordingly, the associated map ϕc : S2 → S2 given by
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ϕc(p) :=
ϕ(p)−(c,0)
|ϕ(p)−(c,0)| satisfies g(B+) ⊂ B+ and g(B−) ⊂ B−. ϕc restricts to a map

on the equator ϕc|S1 : S1 → S1 and the homological degree on the circle satisfies

(3.1) deg(ϕc|S1) = w(γ, c) < 0 .

We want to show that

(3.2) deg(ϕc) = deg(ϕc|S1) ,

which then implies with (3.1) that w(ϕ, (c, 0)) < 0. The observations below are
for example contained in the proof of [2, Theorem IV.6.6] and follow directly from
the Eilenberg-Steenrod axioms for homology. From the exactness axiom and the
fact that B+ and B− are contractible it follows that ∂∗ : H2(B−, S

1) → H1(S
1)

and j∗ : H2(S
2) → H2(S

2, B+) are isomorphisms. Let U be an open ball around
the north pole with Ū ⊂ int(B+). There is a deformation retraction r : (S2 \
U,B+ \ U) → (B−, S

1) and by use of the homotopy and excision axioms we get
isomorphisms,

H1(B−, S
1)

l∗−→ H1(S
2 \ U,B+ \ U)

k∗−→ H1(S
2, B+) ,

where k and l are the inclusions. Since ∂∗ ◦ϕc∗ = ϕc∗ ◦ ∂∗, k ◦ l ◦ϕc = ϕc ◦ k ◦ l and
j◦ϕc = ϕc◦j we obtain an isomorphism ψ : H2(S

2) → H1(S
1) with ψ◦ϕc∗ = ϕc∗◦ψ.

This immediately implies (3.2) and together with (3.1) that w(ϕ, (c, 0)) < 0. Due
to the homotopy invariance of the winding number we can approximate f by a
Lipschitz function f1 such that f1 ≤ 0 on B−, f1 ≥ 0 on B+, (c, 0) /∈ (γ̄ × f1)(S

2)
and w(γ̄ × f1, (c, 0)) = w(ϕ, (c, 0)) < 0. Summing up the Hölder exponents of the
coordinate functions of γ̄ × f1 we obtain α1 + α2 + 1 > 2. As a consequence of
Proposition 2.4, w(γ̄ × f1, ·) ∈ L1

c(R
3) and (γ̄ × f1)#[[S

2]] = ∂[[w(γ̄ × f1, ·)]]. Next
we show that there is a small perturbation f2 ∈ Lip(S2) of f1 as in the statement
of the lemma.

Since w(γ̄ × f1, ·) has compact support and (c, 0) /∈ (γ̄ × f1)(S
2), there are

ρ, h > 0 such that both cylinders B(c, ρ) × [−2ρ, 2ρ] and B(c, ρ) × [h − 2ρ, h+ 2ρ]
are contained in R

3 \ (γ̄× f1)(S
2) and w(γ̄ × f1, (c, h)) = 0. Let η : R3 → R

3 be an
orientation preserving bi-Lipschitz map with η(q) = q if q /∈ B(c, ρ)× [−2ρ, h+ 2ρ]
and

η(q) = (q1, q2, q3 + |(q1, q2)− c| − ρ) ,

if q ∈ B(c, ρ) × [0, h]. The multiplication formula for the local degree [14, Propo-
sition IV.6.1], or a standard fact about currents as for example stated in [12,
Lemma 3.7], shows that

(3.3) w(η ◦ (γ̄ × f1), η(q)) = w(γ̄ × f1, q) ,

whenever q /∈ (γ̄ × f1)(S
2). By construction, η ◦ (γ̄ × f1) = γ̄ × f2 for some

f2 ∈ Lip(S2) with f2 ≤ f1 on B+ and f2 = f1 on B−. There holds detDη = 1
almost everywhere on A := R

3 \ {(q, t) ∈ B(c, ρ)×R : t ∈ [−2ρ, 0]∪ [h, h+2ρ]} and
hence with the change of variables formula and (3.3),

(3.4)

∫

A

w(γ̄ × f1, q) dL
3(q) =

∫

η(A)

w(γ̄ × f2, q) dL
3(q) .

