
Homomorphisms of Strongly Regular Graphs

David E. Roberson

Department of Computer Science, University College London

Abstract

We prove that if G and H are primitive strongly regular graphs with
the same parameters and ϕ is a homomorphism from G to H, then ϕ is
either an isomorphism or a coloring (homomorphism to a complete sub-
graph). Therefore, the only endomorphisms of a primitive strongly regular
graph are automorphisms or colorings. This confirms and strengthens a
conjecture of Cameron and Kazanidis that all strongly regular graphs are
cores or have complete cores. The proof of the result is elementary, mainly
relying on linear algebraic techniques. In the second half of the paper we
discuss implications of the result and the idea underlying the proof. We
also show that essentially the same proof can be used to obtain a more
general statement.

1 Introduction

A homomorphism between two graphs G and H is a function ϕ : V (G)→ V (H)
such that ϕ(u) ∼ ϕ(v) whenever u ∼ v, where ‘∼’ denotes adjacency. Whenever
a homomorphism exists from G to H, we write G→ H, and if both G→ H and
H → G then we say that G and H are homomorphically equivalent. Given a
homomorphism ϕ from G to H, we will abuse terminology somewhat and refer
to the subgraph of H induced by {ϕ(u) : u ∈ V (G)} as the image of ϕ, and
denote this by Imϕ. It is easy to see that a c-coloring of a graph G is equivalent
to a homomorphism from G to the complete graph on c vertices, Kc. More
generally, we will refer to any homomorphism whose image is a clique (complete
subgraph) as a coloring.

A homomorphism from a graph G to itself is called an endomorphism, and it
is said to be proper if it is not an automorphism of G, or equivalently, its image
is a proper subgraph of G. A graph with no proper endomorphisms is said to be
a core, and these play a fundamental role in the theory of homomorphisms since
every graph is homomorphically equivalent to a unique core. We refer to the
unique core homomorphically equivalent to G as the core of G. It is known [13],
and not difficult to show, that the core of G is isomorphic to any vertex minimal
induced subgraph of G to which G admits an endomorphism.

If the core of a graph G is a complete graph Kc, then G must contain a
clique of size c and must also be c-colorable. Therefore, ω(G) = χ(G) = c.
Conversely, if ω(G) = χ(G) = c, then the core of G is Kc. If a graph is either
a core or has a complete graph as a core, then it is said to be core-complete.
Many known results on cores are statements saying that all graphs in a certain
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class are core-complete [3, 12, 17], and often it remains difficult to determine
whether a given graph in the class is a core or has a complete core.

For some classes of graphs, something stronger than core-completeness can
be shown. A graph G is a pseudocore if every proper endomorphism of G is a
coloring. It follows that such a graph either has no proper endomorphisms and
is thus a core, or has some proper endomorphism to a clique and thus has a
complete core. In other words, any pseudocore is core-complete, although the
converse does not hold (consider a complete multipartite graph). Similarly, it
is easy to see that any core is a pseudocore, but the converse does not hold in
this case either (for instance the Cartesian product of two equal sized complete
graphs).

In this paper, we will focus on homomorphisms and cores of strongly regular
graphs. An n-vertex k-regular graph is said to be strongly regular with param-
eters (n, k, λ, µ) if every pair of adjacent vertices has λ common neighbors, and
every pair of distinct non-adjacent vertices has µ common neighbors. For short,
we will call such a graph an SRG(n, k, λ, µ). A strongly regular graph is called
imprimitive if either it or its complement is disconnected. In such a case, the
graph or its complement is a disjoint union of equal sized complete graphs. Ho-
momorphisms of these graphs are straightforward, and so we will only consider
primitive strongly regular graphs here. Because of this, from now on when we
consider a strongly regular graph, we will implicitly assume that it is primitive.
In this case, we always have that 1 ≤ µ < k, and that the diameter is two.

Cameron & Kazanidis [3] showed that a special class of strongly regular
graphs, known as rank 3 graphs, are all core-complete. A graph is rank 3 if
its automorphism group acts transitively on vertices, ordered pairs of adjacent
vertices, and ordered pairs of distinct non-adjacent vertices. The rank refers
to the number of orbits on ordered pairs of vertices, and so after complete or
empty graphs, rank 3 graphs are in a sense the graphs with the most symmetry.
The proof of Cameron & Kazanidis exploits this symmetry by noting that either
no pair of non-adjacent vertices can be identified (mapped to the same vertex)
by an endomorphism of a rank 3 graph, or every such pair can. In the former
case, the graph must be a core. In the latter, any endomorphic image that
contains non-adjacent vertices cannot be minimal, and therefore the core must
be complete.

Strongly regular graphs can be viewed as combinatorial relaxations of rank
3 graphs and, following their result, Cameron & Kazanidis (tentatively) conjec-
tured that all strongly regular graphs are core-complete. Towards this, Godsil &
Royle [12] showed that many strongly regular graphs constructed from partial
geometries are core-complete. A partial geometry is simply a point-line inci-
dence structure obeying certain rules. The point graph of a partial geometry
has the points as vertices, such that two are adjacent if they are incident to a
common line. The properties of partial geometries guarantee that their point
graphs are strongly regular, and they are typically referred to as geometric
graphs.

Godsil & Royle showed that the point graphs of generalized quadrangles are
pseudocores, as are the block graphs of 2-(v, k, 1) designs and orthogonal arrays
with sufficiently many points. As they note, a result of Neumaier [20] is that
for a fixed least eigenvalue, all but finitely many strongly regular graphs are the
block graphs of 2-(v, k, 1) designs or orthogonal arrays. Thus their result makes
a significant step towards the conjecture of Cameron & Kazanidis. The main
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idea used in the proof of the Godsil & Royle result is that any endomorphism
must map maximum cliques to maximum cliques. Starting with this simple
observation, they show that if G is geometric, and the maximum cliques of G
are exactly the lines of the underlying partial geometry, then G is a pseudocore.
It then remains to show when this assumption on the maximum cliques holds
true.

The main result of this paper is that if G and H are both strongly regu-
lar graphs with parameters (n, k, λ, µ), and ϕ is a homomorphism from G to
H, then ϕ is either an isomorphism or a coloring. Letting G = H, this state-
ment implies that all strongly regular graphs are pseudocores, thus proving and
strengthening the conjecture of Cameron & Kazanidis. Using our main result
and some previously known results, we also show that in the case where ϕ is
a coloring, we must have χ(G) = ω(H) and this value is equal to the Hoffman
bound on chromatic number which depends only on (n, k, λ, µ). It follows from
this that any strongly regular graph G falls into one of four classes depending
what subset of {ω(G), χ(G)}meets the Hoffman bound. Using this we show that
the homomorphism order of strongly regular graphs with a fixed parameter set
has a simple description.

We also prove a generalization of our main result, in which the strong regu-
larity assumption on H is replaced by a strictly weaker algebraic condition. In
this more general case, we are only able to conclude that any homomorphism
from G to H is either a coloring or an isomorphism to an induced subgraph of
H.

