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Abstract

We study regularity properties of solutions to reactioffudion equa-
tions ruled by the infinity laplacian operator. We focus aualgsis in models
presenting plateaus, i.e. regions where a non-negativé@olanishes iden-
tically. We obtain sharp geometric regularity estimatesédutions along the
boundary of plateaus sets. In particular we show thafithe £ )-Hausdorff
measure of the plateaus boundary is finite, for a universabmue > 0.
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1 Introduction

The mathematical analysis of problems involving the infiliaplacian operator,

(1.1) Dol =y Giudijudju= (Du)"Du Dy,

1]
constitutes a beautiful chapter of the modern theory ofigladifferential equa-
tions, yet far from its denouement. The systematic studyroblpms involving
the infinity laplacian operator has been originated by tlomgering works of G.
Aronsson|[[1[ 2]. The initial purpose of this line of reseaigho answer the fol-
lowing natural question: given a bounded dom@ia R" and a Lipschitz function
g: d0 — R, find its best Lipschitz extensior, in the sense that it agrees wigh
on the boundary and for aly € O, if f =hond0/, then| || ipoy < [INl|Lip(0)-
Such a functiorf is said to be an absolutely minimizing Lipschitz extensibg im
O. Jensen in[113] has proven that a function in an absolutehimizing Lipschitz
extension if, and only if, it is a viscosity solution to therhogeneous equation
Asu = 0. That is, the infinity Laplacian rules the Euler-Lagrangeatipn associ-
ated to thid.* minimization problem.
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Through the years, several different applications of tligily Laplacian the-
ory emerged in the literature, [, 115, 4], just to cite few. Yeéer to [3] for an
elegant discussion on the theory of absolutely minimizifgsthitz extensions.
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While, existence and uniqueness of viscosity solution ® lbmogeneous
Dirichlet problemA.,h =0, inO, u= g, ond0 is nowadays fairly well established,
obtaining improved regularity estimates for infinity hamrmofunctions remains
a major open issue in the theory of nonlinear partial difitie¢ equations. The

example of Aronsson
h(X7 y) = X4/3 - y4/3

hints out to one of the most famous conjecture in this field:fitst derivatives of
infinity harmonic functions should be Holder continuoushaptimal exponen%.
The best results known up to date are due to Evans and SayiwH8 proved that
infinity harmonic functions in the plane are of cl&s?, for some 0< o < 1, see
also [14], and to Evans and Smait, [9], who obtained everyavdéferentiability
for infinity harmonic functions in any dimension.

The theory of inhomogeneous infinity laplacian equatibge = f (X) is more
recent and subtle. Lu and Wang in [12] has proven existendeuaigueness of
continuous viscosity solutions to the Dirichlet problem

Asu = f(X) inO
(1.2) { u =g ongdo,

provided the source functioh does not change sign, i.e. either fnf O or else
supf < 0. Unigueness may fail if such a condition is violated,| [1ppandix A].
While Lipschitz estimates and everywhere differenti&pitilso hold for a function
whose infinity laplacian is bounded in the viscosity sense [41], no further
regularity is so far known for inhomogeneous equations.

This current work is devoted to the study of reaction-diffusmodels ruled by
the infinity Laplacian operator. Namely, far> 0 and 0< y < 3, let

(1.3) LIVi=Dv—A (V)Y

denote theo-diffusion operator withy-strong absorption. The cage= 0 is related

to the infinity-obstacle problemni, [17]. The constant 0 is called the Thiele mod-
ulus, which adjusts the ratio of reaction rate to diffusicorvection rate. Given a
bounded domai®@ c R", n> 2, and a continuous, nonnegative boundary value da-
tumg e C(9Q), we study existence, uniqueness and regularity issueg Ditfch-

let problem

y _ .
(1.4) {.,%,u_o in Q

u=¢@ on JdQ.
An important feature in the mathematical formulation of&tipn [1.4) is the possi-

ble existence of plateaus, i.e., a priori unknown regionsrelhe function vanishes
identically.



