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Abstract—Prior research has shown that spectral decomposi-
tion of the reduced power flow Jacobian can yield participation
factors that describe the extent to which particular buses con-
tribute to particular mode shapes in a power system. Research
has also shown that both variance and autocorrelation of time
series voltage data tend to increase as a power system approaches
a critical transition. This paper presents evidence suggesting that
a system’s participation factors predict the relative bus voltage
variance values for all nodes in a system. As a result, these
participation factors can be used to combine PMU data from
various locations dispersed throughout a power network into
a single, coherent measure of global stability. This paper first
describes the method of computing the participation factors.
Next, two methods for using these factors in conjunction with
dynamic time series data are presented. The method is tested
using a dynamic model of a 2383-bus test case. Results from
these tests indicate that system wide cross-correlation and system
wide weighted variance ratios can both be effective early warning
signs of a looming transition.

Index Terms—Power system stability, phasor measurement
units, time series analysis, stochastic processes, autocorrelation,
cross-correlation, critical slowing down, modal analysis.

I. I NTRODUCTION

As a result of the Arizona and Southern California Blackout
of September 8, 2011, over 2.7 million customers lost power
for a period of up to 12 hours. In the incident’s official
report [1], two sources were cited as the causes of the failure:
inadequate operations planning and poor situational awareness.
A high level of situational awareness is primarily achieved
through constant monitoring of a system’s (a) contingency
resilience and (b) dynamic stability. Because power systems
are frequently operated close to critical or bifurcation points
(in order to optimize limited infrastructure), estimatingthe
proximity to voltage collapse is an essential tool grid operators
could use to gauge dynamic stability.

There is increasing evidence that as a dynamical system
approaches a bifurcation, early warning signs (EWSs) of
the looming transition appear in the statistical properties of
the system’s time series data. This fact has been evidenced
in many complex systems, including ecological networks,
financial markets, the human brain, and power systems [2],
[3]. Researchers have even found that human depression
onset can be predicted by these same statistical properties
[4]. In the statistical physics literature this phenomenonis
known as Critical Slowing Down (CSD) [5]. When stressed,
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systems experiencing CSD require longer periods to recover
from stochastic perturbations. Specifically, CSD is evidenced
as state variable signals begin to show increased variance,
autocorrelation, and cross-correlation statistics [2].

Real power systems are burdened with highly stochastic
loads and an increasing level of renewable energy penetration.
Consequently, researchers have begun to quantify the presence
of CSD in large scale power system networks. Voltage collapse
in such a system can be understood as a critial transition (via
Saddle Node bifurcation) [6]. When close to such a transition,
reference [7] has quantified increases in variance and autocor-
relation in bus voltage. Similarly, reference [8] computesthe
power system state vector auto-correlation function to gauge
collapse probability. Finally, variance and autocorrelation are
measured in an unstable power system in [3] across many state
variables. The results indicate that variance of bus voltages and
autocorrelation of line currents show the most useful signals
of CSD. Current angles, voltage angles, generator rotor angles,
and generator speeds did not yield strong CSD signs capable
of indicating proximity to a bifurcation.

Although typically a useful indicator, not all variables in
a complex system exhibit CSD sufficiently early enough to
be useful early warning signs [9]. For instance, reference [3]
destabilized a simulated power system by over stressing all
load buses. Signals were then collected from many nodes
in this system, and certain nodes conclusively did not show
early and strong CSD warning signs. In order to mitigate this
problem, we employ power flow matrix modal analysis to
determine which variables will show the strongest CSD indi-
cators. By understanding which variables are the best dynamic
instability indicators, we can make stability assessmentswhich
are highly representative of the entire system.

When performing power flow calculations, the presence of
voltage collapse results in the Newton Raphson AC Power
Flow equations failing to converge to a solution. Reference
[10] shows that when the eigenvalues of the reduced power
flow matrix are positive, the system is voltage stable. Formally,
voltage stability implies that, for each bus in the the system,
if reactive power is injected into a bus, voltage magnitude
increases. If the system reaches a voltage collapse, the re-
duced power flow matrix becomes singular and at least one
eigenvalue is driven to zero. Therefore, the eigenvalues can
be a useful indicator of proximity to instability, but more
importantly, through spectral decomposition of this matrix, the
eigenvectors can be used to pinpoint how strongly voltages
at different nodes contribute to the most unstable modes of
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system operation.
Through a combination of modal analysis and CSD theory,

this paper seeks to identify and evaluate new statistical early
warning signs of voltage instability. This is accomplishedby
weighting and filtering real time dynamic data (bus voltages)
with participation factors derived from the decompositionof
a static matrix composed of algebraic equations. Section II
of this paper outlines the mathematical methods for forming
and decomposing the reduced power flow Jacobian along with
calculating system wide cross-correlation increases and CSD
induced variance changes. Section III illustrates these methods
by presenting simulated results from the 2383-bus Polish
system. Finally, our conclusions are presented in Section IV.

