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The combination of νµ-ντ exchange together with CP conjugation in the neutrino sector

(known as CPµτ symmetry or µτ -reflection) is known to predict the viable pattern: θ23 = 45◦,

maximal Dirac CP phase and trivial Majorana phases. We implement such a CP symmetry

as a new CP symmetry in theories with A4 flavor. The implementation in a complete

renormalizable model leads to a new form for the neutrino mass matrix that leads to further

predictions: normal hierarchical spectrum with lightest mass and mββ (0ν2β) of only few

meV, and either ν1 or ν2 has opposite CP parity. An approximate Lµ − Lτ symmetry

arises naturally and controls the flavor structure of the model. The light neutrino masses

are generated by the extended seesaw mechanism with 6 right-handed neutrinos (RHNs).

The requirement of negligible one-loop corrections to light neutrino masses, validity of the

extended seesaw approximation and not too long-lived BSM states to comply with BBN

essentially restricts the parameters of the model to a small region: three relatively light

right-handed neutrinos at the GeV scale, heavier neutrinos at the electroweak scale and

Yukawa couplings smaller than the electron Yukawa. Such a small Yukawa couplings render

these RHNs unobservable in terrestrial experiments.

I. INTRODUCTION

The discovery of nonzero θ13 ∼ 8.5◦ in 2012 [1] prompted the neutrino physics community to

one of its next experimental goals: measure or discard CP violation in the leptonic sector [2]. As

one more parameter in the standard three neutrino paradigm joined the list of known quantities,

we are only left with three unknowns in case neutrinos are Majorana: neutrino mass ordering,

absolute neutrino mass scale and CP violation in the leptonic sector. The last unknown has three

sources: one Dirac CP phase analogous to the CKM phase for quarks and two Majorana phases.

From a theory viewpoint, many symmetries were sought over the years in order to predict the CP

violating phases of the leptonic sector. The simplest of them that leads to CP violation and viable

mixing angles is known as µτ -reflection or CPµτ which consists on νµ-ντ flavor exchange together
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with CP conjugation [3]. Often, such a CP symmetry is considered in conjunction with nonabelian

discrete symmetries [4–7]. In fact, many studies were devoted to the definition of CP symmetry

in that context [5–7]. However, differently from many simple flavor symmetries that predicted

vanishing θ13, the CPµτ symmetry allows nonzero θ13 but predicts all the presently unknown CP

phases: the Dirac CP phase δCP = ±90◦ is maximal while the Majorana phases are trivial [3, 8].

Moreover, θ23 is also predicted to be maximal, the neutrinoless double beta decay effective mass is

restricted to narrower bands and, in simple implementations, leptogenesis is only allowed to occur

in the intermediate range of T ∼M1 ∼ 109 – 1012 GeV where flavor effects are important [8]. From

current global fits [9, 10], we know in fact there is a slight preference for negative δCP and θ23 = 45◦

is still allowed.

Two directions were recently pursued to generalize the idea of CPµτ symmetry. Firstly, we have

shown in Ref. [8] that a minimal setting that allowed distinct symmetries in the charged lepton and

neutrino sectors consisted of only one abelian symmetry (the combination of lepton flavors Lµ− Lτ

or subgroup) and CP symmetry (CPµτ ). This setting was shown to be free from the vev alignment

problem that plagues many flavor symmetry models for leptons. In contrast, in Ref. [11], it was

shown that maximal θ23 and δCP (the prediction for Majorana phases is lost) could follow from

much more general assumptions without the imposition of CP symmetry. The necessary conditions

involve the symmetry of the charged lepton sector (Gl) to be represented by real matrices in the

flavor space and, in the same basis, Mν needs to be diagonalizable by a real matrix. The crucial

aspect is the former, which presumably follows from a real flavor symmetry conserved in the charged

lepton sector. The neutrino sector can not be invariant by the same residual symmetry and hence

must have a large breaking in the form of misaligned vevs.

Here we try to embed a subgroup of Lµ−Lτ into a discrete nonabelian flavor group GF in order

to increase predictivety but, at the same time, retain the successful features of Ref. [8]. We choose

the A4 group which is an extensively studied flavor group (see [12] and references therein). In fact,

the first CPµτ symmetric neutrino mass matrix was obtained with this group [13]. More recent

studies involving A4 and CP can be seen in Refs. [14, 15].

