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Abstract—Prior research has shown that spectral decomposi- systems experiencing CSD require longer periods to recover
tion of the reduced power flow Jacobian can yield participaton  from stochastic perturbations. Specifically, CSD is evinh

factors that describe the extent to which particular buses on- 55 state variable signals begin to show increased variance,
tribute to particular mode shapes in a power system. Resealc t lati d lati tatistics 2
has also shown that both variance and autocorrelation of tire ~2UtOCOITEIation, and cross-correlation statisucs 2]

series voltage data tend to increase as a power system appebes ~ Real power systems are burdened with highly stochastic
a critical transition. This paper presents evidence suggéisg that  loads and an increasing level of renewable energy permirati

a system’s participation factors predict the relative bus wltage Consequently, researchers have begun to quantify themrese
variance values for all nodes in a system. As a result, these 4t cgp i large scale power system networks. Voltage codlaps
participation factors can be used to combine PMU data from . s .. .
various locations dispersed throughout a power network ino 1 such a syste.m can be understood as a critial transm(ajl(w
a single, coherent measure of global stability. This paper fit Saddle Node bifurcation) [6]. When close to such a transitio
describes the method of computing the participation factos. referencel[l7] has quantified increases in variance and autoc
Next, two methods for using these factors in conjunction wh  relation in bus voltage. Similarly, reference [8] compuities
dynamic time series data are presented. The method is tested power system state vector auto-correlation function toggau

using a dynamic model of a 2383-bus test case. Results from I babilitv. Einall . d aut ol
these tests indicate that system wide cross-correlation drsystem collapse probability. Finally, variance and autocornefaiare

wide weighted variance ratios can both be effective early waing Measured in an unstable power system in [3] across many state
signs of a looming transition. variables. The results indicate that variance of bus vekamnd
Index Terms—Power system stability, phasor measurement autocorrelation of line currents show the most useful dgna
units, time series analysis, stochastic processes, autoetation, Of CSD. Current angles, voltage angles, generator rotdeang
cross-correlation, critical slowing down, modal analysis and generator speeds did not yield strong CSD signs capable
of indicating proximity to a bifurcation.
Although typically a useful indicator, not all variables in

, o a complex system exhibit CSD sufficiently early enough to
As a result of the Arizona and Southern California Blackoyf, ,sefyl early warning signs|[9]. For instance, referefe [

of September 8, 2011, over 2.7 million customers lost pPOWgEgiapilized a simulated power system by over stressing all
for a period of up to 12 hours. In the incidents official, y pses. Signals were then collected from many nodes

repgrt (3], two sources V}/ere_cned ZS the causes oflthe @iluf, system, and certain nodes conclusively did not show
Ina .equate operayons. planning and poor S|tu.at|or.1a NeFEE early and strong CSD warning signs. In order to mitigate this
A high level of situational awareness is primarily achlevegé

h h o ¢ : X roblem, we employ power flow matrix modal analysis to
through constant monitoring of a system's (a) ContingeNgermine which variables will show the strongest CSD indi-

resilience and (b) dynamic stability. Because power systetyy,s gy understanding which variables are the best dimam

are frzquently ope_ratel(_j gloze_t(; critical or bifurcationn® jqiapjjity indicators, we can make stability assessmeshish
(in order to optimize limited infrastructure), estimatirige are highly representative of the entire system.

proximity to voltage collapse is an essential tool grid apers When performing power flow calculations, the presence of

could use tq gauge dynar_mc stability. ) voltage collapse results in the Newton Raphson AC Power
There is increasing evidence that as a dynamical syste, "oy ations failing to converge to a solution. Reference
approaches a bifurcation, early warming signs (EWSS) B shows that when the eigenvalues of the reduced power
the looming transition appear in the statistical properté g, matrix are positive, the system is voltage stable. Fdlgma
Fhe system's time series data}. Th|§ fact has peen e"'de”?/‘a age stability implies that, for each bus in the the syste
N many complex systems, |nclu_d|ng ecological neworks, oactive power is injected into a bus, voltage magnitude
financial markets, the human brain, and power systems [?r]creases. If the system reaches a voltage collapse, the re-
[3]. Researchers have even found that human depressioieq power flow matrix becomes singular and at least one
onset can be predicted by these same statistical properiigs,ajue is driven to zero. Therefore, the eigenvalues ca
(. In the st.a}tistical p_hysics Iiterature this phenomerisn be a useful indicator of proximity to instability, but more
known as Critical Slowing Down (CSD) [[5]. When Stresseqmportantly, through spectral decomposition of this matiie

This work was supported by the US DOE, award #DE-OE000044d by eigelnveCtorS can be Us_ed to pinpoint how strongly voltages
the US NSF, award #ECCS-1254549. at different nodes contribute to the most unstable modes of