Upon establishing existence of a viscosity solution, equafl.4) can be re-
garded as a inhomogeneous infinity laplacian equation; hemtbe corresponding
source function is not bounded away from zero. Notwithstamdas a preliminar
result, we show unigueness, up-to-the-boundary conginaitd non-negativeness
of viscosity solution to Equatioh (1.4), Theoréml3.1. Theqgbris based on com-
parison principle methods, proven to hold for the operzaitt

The heart of the matter, though, lies on geometric regylagtimates for
the solution to Equatiori (1.4). While it follows by clasdicansiderations that
bounded viscosity solutions are locally Lipschitz conting, no further smooth-
ness property can be inferred by the existing theory. Thexmesult we show in
this work assures that a viscosity solution to Equation)(is.fointwiselyof class

C along the boundary of the non-coincidence 8¢t > 0}, Theoreni 4.2.

One should notice that for each<Qy < 3, the regularity estimate established
in Theorem 4.2 is superior than the optin@i‘lﬂ%-estimate, yet to be confirmed
(or not), for infinity harmonic functions. Hence, it is claghat such a geometric,
improved estimate cannot be extended inwards the nonideimce sefu > 0}.
Nonetheless, such an estimate does enforce rather spemificegric information
on the behavior ofi near the boundary of the coincidence set. By means of bsyrier
we show that such an estimate is optimal, Thedrerm 6.1, ingthgesthati detaches

4
from its coincidence set precisely as digt This fact allows us to derive Hausdorff
measure estimates fa{u > 0}, Corollary(6.2.

We conclude this introduction by pointing out that similesults can be derived
to problems with more general absorption terfisu = f(u). We have chosen to
present this current article fdr(u) = A (u™)" as to highlight the main novelties
introduced in our analysis.

2 Notations

In this article we shall use classical notations and tertoiies, which, for the
sake of the readers, we list below.

The dimension of Euclidean space in which the equations estilgms treated
in this article are modeled into will be denoted iy

Given O a subset of th&®", we denote by O its boundary. FoB,(X) C R"
we denote the open ball of radius> 0 centered aK € R". For the vectorp =
(p1,-++, pn) @andg = (aqu,--- ,0n), we consider b, d) the standard scalar product in
R" and|p| := +/(B, P) its Euclidean norm. The tensor prodyet g denotes the

matrix (pi - dj)1<i, j<n-



For a real functiorw defined in a open subset of ti&&8, we denote by
Dw(X) = (9jw(X))1<j<n and D?w(X) := (3 W(X))1<ij<n

its gradient and its hessian at the po¥t R", wheredw is ai-th directional
derivative ofw andd;j w the j-th directional derivative of;cw.

Fixed a domaimQ c R", we will call universal any positive constant that de-
pends only on dimensiory,andQ.

For an operato6: O x R" x Sym(n) — R and a domair) C R", a continuous
functionw: O — R is called aviscosity subsolutioof the equation

(2.1) G(X,w,Dw,D?w) =0in O,

if wheneverg € C? is such thato— ¢ has a local maximum at some poie O,
then there holds
G(Y,w(Y),D$(Y),D?$(Y)) > 0.

Similarly, a continuous functiom: © — R is called aviscosity supersolutionf
equation [[Z11), if¢p € C? is such thath — w has a local maximum at some point
Y € O, then there holds

G(Y, w(Y), D (Y),D?$(Y)) <.

We sayw a viscosity solutionof the G(X, w,Dw,D?w) = 0 whenw is both a
subsolution and a supersolution.

3 Preliminaries

In this Section we make a preliminar analysis on equatiof) (1nitially, we point
that, for the purposes of this article, the Thiele modulus/elno important role,
and hence, hereafter, we shall take- 1.

We start off by verifying that any existing viscosity supmtgion to [1.4),
ZYu <0, is nonnegative. Indeed suppose the opendsa) := {u < 0} were
nonempty. Them would satisfy inO(u)

Aeu<0, in O(u)
(3.1) { u=0, on JdO(u).

By the classical comparison principle for infinity-harmoiunctions, see for in-
stance([18]u > 0 in O(u), which drives us to a contradiction.