The homotopy invariance of the local degree implies that w(γ̄ × f2, q) = w(γ̄ ×
f1, q) = w(γ̄ × f1, (c, 0)) for q ∈ B := B(c, ρ) × [−2ρ, 0] and w(γ̄ × f2, q) = w(γ̄ ×
f1, q) = 0 for q ∈ B(c, ρ)× [h− 2ρ, h+ 2ρ]. By construction, the set

B \ η(B) =
{

q ∈ R
3 : (q1, q2) ∈ B(c, ρ), q3 ∈ (|(q1, q2)− c| − ρ, 0]

}
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has positive measure and with (3.4) we conclude,
∫

R3

w(γ̄ × f2, q) dq =

∫

A

w(γ̄ × f1, q) dq +

∫

R3\η(A)

w(γ̄ × f2, q) dq

=

∫

R3\B

w(γ̄ × f1, q) dq +

∫

η(B)

w(γ̄ × f1, q) dq

=

∫

R3

w(γ̄ × f1, q) dq − L
3(B \ η(B))w(γ̄ × f1, (c, 0))

>

∫

R3

w(γ̄ × f1, q) dq .

This proves the lemma. �

Next we combine this lemma with the two dimensional analogue of the Riemann-
Stieltjes integral described in Lemma 2.1 to obtain Proposition 1.3 stated in the
introduction.

Proposition 3.2. Set Q := [0, 1]2 ⊂ R
2 and let Γ : Q → R

2 be a map with
Γi ∈ Hαi(Q) for i = 1, 2 and α1 + α2 > 1. If for any dyadic square R ⊂ Q there
holds

∫

R2

deg(Γ, int(R), q) dL 2(q) ≥ 0 ,

then

deg(Γ, int(Q), q) ≥ 0 ,

whenever q ∈ R
2 \ Γ(∂Q).

Proof. With γ we denote the restriction of Γ to ∂Q. Consider bi-Lipschitz maps
ψ+ : Q → B+ and ψ− : Q → B− as in Corollary 2.5. Let γ̄ : S2 → R

2 be equal to
Γ ◦ψ−1

+ on B+ and extend each γ̄i arbitrarily to a function in Hαi(S2) for i = 1, 2.
For any f ∈ Lip(S2), it follows from Corollary 2.5 that

(3.5)
∑

i=+,−

IQ(f ◦ ψi, γ̄1 ◦ ψi, γ̄2 ◦ ψi) =
∫

R3

w(γ̄ × f, q) dL 3(q) ,

and also for any square R ⊂ Q, there holds
∫

∂R

γ̄1 ◦ ψ+ d(γ̄
2 ◦ ψ+) = Γ#(∂[[R]])(π

1 dπ2) =

∫

R2

w(Γ|∂R, q) ≥ 0 .(3.6)

Let f1, f2 ∈ Lip(S2) be Lipschitz functions with f1 ≥ f2 on B+ and f1 = f2 on B−.
Combining (3.5) and (3.6) with the definition of IQ we obtain

∫

R3

w(γ̄ × f1, q)− w(γ̄ × f2, q) dL
3(q)

= IQ(f1 ◦ ψ+, γ̄
1 ◦ ψ+, γ̄

2 ◦ ψ+)− IQ(f2 ◦ ψ+, γ̄
1 ◦ ψ+, γ̄

2 ◦ ψ+)

= lim
k→∞

∑

R∈Pk(Q)

[

(f1 ◦ ψ+)(bR)− (f2 ◦ ψ+)(bR)
]

∫

∂R

γ̄1 ◦ ψ+ d(γ̄
2 ◦ ψ+)

≥ 0 .

With Lemma 3.1 we conclude that w(γ̄|S1 , q) ≥ 0 for all q ∈ R
2 \ γ̄(S1). Be-

cause ψ+|∂Q is a counterclockwise bi-Lipschitz parameterization of S1, w(γ̄|S1 , q) =
w(Γ|∂Q, q) and the proposition follows. �
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There is a simple consequence for strictly positive degrees which is motivated by
the proof of [6, Theorem 3].

Corollary 3.3. Let U ⊂ R
2 be a bounded open set and ϕ : Ū → R

2 be a map with
ϕi ∈ Hαi(Q) and α1 + α2 > 1. If for all squares R ⊂ U ,

(3.7)

∫

R2

deg(ϕ, int(R), q) dL 2(q) ≥ 0 ,

then deg(ϕ,U, q) ≥ 0 whenever q ∈ R
2 \ ϕ(∂U). If strict inequality holds in (3.7)

for all non-degenerate squares R ⊂ U , then deg(ϕ,U, q) ≥ 1 whenever q ∈ ϕ(U) \
ϕ(∂U).