I. INTRODUCTION
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system operation.
Through a combination of modal analysis and CSD theor § o.15- .
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warning signs of voltage instability. This is accomplishad 0.1 |
weighting and filtering real time dynamic data (bus voltage £ o.0s- 1
with participation factors derived from the decompositimhn A

a static matrix composed of algebraic equations. Seffion 300 250 300 350 200 250 500
of this paper outlines the mathematical methods for formir

and decomposing the reduced power flow Jacobian along w 2
calculating system wide cross-correlation increases &80 C «
induced variance changes. Secfioh Ill illustrates theshoaks
by presenting simulated results from the 2383-bus Poli
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system. Finally, our conclusions are presented in SeEibn | 05 A |
0 P WYL A A JL_an
Il. MATHEMATICAL METHODS FORMODAL ANALYSIS 200 250 300 Busﬁgmber 400 450 500

AND CSD SrATISTICAL CALCULATIONS

: : : Figure 1. Shown are test results for buses 200 through 500 tihe loaded
This section presents a method for using a spectral decogis,’, = system (see SEC_TI-A for system description) VBitage variances

position of the reduced power flow Jacobian to identify ang each node (panel (a)) are shown to have their relative itoags directly
weight variables that will most clearly show evidence of CSredicted by the participation factors for the most unstahbde (panel (b)).
(Further information on this spectral decomposition mdtho

can be found in[[10]). Using this analysis, unstable modes ) o
can be identified in the system, and participation factors c§ach mode of the power system. Accordingly, each participa-

M . : h
pinpoint exactly which nodes are the most unstable. Neffon factor corresponds to thé" mode and the:"" bus.

the participation factors are used to divide the system into Pyi = Exinin (4)

two groups and system wide bus voltage cross-correlation

is examined. Finally, we introduce a stability metric which There are many different ways to use these eigenvalues
is based on comparing the variance increases of the m@sgl eigenvectors to judge proximity to voltage collapse. Fo

unstable nodes to the variance increases of the rest of thetance, Gao et al. suggest using the smallest eigenvélue o
system. Jr to gauge proximity to bifurcation. Such stability analysis

though, is based solely on the decomposition of a model
based static matrix and is highly limited in nature, as oetli
A. Reduced Power Flow Matrix Construction and Decompo- by M. Pal in the discussion section df [10]. On the other
sition hand, detecting CSD in a time series is a purely data driven

The standard power flow Jacobian matrix, based on tfability assessment, but it can be difficult to understand

linearization of steady state power system equationsyisngi Which nodes will show the strongest EWSs [3]. Therefore,
the novel approach outlined in this paper relies on using

AP Jpo  Jpv A0 static decomposition results to weight and interpret inicgm
AQ [ ] [ AV } dynamic data.
o ) ) Ultimately, we are concerned with the system’s most unsta-
In order to perform V-Q sensitivity analysis (an importanfye mode of operation. This is the mode which will correspond

aspect of voltage stability analysis), we assume that ¢ he smallest eigenvalue of the system (the one closest to
incremental change in real powar” is equal to 0. Inthisway, ;66 - After thoroughly testing this method on multiplettes
we can study how incremental changes in injected reactifesiems we have shown that the modal participation factors
power affect system voltages. Setting” = 0 and rearranging o responding to the smallest eigenvaluggfdirectly predict
terms to removeAd, the expression for the reduced Jacobiafe rejative bus voltage variances from buses across thensys

becomes: Fig.[d shows an example of this fascinating result using data
AQ = [Jov — JaoJpg Jpv] AV = [J5] AV 2) collectgq fr(_)m the loaded 2383 bus test system. . .
Participation factors of the most unstable mode also ifienti
Assuming the system is voltage stable, the maffixcan the node voltages which, as the system is overloaded, begin t
be assumed non singular and written as the product of §&erge away from 1 per unit in magnitude and drift towards
right eigenvector matrix, its left eigenvector matriy, and 0. These are the nodes which are primarily responsible for no
its diagonal eigenvalue matri¥, such that: convergent power flow equations. Interestingly, as PQ buses
Jr = A7 3) @n the system are increasingly Ioadeq, the rec_alc_:ulateti#:par
ipation factors do not change drastically. This is equinale
Finally, these eigenvectors can be used to define bus part@-saying that thenodal shapes do not change significantly.
ipation factors. Normalized participation factors deserhow This is a useful result, since real power flow models are only
much (in a unitless percentage value) each bus contribatesipdated every few minutes.