We now briefly comment on existence of a viscosity solutiothi Dirichet
problem [1.4). As usual it follows by an application of Pesomethod once com-
parison principle is established.



Indeed, let us consider the functiomandu, solutions to the following bound-
ary value problems:

AOOUZO in Q, and Aco
u=¢ on 0Q.

= ||§0|||¥w(ag) in  Q,
= @ on 0Q.

I i<

Existence of such solutions follows of standard argumewis.note thati andu
are respectively, supersolution and subsolutiof id (I-4grefore by Comparison
principle, Lemmad_3J2 below, it is possible, under a diregiligation of Perron’s
method, to obtain the existence of a viscosity solutioB(f) of (T.4), given by

u(X) :=inf{w(X) | wis a supersolution of (1.4) and< w < win Q}.

Uniqueness also follows readily from comparison principiée state these obser-
vations as a Theorem for future references.

Theorem 3.1(Existence and Uniquinesshet Q ¢ R" be a bounded domain and
¢ € C(9Q) be a given nonnegative function. Then there exists a notimedanc-
tion ue C (Q) satisfying(L.4) in the viscosity sense. Moreover, such a solution is
unique.

We now deliver a proof for comparison principle for the opera%y. The
reasoning is somewhat standard in the theory of viscosltytieas; we carry out
the details for the reader’s convenience.

Lemma 3.2. Let i, and p be continuous functions 9 satisfying
ZLYur <0 and ZYu, >0in Q.
If up > up, ondQ, then y > w, insideQ.

Proof. Let us suppose, for the purpose of contradiction, that tegigtsMy > 0
such thatMp = SEp(Uz —uj). For eacke > 0 small, define

up ()~ ()~ XY ) <o

Let (X, Ye) € Q x Q be a point where the maximum is attained. It follows a$in [6,
lemma 3.1] that

1 .
(3.2) lim=|Xe—Y:>=0, and limM, = M.
& £—0

£—0



In particular we must have

(3.3) limXe = lim Yy =: Zg
£—0

£—0

whereuy(Zp) — u1(Zo) = Mp. Moreover, one observes that

Mo > 0> sup(uz — ug),
Q

henceX; € Q' for some interior domai®@’ € Q ande > 0 sufficiently small. There-
fore, by [6, Theorem 3.2] there ex®f,N € 8§ with

Xe —Ye Ye —Xe
£

(3.4) < ,M> €Jg w(Xe) and < ,N> €35 ui(Ye)

such that,

3/1 0 M O 3 I =l
(3.5) _E<0|>§<o N>§E<—| | >
In particular,M <N. By (3.4) and[(3.5), we obtain

A (X Ye) (X Ye
& &

(%) ()

< (w(Ye)).

(U2(Xe) )Y

IN

IN

Therefore,
(Me+ur(Ye) + (28) 1 Xe — Ye|2) " < un(Ye) ™.

By (3.2) and[(3.B) and letting — 0 in the estimate above gives
(Mo+Uu1(Zo0))" < ui(Zo)*

which drives us to a contradiction sinag > 0 andMg > 0, by assumption. [

4 Geometric regularity estimates

As previously mentioned, viscosity solutions to
(4.1) ZLYu=0 in Q,

for 0 < y < 3, are locally Lipschitz continuous. This is the optimal ulzgity
estimated available in the literature — there is hope to sbbfvestimates for some
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0 < a < 1/3, but certainly not beyond that. Surprisingly, in this $&tiwe show
a sharp, improved regularity estimate foalong its free plateaus boundatyu >
0} N Q. The proof is based on a flatness improvement argument &usply [20),
18]; see also [19] for improved estimates that hold solebh@honphysicalfree
interfaces.

Next Lemma provides a universal way to flatten a solution rzeafateaus
boundary point. In the sequel we shall apply such a Lemma adidyballs as to
obtain the aimed regularity estimate at free plateaus kenymabints.

