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Topological effects continue to fascinate physicists since more than three decades. One of their
main applications are high-precision measurements of the resistivity. We propose to make also
use of the spatially separated edge states. It is possible to realize strongly direction-dependent
group velocities. They can also be tuned over orders of magnitude so that robust delay lines and
interference devices are within reach.

PACS numbers: 03.65.Vf,71.10.Fd,02.40.Pc,03.75.Lm

Introduction — The edge states of topological insula-
tors represent a fascinating field of research which has
been founded over thirty years ago with the discovery of
the integer and the fractional quantum Hall effects [1, 2].
In particular, the link to topological invariants has been
an important step forward [3–6] relying in the end on the
notion of gauge-invariant quantum mechanical phases [7].

Recently, the field has significantly gained interest due
to the discovery of topological insulators driven by spin-
orbit interaction, i.e., without necessity of an external
magnetic field [8–11]. This experimental progress has
been anticipated in a model put forward by Haldane [12]
which is governed by non-trivial phases, but not induced
by a magnetic field. This model is still the simplest exam-
ple of a tight-binding model with non-trivial bands, i.e.,
with bands of non-zero Chern number. Since then, there
is an abundance of studies of these effects, for instance
the inclusion of spin to restore time-reversal symmetry
[13–15]. A very recent fascinating progress is that films
of solid state systems realize ferromagnetic Chern insula-
tors representing essentially two-dimensional lattice sys-
tems which display the quantum anomalous Hall effect
(QAHE) [9–11] without external magnetic field. Thus,
experiment has by now come very close to the original
idea of Haldane.

Our aim is to suggest two ways to put the topological
robustness of edge states to use beyond the high-precision
measurement of resistitivity in the Hall effect. Our focus
are Chern insulators which do not require an external
magnetic field. The idea is based on the previous finding
[16] that the Fermi velocity of the edge states along the
edge is not a universal quantity, but depends crucially on
the details of the edge. For simplicity, we illustrate the
potential of this idea by calculations for the archetypical
model of the field, the Haldane model on the honeycomb
lattice [12]. For the same reason, we do not consider
spin though the obtained results will carry over to spin
currents in Kane-Mele models [13–15].

Of course, in standard quantum Hall setups the dif-
ferent transport behavior of the spatially separated edge
states has been discussed, for instance in strongly differ-

ing localization [17] or in switchable quantum dots cou-
pled to single edge states [18]. Various quantum interfer-
ometer devices and quantum gates based on edges states
have been realized [19, 20].
We put forward two effects which have not yet been

studied to our knowledge: (i) the Fermi velocity can be
made extremely direction-sensitive, i.e., it can differ from
one edge to the other by orders of magnitude. (ii) the
Fermi velocity can be tuned by suitable voltages to vary
by orders of magnitude such that one can control trans-
port properties realizing delay lines and tunable interfer-
ence devices for precise measurements of delays. Finally,
we discuss various routes to realize the proposed effects.
Model — The tight-binding model considered reads

H = Hstrip +Hdecor (1a)

Hstrip = t
∑

〈l,j〉

c†l cj + t2
∑

〈〈l,j〉〉

eiφljc†l cj (1b)

Hdecor =
∑

j

[

λt(c†
d(j)cj + c†jcd(j)) + δc†

d(j)cd(j)

]

(1c)

where the underlying lattice is shown in Fig. 1. The hop-
ping on the strip of the honeycomb lattice is given by
Hstrip where 〈, 〉 stands for nearest-neighbor (NN) hop-
ping while 〈〈, 〉〉 stands for next-nearest-neigbor (NNN)
hopping. The elements t and t2 are real; the former
serves as energy unit. The non-trivial topology is induced
by breaking the time-reversal symmetry by the phases
φlj = ±φ. The minus sign applies to the red (light gray)
arrows while the plus sign applies to the blue (dark gray)
arrows in Fig. 1. Starting from the other sublattice, the
colors of the arrows are interchanged.
The Hamiltonian of the additional sites at the upper

edge is given by Hdecor. If j is a protruding site at the
upper edge of the honeycomb we denote its adjacent ad-
ditional site by d(j). The hopping between them is given
by λt where 0 ≤ λ ≤ 1 reduces this hopping relative to
the standard NN hopping. The local energy of the ad-
ditional sites is tuned by a gate voltage denoted by δ.
For λ = 0 one retrieves the standard Haldane model on
a strip of honeycomb lattice. Since this model has been
studied before [12, 14] we refrain from computing its non-