Proof. Because of the regularity of ϕ, it follows from Proposition 2.4 that for all
squares Q ⊂ U and q ∈ R

2 \ ϕ(∂Q),

(3.8) deg(ϕ, int(Q), q) ≥ 0 .

If c /∈ ϕ(Ū), then obviously deg(ϕ,U, c) = 0. So, fix some ball B2(c, r) ⊂ ϕ(U) \
ϕ(∂U) and set V := ϕ−1(U2(c, r)). V is an open set that satisfies ϕ(V ) ⊂ U2(c, r)
and ϕ(∂V ) ⊂ ∂ B2(c, r). From the additivity property and local invariance of the
degree it follows that for all q ∈ R

2 \U2(c, r),

(3.9) deg(ϕ, V, q) = deg(ϕ,U, c) .

As an open set, V =
⋃

i∈N
Qi for a countable collection of almost disjoint closed

squares Qi. This means that Qi ∩ Qj ⊂ ∂Qi ∩ ∂Qj for different i and j. We can
assume that any compact subset of V intersects only finitely many Qi. This is for
example the case for a Whitney decomposition of V . Because of Proposition 2.4,
H 2(ϕ(∂Qi)) = 0 for all i. As a countable union A :=

⋃

i ∂Qi satisfies H 2(ϕ(A)) =

0 too. Hence for almost every q ∈ U2(c, r), the preimage ϕ−1(q) is contained in the
interior of finitely many Qi and by the additivity property of the degree and (3.8),

deg(ϕ, V, q) =
∑

i∈N

deg(ϕ, int(Qi), q) ≥ deg(ϕ, int(Q1), q) .

With (3.9) we conclude,

L
2(B2(c, r)) deg(ϕ,U, c) =

∫

R2

deg(ϕ, V, q) dL 2(q)

≥
∫

R2

deg(ϕ, int(Q1), q) dL
2(q)

≥ 0 .

This shows that deg(ϕ,U, c) ≥ 0 and in case of strict inequality (and the fact that
the degree is an integer) that deg(ϕ,U, c) ≥ 1. �

The analogous statements for non-positive or negative degrees are true as well.
They follows with the same proofs or by a change of orientations, for example by
switching ϕ1 and ϕ2. With the proposition above, we have the following strength-
ening of [21, Theorem 1.2].

Theorem 3.4. Let (X, d) be a C-quasi-convex metric space with HLip
1 (X) = 0 and

ϕ : X → R
2 be a map with ϕi ∈ Hαi(X) and α1 + α2 > 1. If for any Lipschitz

curve γ : S1 → X,

(3.10)

∫

R2

w(ϕ ◦ γ, q) dL 2(q) = 0 ,
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then there is a tree (T, dT ) and maps ψ : X → T , ϕ̄ : T → ϕ(X) with ϕ = ϕ̄ ◦ ψ
and

|ϕ(x) − ϕ(x′)| ≤ dT (ψ(x), ψ(x
′)) ≤ σ(Cd(x, x′)) ,

where σ(t) := (Hα1(ϕ1)2t2α1 +Hα2(ϕ2)2t2α2)
1
2 . Moreover, the tree (T, dT ) satisfies:

(1) dT is monotone on arcs in the sense that dT (p, p
′) ≤ dT (q, q

′) whenever p
and p′ are contained in the arc [q, q′] connecting q with q′.

(2) dim(T, dT ) ≤ 1.
(3) For any p ∈ T there is a contraction πp : T ×R≥0 → T with πp(q, t) ∈ [p, q],

πp(q, 0) = p, πp(q, t) = q for t ≥ Vσ([p, q]) and

dT (πp(q, t), πp(q
′, t′)) ≤ dT (q, q

′) + σ(|t− t′|) .
On the other hand, if ϕ factors through a tree, (3.10) holds.

Proof. Note that σ : R≥0 → R≥0 is a homeomorphism and the map ϕ : X → R
2 is

σ-continuous by assumption. The conclusions follows at once from [21, Theorem 1.1]
if we can show that ϕ has Property (T) as stated therein. Statement (3) is slightly
altered and we replaced C distX(ψ−1(p), ψ−1(q)) with the intrinsic Vσ([p, q]). This
change is valid by the definition of πp given in [21, pp. 84].