The original idea and the inspiration for the proof of the main result comes
from the theory of vector colorings, which are a homomorphism-based formu-
lation of the famous Lovász theta function. The author was aided greatly by
a collaboration with Chris Godsil, Brendan Rooney, Robert Šamal, and Anto-
nios Varvitsiotis which produced three papers [11, 9, 10] on vector colorings.
In particular, the second paper [9] focused specifically on using vector colorings
to restrict the possible homomorphisms between graphs. Note however that we
will present an elementary proof of our main result which only requires basic
knowledge of linear algebra and certain aspects of strongly regular graphs which
we will review in Section 2. The connection between the proof techniques and
vector colorings will not be discussed until Section 7.

Although the main concrete contribution of this paper is the resolution and
strengthening of the Cameron & Kazanidis conjecture, we believe that the real
significance of this work is the step it takes towards understanding how combina-
torial regularity can impact the endomorphisms and core of a graph. Symmetry
conditions, such as vertex- or distance-transitivity, often have easy-to-derive
consequences for the endomorphisms and/or core of a graph. This is perhaps
not surprising, since such symmetry conditions are assumptions about the auto-
morphisms of a graph, which are just special cases of endomorphisms. However,
it appears to be more challenging to make use of analogous regularity condi-
tions, such as being strongly or distance regular. In fact, we believe that ours
is the first example of such a result. Interestingly, by showing that strongly
regular graphs are pseudocores, we establish a stronger result than was previ-
ously known even under the more stringent symmetry condition of being rank
3. Moreover, we know of no way to directly use the assumption of being rank 3
to show that a graph is a pseudocore.
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1.1 Notation

Whenever we use θ and τ , we will be referring to the second largest and min-
imum eigenvalues of a strongly regular graph. This will sometimes be done
without explicitly stating it. We will also use mθ and mτ to denote the multi-
plicities of these eigenvalues, and Eθ and Eτ will refer to the projections onto
the corresponding eigenspaces.

The all ones matrix will be denoted by J . For a matrix M , we will use
sum(M) to refer to the sum of the entries of M . For two matrices M and N
with the same dimensions, M ◦N will denote their Schur, or entrywise, product.

The complement of a graph G will be denoted by G, and more generally we
will add a bar over usual notation to refer to the analog in the complement.
For instance, θ̄ will refer to the second largest eigenvalue of the complement of
a given strongly regular graph.

As already noted, we will use u ∼ v to mean that u and v are adjacent
vertices. We will also use u 6∼ v when u and v are not adjacent, which includes
the case where u = v since a vertex is not adjacent to itself. Sometimes we will
need to exclude the u = v, and for this we will use u 6' v. We will also refer to
u and v as non-neighbors whenever u 6' v. Lastly, note that u 6' v is equivalent
to u and v being adjacent in the complement graph.

2 Properties of Strongly Regular Graphs

Here we will introduce some basic properties of strongly regular graphs that we
will need later. We do not aim to give a full proof of every result, but rather
enough explanation for the interested reader to work out the details. Most of
these results are standard, and can be found in [13] or even on some widely used
online sources that are not considered citable. Those familiar with strongly
regular graphs can probably skip this section, with the possible exception of
Lemma 2.1.

2.1 Algebraic properties

Let G be an SRG(n, k, λ, µ) with adjacency matrix A. Since G is a connected k-
regular graph, k is a simple eigenvalue of A with the all-ones vector as its unique
(up to scalar) eigenvector. In particular, this implies that AJ = JA = kJ , and
Jz = 0 for any z that is an eigenvector for any eigenvalue of A other than k.

As with any graph, the uv-entry of Am counts the number of walks of length
m between vertices u and v. Using this and the definition of strongly regular
graphs, it is not difficult to see that the matrix A must satisfy the following:

A2 + (µ− λ)A+ (µ− k)I = µJ. (1)

Multiplying both sides of the above by an eigenvector of A for an eigenvalue
other than k, we see that all eigenvalues of A other than k must satisfy the
equation x2 + (µ − λ)x + (µ − k) = 0. Since Tr(A) = 0, the sums of the
eigenvalues of A must be zero, and this can be used to show that both roots of
the above polynomial do occur as eigenvalues of A. Therefore, the other two
distinct eigenvalues of an SRG(n, k, λ, µ), denoted θ and τ , depend only on the
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parameters and are given as follows:

θ =
1

2

[
(λ− µ) +

√
(λ− µ)2 + 4(k − µ)

]
τ =

1

2

[
(λ− µ)−

√
(λ− µ)2 + 4(k − µ)

]
.

Note that these eigenvalues satisfy k > θ > 0 > τ . The multiplicities, mθ and
mτ , of θ and τ can also be expressed in terms of the parameters n, k, λ, µ, but
we will not need to make their values explicit. A key point to take away from
this is that the eigenvalues, including their multiplicities, of a strongly regular
graph depend only on the parameters, not on the specific graph.

There are two identities concerning the eigenvalues of a strongly regular
graph that are useful to keep in mind:

θτ = µ− k
θ + τ = λ− µ.

2.2 Projections onto eigenspaces

For any real symmetric matrix M with distinct eigenvalues ζ1, . . . , ζm, the pro-
jector onto the ζi-eigenspace is a polynomial in M . This can be easily seen by
considering how the matrix ∏

j 6=i

1

ζi − ζj
(M − ζjI)

acts on an orthogonal basis of eigenvectors of M .
If A is the adjacency matrix of a strongly regular graph G, then Equation (1)

implies that A2 is contained in the span of {I, A, J}. Since we also have AJ =
JA = kJ , this further implies that any polynomial in A is contained in this
span. Letting Ā = J − I − A be the adjacency matrix of the complement of
G, it is easy to see that this span is equal to the span of {I, A, Ā}. Denoting
by Eθ and Eτ the projections onto the θ- and τ -eigenspaces of A respectively,
we have that both of these projectors are contained in the span of {I, A, Ā}.
This means that Eθ and Eτ have three distinct entries: those corresponding to
vertices, edges, and non-edges of G.

The exact value of the entries of Eθ and Eτ can be determined using a simple
matrix identity. Specifically, a simple computation shows that the following
holds for any real matrices M and N with the same dimensions:

Tr(MTN) = sum(M ◦N). (2)

Note that we can drop the transpose when dealing with symmetric matrices,
which will generally be the case for us.

We can now use Equation (2) to compute the entries of Eτ . For example,
the entries of Eτ corresponding to edges are equal to

1

nk
sum(A ◦ Eτ ) =

1

nk
Tr(AEτ ) =

1

nk
Tr(τEτ ) =

τmτ

nk
,
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since the trace of a projector is equal to its rank. Similar computations for the
other entries of Eτ reveal that

(Eτ )uv =


mτ/n if u = v

τmτ/nk if u ∼ v
(−τ − 1)mτ/n(n− k − 1) if u 6' v

One can also determine the entries of Eθ in a similar manner, but we will not
need this.