We anticipate that the light neutrino mass matrix in our model will have the form

Mν =


a1 + a2 + a3 k(a1 + ωa2 + ω2a3) k(a1 + ω2a2 + ωa3)

k(a1 + ωa2 + ω2a3) k2(a1 + ω2a2 + ωa3) k2(a1 + a2 + a3)

k(a1 + ω2a2 + ωa3) k2(a1 + a2 + a3) k2(a1 + ωa2 + ω2a3)

 , (1)

where ai, k are real parameters and k > 0 can be chosen; ω ≡ ei2π/3 as usual. This mass matrix
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is CPµτ symmetric [3] but has 4 real parameters to describe 5 observables: θ12, θ13,m1,m2,m3.

Hence, we will have one prediction.

The paper is organized as follows: In Sec. II we describe the new CP symmetry that can be

implemented for theories with A4 symmetry. Section III shows that the mass matrix (1) can fit

the present oscillation parameters and additionally give predictions for the absolute neutrino mass

and CP parities. A complete renormalizable model is shown in Sec. IV where the light neutrino

masses are generated by the extended seesaw (ESS) mechanism [17] with relatively light right-

handed neutrinos in its spectrum. The approximate symmetry Lµ − Lτ is presented in Sec. V

and shown to constrain the flavor structure of the model. Section VI analyzes the constraints on

the model coming from (i) the radiative stability of the tree-level result, (ii) validity of the ESS

approximation to fit the light neutrino masses and (iii) sufficiently short-lived BSM states that not

spoil Big Bang nucleosinthesis. More phenomenological constraints on the presence of relatively

light right-handed neutrinos is analyzed in Sec. VII. The conclusions are shown in Sec. VIII and

the appendices contain auxiliary material.

II. ANOTHER GCP FOR A4

The group A4 = (Z2 × Z2) o Z3 have one three dimensional irreducible representation (irrep)

3 and three one-dimensional irreps 1′,1′′,1, where the latter is the trivial invariant (singlet). The

faithful 3 can be generated by

a = diag(1,−1,−1), b =


0 1 0

0 0 1

1 0 0

 , (2)

where a generates one of the Z2 subgroups and b generates the Z3 subgroup. Only b acts non-

trivially on the singlets 1′,1′′ as

1′
b→ ω1′, 1′′

b→ ω21′′ , (3)

where ω = ei2π/3.

For generic settings where generic irreps of A4 (e.g. a 3 and one charged 1′) are considered in

a model, there is only one possible CP symmetry that can be imposed on the model [6, 7]. As first

considered in Ref. [4], CP acts on the representations of (2) and (3) as

CP1 : 3→ X3∗, 1→ 1∗, 1′ → 1′
∗
, 1′′ → 1′′

∗
, (4)
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where X can be chosen as (23) exchange:

X =


1 0 0

0 0 1

0 1 0

 . (5)

The complex conjugation denotes the CP transformation operation on the fields which should be

adjoined with the appropriate Lorentz factors for e.g. spin 1/2 fermions. We denote the whole

flavor group considering CP1 as A4 o ZCP
2 and it gives rise to a group isomorphic to S4, denoted

as S̃4 in [4]. Obviously any composition of CP1 with an element of A4 is also a GCP symmetry, so

any of the 12 GCP symmetries can be chosen as a residual symmetry [15].

In nongeneric settings where only a specific set of irreps is considered, it is clear that there is

one more inequivalent option. If only 3 is considered, we can use the usual CP transformation 1:

CP2 : 3→ 3∗ . (6)

Given that the representation (2) is real, the whole group including CP2 will be denoted as A4×ZCP
2

where ZCP
2 is generated by CP2, which commutes with A4 (3 is real).

Now the question is: What is the transformation law for the other irreps (if any is consistent)?

We can deduce them by noting that the transformation (6) acts on the representation (2) trivially,

i.e.,

CP2 : a→ a, b→ b , (7)

if we apply on any 3, in this order, CP2, the transformation a or b and then CP−1
2 . In contrast, for

CP1, the same set of operations induces

CP1 : a→ Xa∗X−1 = a, b→ Xb∗X−1 = b2. (8)

Here we are identifying a, b with its three dimensional irrep D3(a), D3(b) in (2). Given that (8)

and (7) lead to different rules (map different conjugacy classes), they can not be equivalent. These

mapping rules in the group are called automorphisms and only (8) and (7) are nonequivalent for

A4. So these are the only possibilities for defining GCP in the presence of A4 symmetry [6].