II. M ATHEMATICAL METHODS FORMODAL ANALYSIS

AND CSD STATISTICAL CALCULATIONS

This section presents a method for using a spectral decom-
position of the reduced power flow Jacobian to identify and
weight variables that will most clearly show evidence of CSD.
(Further information on this spectral decomposition method
can be found in [10]). Using this analysis, unstable modes
can be identified in the system, and participation factors can
pinpoint exactly which nodes are the most unstable. Next,
the participation factors are used to divide the system into
two groups and system wide bus voltage cross-correlation
is examined. Finally, we introduce a stability metric which
is based on comparing the variance increases of the most
unstable nodes to the variance increases of the rest of the
system.

A. Reduced Power Flow Matrix Construction and Decompo-
sition

The standard power flow Jacobian matrix, based on the
linearization of steady state power system equations, is given
by:

∆P

∆Q
=

[

JPθ JPV

JQθ JQV

] [

∆θ

∆V

]

(1)

In order to perform V-Q sensitivity analysis (an important
aspect of voltage stability analysis), we assume that the
incremental change in real power∆P is equal to 0. In this way,
we can study how incremental changes in injected reactive
power affect system voltages. Setting∆P = 0 and rearranging
terms to remove∆θ, the expression for the reduced Jacobian
becomes:

∆Q =
[

JQV − JQθJ
−1

Pθ JPV

]

∆V = [JR] ∆V (2)

Assuming the system is voltage stable, the matrixJR can
be assumed non singular and written as the product of its
right eigenvector matrixξ, its left eigenvector matrixη, and
its diagonal eigenvalue matrixΛ, such that:

JR = ξΛη (3)

Finally, these eigenvectors can be used to define bus partic-
ipation factors. Normalized participation factors describe how
much (in a unitless percentage value) each bus contributes to
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Figure 1. Shown are test results for buses 200 through 500 from the loaded
2383 bus system (see Sec. III-A for system description). Busvoltage variances
at each node (panel (a)) are shown to have their relative magnitudes directly
predicted by the participation factors for the most unstable mode (panel (b)).

each mode of the power system. Accordingly, each participa-
tion factor corresponds to theith mode and thekth bus.

Pki = ξkiηik (4)

There are many different ways to use these eigenvalues
and eigenvectors to judge proximity to voltage collapse. For
instance, Gao et al. suggest using the smallest eigenvalue of
JR to gauge proximity to bifurcation. Such stability analysis,
though, is based solely on the decomposition of a model
based static matrix and is highly limited in nature, as outlined
by M. Pal in the discussion section of [10]. On the other
hand, detecting CSD in a time series is a purely data driven
stability assessment, but it can be difficult to understand
which nodes will show the strongest EWSs [3]. Therefore,
the novel approach outlined in this paper relies on using
static decomposition results to weight and interpret incoming
dynamic data.

Ultimately, we are concerned with the system’s most unsta-
ble mode of operation. This is the mode which will correspond
to the smallest eigenvalue of the system (the one closest to
zero). After thoroughly testing this method on multiple test
systems, we have shown that the modal participation factors
corresponding to the smallest eigenvalue ofJR directly predict
the relative bus voltage variances from buses across the system.
Fig. 1 shows an example of this fascinating result using data
collected from the loaded 2383 bus test system.

Participation factors of the most unstable mode also identify
the node voltages which, as the system is overloaded, begin to
diverge away from 1 per unit in magnitude and drift towards
0. These are the nodes which are primarily responsible for non
convergent power flow equations. Interestingly, as PQ buses
in the system are increasingly loaded, the recalculated partic-
ipation factors do not change drastically. This is equivalent
to saying that themodal shapes do not change significantly.
This is a useful result, since real power flow models are only
updated every few minutes.
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B. System Wide Cross-Correlation

CSD theory predicts that signals from a system approaching
a critical transition will begin to show high auto-correlation
(R(∆t)). This can be due to the system’s reduced ability to
respond to high frequency fluctuations [11], but the system
also beings to return to the equilibrium state more slowly
after perturbations [12]. This has been verified in a number
of papers in the power system literature, but as predicted in
[2], zero lag cross-correlation (PX1X2

(0)) of two state variable
signalsX1(t) and X2(t) is another potentially useful early
warning sign. As stated by Scheffer et al., there is a “general
tendency toward increased spatial coherence” as a critical
event approaches.