2.3 Complements and some combinatorial properties

It is easy to check that ifG is a strongly regular graph with parameters (n, k, λ, µ),
then the complement of G, denoted G, is also a strongly regular graph with pa-
rameters (n, k̄, λ̄, µ̄) where

k̄ = n− k − 1

λ̄ = n− 2k − 2 + µ

µ̄ = n− 2k + λ

The eigenvalues of G are denoted by k̄ > θ̄ > τ̄ . The latter two can be computed
from the parameters of G using the identities in Section 2.1, but it is easier to
use the fact that the adjacency matrix of G is equal to J − I − A, where A is
the adjacency matrix of G. From this it follows that

θ̄ = −τ − 1

τ̄ = −θ − 1

The parameters of a strongly regular graph are not independent of one an-
other. For any vertex v, a double counting argument on the number of edges
between the neighbors and non-neighbors of v shows that

k(k − λ− 1) = µ(n− k − 1). (3)

The last result on strongly regular graphs that we need is possibly known,
though we have not seen it anywhere.

Lemma 2.1. For any SRG(n, k, λ, µ), we have that

1− θ̄/k̄
θ̄/k̄ − τ/k

= θ.

Proof. Since θ̄/k̄ − τ/k > 0, the lemma statement is equivalent to

(1− θ̄/k̄)− θ(θ̄/k̄ − τ/k) = 0,

which is further equivalent to

(kk̄ − θ̄k)− θ(θ̄k − τ k̄) = 0,
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which is what we will show. Using several of the identities presented in this
section, we have

(kk̄ − θ̄k)− θ(θ̄k − τ k̄) = kk̄ − θ̄k − θθ̄k + θτ k̄

= (k + θτ)k̄ − (1 + θ)θ̄k

= [k + (µ− k)]k̄ + (1 + θ)(1 + τ)k

= µk̄ + [1 + (θ + τ) + θτ ]k

= µk̄ + [1 + (λ− µ) + (µ− k)]k

= µ(n− k − 1)− (k − λ− 1)k

= 0.

2.4 Conference graphs

There is a special class of strongly regular graphs known as conference graphs.
These are strongly regular graphs with mθ = mτ , and these are the only strongly
regular graphs that can have non-integer eigenvalues. It is known that the
parameter set of a conference graph must be of the form (4t+1, 2t, t−1, t). The
eigenvalues other than k are

−1±
√
n

2
,

which of course are irrational if and only if n is not a square.
We mention these here because some of our results have implications specif-

ically for conference graphs. In particular, we will show that any conference
graph of non-square order is a core.

3 Homomorphism Matrices

Suppose G and H are strongly regular graphs with the same parameter set. To
any homomorphism from G to H, we will associate a matrix X with rows and
columns indexed by V (G) and defined entrywise as follows:

Xuv =


θ if u 6' v & ϕ(u) = ϕ(v)

−1 if u 6' v & ϕ(u) ∼ ϕ(v)

0 o.w.

We reiterate that u 6' v denotes that u and v are distinct non-adjacent vertices,
which we also refer to as being non-neighbors. Equivalently, u 6' v means
that u and v are adjacent in the complement. The matrix X will be called the
homomorphism matrix of ϕ. It is worth pointing out that u 6' v and ϕ(u) = ϕ(v)
is equivalent to u 6= v and ϕ(u) = ϕ(v) since ϕ is a homomorphism. Essentially,
the homomorphism matrix of ϕ keeps track of the vertices whose “relationship”
changes under the mapping ϕ.

Our goal in this section is to show that X(A − τI) = 0 where A is the
adjacency matrix of G. In order to do this we will need to consider Eτ , the
projection onto the τ -eigenspace of G. We will actually work with Êτ := n

mτ
Eτ ,
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since the entries of this matrix are a little nicer. Specifically, it follows from
results presented in Section 2 that the entries of Êτ are as follows:

(
Êτ

)
uv

=


1 if u = v

τ/k if u ∼ v
θ̄/k̄ if u 6' v

There is another matrix we will need to use to prove the results of this section:
Given strongly regular graphs G and H with the same parameter sets, and a
homomorphism ϕ from G to H, define a matrix Mϕ as follows:

Mϕ
uv =


1 if ϕ(u) = ϕ(v)

τ/k if ϕ(u) ∼ ϕ(v)

θ̄/k̄ if ϕ(u) 6' ϕ(v)

(4)

We will see that the homomorphism matrix of ϕ is actually a scalar multiple of
Mϕ − Êτ . Since Êτ (A− τI) = 0, it will suffice to show that Mϕ(A− τI) = 0.
First, we will need to show that Mϕ is positive semidefinite.

Lemma 3.1. Let G and H both be SRG(n, k, λ, µ)’s and let ϕ be a homomor-
phism from G to H. Let Mϕ be the matrix defined as in Equation (4). Then
Mϕ is positive semidefinite.

Proof. Let Fτ be the projection onto the τ -eigenspace of H, and let F̂τ = n
mτ
Fτ .

Note that F̂τ is positive semidefinite since it is a positive scalar multiple of an
orthogonal projector. This implies that F̂τ is the Gram matrix of some (ordered)

set of vectors (pw : w ∈ V (H)). In other words, (F̂τ )ww′ = pTwpw′ . On the other
hand, it is straightforward to see that

Mϕ
uv =

(
F̂τ

)
ϕ(u)ϕ(v)

= pTϕ(u)pϕ(v).

This means that Mϕ is the Gram matrix of the vectors (pϕ(u) : u ∈ V (G)), and
is therefore positive semidefinite.

It is a standard result that Tr(MN) = 0 is equivalent to MN = 0 for positive
semidefinite matrices M and N . Using this and the above lemma, we can now
prove our desired result about homomorphism matrices:

Lemma 3.2. Let G and H both be SRG(n, k, λ, µ)’s and let ϕ be a homomor-
phism from G to H. If A is the adjacency matrix of G and X is the homomor-
phism matrix of ϕ, then X(A− τI) = 0.

Proof. Let Mϕ be the matrix as defined in Equation (4) for our homomorphism
ϕ. We will first show that Mϕ(A − τI) = 0. Since ϕ is a homomorphism, if

u ∼ v, then ϕ(u) ∼ ϕ(v). Therefore, Mϕ
uv = (Êτ )uv whenever u = v or u ∼ v.

Using this observation, we obtain the following:

Tr (Mϕ(A− τI)) = sum (Mϕ ◦ (A− τI))

= sum(Êτ ◦ (A− τI))

= Tr(Êτ (A− τI)) = 0.
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Since τ is the minimum eigenvalue of A, we have that A−τI is positive semidef-
inite. Since Mϕ is also positive semidefinite by Lemma 3.1, the above equation
implies that Mϕ(A− τI) = 0.

We now show that the homomorphism matrix X is a scalar multiple of
Mϕ − Êτ . As noted above, if u = v or u ∼ v, then Mϕ

uv = (Êτ )uv. More

fully, Mϕ
uv 6= (Êτ )uv if and only if either (u 6' v and ϕ(u) = ϕ(v)) or (u 6' v

and ϕ(u) ∼ ϕ(v)), i.e. whenever ϕ changes the “relationship” between u and v.

Thus the entries of Mϕ − Êτ are as follows:

(
Mϕ − Êτ

)
uv

=


1− θ̄/k̄ if u 6' v & ϕ(u) = ϕ(v)

τ/k − θ̄/k̄ if u 6' v & ϕ(u) ∼ ϕ(v)

0 o.w.

Dividing these entries by θ̄/k̄ − τ/k and applying Lemma 2.1 we see that

X =
1

θ̄/k̄ − τ/k
(Mϕ − Êτ ).