Lemma 4.1 (Flattening solutions) Given > 0O, there exists a numbex, > 0,
depending only o and dimension such that ifeyC(B;) satisfies

v(0)=0, 0<v<1l in B
and
Av—KA(VT)Y =0 in By,

for 0 < k < ky, then

supv < U.
Bi/2

Proof. Let us suppose, for the sake of contradiction, that therstepy > 0 and
sequencesV, }en, {K }ien Satisfying

OSVIS17 V’(O):O

and

AoV, — KMV =0 for Kk, =o0(1),
such that,
(4.2) sup/, > Uo.

Bi/2

By Lipschitz estimates, the sequenfe }, < is pre-compact in th@ovl(Bl/z)
topology. Up to a subsequenog,— V., locally uniform inB;/3. Moreover, we
havev,(0) =0, 0< Vv, < 1and

Therefore, by the maximum principle for infinity harmonimfiions, we obtain
Vo = 0. This give us a contradiction to (4.2), if we choase- 1. O



Theorem 4.2. Let u be a viscosity solution to equatidd.d) and X € d{u >
0} NQ. There exists a positive constant>C0 depending onl|u|[ (), (3—Y)
anddist(Xo, 0Q), such that

(4.4) U(X) <C-|X — Xo|77

for X € {u> 0} near X.

Proof. We assume, with no loss of generality, th&t= 0 andB; € Q. Let us
define

wi(X):=tu(pX) in By,

for T > 0 andp > 0, constants to be determined universally. From the equatio
satisfied byu, we easily verify thaty, satisfies

(4.5) Do o — T3 Yp* ()Y =0,

in the viscosity sense. Ik, > 0 is the universal constant granted by previous

Lemmd4.1 when one takes= 2*3%, we make the following choices in the defi-

nition of ¢y
3-y

Ti=|ul g and pi=ky-T 4.

With such a (lucky) selectiong, fits into the framework of Lemm@a.4l, which
ensures that .

supw;, <2 3,

B2

In the sequel, we set

4

wp(X) :==2%vay (271X) in By
We note thatw, satisfiesuwp(0) =0,0< ap <1 and
Do 0 — K (@)Y =0,
That is, we can apply Lemnia 4.1 dé® as well, yielding, after rescaling,

_2.. 4
supw, <2 “Fv,
By/a

Now, we argue by finite induction. For eakke N, we define

4

w(X) =237 g (271X).



By the same reasoning employed above, we verify K ) fits into the hypothe-

ses of Lemm&4]1, which gives after rescaling

(4.6) supw;, < o ke

B,

Finally, fixed a radius & r < g we choosek € N such that,

o—(k+1) r <ok,

Therefore, we estimate

supu< supu= T lsupawi,

B, Bp ok B,

yielding, by [4.6),

4
~1.07%sy

IN

supu
Br
237r1) . 2 Yy
4
3=

< ((pr)225) r 5.

4.7)

IN

This concludes the proof of Theorém#4.2.
u Zoom +
~d¥y
[
{u>0} {u=0}

Figure 1: This picture is a caricature of the improved rediylaestimate:

by

. . 4 .
zooming-in around a free boundary point, one se€s-a surface leadingi to-

wards a smooth landing on the plateaus.



Remark4.3. A careful scrutiny of the proof of Theoref?? revels that the same
regularity estimate holds for equations with non constamiinded Thiele modulus:

In this case, the consta@t> 0 appearing in(414), which bounds tﬁe%u—growth
estimate olu away from the touching ground, depends only|joij =(q), (3—Y),
dist(Xo,0Q) and||A || = (q). This remark will be used in the future.

We conclude this Section with an asymptotic Liouville typassification re-
sult. A stronger, quantitative version of this Theorem Wwél delivered later.

Theorem 4.4. Let u be a viscosity solution to
ZYu=0 in R"
with u(0) = 0. If u(X) = o(\X\SéV) as|X| — o, then u=0.
Proof. For each positive numbes>> 1, let us define
Uk (X) :=u(k X) K.

It is easy to check that

andu, (0) = 0. Moreover, we note that
[[UillL=(8y) = 0 (D).
In fact, for eachk € N, let X € R" be such thati, (Xx) = sBulpuK. If ll(iLnoo KX = 00,
by the above assumption, we obtain
Uk (Xg) < |KXK|*3%VU(KXK) — 0, ask —oo.