JQ(-) JQV



B. System Wide Cross-Correlation Lg% 10
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CSD theory predicts that signals from a system approachi 1.4
a critical transition will begin to show high auto-corretat
(R(At)). This can be due to the system’s reduced ability 1 g 12
respond to high frequency fluctuatioris [11], but the syste
also beings to return to the equilibrium state more slow!
after perturbations [12]. This has been verified in a nhumb
of papers in the power system literature, but as predicted
[2], zero lag cross-correlatiorP, x, (0)) of two state variable
signals X;(¢) and X»(t) is another potentially useful early
warning sign. As stated by Scheffer et al., there is a “gdner 0.2
tendency toward increased spatial coherence” as a criti 0 ‘ ‘ ‘

1 1.2 1.4 1.6 1.8 2
event approaches. Load Level
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Bus 466 Volta

0.6-

\oltage cross-correlation is inherently high for nodes in _

- . igure 2. Bus 466 has the most unstable voltage. Clearlyyadttage
close proximity to each other, but we have found that high riance increase is extremely dramatic, rising by a faofasver 200 (from
unstable nodes (as predicted by the participation faciss) nominal load to system destabilizing load). The majoritytos increase
show very high cross-correlation, even when the system oggurs immediately before the bifurcation.
relatively far from a transition. Based on this premise, we
have devised a method of dividing a system into two sectiong,
weighting and combining each section’s voltages, and théll—
testing for increases in cross-correlation. Diving thetesys
and weighting the voltages is based entirely on the caledlat 7 2 (Xa(t) = pxa) - (Xo(t) — pxo)
participation factor values. One section of the dividedays  Px, x,(0) = —— (8)
contains the most unstable nodes (and all surrounding hodes 0X1'9X2
and the second section contains the rest of the system nodéerex ando are the signals’ mean and standard deviation.

As loading increases, the stable and unstable nodes begif\fosystem load increases, it will be shown that, in a suffityen
exhibit increasing cross-correlation. large system, the cross-correlation between two such rgcto

, . ) constantly increases as it approaches the upper limit df.uni
Given a vector of eigenvaluds(corresponding to the the

diagonal entries ofA) for the reduced Jacobiady, the
the smallest eigenvalue can be determined, with its ind

(t) and Xy(t):

=

8( Using Variance Ratios as an EWS

corresponding ta: CSD theory also predicts that the varianeé@)(of signals
; ) will begin to increase as the system approaches a critical
Anin = MIn(l) ®)  event [3]. Not all variables will show an extreme increase in

Now the participation factors for this mode, tifé and most variance, and not all increases will be sufficiently early to
unstable mode, can be chosen. Dividing the system in t#6"ve as an effective EWS. Even when monitoring the most
sections requires knowledge of the system topology, but W@stable node of a system though, its increase in variance
ultimately want to group buses with the largest participati can be so dramatic (especially directly before the systesn ha
factors with their surrounding nodes. For simplicity of mot réached a critical point), it can be challenging to have an
tion, we will renumber the system nodes such that buseinambiguously clear measure of bifurcation proximity.. Zg
through N are in one small, unstable group, and budgs 1 shows an example of this point. Participation factors careon
throughX are in the second larger, more stable group, Whe@@ain_be_helpful in_determinin_g_ hov_v to monitor dynamic data.
there are a total ofC buses in the system. For a sequence of AS indicted previously, participation factors of the most u

T +1 bus voltage magnitude measurements, at each time sigPle nodes amazingly serve as values indicating thevelat
t, the mean of the voltage signaly, ) is subtracted, and the !ous vol_tage variance strengths. Therefore, as thle system is
residual voltage is weighted by that node’s participatiactdr increasingly loaded, the most unstable nodes will begin to

and summed with all of the other weighted residual voltaged@ve larger and larger participation factors as their isedat
Two aggregate vectors are computed: variance strengths grow relative to other, more stable siode

Fig.[3 shows an example of this for the 2383 bus system. As

N . .
B the system is loaded, the relative strength of the most hlesta
X(t) =) (Vi(t) — pvi) Pei V1 € (0, T) ®)  hodes participation increases almost linearly, but whies t
h=1 critical transition approaches, the participation bedgo$imb
K

more steeply.
Xo(t) = Z (Vi(t) = pvi ) Pra -Vt € (0,T) () Using the results predicted by the participation factor-evo
k=N+1 lution, system wide variance strength ratios are shown to be
Finally, 0 lag cross-correlation can be computed betwean interesting and useful EWS. To develop a metric based on
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Figure 3. Depicted are the evolutions of three differentatqehrticipation Figure 4. The system wide cross-correlation for increasetem loading
factors. As the system is increasingly loaded (right up forbation), bus 466 is shown here. As the system approaches a critical transitiombined bus
(the most unstable bus) begins to see a sharp increase icigsitn to the voltages from around the system begin to swing together tighyly.
instability. Bus 240 (the 5th most unstable bus) sees a Vahtsncrease,

while bus 218 (the 10th most unstable bus) begins to see aatsxr

. . . _ method is justified in[[13]. After running a power flow on
this result,_we once again split the system into two group e system, a time domain simulation was performed. Half of
a small, hlghly unstable group, .ano! a larger, more St‘?‘ e loaded nodes were modeled as voltage controlled loads,
group (as pred|ctgd by the part|C|pat|(_)n factors),-We va|g. hile the other half were modeled as frequency controlled
all bus vo_ltage variances by the magnitude of thew resmctllo ds. Parameters controlling the voltage controlled doad
participation f"’?c“’rs' and the_n we sum the variances in € Sre modeled after the Nordic Test System [inl[14], while
group. The ratio of these weighted variance sums is given drameters controlling the frequency controlled loadsewer