Since Mϕ(A− τI) = 0 = Êτ (A− τI), we have that X(A− τI) = 0.

4 Properties of Homomorphisms Between SRGs

In this section we will do the bulk of the work required for the proof of our
main result. This mostly consists of determining properties that any homomor-
phism between two SRG(n, k, λ, µ)’s must have. Putting all of these properties
together will allow us to prove our main result. The key idea we use is the
following: Suppose that ϕ is a homomorphism from G to H which are both
SRG(n, k, λ, µ)’s, and let X be its homomorphism matrix. By Lemma 3.2,
X(A − τI) = 0. Therefore, we can compute certain entries of this product
directly, and then use the fact that these must be zero in order to deduce prop-
erties of ϕ. This is the key insight of this work.

First we will need some notation. GivenG andH that are both SRG(n, k, λ, µ)’s
and a homomorphism ϕ from G to H, we define the following for any two vertices
u, u′ ∈ V (G):

• Nu = {v ∈ V (G) : v ∼ u};

• Nuu′ = {v ∈ V (G) : v ∼ u & v ∼ u′};

• Du = {v ∈ V (G) : v 6' u & ϕ(v) ∼ ϕ(u)};

• du = |Du|;

• Duu′ = Du ∩Nu′ = {v ∈ V (G) : v 6' u, v ∼ u′ & ϕ(v) ∼ ϕ(u)};

• duu′ = |Duu′ |;

• Fu = ϕ−1(ϕ(u));

• fu = |Fu|.
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In words, Nu is the set of neighbors of u and Nuu′ is the set of common neighbors
of u and u′. The set Du contains the non-neighbors of u that become neighbors
after applying ϕ (to both u and the non-neighbors). Similarly, Duu′ is the set
of vertices which are non-neighbors of u but neighbors of u′ and that become
neighbors of u after applying ϕ. Thus, Duu′ is always a subset of Du. Also note
that this notation is not symmetric, i.e. Duu′ = Du′u is not true in general. The
set Fu is simply the fibre (preimage of a single vertex) of ϕ containing u.

It is worth giving the entries of a homomorphism matrix X in terms of these
parameters in order to make the subsequent proofs more clear:

Xuv =


θ if v ∈ Fu \ {u}
−1 if v ∈ Du

0 o.w.

Lemma 4.1. Let G and H both be SRG(n, k, λ, µ)’s and let ϕ be a homomor-
phism from G to H. Then du = θ(fu − 1).

Proof. Let X be the homomorphism matrix of ϕ. The u-row of X must be (zero
or) a τ -eigenvector of G by Lemma 3.2. Therefore the u-row of X is orthogonal
to the all ones vector, i.e. the sum of its entries is zero. This row contains a θ
for every element of Fu \ {u} and a −1 for every element of Du. Therefore,

(fu − 1)θ − du = 0.

Solving this for du gives the desired result.

The above lemma says that du does not depend on u, but only on fu. In
particular, if ϕ(u) = ϕ(v), then du = dv. The following two corollaries will be
subsumed by our main result, but we think it is worth pointing out they also
follow from the above lemma alone.

Corollary 4.2. If G and H are conference graphs of the same, non-square
order, and ϕ is a homomorphism from G to H, then ϕ is an isomorphism.

Proof. In this case θ = 1
2 (
√
n−1), and this is irrational. Therefore, since du and

fu are integers, the equation du = θ(fu − 1) can only hold if fu − 1 = 0. This
implies that every fibre of ϕ has size 1 and it is therefore an injection. Since G
and H have the same number of vertices and edges, we have that ϕ must be an
isomorphism.

Corollary 4.3. If G is a conference graph of non-square order, then G is a
core.

Proof. Let H = G in the above corollary.

Returning to homomorphisms between general strongly regular graphs, the
main ingredient of our next lemma is the computation of certain entries of
X(A − τI), which we know must be zero. Here we explain how these entries
can be expressed in terms of some of the above defined notions.

For any two vertices u, u′ of G, we have that

(X(A− τI))uu′ =
∑

v∈V (G)

Xuv(A− τI)vu′ .

10



For the entries of this product we will consider, we will always have that u′ 6∈
Fu \ {u} and u′ 6∈ Du. Since Xuv = 0 unless v is contained in one of these
two sets, we can ignore the v = u′ term in the sum above. Therefore, whenever
u′ 6∈ Fu \ {u} and u′ 6∈ Du, we have that

(X(A− τI))uu′ = θ|(Fu \ {u}) ∩Nu′ | − duu′ . (5)

Lemma 4.4. Let G and H both be SRG(n, k, λ, µ)’s and let ϕ be a homomor-
phism from G to H. If ϕ(u) 6' ϕ(u′), then for all v ∈ Du we have v 6' u′.

Proof. First, note that ϕ(u) 6' ϕ(u′) implies that u 6' u′, since otherwise ϕ
would not be a homomorphism. By the same reasoning, u′ must be distinct
from and not adjacent to any vertex of Fu. Furthermore, ϕ(u) 6' ϕ(u′) also
implies that u′ 6∈ Du. Therefore, using Equation (5), we have that

0 = (X(A− τI))uu′ = −duu′ .

This of course implies that Duu′ = ∅. Since Duu′ = Du ∩Nu′ by definition, if
v ∈ Du then v 6∼ u′. Furthermore, since u′ 6∈ Du, we have that v ∈ Du implies
v 6' u′.

Using the above lemma we are able to prove the following:

Lemma 4.5. Let G and H both be SRG(n, k, λ, µ)’s and let ϕ be a homomor-
phism from G to H. Suppose that ϕ(u) 6' ϕ(u′). If v is a common neighbor of
u and u′, then v is adjacent to every vertex of Fu ∪Fu′ . Moreover, if v1 and v2
are any two distinct vertices in Fu ∪ Fu′ , then Nv1v2 = Nuu′ .

Proof. Suppose that û ∈ Fu∪Fu′ and v ∈ Nuu′ , i.e. v is a common neighbor of u
and u′. We will show that û ∼ v, thus proving the first claim. For contradiction,
assume that û 6∼ v. Without loss of generality we may assume that û ∈ Fu. Note
that this implies that û 6= v, and so û 6' v. From our assumptions, we have that
ϕ(û) = ϕ(u) ∼ ϕ(v). This implies that v ∈ Dû. Since ϕ(û) = ϕ(u) 6' ϕ(u′), we
can apply Lemma 4.4 to conclude that v 6' u′. Of course, this is a contradiction
to the assumption that v ∈ Nuu′ .

Now consider distinct v1, v2 ∈ Fu ∪ Fu′ . By the above we have that both
v1 and v2 are adjacent to every vertex of Nuu′ , and thus Nuu′ ⊆ Nv1v2 . Since
ϕ(u) 6' ϕ(u′), any two distinct vertices in Fu∪Fu′ are non-adjacent. Therefore,
|Nuu′ | = µ = |Nv1v2 | since G is strongly regular. Together this implies that
Nv1v2 = Nuu′ .

The above lemmas already seem to place substantial restrictions on homo-
morphisms between strongly regular graphs, but we are not done yet. Using
Lemma 4.5 we are able to prove the following crucial, if somewhat inscrutable,
lemma.