Since X is quasi-convex, any curve in X can be uniformly approximated by
Lipschitz curves and in order to show Property (T) it is therefore enough to show it
for Lipschitz curves in X only. Consider first a closed Lipschitz curve γ : S1 → X
for which there is a Lipschitz extension Γ : B2(0, 1) → X . By assumption there
holds

∫

R2

w(ϕ ◦ Γ|∂B, q) dL 2(q) = 0 ,

for any set B ⊂ B2(0, 1) bi-Lipschitz equivalent to B2(0, 1). Proposition 3.2 implies
that w(ϕ ◦ γ, ·) ≥ 0 almost everywhere. Changing the orientation of ϕ, for example
by switching ϕ1 and ϕ2, we similarly obtain w(ϕ ◦ γ, ·) ≤ 0 almost everywhere.
From Proposition 2.4 it follows that

(3.11) (ϕ ◦ γ)#[[S1]] = ∂[[w(ϕ ◦ γ, ·)]] = 0 ,

for any closed Lipschitz curve γ : S1 → X for which there is a filling Γ as

above. If γ : S1 → X is an arbitrary Lipschitz curve, the assumption HLip
1 (X) =

0 implies that there are finitely many Lipschitz maps Γi : B2(0, 1) → X with
∂
∑

i Γi#[[B
2(0, 1)]] =

∑

i Γi#[[S
1]] = γ#[[S

1]], see [21, Equation (2.2)] and the discus-
sion leading to this for some details. Then (3.11) holds for any restriction γi = Γi|S1

and therefore also for γ.
Now fix two points x1, x2 ∈ X with ϕ(x1) 6= ϕ(x2) and let γ : [0, 1] → X be

a Lipschitz curve connecting x1 with x2. With Theorem 2.2 we see that R :=
(ϕ ◦ γ)#[[0, 1]] is a metric current in F1(R

2) with ∂R = [[ϕ(x2)]] − [[ϕ(x1)]] 6= 0.
Hence R 6= 0 and since a nontrivial 1-dimensional metric current, or a nontrivial
1-dimensional flat chain, can’t be supported on finitely many points, there is a point
q ∈ spt(R) \ {ϕ(x1), ϕ(x2)}. If η : [0, 1] → X is another Lipschitz curve connecting
x1 and x2 and S := (ϕ◦ η)#[[0, 1]] is the induced current, it follows from (3.11) that
R = S and hence p ∈ spt(S) ⊂ im(ϕ◦η). Since η was arbitrary, ϕ has Property (T)
and the theorem now follows from [21, Theorem 1.1].

For the other implication, if ϕ is a map that factors through a tree, then it
has Property (T) and hence ϕ factors through a tree as in [21, Theorem 1.1],
respectively as in the statement of this theorem. Using the contraction of T , for any
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map γ ∈ Lip(S1, X) there is a continuous extension Γ : B2(0, 1) → T of ψ ◦ γ with
im(Γ) ⊂ im(ψ ◦ γ), compare with [21, Corollary 3.12]. Hence im(ϕ̄ ◦Γ) ⊂ im(ϕ ◦ γ)
and therefore w(ϕ ◦ γ, ·) = 0 almost everywhere (note that L 2(im(ϕ ◦ γ)) = 0 by
Proposition 2.4). �

4. Maps into the Heisenberg group

The first Heisenberg group with the Carnot-Carathéodory metric (H, dcc) is bi-
Lipschitz equivalent to R

3 equipped with the Korányi metric,

dK(p, q) :=
[

(|qx − px|2 + |qy − py|2)2 + 16|qz − pz − 1
2 (pxqy − pyqx)|2

]
1
4 ,

see for example [5, §2.2.1]. Since the statements about the Heisenberg group we
consider do not depend on a change to a bi-Lipschitz equivalent metric, we work
with (R3, dK) instead of (H, dcc). It is rather direct to check that for any bounded
subset B ⊂ R

3 there is a constant C > 0 such that for all p, q ∈ B,

C−1dE(p, q) ≤ dK(p, q) ≤ CdE(p, q)
1
2 ,

where dE denotes the Euclidean metric on R
3. The following well known path lifting

property is for example stated in [13, Lemma 3.2]. Given γ : [a, b] → (R3, dK)
of Hölder regularity α > 1/2, we can recover the vertical components from its
horizontal projections in the sense that

(4.1) γz(b)− γz(a) =
1

2

(

∫ b

a

γx dγy −
∫ b

a

γy dγx

)

.