We can now deduce that one transformation law for the singlets 1′ that is compatible with (6)

and (7) is the trivial transformation

CP2 : 1′ → 1′ . (9)

1 It is important to note that the GCP (4), with symmetric X, can be also cast in the form (6) by basis change,
after which the representation (2) changes and is no longer real.
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However, this transformation law can be only used if the complex field ψ1 ∼ 1′ is neutral under

any other group, including the Lorentz group, i.e., it must be a scalar 2. Moreover, if ψ1 carries

other complex quantum numbers (it excludes Z2) other than A4, say a charge q of U(1), then (9) is

not compatible with the fact that CP should reverse the charge q. Therefore, in this case another

field ψ2 ∼ 1′′ with the same charge q (or any other quantum number) needs to be introduced to

define the transformation

CP2 : ψ1 → ψ∗2 , (10)

so that both sides transform as ω by b but the field of charge q is mapped to a field of charge −q.

This is also the transformation law for fermions. To summarize, the irreps 1′ and 1′′ are exchanged

by CP2,

CP2 : 1′ → 1′′
∗
, (11)

unless 1′′∗ can be identified with 1′. Therefore, for charged fields (such as the SM fields or any

chiral fermion) the irreps 1′,1′′ need to be introduced in pairs.

The symmetry CP2 (associated to the trivial automorphism) can be straightforwardly extended

for other groups with structure H o Z3 such as the ∆(3 · N2) = (ZN × ZN ) o Z3 family [e.g.

∆(27) [16]] or some of its subgroups such as T7 or T13. The only difference is that the triplet

representations are now complex and CP symmetry acts as usual.

We stress that the CP2 symmetry for A4 has not been considered for flavor model building

before. This possibility is raised in the general context of discrete nonabelian symmetries in [6]

but no model application was discussed. For A4, this possibility is commented in [15] but it is not

pursued. Ref. [7] discards this kind of CP symmetry dubbing it as CP-like symmetries but, as we

will see for the simple case of A4, no theoretical consideration prevents its use. As an added bonus,

we will see that the transformation property (9) allows us to avoid the vev alignment problem [8].

III. MASS MATRIX

We first analyze our mass matrix (1) in the flavor basis to show that we can correctly fit

the oscillation parameters. This is a new form for the neutrino mass matrix that has not been

considered so far.

2 One could also use (9) as charge conjugation for a pair of Majorana fermion fields where b acts by 120◦ rotation
in the plane.
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The CPµτ symmetry of (1) implies that θ23 = π/4 and δCP = ±π/2 are automatic [3] and the

diagonalization

UTMνU = diag(m′i) , (12)

can be performed by a matrix U = U0 of the form

U0 =


u1 u2 u3

w1 w2 w3

w∗1 w∗2 w∗3

 , (13)

with ui conventionally real and positive. The Majorana phases are trivial and possible CP parities

appear along with the eigenvalues m′i = ±mi, mi ≥ 0. We denote the different cases of CP parities

by the sign of (m′i) as

(+ + +), (−+ +), (+−+), (+ +−) . (14)

In addition to being CPµτ symmetric, the mass matrix in (1) obeys

Mν

∣∣
a2↔a3 = M∗ν ,

Mν

∣∣
a1→a2→a3 = diag(1, ω2, ω)Mν diag(1, ω2, ω) .

(15)

Thus cyclic permutation of ai leaves all observables of Mν invariant while transposition (a2 ↔ a3)

flips the Dirac CP phase: δCP → −δCP. Hence, permutations of solutions for ai are solutions as

well.