If the sequencekXx} remains bounded, we easily obtain the limit above for
Uk (X¢ ). Applying Theoreni 4]2 we obtain

(4.8) Uc(X) <o(1)-[X[¥7 in By
Now, if we assume that there isZa € R" such thatu(Zy) > 0, we obtain from
@.9).

Uy (X)

Z
(4.9) supeX) o UZ)
Bz [X[3¥  100Zg|3

10



providedk > 1. We now estimate, fax >> 2|Z,

u(Zo) <sup ux) < supuK(X)

4 = 4 = &
20l Bz [X[TT Bz X[

u(Zo)
100Zo|7

(4.10) <

which finally drives us to a contradiction, completing theqdrof Theoreni 44.
]

5 Radial Analysis

In this intermediary section, we make a short pause as tgzméie radial bound-
ary value problem

Aou = A(UT)Y inBgr(Xo)
(5.1) { Uu = c OnaRBR(Xo),

where 0< ¢c,A < o are constants andy € R". Herein we consider an arbitrary
Thiele modulust > 0, as to amplify the range of our analysis.

Initially we observe that, by uniqueness afdn) invariance of the infinity
laplacian, it is plain that the solution of such a boundany®groblem is radially
symmetric. Indeed, for an® € &'(n), the functionv(X — Xp) := u(O(X — Xo))
solves the same boundary value problem, hence, by unigaev(es) = u(X).
SinceO € ¢ (n) was taken arbitrary, it does follow thats radially symmetric.

We then consider the following ODE related o (5.1),

(5.2) h'(H)2=A(h")Y in (0,T)

satisfying the initial conditionsh(0) = 0 andh(T) = c. Solving [5.2) we obtain
the solutionh(s) = T(A,y) -S%V, where
E “
53 Ay =AY and <L> T
©9 Ty 641 +y) ()
FixedXp € R"and 0< r < R, let us assume th#ead-core compatibility condition
(5.4) R>T.
Define the following radially symmetric functian: Br(Xo) \ Br (Xo) — R given by

U(X) :=h(|X=Xo[ =),

11



wherer = R—T. One easily verifies that solves pointwise the equation
Acu=A(UT)Y in  Br(Xo)\Br(Xo).

The boundary conditions1 = 0 ondB; andu = c on dBg are also satisfied. More-
over, by the construction, for eaghe 9B, (Xp), we obtain

z
i — W0+ —
)I(lﬁmZDu(X) =h'(0 )']Z\ =0.

Thus, extendingi = 0 in B, (Xo), we obtain a function ilBr(Xo) satisfying
Acu=A(U")Y inBr(Xp).

We concluded that the function

4

u(xX) ==1(A,y) (lx ~Xol ~R+ <ﬁ> T)
? +

is the solution to[(5]1). Its plateaus is precisBlyXp), where

3y

. C E
(5.5 O<r:=R— <r()\,y)> i

Let us now deliver few elementary conclusions. Given a pesiioundary data
¢, aradiusR > 0, a Thiele modulugd , and an exponent € y < 3, then

1. Ifthe Thiele modulus is sufficiently large (with bounds easily computable),
then the radial boundary problem presents plateaus ircégp®f 0< y < 3.

2. As one should expect, solution converges locally unifamno zero asA
goes to infinity.

3. On the other hand, fixed any small Thiele modulgs> 0O, the boundary
value problem has plateaus providet sufficiently close to 3; and indeed,
solutions to[(5.11) go to zero 35" 3.

Now, if vis an arbitrary solution to
AVv=AV", InQCR"
andXp € Q is an interior point, define: (0,dist(Xp,0Q)) — R, by

s(R):= supw.
Br(Xo)

12



Plateaus

Figure 2: This picture represents the radially symmetriaddeore solution of the

problem [5.1).

If for some 0< R < dist(Xp, Q) , we have

4

5(R) < 1(A,y)R%,

then Xg is a plateaus point. In particular, we can improve Theorefhtd.the
following quantitative version:

Theorem 5.1. Let u be a viscosity solution to

(5.6) Asu=AU. in R".
If
- uX) _ayf, B=y)*
(5.7) limsup——— < “V/A - ———,
Xl [X[37 64(1+y)
then u= 0.