This is a consequence of the estimate (2.1) for the Riemann-Stieltjes integral and
the specific form of the Korányi metric. If ϕ : Q = [0, 1]2 → (R3, dK) is a map of
Hölder regularity α > 1

2 , then the horizontal projection ϕh := ϕx × ϕy : Q→ R
2 is

of Hölder regularity α too. The path lifting property (4.1) and Corollary 2.5 imply
that for any square R ⊂ Q there holds,

∫

R2

w(ϕh|∂R, q) dL 2(q) = ϕh#(∂[[R]])(x dy) =

∫

∂R

ϕx dϕy = 0 .

From Proposition 3.2 it follows that the winding number w(ϕh|∂Q, ·) vanishes on
R

2 \ ϕh(∂Q). Then [13, Lemma 3.3] concludes that ϕ can’t be an embedding.
This also follows from the factorization through trees statement below, but since
the proof of [13, Lemma 3.3] is simpler and also implies Gromov’s non-embedding
conjecture it is certainly interesting to note.

Theorem 4.1. Let (X, d) be a C-quasi-convex metric space with HLip
1 (X) = 0 and

ϕ : X → (H, dcc) be a map of Hölder regularity α > 1
2 . Then there is a tree (T, dT )

and maps ψ : X → T , ϕ̄ : T → ϕ(X) with ϕ = ϕ̄ ◦ ψ and

|ϕ(x) − ϕ(x′)| ≤ dT (ψ(x), ψ(x
′)) ≤ σ(Cd(x, x′)) ,

for σ(t) := Hα(ϕ)tα. Moreover, the tree (T, dT ) satisfies:

(1) dT is monotone on arcs in the sense that dT (p, p
′) ≤ dT (q, q

′) whenever p
and p′ are contained in the arc [q, q′] connecting q with q′.

(2) dim(T, dT ) ≤ 1.
(3) For any p ∈ T there is a contraction πp : T ×R≥0 → T with πp(q, t) ∈ [p, q],

πp(q, 0) = p, πp(q, t) = q for t ≥ Vσ([p, q]) and

dT (πp(q, t), πp(q
′, t′)) ≤ dT (q, q

′) + Hα(ϕ)|t− t′|α .
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Proof. As in Theorem 3.4 we replacedC distX(ψ−1(p), ψ−1(q)) in (3) with Vσ([p, q]).
Treating ϕ as a map into (R3, dK), the horizontal projection ϕh := ϕx×ϕy : X → R

2

is Hölder continuous with regularity α. The path lifting property (4.1) and Corol-
lary 2.5 imply that for any Lipschitz curve γ : S1 → X there holds
∫

R2

w(ϕh ◦ γ, q) dL 2(q) = (ϕh ◦ γ)#[[S1]](x dy) =

∫

S1

(ϕx ◦ γ) d(ϕy ◦ γ) = 0 .

It follows from Theorem 3.4 that there is a tree (T, d1) and maps f ∈ Hα(X,T )
and g ∈ Lip(T,R2) with ϕh = g ◦ f , and say with T = im(f). g can be lifted to a
map ḡ : T → R

3 such that ϕ = ḡ ◦ f . To see this, fix a point p = f(x) ∈ T and set
ḡ(p) := ϕ(x). The contraction property of T implies that for any q ∈ T there is a
curve γ ∈ Hα([0, 1], T ) connecting p with q. Define

ḡz(q) := ḡz(p) +
1

2

(
∫ 1

0

(gx ◦ γ) d(gy ◦ γ)−
∫ 1

0

(gy ◦ γ) d(gx ◦ γ)
)

.

This definition is independent of the particular choice for γ. For γ ∈ Hα(S1, T ),
the contraction property of T gives a continuous extension Γ : B2(0, 1) → T with
im(Γ) ⊂ im(γ), see [21, Corollary 3.12]. Hence w(g ◦ γ, ·) = 0 almost everywhere.
Together with Corollary 2.5 this implies

0 =
1

2
(g ◦ γ)#[[S1]](x dy − y dx)

=
1

2

(
∫

S1

(gx ◦ γ) d(gy ◦ γ)−
∫

S1

(gy ◦ γ) d(gx ◦ γ)
)

.