http://arxiv.org/abs/1601.00961v1


2

y

λ
δ

λ
δ

λ
δ

λ
δ

λ
δ

N

units{
a

x

FIG. 1. (Color online) Sketch of a strip of the honeycomb
lattice with NN hopping (black bonds) and NNN hopping
(colored arrows). Note that the color of the arrows is swapped
starting from the other sublattice. The strip height is N units.
The upper boundary is decorated by weakly coupled (λ ≤ 1)
additional sites with local potential δ. The lattice constant a
is set to unity.

trivial Chern numbers explicitly. We choose t2 = 0.2t and
φ = π/2 because this implies a sizable gap between the
Chern bands and the bands are relatively flat.

Direction-sensitive Fermi velocity —We show the non-
trivial properties by directly computing the dispersion of
the upper and lower edge modes. This allows us to ad-
dress their Fermi velocities. To this end, we consider a
strip of finite height, typically of N = 80 units, see Fig. 1.
The translational invariance in x-direction is preserved
such that kx continues to be a good quantum number.
Then, we diagonalize the resulting (4N + 3)× (4N + 3)
matrix numerically for given kx. This procedure yields
Fig. 2 where we focus on the edge states. The contin-
uum of states above the lower band edge ∆low(kx) :=
minky

ωup(kx, ky) are indicated by the light hatched/red
colored region. The continuum of states below the upper
band edge ∆up(kx) := maxky

ωlow(kx, ky) are indicated
by the dark hatched/blue colored region.

The left and right moving modes in Fig. 2 show a dis-
tinctly different behavior. This stems from the different
structure of the upper and the lower edge of the honey-
comb strip as shown in Fig. 1. The additional decorating
sites have a pronounced effect. Without them, the dis-
persion of the edge mode crosses the Fermi level at the
Brillouin zone boundary, see right moving dispersion. If
they are present, however, the Fermi level is hit at the
zone center, see left moving dispersion. The remarkably
flat dispersion results from the weak coupling λ < 1 of
the otherwise isolated decorating sites. If λ = 0 the deco-
rating site would host a completely local, i.e., momentum
independent mode.

The dependence of the Fermi velocity vF of the flat dis-
persion on λ is studied quantitatively in the inset of Fig.
2. As discussed above, it vanishes for λ = 0 and grows
quadratically if the coupling is switched on. In this way,
the coupling λ provides an excellent control parameter
to tune the Fermi velocity at one edge of the sample.
Since the position of the edge determines the direction of
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FIG. 2. (Color online) Dispersion of the edge modes: in green
(dark gray) the left mover at the upper edge and in orange
(light gray) the right mover at the lower edge for λ = 0.2.
The shaded areas show the continua from the Chern bands.
The inset shows the Fermi velocity vF = ∂ω/∂kx|ǫF relative
to the one at the undecorated edge vs. the relative coupling
λ at t2 = 0.2t and φ = π/2.

motion the Fermi velocities become strongly direction-
sensitive. In particular for small values of λ the value
for vF,right can differ by orders of magnitude from vF,left.
This opens interesting avenues to applications which are
not realizable so far. We stress that the robustness of the
topological edge mode protects it from being destroyed or
blocked by disorder effects. The direction-sensitivity of
the Fermi velocity appears to be a static property once
the system is given. Next, we illustrate that it can be
tuned as well.

Tunable Fermi velocity — The guiding idea is to con-
tinuously tune the system with decorating sites towards
the system without them. To this end, the decorating
sites shall be switched off. This can be achieved by push-
ing them up in energy so that the electrons do not visit
them anymore. The knob to do so is the local potential
δ in (1c) which can be thought to be realized by a gate
voltage.

In the upper panel of Fig. 3, we depict the effect of
a finite gate voltage δ = 0.1t. Clearly, the intended ef-
fects takes place and the dispersion of the left moving
mode is shifted upwards by about δ. In addition, the
precise shape of the dispersion is modified. As expected,
the right moving mode at the other edges is almost not
influenced. The strip analysed is N = 80 units high and
for this value no effect of the gate voltage on the right
moving mode occurred, even in the nineth digit.

