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We show that the most general protocol of quantum communication between two end-points of a
quantum network with arbitrary topology can be reduced to an ensemble of Choi matrices subject to
local operations and classical communication. This is found by using a teleportation-based technique
which applies to a wide range of quantum channels both in discrete- and continuous-variable settings,
including lossy channels, quantum-limited amplifiers, dephasing and erasure channels. Thanks to
this reduction, we compute the optimal rates (capacities) at which two end-points of a quantum
network can transmit quantum information, distill entanglement, or distribute secret keys. These
capacities are all bounded or equal to a single quantity, that we call the entanglement flux of the
network. As a particular case, we derive these optimal rates for the basic paradigm of a linear
chain of quantum repeaters. Thus our results establish the ultimate rates for repeater-based and
network-assisted quantum communications under the most relevant models of noise and decoherence.

I. INTRODUCTION AND MAIN RESULTS

Quantum information [1–5] is today moving towards
practical applications, promising next-generation quan-
tum technologies with performances well beyond the
state of the art of the current classical infrastructure.
In these advances, quantum communications play a cen-
tral role. The most developed field is quantum cryp-
tography and, in particular, quantum key distribution
(QKD) [6–9] which allows two remote authenticated par-
ties to generate unconditionally secure keys. Indeed this
field has been the first to be extended to network imple-
mentations [10–15], including the first end-to-end [16, 17]
realizations at the metropolitan scale [18–22].

Quantum teleportation [23, 24] is another remarkable
protocol of quantum communication. Once two remote
parties share enough entanglement, they can use local op-
erations (LOs) and classical communication (CC), briefly
called LOCCs, to teleport quantum information from one
location to the other. This procedure may form the back-
bone of a future quantum Internet [25], where quantum
information is teleported between different nodes and
then subject to local quantum processing. In this re-
gard, hybrid approaches which mix different substrates
are believed to be the most promising [24].

Networks are built to connect and deliver services to
many users. In the quantum setting, there is also a phys-
ical reason: Quantum signals are fragile to loss and noise
and, therefore, need to be relayed. Any quantum com-
munication between two parties is affected by a funda-
mental rate-loss trade-off which limits the performance
at increasing distances. As shown in Ref. [26], the max-
imum rates at which two parties can distribute secret
keys, distill entanglement, or transmit quantum infor-
mation over a lossy channel with transmissivity η are all
equal to C(η) = − log2(1 − η), corresponding to about
1.44η bits per channel use at high loss. This limit is
achieved by using the most general quantum protocols
assisted by unlimited two-way CC and adaptive LOs, so
called adaptive LOCCs [26, 27]. The optimization over

these protocols defines the (generic) two-way assisted ca-
pacity C of the channel. Depending on the task, this may
represent a secret-key capacity, an entanglement distilla-
tion capacity or a quantum capacity [28].
In order to overcome the previous limitation, one intro-

duces quantum repeaters [29–42]. For instance, instead
of using a single optical fiber (lossy channel) with trans-
missivity η between Alice and Bob, we can split the fiber
in two identical parts introducing a quantum repeater
in the middle. The two parts are now lossy channels
with higher transmissivities, both equal to

√
η. Quan-

tum communication in the single links, Alice-repeater
and repeater-Bob, can independently occur at the ca-
pacity value C(√η). Combining and processing the out-
comes of these independent procedures (e.g., classically
composing the keys or swapping the distributed entangle-
ment), this value becomes an achievable rate for the en-
tire repeater-assisted quantum communication between
Alice and Bob, expressed as bits per repeater use.
Now the basic open problem is the following:

• Can we make a better use of a quantum repeater?

• If yes, what is the optimal achievable rate?

In fact, we can consider more general protocols where
the distribution over the two links is coordinated and as-
sisted by adaptive LOCCs involving all the parties. Be-
fore and after each transmission, both Alice, Bob and
the repeater may perfom LOs on their quantum systems
with the assistance of unlimited two-way CCs. Here we
explicitly study this more general strategy and we show
that it does not give any advantage: C(√η) is not only
achievable but also the maximum rate compatible with
quantum mechanics. In other words, we show that C(√η)
is the capacity of the quantum communication assisted
by the repeater. This basic result is proven and general-
ized to communication scenarios of increasing complexity,
starting from a linear chain of quantum repeaters, and
ending with a quantum network of arbitrary topology.
The main tool for proving our results is the method

of teleportation stretching [26, 27]. This technique can
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FIG. 1: Quantum communication scenarios (i) Linear
chain of N quantum repeaters between Alice and Bob, which
are connected by an ensemble of N+1 quantum channels {Ei}.
(ii) Quantum network N where two end-points communicate
through a set of M possible routes Ω = {1, . . . , ω, . . .M},
each involving a chain of Nω quantum repeaters. Routes are
chosen randomly according to a routing strategy and may
have collisions (i.e., a repeater may belong to more routes).

be applied whenever a quantum channel suitably “com-
mutes” with teleportation, in which case the channel is
called “stretchable”. This is feature of many channels
in both continuous variable (CV) and discrete variable
(DV) settings, including bosonic Gaussian channels and
qubit Pauli channels [27]. Using this method, one can
reduce the most general protocol of quantum communi-
cation based on adaptive LOCCs. In fact, after n uses of
a stretchable channel E , Alice and Bob’s output state can
be written as ρnab = Λ̄(ρ⊗n

E ), where ρE is the Choi matrix
of the channel [43] and Λ̄ is a trace-preserving LOCC .
Using this decomposition we may bound the two-way

assisted capacity of a stretchable channel as

C(E) ≤ Φ(E), (1)

where Φ(E) is the entanglement flux of the channel and is
defined as the relative entropy of entanglement (REE) of
its Choi matrix, Φ(E) := ER(ρE) [26, 27]. This quantity
represents the maximum amount of entanglement that
can be transmitted through the channel (as measured by
the REE [49]). In particular, for a stretchable channel
whose Choi matrix is distillable, we may write [26, 27]

C(E) = Φ(E). (2)

Such family of “distillable” channels is very wide and
includes lossy (pure-loss) bosonic channels, quantum-
limited amplifiers, dephasing and erasure channels.
This technique of teleportation stretching is here ex-

tended and applied to network quantum communica-
tions. As already mentioned, we start with a linear chain
of N quantum repeaters. This is characterized by an en-
semble of N + 1 quantum channels {Ei} describing the
sequence of transmissions i = 0, . . . , N between the end-
points (see Fig. 1). We define the entanglement flux of
the chain as the minimum of the fluxes

Φ({Ei}) = min
i

Φ(Ei). (3)

For a chain of stretchable channels {Ei}, we find that the
repeater-assisted capacity for the two end-points of the
chain, denoted by C({Ei}), must satisfy the bound

C({Ei}) ≤ Φ({Ei}), (4)

which is a direct generalization of Eq. (1).
In the case of distillable channels, we then find

C({Ei}) = Φ({Ei}), (5)

or, equivalently,

C({Ei}) = min
i

C(Ei). (6)

In other words, the repeater-assisted capacity is equal
to the minimum among the two-way assisted capacities
associated with each channel of the chain.
In optical and telecom communications, the most im-

portant type of decoherence is loss. In the case of a chain
of repeaters connected by lossy channels with arbitrary
transmissivities {ηi}, we can write

C({ηi}) = min
i

C(ηi) = C(ηmin), ηmin := min
i

ηi , (7)

or, equivalently,

C({ηi}) = − log2(1 − ηmin). (8)

Thus, in a lossy bosonic environment, the minimum
transmissivity of a chain characterizes the ultimate rate
for repeater-based quantum communications, for all the
crucial tasks of key generation, entanglement distillation,
and transmission of quantum information.
We then consider the general scenario of a quantum

network N with arbitrary topology. We only assume
that the quantum channels are memoryless and stretch-
able. Two end-points of the network, Alice and Bob,
are connected by an ensemble of M possible routes
Ω = {1, . . . , ω, . . .M} picked with some probability. Each
route is a chain of Nω quantum repeaters connected by
Nω + 1 stretchable channels {Eω

i } as shown in Fig. 1.
Remarkably, no matter how complex an adaptive net-

work protocol might be, all the transmissions through the
network can be stretched into an ensemble of Choi ma-
trices subject to single and final trace-preserving LOCC.
This decomposition allows us to bound the optimal rate
performance achievable by the end-points for any of
the tasks of key generation, entanglement distillation
or transmission of quantum information. In fact, we
find that the generic network capacity C(N ) is always
bounded by the network version of the entanglement flux.
More precisely, define the entanglement flux of the net-
work as the maximum of the fluxes among all the routes
connecting the two end-points, i.e.,