Since X is Lipschitz path-connected we can find for any q ∈ T a Lipschitz curve
γ ∈ Lip([0, 1], X) for which f ◦ γ ∈ Hα([0, 1], T ) connects p with q. The path lifting
property for ϕ ◦ γ then implies that ϕ = ḡ ◦ f . It may be possible that ḡ is not
continous. For this reason define a new metric d2 on T by

d2(p, q) := max{dK(ḡ(p), ḡ(q)), d1(p, q)} .
This is clearly a metric on T with respect to which ḡ : (T, d2) → (R3, dK) is
Lipschitz. For all x, y ∈ X ,

d2(f(x), f(y)) ≤ max{dK(ϕ(x), ϕ(y)),Hα(f)d(x, y)α}
≤ max{Hα(ϕ),Hα(f)}d(x, y)α .

It remains to check that (T, d2) is a tree. Because f is continuous and X is
path-connected, so is (T, d2). In particular, (T, d2) is arc-connected. Because
idT : (T, d2) → (T, d1) is continuous, any arc in (T, d2) is also an arc in (T, d1).
Hence (T, d2) is uniquely arc-connected because (T, d1) is. This shows that ϕ factors
through a tree and hence has Property (T). Since this is a purely topological prop-
erty, the factorization for the map ϕ : X → H now follows from [21, Theorem 1.1]
(the resulting tree may be different from (T, d2)). �

The contraction property of the tree has immediate consequences for the homo-
topy groups of (H, dcc) due to the continuous extensions of [21, Corollary 3.12].

Corollary 4.2. There is a constant C > 0 with the following property. For any
n ≥ 2, α > 1

2 and γ ∈ Hα(Sn,H), there is an extension Γ : Bn+1(0, 1) with

Hα(Γ) ≤ C Hα(γ). In contrast, for γ ∈ Hα(S1,H) there is in general no extension
Γ ∈ Hα(B2(0, 1),H) (for example if γ is injective or more generally if γ#[[S

1]] 6= 0).
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5. Isometric immersions

In the discussion hereafter we follow closely the arguments of [6], where a sim-
plified proof of a result of Borisov [3, 4] is given. First we recall a definition from
[15, pp. 572].

Definition 5.1. Let M2 be a surface without boundary and ϕ : M → R
3 be an

immersion of class C1. We say that ϕ(M) is of bounded extrinsic curvature if
there is a constant C > 0 such that for any finite collection A1, . . . , An of disjoint
compact subsets of M there holds

n
∑

i=1

H
2(N(Ai)) ≤ C ,

where N : U → S2 is the Gauss map N := ∂1u×∂2u
|∂1u×∂2u|

.

We should clarify that in [15] the sets Ai are disjoint closed sets in R
3, but since

we are interested in a local statement the two definitions are the same. We prove
the following result which combines Proposition 3.2 with the arguments in [6].

Proposition 5.2. Let g be a Riemannian metric of class C2 defined on a bounded
open set U ⊂ R

2 and let ϕ : U → R
3 be an isometric immersion of class C1,α

for some α > 1
2 . Assume that N(U) ⊂ B+. If g has positive (or negative) Gauss

curvature κ, then ϕ(U) has extrinsic curvature bounded by
∫

U
|κ(p)| dH 2

g (p).

Proof. Let ψ be an area and orientation-preserving diffeomorphism from a neighbor-
hood of B+ onto a subset of R2. The projection ψ and the hypothesis N(U) ⊂ B+

are considered only because we have introduced the local degree for maps into the
plane and not for maps into surfaces. Also Proposition 3.2 is formulated this way.
By post-composing a Gauss map with ψ, we will treat it as a map into R

2 where
convenient and won’t mention ψ explicitly. Fix some open Lipschitz domain Ω ⋐ U
(this means that ∂Ω can be parametrized by finitely many closed Lipschitz curves)
and let V be an open set with Ω ⋐ V ⋐ U . We want to show that

(5.1)

∫

Ω

κ(p) dH 2
g (p) =

∫

S2

deg(N,Ω, q) dH 2(q) .