Voltage cross-correlation is inherently high for nodes in
close proximity to each other, but we have found that highly
unstable nodes (as predicted by the participation factors)also
show very high cross-correlation, even when the system is
relatively far from a transition. Based on this premise, we
have devised a method of dividing a system into two sections,
weighting and combining each section’s voltages, and then
testing for increases in cross-correlation. Diving the system
and weighting the voltages is based entirely on the calculated
participation factor values. One section of the divided system
contains the most unstable nodes (and all surrounding nodes),
and the second section contains the rest of the system nodes.
As loading increases, the stable and unstable nodes begin to
exhibit increasing cross-correlation.

Given a vector of eigenvaluesl (corresponding to the the
diagonal entries ofΛ) for the reduced JacobianJR, the
the smallest eigenvalue can be determined, with its index
corresponding toi:

λi
min = min(l) (5)

Now the participation factors for this mode, theith and most
unstable mode, can be chosen. Dividing the system in two
sections requires knowledge of the system topology, but we
ultimately want to group buses with the largest participation
factors with their surrounding nodes. For simplicity of nota-
tion, we will renumber the system nodes such that buses1
throughN are in one small, unstable group, and busesN +1
throughK are in the second larger, more stable group, where
there are a total ofK buses in the system. For a sequence of
T +1 bus voltage magnitude measurements, at each time step
t, the mean of the voltage signal (µVk

) is subtracted, and the
residual voltage is weighted by that node’s participation factor
and summed with all of the other weighted residual voltages.
Two aggregate vectors are computed:

X1(t) =

N
∑

k=1

(Vk(t)− µVk
)Pki ∀t ∈ (0, T ) (6)

X2(t) =

K
∑

k=N+1

(Vk(t)− µVk
)Pki ∀t ∈ (0, T ) (7)

Finally, 0 lag cross-correlation can be computed between
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Figure 2. Bus 466 has the most unstable voltage. Clearly, itsvoltage
variance increase is extremely dramatic, rising by a factorof over 200 (from
nominal load to system destabilizing load). The majority ofthis increase
occurs immediately before the bifurcation.

X1(t) andX2(t):

PX1X2
(0) =

1

T

T
∑

t=1

(X1(t)− µX1) · (X2(t)− µX2)

σX1 · σX2

(8)

whereµ andσ are the signals’ mean and standard deviation.
As system load increases, it will be shown that, in a sufficiently
large system, the cross-correlation between two such vectors
constantly increases as it approaches the upper limit of unity.

C. Using Variance Ratios as an EWS

CSD theory also predicts that the variance (σ2) of signals
will begin to increase as the system approaches a critical
event [3]. Not all variables will show an extreme increase in
variance, and not all increases will be sufficiently early to
serve as an effective EWS. Even when monitoring the most
unstable node of a system though, its increase in variance
can be so dramatic (especially directly before the system has
reached a critical point), it can be challenging to have an
unambiguously clear measure of bifurcation proximity. Fig. 2
shows an example of this point. Participation factors can once
again be helpful in determining how to monitor dynamic data.

As indicted previously, participation factors of the most un-
stable nodes amazingly serve as values indicating the relative
bus voltage variance strengths. Therefore, as the system is
increasingly loaded, the most unstable nodes will begin to
have larger and larger participation factors as their relative
variance strengths grow relative to other, more stable nodes.
Fig. 3 shows an example of this for the 2383 bus system. As
the system is loaded, the relative strength of the most unstable
node’s participation increases almost linearly, but when the
critical transition approaches, the participation beginsto limb
more steeply.

Using the results predicted by the participation factor evo-
lution, system wide variance strength ratios are shown to be
an interesting and useful EWS. To develop a metric based on
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Figure 3. Depicted are the evolutions of three different nodal participation
factors. As the system is increasingly loaded (right up to bifurcation), bus 466
(the most unstable bus) begins to see a sharp increase in participation to the
instability. Bus 240 (the 5th most unstable bus) sees a very slight increase,
while bus 218 (the 10th most unstable bus) begins to see a decrease.

this result, we once again split the system into two groups:
a small, highly unstable group, and a larger, more stable
group (as predicted by the participation factors). We weight
all bus voltage variances by the magnitude of their respective
participation factors, and then we sum the variances in each
group. The ratio of these weighted variance sums is given by
Φ. As done previously, we will renumber the system nodes
such that buses1 throughN are in one small, unstable group,
and busesN + 1 throughK are in the second larger, more
stable group, where there are a total ofK buses in the system.
As before,Pki refers to the participation factor of theith mode
and thekth bus.

Φ =

N
∑

k=1

σ2
k · Pki

K
∑

k=N+1

σ2
k · Pki

(9)

III. E XPERIMENTAL RESULTS

This section applies the methods of Sec. II to calculate the
cross-correlation and variance ratio increases in the 2383bus
system. The system configuration and load noise assumptions
are outlined in III-A, while III-B and III-C outline the specific
test results.