Φ(N ) := max
ω

Φω, Φω = min
i

Φ(Eω
i ). (9)

Then, we may write the simple bound

C(N ) ≤ Φ(N ). (10)
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In particular, when a quantum network is composed
by distillable channels, we have

C(N ) = Φ(N ), (11)

in which case all the network capacities are just equal to
the entanglement flux of the network, i.e., the maximum
amount of entanglement that can be distributed between
the two end-points for each use of the network. In turn,
the latter expression leads to

C(N ) = max
ω

min
i

C(Eω
i ), (12)

which is a direct generalization of Eq. (6).
Thus, finding the optimal rate of quantum network

is just reduced to solve an extremely simpler classical
max-min optimization problem. This remarkable simpli-
fication applies to CV networks affected by loss and/or
subject to amplification; it also applies to DV networks
subject to dephasing or erasure, e.g., spin networks. In
general, it also applies to hybrid networks involving any
combination of these error models.
For instance, consider a bosonic network where the ar-

bitrary route ω is composed by lossy channels with trans-
missivities {ηωi }. Such lossy channels may represent fibre-
based connections or free-space links, at optical or other
wavelenghts. Then, the generic network capacity for the
end-points of the lossy network reads

Closs(N ) = − log2(1− η̃), η̃ := max
ω

min
i

ηωi . (13)

This is the ultimate rate, expressed as bits per network
use or routed system, at which the end-points can ex-
tract secret keys (secret bits), entanglement (ebits) or
transmit quantum information (qubits). It is therefore
the ultimate limit for any end-to-end quantum commu-
nication in a lossy environment.
The manuscript is organized as follows. In Section II,

we provide the main tools for the remainder of the pa-
per. In particular, we describe the basics of teleportation
stretching, provide the main definitions and briefly re-
view previous literature. In Section III, we study linear
chains of quantum repeaters. Then, in Section IV, we
analyze the optimal performance of a quantum network
with arbitrary topology. Section V is for conclusions.

II. MAIN TOOLS

A. Ideal teleportation and stretchable channels

Let us describe the teleportation protocol in the ideal
case, i.e., without noise and with perfect resources and
measurements. Given an arbitrary state ρ on some input
system a, this is perfectly teleported onto an output sys-
tem A′ by the following procedure. First of all, we need to
generate an ideal Einstein-Podolsky-Rosen (EPR) source

ΦEPR
AA′ of systems A and A′. For a qudit of dimension d,

this is a generalized Bell state

ΦEPR
AA′ = d−1/2

d
∑

i=1

|i〉A |i〉A′ , (14)

becoming the usual Bell state (|00〉+|11〉)/
√
2 for a qubit.

For a CV system, we take the asymptotic limit of d →
+∞ in Eq. (14), which corresponds to considering a two-
mode squeezed vacuum state [5] with infinite energy.
Then, input system a and EPR system A are subject to

an ideal Bell detection. This measurement corresponds
to a projection on a basis of Bell states Φk

aA where the
outcome k takes 2d values for qudits, while it is complex
for CVs [24]. More precisely, it is a positive-operator
valued measure (POVM) with generic operator

Φk
aA := (T a

k ⊗ IA)†ΦEPR
aA (T a

k ⊗ IA), (15)

where Tk is a teleportation unitary. We call teleporta-
tion set S, the ensemble of all teleportation unitaries Tk

at dimension d. For a qudit, these are d2 generalized
Pauli operators (generators of a finite-dimensional Weyl-
Heisenberg group) [27]; for a CV system, these are an
infinite number of displacement operators [5] (infinite-
dimensional Weyl-Heisenberg group).
For any given outcome k of the Bell detection on sys-

tem a and A, the remaining system A′ is projected onto

TkρT
†
k where Tk ∈ S. The last step is the CC of the

outcome k, which allows one to undo the teleportation

unitary by applying T †
k to system A′. Note that this pro-

cess also teleports all correlations that the input system
might have with other systems.
Now suppose that system A′ is subject to a quantum

channel E which outputs system B. In order to clean
the probabilistic action of the Bell measurement, can we
apply the correction unitary after the channel? In other

words, instead of applying T †
k to system A′, can we apply

another unitary U †
k to the output system B?

This is not possible in general, but it is a property for
a wide class of channels that we call “stretchable”.

Definition 1 We say that a quantum channel E is
“stretchable” by teleportation if, for any Tk ∈ S and any
input state ρ, we may write

E(TkρT
†
k ) = UkE(ρ)U †

k , (16)

for some unitary Uk.

Typically, the condition of Eq. (16) is satisfied with Uk ∈
S, i.e., the channel is covariant with the Weyl-Heisenberg
group. Notable examples of stretchable channels are all
qubit Pauli channels and all bosonic Gaussian channels.

B. Teleportation stretching

Now we show that quantum communication over a
stretchable channel can be re-arranged in time, so as to
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be reduced to the partial distribution of an ideal EPR
source followed by a trace-preserving LOCC. This is the
basic idea of the method of “teleportation stretching”
(see Fig. 2 for a schematic). Suppose that Alice is send-
ing a quantum system a through a quantum channel E
with output b, i.e., we have ρb = E(ρa). We can replace
a with another input system A′ by quantum teleporta-
tion. In fact, we can prepare an ideal EPR source ΦEPR

AA′

of systems A and A′, and perform a Bell detection on the
original input system a and the EPR system A.

Alice Bob
a b�

a

b� ��
-1

�

LOCC

A

A
,

B

(i) (ii)

(iii)
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FIG. 2: Basics of teleportation stretching. Time flows
from left to right. (i) Standard quantum communication
through a stretchable channel E from input system a to out-
put system b. (ii) Input system a is teleported into the new
input system A′ by a teleportation circuit composed by an
ideal EPR state (orange triangle) and a Bell detection (green
triangle). The outcome k of the measurement is classically
comunicated to Bob who applies an inverse unitary U−1

k . (iii)
The ideal EPR source and the Bell detection are stretched in
time: The EPR source is anticipated and replaces the original
input state, while the Bell detection is postponed after the
transmission over the channel. Thus, Alice first distributes
the EPR mode A′. Then, a LOCC is applied to the output
systems A and B, which includes the previous preparation of
system a, the Bell detection, CC of k and the local unitary
U−1

k . (iv) The final scheme is equivalent to considering the
Choi-matrix ρE of the original channel subject to a LOCC.

This leads to perfect teleportation of a onto A′, up
to a random teleportation unitary, i.e., we have ρA′ =

Tk(ρa) := TkρaT
†
k . The unitary Tk could be erased be-

fore transmission through the channel but, because E is
stretchable, Tk is mapped into an output unitary Uk that
Bob can equivalently delete at the channel output, i.e.,

ρB = E(ρA′) = E ◦ Tk(ρa) = Uk ◦ E(ρa) . (17)

Therefore, Bob just needs to receive Alice’s CC about the
outcome k and correspondingly apply U−1

k to retrieve the

input state, i.e., ρb = U−1
k (ρB) = E(ρa).