Due to the shift, the part of the left moving disper-
sion crossing the Fermi level at zero energy is changed.
Its slope is increased as we argued before on physical
grounds. Note that due to the particle-hole symmetry of
the model a negative shift would have the same effect,
i.e., it produces the same increase of the Fermi velocity.
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FIG. 3. (Color online) Upper panel: dispersion of the edge
modes; in green (dark gray) the left mover at the upper
edge and in orange (light gray) the right mover at the lower
edge for λ = 0.2 and δ = 0.1t. The shaded areas show the
continua from Chern bands. Lower panel: Fermi velocity
vF = ∂ω/∂kx|ǫF relative to the one at the undecorated edge
vs. the gate voltage δ for various values of the relative coupling
λ at t2 = 0.2t and φ = π/2.

In the lower panel of Fig. 3, we study the increase of
the Fermi velocity quantitatively. Indeed, it is possible to
drive the Fermi velocity to the value of the undecorated
edge. For large enough gate voltage δ the Fermi velocity
relative to the undecorated one saturates at unity. The
gate voltages at which the saturation sets in is of the
order of λt because δ has to counteract the hybridization
between the protruding edge sites j and the attached
decorating sites d(j).

This observation shows that for small values of λ the
gate voltage δ provides an excellent control parameter
to tune the Fermi velocity. Rather small values of the
gate voltage are sufficient to modify vF by orders of
magnitude. There is a small offset at δ = 0 given by
vF(λ, δ = 0). But for increasing δ a linear regime is en-
tered in which vF ∝ δ holds until the saturation regime
is reached for δ > λt. This linear regime is proposed to
be put to use in applications. Here the Fermi velocity,
which is the group velocity of an electric signal, can be
tuned by a third gate so that a tunable delay line can be
realized. Due to the topological protection of the edge
states disorder will not destroy the effects so that they

are robust against imperfections. In Fig. 4a, a circuit is
sketched which permits to measure the delay occurring in
an unknown sample in parallel to the tunable delay line
based on a Chern insulator with tailored edges. The idea
is to look for destructive and constructive interferene of
an oscillating electric signal at the output. In this way,
very precise detection of small delays should be possible.
Note that we do not advocate quantum interference here
in contrast to many studies in the literature, e.g., Ref.
19.

in

tuned
delay

sample

out

FIG. 4. (Color online) Left panel: Sketch of a circuit to use
the tunable delay line in an interference measurement for the
determination of the delay of signal transmission in a sample;
almost destructive interference is shown. Right panel: Sketch
of a decorated Hall sample to realize tunable and direction-
dependent Fermi velocities. The black hatched area is im-
penetrable for the electrons while the potential of the colored
areas (blue (dark gray) and red (light gray) can be tuned in-
dependently by gate voltages δlow and δup while the bulk of
the sample (green) remains unchanged. A magnetic field is
applied perpendicular to the plane shown to generate the edge
states. It should be approximately large enough that circular
Landau orbits fit into the bays.

Furthermore, this effect is direction-dependent. One
can push the device one step further by decorating also
the lower edge of the sampel (not shown). Then two in-
dependent gate voltages can be used to control the Fermi
velocities in both directions left and right independently.
Possible realizations — Two years ago the chances

of realizing a Chern insulator in a microscopic lattice
were still considered slim [21]. But the observation of
the QAHE in thin films of ferromagnetic Chern insulators
has changed the game [9, 10]. The temperatures at which
the QAHE is observable has increased from several mil-
liKelvin to a few Kelvin [11] and theoretical calculations
indicate that even room temperature should be within
reach [22, 23]. Thus it appears perfectly reasonable that
the proposed lattices or similar analogues can be designed
and realized. Detailed calculations show that the tailored
design of super lattices of gold atoms on single-vacancy
graphene provide a promising candidate to realize high
temperature Chern insulators [23, 24]. Thus the tailored
design of differing edges will also be possible opening a
route to realize the proposed strips of lattices and to mea-
sure the advocated effects.
An alternative route is open in tailored optical lat-

tices where it has been recently possible to realize the
Haldane model (1) itself and to measure some of its ba-
sic properties [25]. Thus a proof-of-principle realization
of decorated strips of Haldane models such as shown in
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Fig. 1 appears to be well within reach. While this is an
attractive prospect such a realization is probably not so
close to the application as a measuring device.
A third alternative is to construct lattice models artifi-