Proof. FixedR > 0, let us considev: Bg — R, the solution to the boundary value
problem

vV = supu on dBR.

{Amv = A(V')Y inBg
0BR

13



By comparison principle, Lemma(3.2) < vin Bg. It follows by hypothesig (517)
that, takingR > 1 sufficiently large,

(5.9) s’ < 6.1(2.y)
dBr R3v

for somef < 1. ForR > 1, the solutiorv = vg is given by

4

3— 3=V
supu 77\ ¥
9Br

(5.9) v(X)=Tt(A,y) [ IX|-R+ T,y)

+
Finally, combining[(5.B) and (59), we get

4
3=

uX) < T(Ay) (X - (1-6)R) .

Letting R — < we conclude the proof of the Theorem. O

We conclude by pointing out that Theorém]|5.1, as stated,agsh the sense
that one cannot remove the strict inequality[in{5.7). Intlélee function

solves[(5.6) irR" and it clearly attains equality ib (5.7).

6 Minimal growth rate and measure estimates

In this section we show that the regularity estimate esthbll in Theorer 412 is
indeed sharp. This is done by establishing a competing ali@guvhich controls
the minimal growth rate of the solution away from its free bdary.

Theorem 6.1(Nondegeneracy)Let ue C(Q) be a nonnegative viscosity solution
to

(6.1) ZLYu=0 in Q

and X € {u> 0} N Q. There exists a universal constamgtx O, such that

(6.2) supuzco-rév,
By (%)

for all 0 < r < dist(Xo,0Q).
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Proof. By continuity, it suffices to prove (6.2) for points withingtset{u > 0} N
Q'. Initially define

¥ (X) = c[X =X,
4

fora = 3y andc > 0 a constant that will be fixea posteriori By direct compu-
tation,
1 X—%

DY (X) =calX —Xo|*~ X %o

Continuing, direct computations further yield

(X —Xo) ® (X —Xo)
X —Xol?
(X—Xo)®(X—Xo)>]
X —Xo|? '

D2y (X) = ca [(a —1)|X —Xo|* 2.

+|X _X0|a72' <|dn><n -

Therefore, we conclude
(D2 - Dy, DY) (X) = (ca)®(a — 1)|X — Xp|2@-V+@=2)

and hence, by selecting (and fixing) the constanithin the range

3-y (3 — V)4

O<c< -
64(1+vy)

we reach
LYY <0=2)Yu.

Now, for any ballB, (Xp) C Q, there must exist a poirt € dB; (Xp) such that
Y (Z) < u(Z); otherwise, by comparison principle, Lemmal 3/2> uin the whole
ball B (Xo). However, 0= ( (Xo) < u(Xp). In conclusion, we can estimate

supu>u(Y) >y ((Y) —cor3Y
Br (Xo)

and the Theorem is proven. O

Corollary 6.2. Given a subdomaif2’ € Q, there exists a constant> 0 depending
on [|ul|=(q), ¥ and Q" such that for uc C(Q) a nonnegative, bounded viscosity
solution to(G.1)in Q, there holds

L"(By (Xo) N{u>0})
rl’l
for any X € d{u>0}NQ’ and0 < r < 1. In addition, for a universal constant

0 < gp < 1, depending only on dimension apgdthe (n — gp)-Hausdorff measure
of d{u > 0} is locally finite.

>

)
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Proof. In view of Theoreni 61, for some> 0 fixed, it is possible to select a point
Yo such that,

(6.3) u(Yo) = supu> co'r%V.
Br (Xo)

To conclude, we claim that for sonde> 0, chosen universally small, the following
inclusion

(6.4) Bs.r(Yo) C {u> 0}
holds. Indeed, by Theorelm 4.2, fére d{u > 0}, we reach
U(Yo) < C-[Yo - Z|77.
Therefore, by[(6)3) and the inequality above, we find
A A
Co- 37 <C-|Yo—Z|37V
and so,

(%)i‘y-rg No—2|.