Thanks to this property, the Bell detection can be
delayed in time, meaning that it can equivalently be
performed after the transmission through the channel
E . The first step then becomes the preparation of the
ideal EPR source and the distribution of its system
A′ through the channel, i.e., we have the shared state
ρAB = (I ⊗E)(ΦEPR

AA′ ). Only after this EPR distribution,
the Bell detection is applied to system a and EPR system
A, performing quantum teleportation of a back in time.
In such a scenario, where the preparation of the EPR

source is anticipated and the Bell detection is postponed,

Alice and Bob are left with a final LOCC Λ to be applied
to their systems A and B. This LOCC combines the
preparation of the input system a, the Bell detection, the
CC of its outcome k, and the local unitary U−1

k . In other
words, we may write Bob’s output state as ρb = Λ(ρAB).
Note that, by construction, ρAB is the Choi matrix ρE of
the channel E . Thus, we may write ρb = Λ(ρE).
Because the final state ρb does not depend on k, we

may equivalently write ρb = Λ̄(ρE), where Λ̄ is computed
from the previous LOCC Λ by averaging over all possible
outcomes k of the Bell detection. This is a crucial step
because Λ̄ is not only a LOCC but also a CPTP map,
which allows us to exploit the monotonicity of entangle-
ment measures under such maps. As a matter of fact,
this method allows us to replace the quantum commu-
nication over the channel E by the Choi-matrix of the
channel ρE subject to a trace-preserving LOCC. As ex-
plained in Ref. [26, 27], this technique is different from
programmable quantum gate arrays [44] or port-based
teleportation [45]. In particular, the fact that our method
provides an overall trace-preserving LOCC is absolutely
crucial for the simplification of the adaptive protocols.

C. Teleportation stretching of direct point-to-point

quantum communication

Direct point-to-point quantum communication over a
stretchable channel can be greatly simplified. Suppose
that Alice and Bob are separated by a quantum channel
E and they want to implement the most general protocol
with the aim of distributing entanglement, quantum in-
formation or secret keys. Suppose that they can exploit
unlimited two-way CC and perform real-time adaptive
LOs on their systems, i.e., they use adaptive LOCCs. We
can always assume that Alice and Bob have countable en-
sembles of systems, denoted by a and b, respectively. To
simplify notation, we update their local ensembles so that
a system a to be transmitted is extracted from the origin
ensemble a → aa, and a system b received is absorbed
by the target ensemble bb → b. In general, the quantum
communication can be forward or backward: We assume
that the parties choose the optimal direction [46].
The most general adaptive protocol goes as follows

(here described for forward communication). The first
step is the preparation of the initial state of a and b by
an adaptive LOCC Λ0. Next, Alice picks a system a1 ∈ a
which is sent through the channel E . Once Bob gets the
output b1, the parties apply an adaptive LOCC Λ1 on all
systems ab1b. Let us update Bob’s set b1b → b. In the
second transmission, Alice sends another system a2 ∈ a
through E resulting into an output b2 for Bob. The par-
ties apply a further adaptive LOCC Λ2 on all systems
ab2b. Bob’s set is updated and so on. After n transmis-
sions, Alice and Bob share a state ρnab depending on the
sequence of adaptive LOCCs L = {Λ0, · · · ,Λn}.
This adaptive protocol has a rate ofRn if ‖ρnab − φn‖ ≤

ε, where ‖·‖ is the trace norm and φn is a target state
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with nRn bits. By taking the limit of n → +∞ and
optimizing over all the protocols L, one can define the
(generic) two-way assisted capacity of the channel

C(E) := sup
L

lim
n

Rn . (18)

In particular, if the parties implement entanglement dis-
tillation (ED), the target state is a maximally-entangled
state and Rn

ED is the number of entanglement bits (ebit)
per use. If the parties implement QKD, the target state
is a private state [47] with secret-key rate Rn

K ≥ Rn
ED [48].

Thus, C(E) may describe the two-way assisted entangle-
ment distillation capacity D2 or the secret-key capacity
K. Explicitly these capacities are defined as follows

D2(E) := sup
L

lim
n

Rn
ED ≤ K(E) := sup

L

lim
n

Rn
K. (19)

Also note that D2(E) = Q2(E), where Q2 is the two-way
assisted quantum capacity of the channel. In fact, under
unlimited two-way CCs, the transmission of an ebit as
part of a qubit and the teleportation of a qubit by means
of an ebit are equivalent processes.
We can bound C(E) using the relative entropy of en-

tanglement (REE) [49]. The REE of state ρ is

ER(ρ) := min
σ∈SEP

S(ρ||σ), (20)

where SEP is the set of separable states and

S(ρ||σ) := Tr [ρ(log2 ρ− log2 σ)] (21)

is the relative entropy [2]. Then, we may write [26]

C(E) ≤ ER(E) := sup
L

lim sup
n→+∞

n−1ER(ρ
n
ab). (22)

As one can check [26], the proof of Eq. (22) derives from

lim
n

Rn ≤ lim
n

Rn
K ≤ lim sup

n
n−1ER(ρ

n
ab), (23)

which is valid for any output state ρnab asymptotically
close to the private state φn, no matter how ρnab has
been generated. This feature enables us to extend the
inequality to other communication scenarios.
The upper bound ER(E) quantifies the maximum en-

tanglement (as measured by the REE) which can be dis-
tributed through the channel by means of general adap-
tive protocols. Its computation is hard but becomes fea-
sible for stretchable channels. In this case, the most
general adaptive protocol can be suitably “stretched” in
time and reduced to a non-adaptive protocol where chan-
nels are replaced by their Choi matrices and the adap-
tive LOCCs are all collapsed into a single final trace-
preserving LOCC.
Let us describe this procedure. This was originally

introduced in Refs. [26, 27] and is given here as a pre-
liminary tool for the next developments. We first discuss
the stretching of the ith transmission; then we extend the
result by iteration to the entire quantum communication.

For simplicity of notation, we omit identities when they
are involved in tensor products with other operators. See
the panels of Fig. 3 for a schematic.
In Fig. 3(i) we show the ith transmission ai → bi be-

tween Alice and Bob. The input state ρaaib is subject to
the channel E acting on ai with the identity being applied
to the local ensembles a and b. After transmission, the
adaptive LOCC Λi provides the output state ρiab, which
is the input for the next transmission. In Fig. 3(ii), we in-
sert an ideal teleportation circuit which teleports ai into
system A′

1. The total state σ := ρaaib⊗ΦEPR
AiA′

i

is subject

to the Bell detection Bk
aiAi

(σ) := Φk
aiAi

σ(Φk
aiAi

)†, with

outcome k. This is equivalent to write ρk
aA′

i
b
= Tk(ρaaib)

for a teleportation unitary Tk.

a a

bi

ai

b b

a a

Bi

ai

b b

�

Ai

,

Ai

a a

Bi

ai

b b

�

Ai

,

Ai

a

Bi
b

Ai

(i)

(iii)

(ii)

(iv)
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Λ�

Λ�

�Λ�

�
Λ�

a

b

�

Δ�

	

	

	

FIG. 3: Stretching of quantum communication. Time
increases from left to right; Alice is at the top (ensemble a)
and Bob is at the bottom (ensemble b). Dashed lines are CC.
In panel (i) we show the ith transmission ai → bi through
channel E , which is followed by an adaptive LOCC Λi per-
formed by the parties on their ensembles a and b. In panel (ii)
we insert an ideal teleportation circuit, just before the chan-
nel, teleporting a1 into the new input A′

1 up to a k-dependent
unitary Tk. Since E is stretchable, this unitary is mapped into
an output one Uk which can be erased by Bob in the next
LOCC. In fact, Alice and Bob apply Λk

i = Λi ◦ U−1

k where
U−1

k is performed on B1. In panel (iii) we stretch the pro-
tocol by anticipating the distribution of the EPR source and
post-poning the Bell detection after the channel. In panel (iv)
we show the final result, where the ith transmission through
channel E is replaced by its Choi-matrix ρE . The tensor prod-
uct ρE ⊗ ρi−1

ab
is subject to the trace-preserving LOCC Λ̄i.

Applying the quantum channel to the new input sys-
tem A′

i and using the condition of stretchability, we get

ρkaBib
:= E(ρkaA′

i
b) = E ◦Tk(ρaaib) = Uk ◦E(ρaaib), (24)

for some unitary Uk. The value of k is communicated to
Bob, who then applies U−1

k obtaining

ρaBib = U−1
k (ρkaBib

) = E(ρaaib), (25)

which is then transformed into ρiab by the final LOCC Λi.