Lemma 4.6. Let G and H both be SRG(n, k, λ, µ)’s and let ϕ be a homomor-
phism from G to H. Suppose that ϕ(u) 6' ϕ(u′) and let v be a common neighbor
of u and u′. If x is a common non-neighbor of u and v, then ϕ(x) 6' ϕ(u).

Proof. First note that by Lemma 4.5, we have that v is adjacent to every vertex
of Fu. Therefore ϕ(x) 6= ϕ(u). Thus we only have to show that ϕ(x) 6∼ ϕ(u).
Since x 6' u, it suffices to show that x 6∈ Du. To do this we compute (X(A −
τI))uv which must be 0. Note that v 6∈ Du and, as mentioned, v is adjacent to
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every element of Fu. Therefore, using Equation (5) and Lemma 4.1, we have
that

0 = (X(A− τI))uv = θ(fu − 1)− duv
= du − duv.

Since Duv is always a subset of Du by definition, we have that Du = Duv :=
Du ∩ Nv. This implies that every element of Du is adjacent to v. Since we
assumed that x is a non-neighbor of v, we have that x 6∈ Du.

Note that we could not have proven the above lemma immediately using
only the fact that (X(A − τI))uv = 0. We first needed Lemma 4.5 to tell us
that, under our assumptions, v is adjacent to every element of Fu. We also
made use of Lemma 4.1.

We are now able to prove the final lemma we will need for our main result.

Lemma 4.7. Let G and H both be primitive SRG(n, k, λ, µ)’s and let ϕ be a
homomorphism from G to H. If u, u′ ∈ V (G) and ϕ(u) 6' ϕ(u′), then fu = 1.

Proof. Suppose not. Then there exists a vertex û ∈ Fu such that û 6= u. Since
G is strongly regular there exists a vertex v that is a common neighbor of u
and u′. Consider a common non-neighbor, x, of u and v (so x is a common
neighbor of u and v in G which always exists since there are µ̄ ≥ 1 of them).
By Lemma 4.6 we have that ϕ(x) 6' ϕ(u). Applying Lemma 4.5, we have that
Nxu = Nuû since {x, u}, {u, û} ⊆ Fu ∪ Fx. However, Lemma 4.5 also implies
that v is adjacent to everything in Fu. Therefore we have that v ∈ Nuû = Nxu.
This is a contradiction to the assumption that x was a non-neighbor of v.

5 Main Result

Here we combine the results of the previous section to prove our main result.

Theorem 5.1. Let G and H both be primitive SRG(n, k, λ, µ)’s and let ϕ be a
homomorphism from G to H. Then ϕ is a coloring or an isomorphism.

Proof. We first show that if fu = 1, then fv = 1 for all v 6' u. Suppose that
fu = 1. Then by Lemma 4.1, we have that du = θ(fu−1) = 0 and thus Du = ∅.
Since fu = 1 also implies that Fu \ {u} = ∅, we have that ϕ(v) 6' ϕ(u) for all
v 6' u. Applying Lemma 4.7, we obtain fv = 1 for all v 6' u and thus we have
proven the claim.

Now we prove the theorem. If ϕ is a coloring then we are done, so suppose
that it is not. This is equivalent to there being u, u′ ∈ V (G) such that ϕ(u) 6'
ϕ(u′). Applying Lemma 4.7 again, we see that fu = 1. By the above claim and
the fact that G is connected, we have that fv = 1 for all v ∈ V (G), i.e. that ϕ
is injective. Since G and H have the same number of vertices and edges, this
proves that ϕ is an isomorphism.

As a corollary we obtain the following strengthening of the Cameron &
Kazanidis conjecture:

Corollary 5.2. Every primitive strongly regular graph is a pseudocore.
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6 Cliques, Colorings, and the Homomorphism
Order

Since we now know that all homomorphisms between strongly regular graphs
with the same parameters are either isomorphisms or colorings, it is worth con-
sidering the properties of the colorings. In order to distinguish them, we will
refer to homomorphisms that are not also isomorphisms as proper homomor-
phisms. We will see that, for a fixed parameter set, the proper homomorphisms
between strongly regular graphs, are not only required to be colorings, but col-
orings with a fixed number of colors.

To begin we will first need a well-known spectral bound on the size of a
coclique (independent set) in a regular graph. This bound, known as the “ratio
bound” states that for a k-regular graph G with n vertices and least eigenvalue
τ , we have that

α(G) ≤ nτ

τ − k
,

where α(G) denotes the maximum size of a coclique of G. Moreover, a coclique
S of G meets this bound if and only if every vertex outside of S has −τ neighbors
in S. This bound was proven for strongly regular graphs by Delsarte [4], and
extended to regular graphs by Hoffman [16]. Cocliques meeting the bound are
often referred to as Delsarte cocliques, and cliques meeting the same bound
for the complement are referred to as Delsarte cliques. We will present a very
nice short proof of this bound due to Godsil (personal communication via the
grapevine).

Let A be the adjacency matrix of a k-regular, n-vertex graph G with least
eigenvalue τ . Define the matrix

N = (A− τI)− k − τ
n

J.

By considering how it acts on an orthogonal basis of eigenvectors of A, it is not
hard to show that the matrix N is positive semidefinite. Therefore, yTNy ≥ 0
for any vector y. If y is the characteristic vector of an independent set S of G,
then yTAy = 0. Therefore,

0 ≤ −τyT y − k − τ
n

yTJy = −τ |S| − k − τ
n
|S|2,

and the bound can be easily unraveled from here. Moreover, equality holds if
and only if y is a 0-eigenvector of N , from which the equality case condition can
be deduced.

This bound on the independence number also provides a bound on the chro-
matic number. In particular, since χ(G) ≥ n/α(G) for any n-vertex graph G, if
G is k-regular with least eigenvalue τ , then

χ(G) ≥ n

α(G)
≥ n

nτ/(τ − k)
= 1− k

τ
.

Colorings meeting this bound are referred to as Hoffman colorings, and such
colorings (especially of strongly regular graphs) have received some attention
in the literature [15, 7]. We note here that the color classes in any Hoffman
coloring must be Delsarte cocliques. This means that, in a Hoffman coloring,
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any vertex has −τ neighbors in each color class other than its own, in which it
obviously has no neighbors. Therefore, the color classes of a Hoffman coloring
form an equitable partition of the graph. This is not directly relevant to what
we will do here, but it is worth noting that Hoffman colorings appear to be quite
special. Indeed, it is known that for a fixed c ∈ N, only finitely many strongly
regular graphs have Hoffman colorings with c colors [14].

By taking complements, the ratio bound says that for a regular graph G,
the maximum size of a clique in G is at most nτ̄/(τ̄ − k̄), where k̄ and τ̄ are
the valency and least eigenvalue of G. For strongly regular G, only minor
arithmetical contortions are required to show that this is equal to 1−k/τ , i.e. the
Hoffman bound on chromatic number. Therefore, for any strongly regular graph
G, we have that

ω(G) ≤ 1− k

τ
≤ χ(G), (6)

where ω denotes the clique number. Importantly for us, this simultaneous bound
on the clique and chromatic numbers of a strongly regular graph depends only
on the parameters, not the specific graph. We are therefore able to prove the
following:

Lemma 6.1. Let G and H both be SRG(n, k, λ, µ)’s. There exists a proper
homomorphism from G to H if and only if

χ(G) = 1− k

τ
= ω(H),

i.e. G has a Hoffman coloring and H contains a Delsarte clique.