Hence, takingd > 0 sufficiently small, the inclusion claimed in(6.4) is vezii
We conclude with the analysis of the Hausdorff dimensiomefftee boundary.
Let Xp € d {u> 0}. From the above reasoning, we can always select

Xg=0Y+(1—0)Xo.
with 0 < 1— 0 <« 1, such that

By (X9) € Bo (V) NBr (Xo) C Br (Xo) \ @ {u>0}.

Hence the sef {u > 0} N Q' is (o /2)-porous and therefore, by a classical result,
see for instancé [10, Theorem 2.1], the Hausdorff dimensfah{u > 0} N Q' is
at mostn — Cg" for some dimensional consta@t> 0. O

Remark6.3. The Hausdorff dimension estimate provided by Corollarye&&ures

in particular that theC"-Lesbegue measure of the plateaus boundary is zero, but no
guantitative information is given on its precise Hausddifhension. We believe

0p = 1, and leave this is an open problem.
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7 The critical equation .£3

In this Section we turn our attention to the critical equatibtained ay ~ 3, that
is,

(7.1) L3ui=Au—U>=0 in Q.

Such an operator is regarded to be critical, as all the essrestablished so far
deteriores when one Igtconverge to 3. Certainly, one can treat equationl (7.1) as

A, = (Ué) . U3_5,

for any > 0. In particular, it follows from Theorein 4.2 thatufvanishes at an
interior pointé € Q, thenD"u(¢) =0, for alln € N. That is, any zero is an infinite
order zero. Under the (very strong) assumption thist a real analytic function,
one could conclude that= 0.

As mentioned before, Lipschitz regularity is the best lastimate available in
the literature for such a solution. Even in the best scer@ugsible, one could not
expect estimates beyoi@-?. Thus assuming is real analytic would simply be
artificial.

Nonetheless, by means of geometric arguments, which egtbe scalar in-
variance of the operata#’3, we shall prove that indeed a positive solutiontol(7.1)
is prevented to vanish at an interior point.

Theorem 7.1. Let ue C(Q) be a nonnegative viscosity solution@1). If there
exists a point X Q such that ¢X) =0, then u=0in Q.

Proof. Let us suppose, for the purpose of contradiction, that tbsistof the theo-
rem fails to hold. With no loss generality we assuag@) > 0 and

d:=dist(0,{u=0}) < %)dist(o,aQ).

By comparison principleu is locally bounded. We now build up the following
auxiliary barrier function

e /2% _ gy in Ba/2;
Py (X)) =9 e -k in Bg\Byp;
0 in R\ Bq,

for ko such thaid, (d*) = 0. By construction, one easily verifies that

7.2 inf |O0®,| >
(7.2) ol 1091 2 o
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for somefy > 0, easily computable if one desires. Moreover, direct cdatmn
yields
Z30, >0 in Bg\Byp,

providedA > 1. The important observation is that the operatf is invariant
under scalar multiplication, that is, for any numiger- 0

L3(0-®)) = L3Py >0=L3u in By\By.
In addition, taking O< 6 <« 1 we get
6-®, <u in 0JBgUOIBy.
Therefore, by comparison principle, Lemmal3.2,
(7.3) 6-®) <u in Bqg\Byp.
On the other hand, equatidn (I7.1) can be written as
Acu= [U(X)]- U = A (X2,

for a bounded Thiele modulus(X) = u(X). Hence, in view of Remark 4.3, we
obtain

supu<C-r#
Br(YO)

for Yp € dB4n d{u > 0}. Now, we choose & ro < 1 such that
A1
Crg< ZBBO'rO-
Finally, by (7.2) and[(Z]3), we reach

0<BBy-ro < supB-|®,(X)—®,(Yo)|
Bro(YO)

< sup 8-®,
BI’Q(YO)

sup u
Bro (Yo)

C-rg

1
< 26
= 2 BO r07

which gives us a contradiction. The proof of Theofeni 7.1 mplete. O

IN

IN

Remark7.2 We note that in fact the proof of Theordm 7.1 yields a Hopktyp
lemma for the critical equation (7.1).

18
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Figure 3: Barrier argument in the proof of Theorem 7.1.
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