Globally, the parties perform the LOCC Λk
i := Λi ◦ U−1

k .
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Note that we may equivalently write the output as

ρiab = Λk
i ◦ EA′

i
◦Bk

aiAi
(σ) = Λk

i ◦Bk
aiAi

◦ EA′

i
(σ)

= Λk
i ◦Bk

aiAi

(

ρaaib ⊗ ρAiBi

E

)

, (26)

where we have commuted the channel and the Bell detec-
tion and then used ρAiBi

E = EA′

i
(ΦEPR

AiA′

i

). Let us denote

by ∆i := Λk
i ◦Bk

aiAi
the LOs of Alice and Bob. Then, we

may write the output state as

ρiab = ∆i

(

ρaaib ⊗ ρAiBi

E

)

, (27)

which is the scenario depicted in Fig. 3(iii). Since the
input state is the output of the previous transmission,
i.e., ρaaib = ρi−1

ab , we have ρiab = ∆i(ρ
i−1
ab ⊗ ρAiBi

E ).
Finally, note that the output state equals its average

over the outcomes, i.e., ρiab =
∑

k pkρ
i
ab, which leads to

ρiab = Λ̄i(ρ
i−1
ab

⊗ ρAiBi

E ), (28)

where Λ̄i :=
∑

k pk∆i is a trace-preserving LOCC. This
is the final scenario depicted in Fig. 3(iv).
By using Eq. (28) we can now stretch all the quantum

communication in an iteratively way, i.e., transmission
after transmission. For instance, consider two transmis-
sions (n = 2) as also depicted in Fig. 4. For the first
transmission we may write

ρ1ab = Λ̄1(ρ
0
ab ⊗ ρA1B1

E ), (29)

where ρ0ab = Λ0(ρa ⊗ ρb) is the separable input state of
Alice’s and Bob’s ensembles. Because ρ0ab is separable,
we may insert this preparation into the LOCC and write
ρ1ab = Λ̄1(ρ

A1B1

E ). This is now the input of the second
transmission, for which we may write

ρ2ab = Λ̄2(ρ
1
ab ⊗ ρA2B2

E ) = Λ̄2

[

Λ̄1(ρ
A1B1

E )⊗ ρA2B2

E

]

= Λ̄2 ◦ Λ̄1

(

ρA1B1

E ⊗ ρA2B2

E

)

, (30)

since Λ̄1 acts as an identity on the second Choi matrix
ρA2B2

E . Thus, we finally get ρ2ab = Λ̄(ρ⊗2
E ), for a trace-

preserving LOCC Λ̄ = Λ̄2 ◦ Λ̄1.
The extension to arbitrary n transmissions is easy. We

may directly iterate Eq. (28) for n times to get

ρnab = (Λ̄n ◦ · · · ◦ Λ̄1)(ρ
0
ab ⊗ ρ⊗n

E ). (31)

Because ρ0ab is separable and Λ̄i are all trace-preserving
LOCCs, we may equivalently write ρnab = Λ̄

(

ρ⊗n
E

)

, where
all the use of the channel are represented by correspond-
ing Choi matrices and all the adaptive LOCCs are col-
lapsed into a single final trace-preserving LOCC Λ̄. Thus,
we have the following

Lemma 2 ([26, 27]) An adaptive protocol over n uses
of a stretchable channel E reduces to n Choi matrices ρE
plus a trace-preserving LOCC Λ̄, i.e., the output reads

ρnab = Λ̄
(

ρ⊗n
E

)

. (32)

a

b
1

a
1

b

a

b
2

a
2

b

Λ� Λ� Λ�

a

b
2

a
2

b

Λ�Λ�

a

b

Λ�

�ℰ

�ℰ
⊗2

�


 





FIG. 4: Iterative stretching of quantum communica-

tion. Example for n = 2 transmissions. See text for details.

Now the combination of Eqs. (22) and (32) leads to
a computable upper bound for all the two-way assisted
capacities. In fact, define the entanglement flux Φ(E) of
channel E as the REE of its Choi matrix [27], i.e.,

Φ(E) := ER(ρE). (33)

For stretchable E we may write [27]

C(E) ≤ ER(E) ≤ Φ(E). (34)

This comes from the fact that the REE is non-increasing
under trace-preserving LOCC and subadditive on tensor
products, so that

ER(ρ
n
ab) = ER

[

Λ̄
(

ρ⊗n
E

)]

≤ nER(ρE) = nΦ(E). (35)

Replacing this equation into Eq. (22), one gets Eq. (34).

D. Distillable channels

The entanglement flux is therefore an upper bound for
all the two-way assisted capacities C = Q2, D2 or K of
a stretchable channel. By showing its coincidence with
lower bounds based on the coherent information [50, 51]
and the reverse coherent information [52, 53], we can de-
termine the two-way assisted capacities of a number of
basic quantum channels. These “good” channels may be
called “distillable channels” and are defined below.
Let us denote by I(R)C(E) the (reverse) coherent infor-

mation of a channel E , which is defined as the (reverse)
coherent information associated with the channel E and
its Choi matrix ρAB = (I ⊗ E)(ΦEPR

AA′ ) := ρE . More pre-
cisely, we have

IC(E) := S(ρB)−S(ρE), IRC(E) := S(ρA)−S(ρE), (36)

where ρA(B) := TrB(A)(ρAB) and S(·) is the von Neu-
mann entropy. These quantities are achievable rates for
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entanglement distillation D1 via one-way CC. In fact,
using the hashing inequality [54], we may write

max{IC(E), IRC(E)} ≤ D1(ρE) ≤ D1(E), (37)

where D1(E) is the one-way assisted entanglement distil-
lation capacity of the channel. Clearly, D1(E) ≤ C(E).

Definition 3 A channel E is called distillable if it is
stretchable and satisfies the additional condition

max{IC(E), IRC (E)} = Φ(E). (38)

Thus, for a distillable channel, all the entanglement
that can be transmitted, as given by Φ(E), is one-way
distillable. From Eqs. (37) and (38) we have Φ(E) :=
ER(ρE) = D1(ρE), i.e., the Choi matrix of a distillable
channel is one-way distillable, with no room for bound
entanglement. Most importantly, for a distillable chan-
nel, we may write

C(E) = Φ(E) . (39)

In other words, the entanglement flux of the channel de-
termines all its two-way assisted capacities K, D2, and
Q2. Furthermore, these rates can be obtained by using
protocols based on one-way entanglement distillation.
For a distillable channel, an optimal protocol is a block

protocol that goes as follows. Alice prepares n copies of
the ideal EPR source ΦEPR

AA′ , sending the A′-parts to Bob
through the channel, therefore distributing the ensem-
ble of Choi matrices ρ⊗n

E . This is then subject to one-
way LOCCs, i.e., LOs and one-way CCs which may be
forward or backward. The final state takes the form of
Eq. (32) but without the need of performing the stretch-
ing of the protocol. It is clear that the output state
cannot have any bound entanglement.
It is important to realize that distillable channels form

a very wide family. This family includes the lossy (pure-
loss) channel with transmissivity η ∈ [0, 1] for which

Closs(η) = − log2(1− η). (40)

Note that this fundamental rate-loss trade-off, found in
Ref. [26], was long sought in the literature [53, 55]. Its
computation also involved to derive a simple formula for
the REE of Gaussian states by adapting techniques from
Ref. [56]. Furthermore, Closs(η) was found to be equal to
the maximum quantum discord that can be distributed to
the parties, as computed with the techniques of Ref. [57]
and confirming the role of discord in QKD [58].
Then, other distillable channels are: The quantum lim-

ited amplifier with gain g ≥ 1, for which [27]

Camplifier(g) = log2[g/(g − 1)]. (41)

The qubit dephasing channel with probability p, for
which we may write [27]

Cdephasing(p) = 1−H2(p), (42)

whereH2(p) := −p log2 p−(1−p) log2(1−p) is the binary
Shannon entropy [59] (this result can be extended to a
qudit in arbitrary dimension [27]). And, finally, the qubit
erasure channel with probability p, for which [27, 60]

Cerasure(p) = 1− p. (43)