cially by design of tailored semiconductor structure. For
instance, antidot structures can already be synthesized
with high precision [26]. So it is conceivable to realize
dot or antidot lattices which have the discrete transla-
tional invariance we are considering here. Applying a
perpendicular field to such planar modulated electron
gases yields the desired topologically non-trivial Chern
bands with the corresponding gapless edge modes. We
recall that lattices in a finite magnetic field of certain
strengths correspond to Haldane type of models as illus-
trated before for the kagome lattice [16].
A fourth alternative realization can be based on more

standard quantum Hall setups. A quantum Hall sam-
ple in a magnetic field provides a Chern insulator with
spatially separated edge states. Thus, if one is able to
pattern the edges differently and to control them inde-
pendently by gate voltages the effect of tunable Fermi
velocities will be observable.
To the author’s knowledge no such experiment has

been performed so far. But the degree of control of gate
voltages in time and space on the nanoscale is remark-
able so that it appears that the proposed experiment is
well possible. For instance, it is possible to switch the
coupling of quantum dots to one edge mode on and off
yielding electrons on demand [18]. If this kind of setup
is extended to a periodic chain of quantum dots, see Fig.
4b, all gated by the same voltage, a setup is realized
which is a continuum version of the lattice model in Fig.
1. The patterning on the nanoscale is also possible, see
for instance the Mach-Zehnder interferometer realized by
Karmakar et al. [19]. Note that the interometer discussed
in that work uses the nanoscale structures to make the
two edge states interfere. Thus the setup is not the one
advocated here.
Summary — The first idea of the present Letter is the

finding that the relevant group velocity of signals trans-
ferred in topologically protected and thus robust edge
modes may differ strongly depending on whether they
propagate at the upper or lower edge. The reason is
that the structure of the edges may differ and that this
influences the non-universal transport properties. For
disorder or a (de)coupled quantum dot such phenomena
were discussed and observed before [17, 18], but not for
a periodic structure with well-defined Fermi velocity.
The second idea was that this difference can be en-

hanced and manipulated by special design of the edges.
For instance, weakly linked local energy levels, decorat-
ing the edges, render the mode at the Fermi velocity ar-
bitrarily slow. This leads to direction-dependent group
velocities because the mode at one edge moves into one
direction while the mode at the other edge moves into
the other direction and the link strength can be chosen

very differently at the edges.

The third idea is to tune the group velocities by gate
voltages which can effectively switch the weakly linked
decorating levels on and off. By varying the gate voltages,
one may easily tune the group velocities. This can even
be done for left and right movers independently. By this
mechanism the group velocity, relevant for the delay time
in signal transmission, can be varied by a gate voltage.
Signals can be delayed and/or modulated.

The above ideas have been demonstrated by explicit
calculations for the archetypical model for non-trival
Chern bands [12]. This could be decorated by weakly
coupled additional sites at the edges with local energy
given by the gate voltage. The relative coupling λ and
the gate voltage δ are the tuning parameters.

Furthermore, we discussed and suggested ways to real-
ize the above proposal. Such realizations appear possible
in many fields ranging from quantum Hall systems with
external magnetic field over ultracold atoms in optical
lattices with artificial gauges to thin films of ferromag-
netic topological insulators [9–11, 23]. The latter repre-
sent lattice models very close to the ones studied here
theoretically.

Outlook — The findings presented establish the basic
idea. Depending on the route favored for experimen-
tal realization further calculations are called for. For
instance, on the one hand in optical lattices the Chern
insulator is realized so far on square lattice, not on honey-
comb lattice. On the other hand, proposals in solid state
physics favor honeycomb lattice systems which break
time-reversal symmetry by spontaneous ferromagnetism.
Thus differing specific calculations will be useful.

The fundamental idea advocated here can be extended
also towards spintronics. The inclusion of spin, for in-
stance as in the models put forward by Kane and Mele
[13–15] will enable to pass from currents and signals ex-
pressed in charges to currents and signals of spin, i.e., to
pass from electronics to spintronics [27].

So there appear ample ways to explore the applicability
of topologically protected edge states propagating along
tailored and tuned edges.
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