A. Obtaining the masses

To extract the light neutrino masses, it is more convenient to change to a real basis:

M ′ν = UT
23MνU23 =


a1 + a2 + a3

k√
2
(2a1 − a2 − a3)

√
3
2k(a3 − a2)

k√
2
(2a1 − a2 − a3) 1

2k
2(4a1 + a2 + a3) 1

2

√
3k2(a2 − a3)√

3
2k(a3 − a2) 1

2

√
3k2(a2 − a3) 3

2k
2(a2 + a3)

 , (16)

where

U23 ≡


1 0 0

0 1√
2

i√
2

0 1√
2
− i√

2

 . (17)

Now M ′ν is real symmetric and can be diagonalized by a real orthogonal matrix.
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The eigenvalues of M ′ν will correspond to the light neutrino masses m′i = ±mi with its CP

parities. They are solutions of the characteristic equation

λ3 + c1λ
2 + c2λ+ c3 = 0 , (18)

with coefficients

−c1 = (1 + 2k2)(a1 + a2 + a3) = m′1 +m′2 +m′3

−c3 = 27k4a1a2a3 = m′1m
′
2m
′
3

c2 = 3k2(2 + k2)(a1a2 + a2a3 + a3a1) = m′1m
′
2 +m′2m

′
3 +m′3m

′
1 .

(19)

It is clear that k = 1 is a special point where

3ai = m′i , i = 1, 2, 3 , (20)

is a solution; permutation of ai still leads to a solution. However, our mass matrix (1) with k = 1

and with the second and third columns (rows) exchanged is invariant by cyclic permutations which

means it is diagonalized by UPMNS = Uω. This mixing matrix is clearly in contradiction with

experiments, a fact that still applies if k ≈ 1 (for hierarchical mi). Hence, we need to analyze the

cases away from k = 1.

Generically we can invert (19) and obtain ai as functions of mi and k. Simplification is achieved

for generic k > 0 by defining

ãi ≡ (1 + 2k2)ai . (21)

Then equations in (19) can be rewritten as

ã1 + ã2 + ã3 = m′1 +m′2 +m′3 ,

ã1ã2ã3 = g3(k)m′1m
′
2m
′
3 ,

ã1ã2 + ã2ã3 + ã3ã1 = g2(k)(m′1m
′
2 +m′2m

′
3 +m′3m

′
1) .

(22)

where

g3(k) ≡ (1 + 2k2)3

27k4
, g2(k) ≡ (1 + 2k2)2

3k2(2 + k2)
. (23)

The key relation that can be extracted from (22) is that ãi should be now roots of the cubic

equation similar to (18) but with coefficients modified by

c1 → c̃1 = c1 , c2 → c̃2 = g2(k)c2 , c3 → c̃3 = g3(k)c3 . (24)
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This construction gives ãi as functions of m′i and k, except for permutations of ãi. The solutions

(20) for k = 1 are modified as g2(k), g3(k) differ from unity when k 6= 1. Moving away from k = 1,

both functions increase monotonically (g2 reaches 4/3 asymptotically as k →∞).

Now, the distortions caused by g2,3 can not be too large because ãi need to be real. To illustrate

this point, compare the two polynomials

p1(x) = x3 − 2.1x2 + 1.1x , p2(x) = x3 − 2.1x2 + 1.2x , (25)

where the second polynomial differs from the first just by a small deviation in the third coefficient.

The first polynomial has three real and distinct roots while the second polynomial has only x = 0

as a real root. That can be confirmed by calculating the discriminant of the factored second degree

polynomials: ∆ = (2.1)2−4×1.1 = 0.01 and ∆ = (2.1)2−4×1.2 = −0.39 for p1 and p2 respectively.

We can see that two quasi-degenerate eigenvalues are specially sensitive to deviations by k. That

is the case of IH with CP parities (+ + +) or (+ +−).

The values for k that allow real solutions for ãi can be extracted from the discriminant of the

cubic polynomial (18) for which

∆ = c̃2
1c̃

2
2 − 4c̃3

2 − 4c̃3
1c̃3 + 18c̃1c̃2c̃3 − 27c̃2

3 ≥ 0 . (26)

In Fig. 1 we show the values of k as a function of the lightest mass m0 where the discriminant

above is non-negative; we use the current best fit values for the mass differences [9]. The figure in

the left (right) correspond to NH (IH) and the various possibilities for CP parities are depicted in

different colors. For IH, only the case of CP parities (− + +) and (+ − +) have wide regions for

k for a given mass m0; the remaining cases has only very narrow ranges of possible k, including

k ≈ 1 which is phenomenologically excluded. The other possible narrow range for k for IH-(+ + +)

(e.g. k ≈ 7 for m0 = 10−3eV) is also phenomenologically excluded because it leads to a1 ≈ a2 ≈ a3

and two mixing angles are vanishing.