III. CHAIN OF QUANTUM REPEATERS

We have now all the necessary elements to extend the
analysis to more complex forms of quantum communi-
cation, beyond the basic scenario of a direct connection
between Alice and Bob. The first extension is to consider
a chain of quantum repeaters between the two parties.
Consider Alice and Bob to be end-points of a linear

chain of N + 2 points with N repeaters in the middle.
For i = 0, . . . , N we assume that point i is connected
with point i + 1 by a quantum channel Ei which can
be forward or backward, for a total of N + 1 channels
{E0, . . . Ei, . . . EN}. Each point has a countable ensemble
of quantum systems, denoted by ri for the i-th point.
In particular, we set a = r0 for Alice and b = rN+1 for
Bob. To simplify notation, we update the local ensembles
so that a system r to be transmitted is extracted from
the origin ensemble ri → rir, and a system r received is
absorbed by the target ensemble rri → ri.
The most general distribution protocol over the chain

is based on adaptive LOs and unlimited two-way CC in-
volving all the points in the chain. In other words, each
point broadcasts classical information and receives clas-
sical feedback from all the other points, which is used
to perform conditional LOs on the local ensembles. In
the following we always assume these “network” adap-
tive LOCCs, unless we specify otherwise.
The first step is the preparation of the initial state

of the local ensembles by a LOCC Λ0 which provides a
separable state σar1···rNb. Then, Alice and the first re-
peater exchange a quantum system through channel E0.
For a forward transmission, this means that Alice trans-
mits a system a ∈ a and the repeater gets its output r
with the update rr1 → r1. For a backward transmission,
the repeater transmits a system r ∈ r1 and Alice gets
a with the update aa → a. In each case, this transmis-
sion is followed by a LOCC Λ1 on the local ensembles
ar1r2 . . . rNb. Next, the first and the second repeaters
exchange another quantum system through channel E1
followed by another LOCC Λ2 applied to all the ensem-
bles, and so on. Finally, Bob exchanges a system with the
Nth repeater through channel EN and the final LOCC
ΛN+1 provides the output state ρar1···rNb.
This procedure completes the exchange of a quantum

system through the chain. In the second round, the initial
state is the (non-separable) output state of the first round
σ2
ar1···rNb = ρ1ar1···rNb. The protocol goes as before with

each pair of points i and i + 1 exchanging one system
between two LOCCs. The second round ends by giving
the output state ρ2ar1···rNb which is the input for the third
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round and so on. After n rounds, all the points share an
output state ρnar1···rNb. By tracing out the repeaters, we
get Alice and Bob’s final state ρnab. This state is obtained
after n uses of the chain {Ei} and depends on the whole
sequence of adaptive LOCCs L = {Λ0, · · · ,Λn(N+1)}.
The previous adaptive protocol has a rate of Rn if

‖ρnab − φn‖ ≤ ε, where φn is a target state with nRn

bits. By taking the limit of n → +∞ and optimizing
over L, we define the (generic) repeater-assisted capacity
for the two end-points of the chain, i.e.,

C({Ei}) := sup
L

lim
n

Rn . (44)

Let us specify the task of the distribution protocol. For
QKD, the target state is a private state [47] with secret
key rate Rn

ED (bits per chain use). In this case C({Ei})
describes the repeater-assisted secret key capacity

K({Ei}) := sup
L

lim
n

Rn
K . (45)

For entanglement distillation (ED), the target state is
a maximally-entangled state with rate Rn

ED ≤ Rn
K (ebits

per chain use). In this other case, C({Ei}) represents the
repeater-assisted entanglement distillation capacity

D2({Ei}) := sup
L

lim
n

Rn
ED ≤ K({Ei}). (46)

Since an ebit can teleport a qubit and a qubit can dis-
tribute an ebit, D2 coincides with the repeater-assisted
quantum capacity, i.e., D2({Ei}) = Q2({Ei}).
We can build an upper bound for all the previous ca-

pacities, i.e., for the generic C({Ei}). In fact, using the
general inequality in Eq. (23), we may write

C({Ei}) ≤ ER({Ei}) := sup
L

lim sup
n→+∞

n−1ER(ρ
n
ab). (47)

This upper bound can be extremely simplified in the
case of a “stretchable chain”, i.e., a chain composed by
stretchable channels. It is sufficient to extend the notion
of entanglement flux to a chain and then suitably stretch
the repeater-based protocol by teleportation.
Recall that the entanglement flux Φ(E) of a channel E

is defined as the REE of its Choi matrix, i.e., Φ(E) :=
ER(ρE). Thus, we may define the entanglement flux of a
chain as the minimum flux of its channels

Φ({Ei}) := min
i
{Φ(Ei)} . (48)

For a stretchable chain, this quantity bounds the maxi-
mum entanglement that can be distributed between the
two end-points and, therefore, bounds all the repeater-
assisted capacities. In fact, we have the following

Theorem 4 Consider a chain of N +2 points connected
by stretchable channels {Ei}Ni=0. The most general adap-
tive protocol over n uses of the chain provides the output

ρnab = Λ̄i

(

ρ⊗n
Ei

)

for any i, (49)

where Λ̄i is a trace-preserving LOCC. As a result, the
repeater-assisted capacities are all bounded by the entan-
glement flux of the chain, i.e.,

C({Ei}) ≤ Φ({Ei}). (50)

Proof. To prove the decomposition in Eq. (49) con-
sider the case of 3-point chain (N = 1), where Alice a
and Bob b are connected with a middle repeater r by
means of two stretchable channels E and E ′. This is
shown in Fig. 5 for the first two uses of the repeater.
The direction of the channels can be different and the
extension to arbitrary N is just a matter of technicali-
ties. As depicted in Fig. 5, we can stretch the protocol
iteratively. Each time we stretch a transmission between
two ensembles, we accumulate a Choi matrix at the in-
put, which distributes entanglement between those two
ensembles. Correspondingly, the two adaptive LOCCs
(before and after the transmission) are collapsed into a
single trace-preserving LOCC, with the output state ρarb
becoming the input state for the next transmission. Af-
ter two uses of the repeater we have the output state
ρ2arb = Λ̄

(

ρ⊗2
E ⊗ ρ⊗2

E′

)

. By tracing the repeater r, we de-

rive ρ2ab = Λ̄ab

(

ρ⊗2
E ⊗ ρ⊗2

E′

)

up to re-defining the LOCC.
By extending the procedure to an arbitrary number of
repeaters N and uses n, we get

ρnar1...rNb = Λ̄
(

⊗N
i=0 ρ⊗n

Ei

)

, ρnab = Λ̄ab

(

⊗N
i=0 ρ⊗n

Ei

)

.
(51)

More details are provided in Appendix A.
From the stretched scenario Λ̄

(

⊗iρ
⊗n
Ei

)

which is de-
picted in Fig. 6, we may consider any two points i and
i+1 and extend them to consider the bipartition (a · · · ri)
for an “extended Alice” and (ri+1 · · ·b) for an “extended
Bob”. Then, all the Choi matrices ρ⊗n

Ek
with k < i are

included in Alice’s LOs and all those with k > i + 1 are
included in Bob’s. The result is that we remain with
the input ρ⊗n

Ei
which is processed by a corresponding

trace-preserving LOCC Λ̄i which outputs ρnab by trac-
ing out all the repeaters (one key point here is that Λ̄i

remains a LOCC with respect to a and b). This leads to
Eq. (49) for any i. Since the REE is non-decreasing un-
der trace-preserving LOCCs and subadditive under ten-
sor products, we may write ER(ρ

n
ab) ≤ nER(ρEi

) for any
i. Replacing the latter inequality in Eq. (47), we derive
C({Ei}) ≤ ER({Ei}) ≤ ER(ρEi

) = Φ(Ei) for any i, which
implies C({Ei}) ≤ ER({Ei}) ≤ Φ({Ei}). �
Note that the final stretched scenario depicted in Fig. 6

remains the same if we randomly permute the order of
the transmissions in the quantum communication. For
instance, in some use of the chain, the first transmission
might occur between two repeaters, with the transmis-
sion between Alice and the first repeater only occurring
at a later time. This permutation-invariance is true pro-
viso that we suitably replace the final trace-preserving
LOCC in Eq. (51) and, therefore, in Eq. (49). Thus,
the main result in Eq. (50) is valid for any order of the
transmissions in the chain.
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Now, by using Theorem 4, we can bound the maximal
rates for entanglement distillation (D2), quantum com-
munication (Q2) and secret key generation (K) through
a stretchable chain of repeaters. It is in fact sufficient to
compute the entanglement flux of each individual chan-
nel Φ(Ei) and take the minimum. Note that the entan-
glement flux has been analytically computed for many
channels in both CV and DVs, including all single-mode
Gaussian channels and all Pauli channels [27].