A. Polish Test Case System Overview

In order to test our methods, we used simulated data
from the 2383-bus Polish test system. This network contains
327 synchronous generators (each equipped with with type I
turbine governors for frequency control and type II AVRs for
voltage regulation). There are 322 shunt loads (all connected
to generators buses) and 1503 active and reactive loads spread
throughout the system. In order to push the system towards
voltage collapse, we employed a simple uniform loading of
all loads (except for those attached to generator buses). This
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Figure 4. The system wide cross-correlation for increased system loading
is shown here. As the system approaches a critical transition, combined bus
voltages from around the system begin to swing together verytightly.

method is justified in [13]. After running a power flow on
the system, a time domain simulation was performed. Half of
the loaded nodes were modeled as voltage controlled loads,
while the other half were modeled as frequency controlled
loads. Parameters controlling the voltage controlled loads
were modeled after the Nordic Test System in [14], while
parameters controlling the frequency controlled loads were
modeled after the 39 bus test system described in [3].

During the time domain simulation, stochastic noise was
injected into the loads at each step. The differential algebraic
equations modeling the power system are given by:

ẋ = f(x, y) (10)

0 = g(x, y, u) (11)

wheref , g represent the differential and algebraic equations
governing the system,x, y are the differential and algebraic
variables of these equations, andu represents the injected
stochastic load noise. Load fluctuationsu follow a mean-
reverting Ornstein-Uhlenbeck process:

u̇ = −Eu+ ξ (12)

whereE is a diagonal matrix whose diagonal entries equal the
inverse correlation timest−1

corr of load fluctuations andξ is the
vector of zero-mean independent Gaussian random variables.
A further description of our noise model can be found in Sec.
II A of [3]. Our noise correlation times, though, are chosen
differently: to eachtcorr we assign a random value from a
bounded log-normal distribution of mean one.

In order to push the system towards a critical transition
(voltage collapse), the system was repetitively simulatedfor
ten distinct loading factorsb, ranging from b = 1 up to
b = 1.92. Voltage collapse would occur when the load factor
increased pastb = 1.923. For each load factor, we ran ten
120s simulations, computed statistics on the collected data,
and then calculated averages of the statistics.
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Figure 5. The ratio of the sum of weighted voltage variances for two groups
of buses is plotted against load factor values.

B. Evidence of System Cross-Correlation

In order to test system cross-correlation, the method de-
scribed in Sec. II-B was implemented on the 2383 bus system.
After analyzing the participation factors and topology of the
system, we chose to put nodes 180 through 470 (roughly 12%
of system nodes) into one group while the remaining nodes
were placed into a second group. Next, the voltages were
combined according to the aforementioned methods and cross-
correlation was computed for each load value.

Fig. 4 shows that the cross correlation between the voltages
of the system appears to increase linearly through most of
the system loading. Just before the bifurcation point, the cross
correlation begins increasing drastically as it approaches unity.

C. Evidence of Increasing Variance Ratios

In order to test system wide variance ratios, the method
described in Sec. II-C was implemented on the 2383 bus
system. As in Sec. III-B, we chose to put nodes 180 through
470 into one group while the remaining nodes were placed
into a second group. The ratioΦ of the summed weighted
voltage variances of both groups was tracked at the system
was increasingly loaded.

Fig. 5 shows that as the loading begins to approachb =
1.923, the variance ratio begins increasing drastically. The
increase, though, begins to grow sufficiently early (well before
bifurcation), making it a useful EWS. In total, the variance
ratio increases only by a factor of 3.4. Comparatively, the
variance in Fig. 2 increases by a factor of over 200.

IV. CONCLUSIONS

This paper presents evidence that participation factors from
a spectral decomposition of the power flow Jacobian can be
used to design methods for combining sychrophasor mea-
surements to produce system-wide indicators of instability in
power systems. This method uses model-based information
from the power flow Jacobian, which can be updated every
few minutes through the SCADA network, along with high

sample-rate voltage magnitude measurements, which can be
collected from synchronized phasor measurement systems
deployed throughout the system. This combination of power
flow results and dynamic real time data is used to develop two
different global stability metrics. In particular, we find that the
cross-correlation of combined weighted voltage measurements
is a particularly useful early warning sign of proximity to
instability. When the correlation of these signals approaches
unity, bifurcation is near. System wide weighted variance ratios
are also shown to be an effective EWS. Because these variance
ratios begin to increase far from the bifurcation point, grid
operators would have ample time to respond to these signals
and take appropriate mitigating actions, such as to re-dispatch
generation or (as a last resort) reduce demand.
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