We also illustrate in Fig. 2 the deviations from ãi = mi when k moves away from k = 1. k varies

only in the range where the discriminant (26) is non-negative, as shown in Fig. 1. Note that close

to the critical values of k (∆ = 0) two (or more) ãi tend to be quasi-degenerate. This is a generic

phenomenon.

B. Seeking solutions

After an exhaustive numerical search we conclude that the mass matrix (1) is only compatible

with oscillation data for normal hierarchy (NH) and CP parities (−+ +) and (+−+). The cases
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H+++L-NH

H-++L-NH
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t
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FIG. 1: Left (right): regions in the k-m1 (k-m3) plane where solutions for ai are real for NH (IH). The mass

squared differences are fixed to their best fit values of [9]. A hole is only present for the case NH-(+ + +),

the regions for IH-(− + +) and IH-(+ − +) are almost overlapping, and the regions for IH-(+ + +) and

IH-(+ +−) can be seen only as lines.

m1
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
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FIG. 2: Solutions of ãi (in solid blue, red and green, respectively) as functions of k and m′i (in dashed blue,

red and green, respectively) for fixed values (−2.5, 9.014, 49.63) meV for m′i with ordering defined by (30).

The gray dashed line corresponds to the average 1
3
(m′1 +m′2 +m′3) = 1

3
(ã1 + ã2 + ã3).

of IH and quasi-degenerate masses are excluded. The lightest neutrino mass is restricted to

(−+ +) : 1.6 meV . m1 . 3 meV ,

(+−+) : 3.5 meV . m1 . 7.7 meV .
(27)
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The predictions for the contribution for neutrinoless double-beta decay coming from light neutrinos

is given by

(−+ +) : 1.9 meV . |mν
ββ | . 2.6 meV ,

(+−+) : 1.1 meV . |mν
ββ | . 2.05 meV ,

(28)

They fall inside the regions denoted by NH-(− + +) and NH-(+ − +) in Ref. [8]. Note that

mν
ββ = (Mν)∗ee. For future use, we also list

(−+ +) : 26 meV . (Mν)µτ . 28 meV ,

(+−+) : 20.5 meV . (Mν)µτ . 23 meV .
(29)

The parameter distribution for the two set of solutions is shown in Fig. 3 for |ai| as functions of

m1 (left), and k as a function of m1 (right). The values θ23 = π/4 and δCP = ±π/2 are fixed from

symmetry and we only consider values for θ12, θ13,∆m
2
21 and ∆m2

23 within 3-σ of the global fit in

Ref. [9] by varying ai and k independently. Approximate values are obtained from the procedure

below.

-a1 H-++L

a2 H-++L

a3 H-++L

a1 H+-+L

-a2 H+-+L

a3 H+-+L

2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

m1 @meVD

Èa iÈ@
m

eV
D

H-++L

H+-+L

2 3 4 5 6 7

3.4

3.6

3.8

4.0

4.2

4.4

m1 @meVD

k

FIG. 3: Left: Scatter plot of |ai| as a function of the lightest mass m1 (NH) for the two possible CP

parities for the light νiL: (−+ +) (darker colors) and (+−+) (lighter colors). Other solutions are related

by permutations of ai, cf. (15). The depicted ordering of ai leads to δCP = −π/2. Right: k as a function

of m1; black dots and gray dots denote the cases (−+ +) and (+−+) respectively.

We use the following procedure to exclude solutions and search for approximate solutions:

1. For each lightest mass m0, we find ãi through Eq. (22) (or Eq. (18) with (24)) for a given k,

restricted to the range specified by Fig. 1. We keep ∆m2
12 and ∆m2

23 fixed to their best fit

values of [9]. An illustration of this procedure is given in Fig. 2.
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2. Then, we diagonalize (1) to extract the mixing matrix U = UPMNS. We adopt the ordering

of eigenvectors to satisfy

|Ue1| > |Ue2| > |Ue3| . (30)

The ordering of mi follows. This means that our mass eigenstates ν1, ν2, ν3 are in the order

of decreasing contribution to νe (ν1 contributes the most and so on) and not on a specific

mass ordering. This definition explains the color flipping in Fig. 2 for k < 1.