There are important channels for which the entangle-
ment flux exactly coincides with the two-way assisted
capacities, i.e., Φ(E) = C(E) with C = D2, Q2 or K.
As discussed in Section II, this is the case of the distil-
lable channels. For chains involving these channels, i.e.,
“distillable chains”, we establish all the repeater-assisted

capacities. We have the following result.

Corollary 5 Consider a chain of N+2 points connected
by N + 1 distillable channels {Ei}, which include lossy
channels, quantum-limited amplifiers, dephasing or era-
sure channels. The generic repeater-assisted capacity of
the chain is equal to its entanglement flux. In turn, this
is equal to the minimum among the two-way assisted ca-
pacities of the individual channels

C({Ei}) = Φ({Ei}) = min
i

C(Ei) . (52)

Proof. For the considered channels, the generic two-
way assisted capacity coincides with the entanglement
flux, i.e., C(Ei) = Φ(Ei). Thus, from Theorem 4, we
find C({Ei}) ≤ Φ({Ei}) := miniΦ(Ei) = mini C(Ei). It
is clear that mini C(Ei) is also an achievable lower-bound
for C({Ei}). In fact, C(Ei) is the capacity for the single
connection between points i and i+1, not assisted by the
other points. By composing all the connections, Alice
and Bob can communicate with a rate which is at least
the minimum of the single-connection capacities. �
As a result of the previous Corollary, we establish the

ultimate rate of repeater-assisted QKD in lossy chan-
nels. Suppose that Alice and Bob are connected by
N repeaters and each connection Ei in the chain is a
lossy channel with transmissivity ηi. Then, the repeater-
assisted secret key capacity of the lossy chain is

K({ηi}) = min
i

K(ηi) = min
i

[− log2(1− ηi)]

= − log2(1− ηmin), ηmin := min
i

ηi . (53)

No matter how many repeaters we use, the minimum
transmissivity in the chain fully determines the ultimate
rate of QKD between the two end-points. The same con-
clusion is reached for entanglement distillation and quan-
tum communication since Eq. (53) is valid for Closs({ηi}).
In a chain of bosonic systems connected by amplifiers

with gains {gi}, the repeater-assisted capacity is deter-
mined by the highest gain gmax := maxi gi, so that

Camplifier({gi}) = log2[gmax/(gmax − 1)]. (54)

For a spin chain where the state transfer from the ith
spin to the next one is modelled by a dephasing channel
with probability pi, we find

Cdephasing({pi}) = 1−H2(pmax), (55)

where pmax := maxi pi and H2 is the binary Shannon en-
tropy. When the spins are connected by erasure channels
with probabilities {pi}, then we have

Cerasure({pi}) = 1− pmax. (56)

A. Optimal use of quantum repeaters in lossy

optical communications

Let us discuss in more detail the important case of
repeaters in a lossy bosonic environment. Suppose that
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we are given a long communication line (e.g. a telecom
fibre) with transmissivity η plus a number N of repeaters
that we could potentially use along the line. Assume
that any cut of the line generates two sub-lines which are
lossy channels with transmissivities η′ and η′′ such that
η = η′η′′. The question is: What is the optimal way to
cut the line and insert the repeaters?
From the formula of the repeater-assisted capacity

Closs({ηi}) = − log2(1− ηmin), ηmin := min
i

ηi , (57)

we can easily see that the optimal strategy corresponds
to N equidistant cuts of the line, so that the resulting
N + 1 lossy channels have identical transmissivities

ηi = ηmin = N+1
√
η . (58)

This leads to the maximum capacity

Closs(η,N) = − log2 (1− N+1
√
η) . (59)

This capacity is plotted in Fig. 7 for increasing number
N of equidistant repeaters on the line, whose total loss
is expressed in decibel (dB), given by ηdB := −10 log10 η.
In particular, we compare the repeater-based capacity
with the fundamental benchmark, i.e., the maximum pe-
formance achievable in the absence of repeaters.
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FIG. 7: Capacity (bits per line use) versus total loss in the
line (in dB). We first show the maximum performance which
is achievable by direct quantum communication with no re-
peaters on the line (dashed curve). This is the fundamen-
tal benchmark to be surpassed by the use of quantum re-
peaters. This benchmark is then compared with the opti-
mal rates achievable by means of N equidistant repeaters, for
N = 1, 2, 10 and 100 (solid curves).

Suppose that we require a minimum performance of 1
bit per line use (depending on the specific protocol, this
could be 1 secret bit or 1 ebit or 1 qubit per line use).
From Eq. (59), we see that we need at least

N = log2
1

η
− 1 ≃ 0.332 ηdB − 1 (60)

equidistant repeaters. This is about 1 repeater every 6dB
loss, corresponding to about 30km in standard optical
fibre (at the loss rate of 0.2dB/km).
It is interesting to study two regimes that we may call

repeater-dominant and loss-dominant. In the former, we
fix the total transmissivity η of the line and use many
equidistant repeaters N ≫ 1. We then have

Closs(η,N ≫ 1) ≃ log2 N − log2 ln
1

η
, (61)

which means that the capacity scales logarithmically in
the number of repeaters, independently from the loss.
In the second regime (loss-dominant), we fix the num-

ber of repeaters N and take the limit of high loss η ≃ 0.
We then get

Closs(η ≃ 0, N) ≃
N+1
√
η

ln 2
≃ 1.44 N+1

√
η. (62)

In nats, this is equal to N+1
√
η nats per line use.

IV. QUANTUM NETWORKS

A. Notation and preliminary definitions

We consider a quantum network N whose points are
connected by memoryless channels. The network can
be represented as an undirected graph [61] N = (P,E)
where P is the finite set of points of the network (ver-
tices) and E is the set of all connections (edges). An
arbitrary point x ∈ P has an associated local ensemble
of quantum systems x used for quantum communication.
To simplify notation, we identify a point with its local
ensemble x = x. Two points x,y ∈ P are connected if
there is an edge (x,y) ∈ E, i.e., a corresponding channel
Exy between x and y (forward or backward, we implic-
itly assume the optimal direction). As before, we adopt
a and b for the two end-points, Alice and Bob, while we
use r’s for the repeaters (middle points of the network).
By definition, a route is a path between the two end-

points, i.e., an ordered sequence of edges of the type
{(a, r1), (r1, r2), · · · , (rN ,b)}, that we may also denote
as a − r1 − · · · − rN − b. Correspondingly, there is a
sequence of channels {E0, . . . , EN} where Ei := Eriri+1

with i = 0, . . . , N and setting a = r0 and b = rN+1.
In general, the two end-points are connected by an en-
semble of possible routes Ω = {1, . . . , ω, . . .} through
which systems can be transmitted. Generic route ω :
a− rω1 − · · · − rωNω

−b involves the transmission through
Nω + 1 channels {Eω

0 , . . . , Eω
Nω

}. These routes span all
the points P of the network and may have collisions,
which means that one or more repeaters may be in com-
mon to different routes. Finally, as in the case of a lin-
ear chain, each transmission is alternated with network
LOCCs: These are adaptive LOs performed by all points
on their local ensembles, and assisted by unlimited two-
way CC involving the entire network.
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B. Sequential access of a quantum network

The most general protocol for sequential communi-
cation over a quantum network involves the use of
generally-different routes, accessed one after the other.
The network is initialized by a first LOCC Λ0 into an
initial separable state. Then, with probability π1

0 , Alice
a exchanges one system with repeater r11. This is fol-
lowed by another LOCC Λ1. Next, with probability π1

1 ,
repeater r11 exchanges one system with repeater r12 and
so on. Finally, with probability π1

N1
, repeater r1N1

ex-
changes one system with Bob b, followed by a final LOCC
ΛN1+1. Thus, with probability p1 = Πiπ

1
i , the end-points

exchange one system which has undergone N1 + 1 trans-
missions {E1

i } along the first route a− {r1i } − b.
The next uses involve generally-different routes. After

a large number n of uses, the random process defines a
routing table R = {ω, pω}, where route ω is picked with
probability pω and involves Nω + 1 transmissions {Eω

i }.
Thus, we have a total of Ntot = Σωnpω(Nω + 1) trans-
missions and a sequence of LOCCs L = {Λ0, . . . ,ΛNtot

},
whose output provides Alice and Bob’s final state ρnab.
Note that we may weaken the previous description:
While mantaining the sequential use of the routes, in each
route we may permute the order of the transmissions (as
before for the case of a linear chain of repeaters).
The sequential network protocol is characterized by

R and L, and its rate is Rn if ‖ρnab − φn‖ ≤ ε, where
φn is a target state of nRn bits. The generic network
capacity is defined by optimizing the asymptotic rate over
all protocols, i.e.,

C(N ) := sup
(R,L)

lim
n

Rn. (63)

This provides the maximum number of (quantum, entan-
glement, or secret) bits which are distributed on average
for each sequential use of the network, i.e., for each quan-
tum system routed through the network. By specifying
the type of target state, we have the corresponding net-
work capacities for quantum communication, entangle-
ment distillation and QKD, which satisfy

Q2(N ) = D2(N ) ≤ K(N ). (64)

In the following, we derive a simple upper-bound for
these network capacities in the case of a stretchable quan-
tum network, i.e., a quantum network with stretchable
channels. Most importantly, they can be exactly com-
puted in the case of a distillable quantum network, i.e.,
a quantum network connected by distillable channels.