Proof. Suppose there exists a proper homomorphism from G to H. By Theo-
rem 5.1, this homomorphism must be a coloring. Therefore, using Equation (6),
we have that

1− k

τ
≤ χ(G) ≤ ω(H) ≤ 1− k

τ
.

The converse is trivial.

Note that the above lemma implies that if G and H are non-isomorphic
SRG(n, k, λ, µ)’s, then G → H if and only if χ(G) = 1 − k/τ = ω(H). We
also obtain the following corollary giving an if and only if condition for when a
strongly regular graph is a core:

Corollary 6.2. If G is a strongly regular graph, then G is NOT a core if and
only if

ω(G) = 1− k

τ
= χ(G).

In this case the core of G is a complete graph of size 1− k
τ .

Note that Corollaries 4.2 and 4.3 concerning conference graphs of non-square
order follow from the above two results. This is because for these graphs the
Hoffman bound is irrational, and can therefore never be met with equality.
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6.1 Types and the homomorphism order

The result of Lemma 6.1 suggests a useful partition of strongly regular graphs
of a fixed parameter set. Namely, to classify them according to which subset
of {ω(G), χ(G)} meet the Hoffman bound. We therefore propose the following
four “types” of strongly regular graphs:

• Type A: ω(G) < 1− k
τ = χ(G);

• Type B: ω(G) = 1− k
τ = χ(G);

• Type C: ω(G) = 1− k
τ < χ(G);

• Type X: ω(G) < 1− k
τ < χ(G).

The existence of a homomorphism between any two non-isomorphic SRG(n, k, λ, µ)’s
is determined by their types: Any graph of type A or B has homomorphisms
to any graph of type B or C. There are no other homomorphisms between non-
isomorphic SRG(n, k, λ, µ)’s. Furthermore, all graphs of type A, C, or X are
cores, and all graphs of type B have complete graphs of size 1 − k/τ as their
cores. Summarizing these observations, we have the following Hasse diagram of
the homomorphism order of SRG(n, k, λ, µ)’s:

. . .C

B

. . .A

. . .X

Figure 1: Homomorphism order of SRG(n, k, λ, µ)’s.

Note that the type B graphs are represented by a single node in the above
diagram since they are all homomorphically equivalent, whereas graphs of any
other fixed type are incomparable (have no homomorphisms in either direction
between them).

The four types defined above can also be defined purely in terms of the homo-
morphisms among SRG(n, k, λ, µ)’s, without explicitly referring to the Hoffman
bound or clique or chromatic number. The type B SRG(n, k, λ, µ)’s are those
which are homomorphically equivalent to at least one other SRG(n, k, λ, µ). Of
the remaining graphs, those of type A are the ones with homomorphisms to the
type B graphs, those of type C admit homomorphisms from the type B graphs,
and the type X graphs are incomparable to all other SRG(n, k, λ, µ)’s. The
problem with this definition is that it assumes that graphs of type B exist for
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any given parameter set. For instance, if all of the SRG’s for a parameter set
are incomparable, then there may exist only type A graphs for this parameter
set, or both type A and type X graphs (or some other combination of types).

If the Hoffman bound is not an integer, then neither the clique nor chro-
matic number can meet this bound with equality, and therefore only graphs
of type X can occur. This happens for non-square conference graphs as we
have already mentioned, but can also occur for other parameter sets. Some
examples include (10, 3, 0, 1), (16, 5, 0, 2), (21, 10, 3, 6), (26, 10, 3, 4), (36, 14, 4, 6),
and (36, 21, 10, 15), for all of which there do exist strongly regular graphs. Also
note that if the Hoffman bound of the complementary parameter set is not an
integer, then there can be no Delsarte cocliques, and therefore no Hoffman col-
orings. Therefore, for such parameter sets, there will only be type C and/or X
graphs.

Computations reveal that there are parameter sets which contain only graphs
of a single type. Examples of this for each type, including an example for type
X where the Hoffman bound is an integer, are given below:

• Type A - (27, 16, 10, 8);

• Type B - (49, 12, 5, 2);

• Type C - (45, 32, 22, 24);

• Type X - (16, 10, 6, 6).

On the other hand, there are also parameter sets having all four types. Some
examples include (36, 20, 10, 12), (45, 12, 3, 3), and (64, 18, 2, 6). In general, for
the strongly regular graphs we performed computations on, which were obtained
from Ted Spence’s webpage [1], almost all of them were either type C or X. This
seems indicates that having a Hoffman coloring is a rare property for a strongly
regular graph, but having a Delsarte clique is not. The latter observation is
perhaps not so surprising since it is known that all strongly regular graphs
arising as point graphs of partial geometries have Delsarte cliques.

The computations for the above were done in Sage [5]. One only needs
to determine if the given strongly regular graph has a clique of a certain size
and/or coloring with certain number of colors. For the former, the built in
clique number routine is very fast, and so there is no problem finding the clique
number of all the strongly regular graphs from Ted’s webpage. This is not the
case for chromatic number. Sage’s built in coloring routines seem to be far too
slow to be of any use for this endeavor. However, there is a GAP package called
Digraphs [18] developed by researchers at The University of St Andrews, and
the coloring routine in this package works very quickly in comparison. In fact,
it is hard to overstate how much faster it seems to be.

7 Vector Colorings and the Lovász ϑ Function

In this section we will see that the results of Section 3 are part of a more general
theory involving semidefinite programs and the Lovász theta number of a graph.

For a graph G and real number t ≥ 2, a strict vector t-coloring of G is an
assignment, u 7→ pu, of unit vectors to the vertices of G such that

pTu pv =
−1

t− 1
for all u ∼ v.
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If we drop the “strict”, then we only require that the inner product above is
upper bounded by the righthand side. We note however that for strongly regular
graphs, every optimal vector coloring is also a strict vector coloring [11]. For a
non-empty graph G, its strict vector chromatic number is the minimum t ≥ 2
such that G admits a strict vector t-coloring. For empty graphs, this parameter
is defined to be equal to 1. The strict vector chromatic number was defined by
Karger, Motwani, and Sudan [19], and they showed that it is equal to the Lovász
theta number of the complement graph. The Lovàsz theta number is typically
denoted by ϑ, and so we will use ϑ̄(G) := ϑ(G) to denote the strict vector
chromatic number of G. We will give two of the more well known formulations
of the Lovász theta number in Section 7.1.

By considering the Gram matrix of vectors in a strict vector coloring, it is
easy to see that G has a strict vector t-coloring if and only if there exists a
positive semidefinite matrix M indexed by the vertices of G such that

Muv =

{
1 if u = v
−1
t−1 if u ∼ v

Using this interpretation, it is not difficult to see that a complete graph on n
vertices has strict vector chromatic number equal to n. It is also now apparent
that the matrices Êτ and Mϕ from Section 3 were Gram matrices of strict vector
colorings.