®. As done previously, we will renumber the system nod odeled after the 39 bus test system describefllin [3].
such that buses throughN are in one small, unstable group,

and busesV + 1 through K are in the second larger, more During the time domain simulation, stochastic noise was
stable group, where there are a totalfobuses in the system. injected into the loads at each step. The differential atgieb
As before,P,; refers to the participation factor of tfi& mode €duations modeling the power system are given by:

th
and thek' bus. N &= f(z,y) (10)
g_jl 0%+ P 0=g(z,y u) (11)
o=—% ©) where f, g represent the differential and algebraic equations

2 . . . .
kgv:ﬂ 0 - Pri governing the systemg, y are the differential and algebraic
a variables of these equations, amdrepresents the injected
stochastic load noise. Load fluctuatiomsfollow a mean-

) ) ) reverting Ornstein-Uhlenbeck process:
This section applies the methods of Jet. Il to calculate the

cross-correlation and variance ratio increases in the 2883 u=—-Fu+§ (12)

system._ The.system co.nflgura'uon and load noise aSSEJ!“”P“%FereE is a diagonal matrix whose diagonal entries equal the
are outlined i II-A, while[ll-B and 1lI-C outline the SP&#C i erse correlation times: L, of load fluctuations and is the

IIl. EXPERIMENTAL RESULTS

test results. vector of zero-mean independent Gaussian random variables
A further description of our noise model can be found in Sec.
A. Polish Test Case System Overview II' A of [3]. Our noise correlation times, though, are chosen

In order to test our methods, we used simulated daiyferently: to eachtcw_r we a_\ssign a random value from a
from the 2383-bus Polish test system. This network contaiRunded log-normal distribution of mean one.
327 synchronous generators (each equipped with with type lin order to push the system towards a critical transition
turbine governors for frequency control and type 1l AVRs fofvoltage collapse), the system was repetitively simuldted
voltage regulation). There are 322 shunt loads (all comuecten distinct loading factor$, ranging fromb = 1 up to
to generators buses) and 1503 active and reactive loadsdspie= 1.92. Voltage collapse would occur when the load factor
throughout the system. In order to push the system towatidsreased pashk = 1.923. For each load factor, we ran ten
voltage collapse, we employed a simple uniform loading d20s simulations, computed statistics on the collected,dat
all loads (except for those attached to generator buse$y. Tand then calculated averages of the statistics.
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Figure 5. The ratio of the sum of weighted voltage variancesvio groups  [1]
of buses is plotted against load factor values.
[2]

B. Evidence of System Cross-Correlation S

In order to test system cross-correlation, the method de;
scribed in Sed II-B was implemented on the 2383 bus system.
After analyzing the participation factors and topology bé t
system, we chose to put nodes 180 through 470 (roughly 12 )
of system nodes) into one group while the remaining nodeg)
were placed into a second group. Next, the voltages were
combined according to the aforementioned methods and-cross
correlation was computed for each load value. 7]

Fig.[4 shows that the cross correlation between the voltages
of the system appears to increase linearly through most ?ff]
the system loading. Just before the bifurcation point, thss

correlation begins increasing drastically as it approachnty. -

C. Evidence of Increasing Variance Ratios [10]

In order to test system wide variance ratios, the method
described in Sed_IHC was implemented on the 2383 b %]
system. As in Sed¢.1Il-B, we chose to put nodes 180 throu
470 into one group while the remaining nodes were placed
into a second group. The rati® of the summed weighted [12]
voltage variances of both groups was tracked at the system
was increasingly loaded. [13]

Fig. 3 shows that as the loading begins to approach
1.923, the variance ratio begins increasing drastically. They
increase, though, begins to grow sufficiently early (wefbbe
bifurcation), making it a useful EWS. In total, the variance
ratio increases only by a factor of 3.4. Comparatively, the
variance in Fig[R increases by a factor of over 200.

1 cross-correlation of combined weighted voltage measunésne
is a particularly useful early warning sign of proximity to
instability. When the correlation of these signals apphesc
1 unity, bifurcation is near. System wide weighted variarat®s

| are also shown to be an effective EWS. Because these variance
ratios begin to increase far from the bifurcation point,dgri
operators would have ample time to respond to these signals
1 and take appropriate mitigating actions, such as to reatlisp
generation or (as a last resort) reduce demand.
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