C. Stretchable quantum networks

The stretching of a quantum network is a procedure
which directly generalizes that employed for a linear
chain of quantum repeaters, with the difference that we
now have many chains with possible collisions. Using this
method, we derive the following upper bound.

Theorem 6 Consider a network N of stretchable chan-
nels, where two end-points are connected by an ensemble
of routes Ω = {ω}, with each route ω involving transmis-
sions through a sequence of channels {Eω

i }. The generic
network capacity C(N ) is upper-bounded by the entangle-
ment flux of the network Φ(N ), defined as the maximum
entanglement flux among the different routes, i.e.,

C(N ) ≤ Φ(N ) := max
ω

Φω, Φω = min
i
{Φ(Eω

i )}. (65)

Proof. To show the basic rationale, consider two re-
peaters on two different routes ω = 1, 2. We have
route 1 : a − r1 − b with channels {E1

1 , E1
2}, and route

2 : a − r2 − b with channels {E2
1 , E2

2}. The first use of
these routes is shown in Fig. 8. Iterative stretching leads
to ρaRb = Λ̄(⊗ω,i ρEω

i
), where R = r1r2 are the middle

repeaters. As before, just note that the final stretched
scenario is permutation-invariant up to re-define the final
LOCC, which means that we get an equivalent decom-
position of the output state for any re-ordering of the
transmissions in the network quantum communication.
Within each route ω we then identify the channel

with the minimum entanglement flux, i.e., Eω such that
Φ(Eω) = Φω. For instance, we suppose they are E1

1 and
E2
1 in the example of Fig. 8. The key point is that we

can stretch the routes only with respect to these chan-
nels, while including all the other channels in the net-
work operations. The resulting quantum operation Λ̃
applied to the remaining Choi matrices ⊗ωρEω

is trace-
preserving and still local with respect to Alice and Bob.
By tracing out all the repeaters, we get the output state
ρab = ∆(⊗ωρEω

) with ∆ being a trace-preserving LOCC.
This formula can be extended to n uses of the network
and an arbitrary routing set where route ω is picked with
probability pω. It easy to check that this leads to

ρnab = ∆(⊗ω ρ⊗npω

Eω
). (66)

Now, for QKD, we may write

K(N ) := sup
(R,L)

lim
n

Rn
K

≤ sup
(R,L)

lim sup
n

n−1ER(ρ
n
ab), (67)

where we have used Eq. (23). Using the stretched net-
work in Eq. (66) and the properties of the REE, we derive
K(N ) ≤ maxR ΣωpωΦω ≤ maxω∈ΩΦω. This bound ap-
plies to all network capacities, proving Eq. (65). �

D. Distillable quantum networks

Note that Theorem 6 identifies a candidate optimal
route for the quantum systems, which is that with maxi-
mum entanglement flux. This is indeed the optimal route
in a network which is made of distillable channels, such
as lossy channels. We have the following result.
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FIG. 8: Stretching of two routes of a network. The first
transmission through the two routes can be stretched into the
output state ρaRb = Λ̄(⊗ω,i ρEω

i
), where R = r1r2 are the

middle repeaters. In each route we identify the channel with
minimum entanglement flux, here assumed to be E1

1 and E2

1 .
We then keep the corresponding Choi matrices ρE1

1
and ρE2

1

while the others are included in the LOCC (which remains LO
for Alice and Bob). Finally, we trace the middle repeaters.

Corollary 7 Consider a quantum network whose points
are connected by distillable channels (e.g., lossy chan-
nels, quantum-limited amplifiers, dephasing or erasure
channels). There is an optimal route ω̃ between the end-
points: This is the route with maximum entanglement
flux, whose value provides all the network capacities, i.e.,

C(N ) = Φω̃ = max
ω

Φω = Φ(N ) . (68)

Equivalently, we may write

C(N ) = max
ω

min
i

C(Eω
i ) . (69)

Proof. It is sufficient to show that Φω̃ is an achievable
rate. Restricting the routing set to the optimal route ω̃
and ignoring all the network points not belonging to that
route, we have a chain of repeaters between the two end-
points for which we may apply previous Corollary 5. The
repeater-assisted capacity of the optimal route C({E ω̃

i })
is an achievable bound which satisfies C({E ω̃

i }) = Φω̃ =
mini C(E ω̃

i ). Thus, we have C(N ) ≥ Φω̃ which, combined
with Eq. (65), provides Eqs. (68) and (69). �
Previous Corollary 7 reduces the optimal use of a quan-

tum network to the resolution of a classical max-min
problem. Given two points of the network we compute
the entanglement flux for each route connecting the two
points and then we take the maximum value. This pro-
cedure can be applied to very important cases such as
bosonic lossy networks or spin networks affected by de-

phasing or erasure. We may even consider hybrid net-
works involving both DV and CV systems, such as spin-
bosonic networks affected by erasure and loss.
As an example, consider a bosonic network with lossy

channels, which well describes both free-space or fibre-
based optical communications. Along the route ω, we
have a sequence of lossy channels with transmissivities
{ηωi }. We then compute the minimum transmissivity
ηω := mini η

ω
i which provides the entanglement flux of

the route Φω = − log2(1 − ηω). The network capacity
is given by the maximization of Φω over all the routes
connecting Alice and Bob. This is equal to

Closs(N ) = − log2(1− η̃), η̃ := max
ω

ηω . (70)

Similar conclusions can be derived for Gaussian net-
works with quantum-limited amplifiers or a mix of am-
plifiers and lossy channels. Consider a network of am-
plifiers, where route ω is composed by quantum-limited
amplifiers with gains {gωi }. We then compute the max-
imum gain gω := maxi g

ω
i , providing the entanglement

flux of the route Φω = log2[gω/(gω − 1)]. As before, the
network capacity is given by maximizing Φω over all the
routes between the two end-points, which leads to

Camplifier(N ) = log2[g̃/(g̃ − 1)], g̃ := min
ω

gω. (71)

We can also compute the network capacities in spin
networks where links are affected by dephasing or era-
sure or a mix of the two errors. For instance, in a spin
network with dephasing, where route ω is composed of an
ensemble of dephasing channels with probabilities {pωi },
we compute Φω = 1 − H2(pω) where pω := maxi p

ω
i .

Then, we derive the network capacity

Cdephasing(N ) = 1−H2(p̃), p̃ := min
ω

pω. (72)

Finally, for a spin network affected by erasures, where
route ω is composed by erasure channels with probabili-
ties {pωi }, we compute the entanglement flux Φω = 1−pω
where pω := maxi p

ω
i . By optimizing over the routes, we

derive the network capacity

Cerasure(N ) = 1− p̃, p̃ := min
ω

pω. (73)

E. Remarks on the optimal route

Some considerations on the optimal use of a quantum
network are in order. First of all, note that there could
be multiple solutions that may be constructed from an
optimal route by the introduction of loops. For instance,
as shown in Fig. 9, from the optimal route ω̃ we might
construct an alternate route ω′ having the same entan-
glement flux Φω′ = Φω̃, but including extra connections
{E ′

i} with Φ(E ′
i) ≥ Φω̃. This type of alternate solution

can be excluded by restricting Ω to collision-free routes.
Clearly this reduction is just a classical procedure.
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FIG. 9: Possible routes between two end-points. Suppose that
Alice and Bob are connected by the optimal route ω̃ : a−r1−
r2−b (solid line), with entanglement flux Φω̃ = Φ(E1). There
may be another route ω′ ∈ Ω with Φω′ = Φω̃ , which includes
a loop as in the figure, i.e., ω′ : a− r1 − r2 − r3 − r1 − r2 −b

(solid and dotted line). In this route the entanglement fluxes
of the channels E ′

1 and E ′
2 are greater than Φω̃. Such a solution

is excluded by reducing Ω to collision-free routes.