Suppose that G and H are graphs and that w 7→ pw for w ∈ V (H) is a strict
vector t-coloring of H. If ϕ is a homomorphism from G to H, then it is easy
to see that u 7→ pϕ(u) for u ∈ V (G) is a strict vector t-coloring of G (note that
this is the exact construction used in the proof of Lemma 3.1 to show that Mϕ

is positive semidefinite). It follows that if G → H, then ϑ̄(G) ≤ ϑ̄(H), i.e. the
strict vector chromatic number is homomorphism monotone. In particular, using
the fact that ϑ̄(Kn) = n, this implies the well known “sandwich theorem”:

ω(G) ≤ ϑ̄(G) ≤ χ(G).

7.1 Semidefinite programming

One of the many useful properties of the Lovász theta number is that it can be
written as a semidefinite program that satisfies strong duality. This provides us
with both a minimization and maximization program for this parameter:

PRIMAL DUAL

ϑ̄(G) = min t
s.t. Muu = t− 1 for u ∈ V (G)

Muv = −1 for u ∼ v
M � 0

= max sum(B)
s.t. Buv = 0 for u 6' v

Tr(B) = 1
B � 0

Note that a feasible solution of value t for the primal program above is
exactly (t− 1) times the Gram matrix of a strict vector t-coloring of G, and so
we see that these are equivalent definitions of ϑ̄.

Suppose that M and B are feasible solutions to the above primal and dual
formulations of ϑ̄ with objective values P and D respectively. Then,

Tr(MB) = sum(M ◦B) = (P − 1) Tr(B)− [sum(B)− Tr(B)] = P −D.
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It thus follows that if M and B are feasible solutions for the primal and dual
programs respectively, then they are both optimal if and only if Tr(MB) = 0 if
and only if MB = 0. This is in fact just the complementary slackness condition
for these semidefinite programs.

For any graph G with adjacency matrix A and least eigenvalue τ , the matrix
A − τI meets the first and third conditions for the dual program above. If we
let B be the positive scaling of A − τI that has trace one, then B is a feasible
solution to the dual. If G is strongly regular, then we have seen in Section 2.2
that the projection, Eτ , onto the τ -teigenspace of G is constant on the diagonal,
and is a negative constant on entries corresponding to edges of G. Therefore, up
to a scalar multiple, this is a feasible solution to the primal program for ϑ̄(G).
If we let M denote this scalar multiple of Eτ , then it is obvious that MB = 0.
Therefore these are both optimal solutions to their respective programs. It is
then only a matter of arithmetic to show that ϑ̄(G) is equal to our old friend
the Hoffman bound for any strongly regular graph G.

We can now see the results in Section 3 for what they are:1 The strongly
regular graph G has feasible solutions Eτ and A − τI to the primal and dual
respectively, and these must be optimal since they multiply to 0. The projector
Fτ is an optimal primal solution for H for the same reason, and Mϕ is the Gram
matrix of the strict vector coloring of G obtain by composing ϕ with the strict
vector coloring of H whose Gram matrix is Fτ . Since both graphs are strongly
regular with the same parameters, they have the same strict vector chromatic
number and therefore Mϕ is an optimal primal solution for G. Finally, since
A − τI was already shown to be an optimal dual solution for G, we have that
Mϕ(A− τI) = 0.

Of course, a similar technique can be applied to any homomorphism between
two graphs with the same strict vector chromatic number. But the primal and
dual solutions for the two graphs will likely not be as nice as in the strongly
regular case. The key feature of the primal solutions we used is that their
entries depend only on whether the corresponding vertices are equal, adjacent,
or non-adjacent. Most graphs will not have an optimal primal solution of this
form.

On the other hand, distance regular graphs also have Eτ and A − τI as
optimal primal and dual solutions, and the uv-entry of the matrix Eτ only
depends on the distance between vertices u and v. Thus, distance regular graphs
are a natural choice for attempting to generalize our main theorem. Indeed,
strongly regular graphs are exactly distance regular graphs of diameter two.
However, the analysis seems more difficult in this case, since the matrix Mϕ −
Eτ will potentially have a different nonzero entry for every way in which the
homomorphism ϕ can change the distance between two vertices. This is actually
the same for our case, but for us there were only two such possibilities.

Another possible route for generalization would be to consider directed strongly
regular graphs. These were introduced in [6] and have been given a fair amount
of attention in the literature. Since homomorphisms extend naturally to di-
rected graphs, and many of the algebraic properties of strongly regular graphs
have analogs in the directed case [8], it seems plausible that our main result
could be generalized to this larger class of graphs.

1All instances of the phrase “up to a scalar” have been removed from the following so that
the printers do not run out of ink.
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8 A Generalization

We did not make extensive use of the fact that H was a strongly regular graph
in the proof of our main result, nor the lemmas leading up to it. If we let G be
an SRG(n, k, λ, µ), then the only thing we required of H in our arguments is
that the matrix I + (τ/k)AH + (θ̄/k̄)AH is positive semidefinite (note that now
k, k̄, τ , and θ̄ are eigenvalues of G and G, and not necessarily associated to H
in any way). The proof of the main result now proceeds exactly as before until
the last sentence. We no longer know that G and H have the same number of
vertices and edges, so we cannot conclude that ϕ is an isomorphism whenever
it is not a coloring. However, ϕ still must be injective when it is not a coloring,
and another application of Lemma 2.1 shows that it maps non-edges to non-
edges in this case. This means that ϕ is either a coloring or an isomorphism to
an induced subgraph of H.

The assumption that I+(τ/k)AH +(θ̄/k̄)AH is positive semidefinite implies
that H admits a strict vector coloring of value 1 − k

τ = ϑ̄(G). Since we also
assumed that G→ H, this must be an optimal strict vector coloring of H. This
inspires the following definition. For real numbers α and β, we say that H is an
(α, β)-graph if I + αAH + βAH is the Gram matrix of an optimal strict vector
coloring of H. Note that this implies that α ∈ [−1, 0). We can now succinctly
state the above discussed generalization of our main result:

Theorem 8.1. Suppose G is an SRG(n, k, λ, µ) and H is a (τ/k, θ̄/k̄)-graph.
If ϕ is a homomorphism from G to H, then it is either a coloring or an isomor-
phism to an induced subgraph of H.

Note that in the case of a coloring, the image of ϕ must be a maximum
clique of H of size 1− k

τ . In either case, the image of ϕ must have strict vector

chromatic number equal to that of both G and H, namely 1− k
τ .

The strong regularity condition on G was much more instrumental to our
arguments than was the same condition for H. In particular, recall the proof
of Lemma 4.5 which made explicit use of the fact that any two non-adjacent
vertices of G have a constant number of common neighbors. Because of this, it
does not appear that the assumption of strong regularity on G can be replaced
by a more general condition unless one is willing to be inelegant.

9 Discussion

The main purpose of this work was to prove the conjecture of Cameron &
Kazanidis. However, our results have several other implications and raise certain
questions. We will discuss some of these here.