As it will turn out, the reason we can do this for α ∈ (12 ,
2
3 ] is that we do not

integrate over a test function f as in [6]. It follows from [6, Proposition 1] that
there is a sequence of smooth immersions ϕn : V → R

3 with corresponding Gauss

maps Nn such that im(ϕn) ⊂ dom(ψ), Nn|V α−→ N |V and

(5.2) lim
n→∞

‖gn − g‖C1(V ) = 0 ,

where gn = ϕ#
n e for the standard inner product e on R

3. With κn we denote the
Gauss curvature induced by gn. An oriented orhonormal frame (X1, X2) on V is
defined by

X1 :=
∂1
|∂1|g

and X2 :=
∂2 −X1g(∂2, X1)

|∂2 −X1g(∂2, X1)|g
.

This frame is of class C2 because g is, and so are the dual 1-forms ω1, ω2 ∈
C2(U,Λ1

R
2) (they satisfy ωi(Xj) = δij). There is a 1-form ω12 ∈ C1(U,Λ1

R
2)

with defining identities ω12(X1) = dω1(X1, X2) and ω12(X2) = dω2(X1, X2). As
for example stated in [8, Proposition 2, pp. 92],

(5.3) dω12(p) = −κ(p)(ω1 ∧ ω2)(p) .



GROMOV’S HÖLDER EQUIVALENCE PROBLEM 21

Similarly we can define frames (Xn
1 , X

n
2 ) and corresponding forms ωn1 , ω

n
2 , ω

n
12 ∈

C∞(V,Λ1
R

2) with respect to gn for all n. Since these constructions depend smoothly
on the metric, (5.2) implies that limn→∞ ‖ωni −ωi‖C1(V ) = 0 for i = 1, 2, and further

lim
n→∞

‖ωn12 − ω12‖C0(V ) = 0 .

With (5.3) this leads to,
∫

Ω

κ(p) dH 2
g (p) =

∫

Ω

κω1 ∧ ω2 = [[Ω]](κω1 ∧ ω2)

= −∂[[Ω]](ω12) = − lim
n→∞

∂[[Ω]](ωn12)

= lim
n→∞

∫

Ω

κn(p) dH
2
gn
(p) .(5.4)

For the convergence of the boundary terms note that ∂[[Ω]] =
∑

i γi#[[0, 1]] for finitely
many closed Lipschitz curves γi : [0, 1] → ∂Ω. If ω12 = a dx+ b dy, then

γi#[[0, 1]](a dx1 + b dx2) =

∫ 1

0

a(γi(t))γ
′
i,x(t) + b(γ(t))γ′i,y(t) dt ,

and the convergence is obvious since ωn12 converges uniformly to ω12. Let σ be
the volume form of S2. By construction, ωn1 ∧ ωn2 is a volume form of (U, gn) and
because Nn is smooth, the classical formula N#

n σ = κn ω
n
1 ∧ ωn2 is valid. Relating

the push-forward of currents with the degree as in (2.23),

(5.5)

∫

Ω

κn(p) dH
2
gn
(p) = Nn#[[Ω]](σ) =

∫

S2

deg(Nn,Ω, q)H
2(q) .

Since α > 1
2 , it follows from Proposition 2.4, that deg(Nn,Ω, ·) converges in L1 to

deg(N,Ω, ·). From (5.4) and (5.5) we obtain (5.1):
∫

Ω

κ(p) dH 2
g (p) = lim

n→∞

∫

Ω

κn(p) dH
2
gn
(p)

= lim
n→∞

∫

S2

deg(Nn,Ω, q) dH
2(q)

=

∫

S2

deg(N,Ω, q) dH 2(q) .

Note that we could show this identity more generally for open domains Ω ⋐ U
with H 1(Ω) < ∞. This equation in particular holds for open squares R ⋐ U .
Since κ > 0 it follows from Corollary 3.3 that for all open sets W ⋐ U and q ∈
N(W ) \N(∂W ),

(5.6) deg(N,W, q) ≥ 1 .

Now let A1, . . . , An ⊂ U be a finite collection of disjoint compact sets. Thickening
them if necessary, we find a cover Ω1, . . . ,Ωn of disjoint open Lipschitz domains
with compact closure in U . With (5.6) and (5.1) we conclude

∑

i

H
2(N(Ai)) ≤

∑

i

H
2(N(Ωi) \N(∂Ωi)) ≤

∑

i

∫

S2

deg(N,Ωi, ·) ≤
∫

U

κ .

The proof in case κ < 0 is analogous. �

Theorem 1.2 stated in the introduction is an immediate consequence.
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