Then, note that the network capacity C(N ) provides
the maximum number of target bits (secret bits, ebits
or qubits) per use of the network or, equivalently, per
system routed. In order to reach this optimal rate, the
points on the optimal route just need to perform inde-
pendent two-way adaptive protocols between each pair of
nearest-neighbor points i and i + 1. In particular, such
independent protocols can be performed simultaneously.
If we explicitly introduce a clock, defined as number γ of
network uses per second, then γC(N ) provides the max-
imum number of bits per second.
However, there may be situations, where the previ-

ous nearest-neighbor adaptive protocols can only be per-
formed sequentially, which means that the distribution
between points i and i + 1 only starts after the distri-
bution between i − 1 and i. Such a time constraint
may change the optimal solution. As a matter of fact
it rescales the effective clock of a route depending on
the number of transmissions. For a route with N + 1
transmissions, we have γ → γ(N + 1)−1. Thus, in this
scenario, the optimal route will be that maximizing the
re-scaled entanglement flux Φω(N + 1)−1.

V. CONCLUSIONS

In this work we have investigated the optimal rate
performance of quantum communications in network-like
scenarios, considering linear chains of quantum repeaters
and, more generally, quantum networks with arbitrary
topology. Using the method of teleportation stretching
we have shown that the most general adaptive protocols
performed in these scenarios can be reduced to an en-
semble of Choi matrices followed by a trace-preserving
LOCC. This reduction is generally possible for any lin-
ear chain or quantum network composed by stretchable
channels which suitably commute with teleportation.
In particular, we have computed the repeater-assisted

and network-assisted capacities for secret-key generation,
entanglement distillation and quantum communication
under the most important decoherence models for both
continuous- and discrete-variable systems, including loss,
amplification, dephasing and erasure. These capacities
turn out to have remarkably simple formulas.

The applicability of our results is very wide. As a
matter of fact, they establish the ultimate rate for opti-
cal/telecom quantum communications in chains of quan-
tum repeaters and bosonic networks which are subject
to loss. This rate bounds the optimal performance which
is achievable by any end-to-end [16, 17] QKD protocol.
Our findings also determine the optimal rate for trans-
mitting quantum information and distilling entanglement
in DV scenarios, such as a spin chain or a spin network
whose connections are modelled by dephasing or erasure
channels. More generally, our results may be applied to
completely hybrid scenarios, involving both DV and CV
systems, as is expected for the case of a distributed quan-
tum computing architecture or quantum Internet.
In conclusion, by establishing the ultimate perfor-

mance of network quantum communications with differ-
ent types of systems and different models of decoherence,
our work contributes to understand the best technologies
to be used for the next-generation quantum networks.
Specifically for quantum repeaters, our results provide
the full meter to evaluate their effective performance: We
may tell if a design is close to be optimal or not, and how
far a technology can be improved towards the realization
of high-speed quantum communications.
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Appendix A: Stretching of a chain

Suppose that the jth transmission occurs between re-
peater ri and ri+1 via channel Ei. Let us denote by ρjaRb

the total state of the chain after this transmission, where
R = r1r2 . . . rN is the ensemble of all the repeaters.
Then, we may modify Eq. (28) into

ρjaRb = Λ̄j

(

ρj−1
aRb ⊗ ρ

RiRi+1

Ei

)

(A1)

where Ri and Ri+1 are ancillary systems absorbed by
repeaters ri and ri+1, respectively, and Λ̄j is a trace-
preserving LOCC. Suppose that the transmissions are
sequential, as described in the basic repeater protocol,
so that the first transmission is between Alice a = r0
and the first repeater r1 and so on. This means to set
j = i+ 1 in Eq. (A1) for i = 0, . . . , N . Starting from the
separable state ρ0aRb = σaRb, we derive

ρ1aRb = Λ̄1

(

σaRb ⊗ ρR0R1

E0

)

(A2)

ρ2aRb = Λ̄2

(

ρ1aRb ⊗ ρR1R2

E1

)

(A3)

...

ρN+1
aRb = Λ̄N+1

(

ρNaRb ⊗ ρ
RNRN+1

EN

)

, (A4)

which leads to

ρN+1
aRb = Λ̄N+1 ◦ · · · ◦ Λ̄1

(

σaRb ⊗N
i=0 ρ

RiRi+1

Ei

)

. (A5)
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This completes the first use of the chain. In the second
use of the chain, the input state becomes ρN+1

aRb and we
iterate Eq. (A1) with j = i+N + 2, so that we have

ρN+2
aRb

= Λ̄N+2

(

ρN+1
aRb

⊗ ρR0R1

E0

)

, (A6)

an so on, with similar expressions up to ρ2N+2
aRb . By re-

placing as before, we derive

ρ2N+2
aRb = Λ̄2N+2 ◦ · · · ◦ Λ̄1

[

σaRb ⊗N
i=0

(

ρ
RiRi+1

Ei

)⊗2
]

.

(A7)
After n uses of the chain, we then get

ρ
n(N+1)
aRb = Λ̄n(N+1) ◦ · · · ◦ Λ̄1

[

σaRb ⊗N
i=0

(

ρ
RiRi+1

Ei

)⊗n
]

.

(A8)

This can be re-written as

ρ
n(N+1)
aRb := ρnaRb = Λ̄

(

⊗N
i=0ρ

⊗n
Ei

)

, (A9)

where we exploit the fact that σaRb is separable and,
therefore, can be included in the global LOCC. Finally,
tracing out the repeaters R, we may write

ρnab = Λ̄ab

(

⊗N
i=0ρ

⊗n
Ei

)

, (A10)

where Λ̄ab is another trace-preserving LOCC.
It is important to note that we can equivalently reach

the final result of Eq. (A10) also considering other order-
ing for the transmissions between the repeaters, i.e., not
necessarily sequential. One can check that a random per-
mutation of the order of the transmissions corresponds to
a permutation of the Λ̄j in Eq. (A8).
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[53] S. Pirandola, R. Garćıa-Patrón, S. L. Braunstein, and
S. Lloyd, Direct and reverse secret-key capacities of a
quantum channel, Phys. Rev. Lett. 102, 050503 (2009).

[54] I. Devetak and A. Winter, A. Relating quantum privacy
and quantum coherence: an operational approach, Phys.
Rev. Lett. 93, 080501 (2004).

[55] M. Takeoka, S. Guha, and M. M. Wilde, Fundamental
rate-loss tradeoff for optical quantum key distribution,
Nature Comms. 5, 5235 (2014).

[56] L. Banchi, S. L. Braunstein, and S. Pirandola, Quantum
fidelity for arbitrary Gaussian states, Phys. Rev. Lett.
115, 260501 (2015).

[57] S. Pirandola, G. Spedalieri, S. L. Braunstein, N. J. Cerf,
and S. Lloyd, Optimality of Gaussian discord, Phys. Rev.
Lett. 113, 140405 (2014).

[58] S. Pirandola, Quantum discord as a resource for quantum
cryptography, Sci. Rep. 4, 6956 (2014).

[59] T. M. Cover and J. A. Thomas, Elements of Information
Theory, (Wiley, New Jersey, 2006).

[60] C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, Ca-
pacities of quantum erasure channels, Phys. Rev. Lett.
78, 3217 (1997).

[61] P. Slepian, Mathematical Foundations of Network Anal-
ysis (Springer-Verlag, New York, 1968).

http://arxiv.org/abs/1508.02811
http://arxiv.org/abs/1505.03626