Since all but finitely many strongly regular graphs with fixed least eigenvalue
are the point graphs are partial geometries, these geometric graphs warrant
some consideration with respect to our results. We mentioned previously that
geometric graphs always have Delsarte cliques. This is because the Hoffman
bound for these graphs is equal to the size of a line in the underlying partial
geometry, and thus the points on a line induce a Delsarte clique, though there
may be others. It follows from this that all geometric graphs are of types B or C.
Therefore, a geometric graph is type B if and only if it has a Hoffman coloring,
and otherwise is type C. Recall that every color class in a Hoffman coloring is
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a Delsarte coclique. For geometric graphs, it is known that a Delsarte coclique
corresponds to a set of points in the underlying partial geometry that meets
every line exactly once, and vice versa. Such an object is called an ovoid.
Therefore, a Hoffman coloring of a geometric graph is a partition of its partial
geometry into ovoids. A partition into ovoids is, for obvious reasons2, called a
fan. So we see that the point graph of a partial geometry is type B if and only
if the geometry has a fan, and otherwise the graph is type C.

In light of the generalization of our main result presented in Section 8, it is
interesting to ask what graphs are (α, β)-graphs for which real numbers α and
β. We are presently preparing a paper addressing this question, but we will
discuss some basic points here. First, we have seen that strongly regular graphs
are (α, β)-graphs for α = τ/k and β = θ̄/k̄. Interestingly, it is possible for
two, or more, different parameter sets to result in the same values of both τ/k
and θ̄/k̄. For instance, all strongly regular graphs with parameters (16, 10, 6, 6),
(26, 15, 8, 9), or (36, 20, 10, 12) are (− 1

5 ,
1
5 )-graphs. Note that there exist strongly

regular graphs for each of these parameter sets. This brings us to an interesting
question: for fixed α and β, are there an infinite number of (α, β)-graphs?
If yes, then Theorem 8.1 could be applied to infinitely many graphs H for a
fixed strongly regular graph G. This would be a substantial improvement over
Theorem 5.1 which, once G is fixed, clearly only applies for finitely many graphs
H. One may hope that for some α and β, there are even an infinite number
of strongly regular (α, β)-graphs. Unfortunately this turns out to not be the
case. To see this note that for fixed α and β, Lemma 2.1 implies that a strongly
regular (α, β)-graph has fixed second largest eigenvalue. This means the least
eigenvalue of the complement is fixed and then Neumaier’s result can be applied.
One can then simply check the infinite families to see that these do not provide
infinitely many (α, β)-graphs. In our upcoming article we show that things are
even worse than this: for fixed α and β, there are finitely many regular (α, β)-
graphs. It remains to consider the non-regular case, but this is complicated by
the fact that the eigenvalues of I + αA + βA do not follow from those of A.
In the positive direction, any graph which is transitive on its non-edges is an
(α, β)-graph for some values of α and β. This is because the Gram matrix of any
optimal strict vector coloring of a non-edge-transitive graph can be “smoothed
out” on the non-edges by taking a uniform convex combination of the Gram
matrix conjugated by permutation matrices representing automorphisms of the
graph. This provides a large class of (α, β)-graphs that includes many graphs
which are not strongly regular.

The fact that every strongly regular graph is a pseudocore has implications
in the study of synchronizing groups. A permutation group Γ acting on a set
S synchronizes a function f from S to itself if the monoid generated by Γ and
f contains a transformation whose image is a single element of S. The group
Γ is said to be synchronizing if it synchronizes every function that is not a
permutation. This definition is motivated by concerns in the theory of finite
automata, in particular the Černý conjecture. In [2], Cameron et. al. define al-
most synchronizing permutation groups as those which synchronize all functions
which are non-uniform, i.e. whose preimages are not all the same size. They
note that the automorphism group of any vertex transitive pseudocore is almost
synchronizing whenever it is primitive. Therefore, our main result shows that

2To geometers, presumably.
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the automorphism group of any vertex transitive strongly regular graph is al-
most synchronizing whenever it is primitive. In particular, they note3 that this
implies any primitive group with permutation rank 3 is almost synchronizing.

In [3], the hull of a graph was introduced by Cameron & Kazanidis in order
to prove that rank 3 graphs are core-complete. The hull of a graph G has the
same vertex set as G, and two vertices are adjacent in the hull if there does
not exist an endomorphism which identifies these vertices. In particular, this
means that every edge of G is an edge of its hull. Cameron & Kazanidis proved
several results about the hull of a graph, showing that it is in some sense a dual
notion to that of the core. It therefore may be natural to ask whether the hull
of a strongly regular graph is always either the graph itself or a complete graph.
This turns out to not be the case, and in fact we have found through direct
computations that there are strongly regular graphs whose hulls are not even
regular. We will not present a specific case, but we note that there are examples
among the 23 type B SRG(45, 12, 3, 3)’s.
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[2] J. Araújo, P. Cameron, and B. Steinberg. Between primitive and 2-
transitive: Synchronization and its friends. 2015. arXiv:1511.03184.

[3] P. J. Cameron and P. A. Kazanidis. Cores of symmetric graphs. Journal
of the Australian Mathematical Society, 85(02):145–154, 2008.

[4] P. Delsarte. An algebraic approach to the association schemes of coding
theory. Philips Research Reports Suppl., 10, 1973.

[5] The Sage Developers. Sage Mathematics Software (Version 6.9), 2015.
http://www.sagemath.org.

[6] A. M. Duval. A directed graph version of strongly regular graphs. Journal
of Combinatorial Theory, Series A, 47(1):71 – 100, 1988.

[7] N. C. Fiala and W. H. Haemers. 5-chromatic strongly regular graphs.
Discrete Mathematics, 306(23):3083–3096, 2006. International Workshop
on Combinatorics, Linear Algebra, and Graph Coloring.

3Cameron et. al. received a preprint of this manuscript before it became publicly available.

21

http://www.maths.gla.ac.uk/~es/srgraphs.php
http://arxiv.org/abs/1511.03184


[8] C. D. Godsil, S. A. Hobart, and W. J. Martin. Representations of directed
strongly regular graphs. European Journal of Combinatorics, 28(7):1980–
1993, 2007. Geometric and Algebraic Combinatorics: Papers presented at
the conference GAC3 (Oisterwijk 2005).

[9] C. D. Godsil, D. E. Roberson, B. Rooney, R. Šámal, and A. Varvitsiotis.
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Universal completability, least eigenvalue frameworks, and vector colorings.
2015. arXiv:1512.04972.

[12] C. D. Godsil and G. F. Royle. Cores of geometric graphs. Annals of
Combinatorics, 15(2):267–276, 2011.

[13] C. D. Godsil and G. F. Royle. Algebraic graph theory, volume 207. Springer
Science & Business Media, 2013.

[14] W. H. Haemers. Eigenvalue techniques in design and graph theory. PhD
thesis, Eindhoven University of Technology, 1979.

[15] W. H. Haemers and V. D. Tonchev. Spreads in strongly regular graphs.
Designs, Codes and Cryptography, 8(1-2):145–157, 1996.

[16] A. J. Hoffman. On eigenvalues and colorings of graphs. Graph Theory and
its Applications, 1970.

[17] L.-P. Huang, J.-Q. Huang, and K. Zhao. On endomorphisms of alternating
forms graph. Discrete Mathematics, 338(3):110 – 121, 2015.
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