3. At last, we check if the mass ordering is correct and if the mixing angles fall inside the 3-σ

ranges. An illustration of this step is shown in Fig. 4.

sin2
Θ12

sin2
Θ13

sin2
Θ23

0 1 2 3 4 5 6

0.01

0.02

0.05

0.10

0.20

0.50

1.00

k

si
n

2
Θ

ij

FIG. 4: sin2 θij as a function of k for m1 = 2.5 meV. The colored bands corresponds to the allowed ranges

of sin2 θij . We use the same parameters as Fig. 2 and the procedure is explained in Sec. III B.

One remark on this procedure is in order: to correctly fit the oscillation parameters we need

that (i) the mixing angles are correct and (ii) the mass ordering is correct. The condition (ii) arises

because mass eigenstates νi are defined by (30) and mass orderings that do not correspond to NH

or IH are excluded. For example, we can read from Fig. 4 that the correct values for both s2
12 and

s2
13 are only achieved for k ≈ 3.5, as can be also confirmed in Fig. 3. Correct values for s2

13 can be

also obtained for k ≈ 0.4 but s2
12 as well as the mass ordering in Fig. 2 is not correct: for k < 1,

νe has more contribution from the heaviest state (ν2 in red) than the second heaviest state (ν3 in

green).
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Li li H Ni Si η ϕ0 ϕ1

A4 (1,1′,1′′) (1,1′,1′′) 1 (1,1′,1′′) 3 3 1 1′

ZD4 1 1 1 1 i −i −1 −1

IV. EXTENDED SEESAW MODEL

Here we present a low scale seesaw model where the light neutrino mass matrix has the form (1).

The model will retain the successful predictions of U(1)µ−τ × ZCP
2 [8] for the low energy neutrino

observables but additional predictions arise due to the more constrained nature of the group A4.

Two sets of heavy neutrinos – one at the GeV scale and another at the electroweak scale – arise

naturally due to the extended seesaw mechanism (ESS) [17]. The combination of lepton flavor

numbers Lµ − Lτ will be approximately conserved in the model.

The flavor symmetry of the model will be A4×ZCP
2 (CP2), explained in Sec. II 3. The SM lepton

fields are, however, all singlets of A4 and only feel the Z3 subgroup 4, thus entirely avoiding the

need of any vev alignment in this sector. An auxiliary ZD4 will be also necessary in the neutrino

sector. The SM lepton fields are assigned to Li ∼ li ∼ (1,1′,1′′) while the Higgs doublet H is

invariant; Li = (νiL, liL)T are lepton doublets while li ≡ liR are the charged lepton singlets. Thus

CP2 in (11) can be identified with CPµτ [8]. There are also two sets of SM singlets (right-handed

neutrinos) Ni ≡ NiR and Si ≡ SiR, i = 1, 2, 3, assigned to (1,1′,1′′) and 3 respectively. Hence,

only the neutrino sector feels the full A4 group through SiR. We also need complex flavons η ∼ 3

and ϕ1 ∼ 1′, and a real ϕ0 ∼ 1. The full assignment can be seen in table IV. Additional fields

necessary to break CPµτ in the charged lepton sector are not shown since they can be just adapted

from [8].

The charged lepton sector at the electroweak scale will be effectively the SM one 5

− Lleff = y1L̄1Hl1 + y2L̄2Hl2 + y3L̄3Hl3 + h.c. , (31)

where the Z3 subgroup is unbroken but CPµτ is broken at a higher scale by a CP odd scalar [8] so

that the correct splitting for yµ = y2 and yτ = y3 is generated (ye = y1).

3 Note that the combined group is a direct product because both factors commute [8].
4 This contrast with most of the A4 models for leptons where at least the lepton doublets form triplets [12]
5 For simplicity we are considering the UV completion by heavy leptons but the multi-Higgs version can be equally

considered with the difference that the Higgs that couples to the µ− τ flavors is distinct [8].
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The neutrino sector at the high scale is given by

−Lν = f1N̄1H̃
†L1 + f2N̄2H̃

†L2 + f3N̄3H̃
†L3

+ f ′1(S̄η)1N
c
1 + f ′2(S̄η)1′N

c
2 + f ′3(S̄η)1′′N

c
3

+ 1
2
M11N̄1N

c
1 +M23N̄2N

c
3

+ 1
2
k0ϕ0(S̄Sc)1 + 1

2
k1ϕ1(S̄Sc)1′′ +

1
2
k∗1ϕ

∗
1(S̄Sc)1′

+ h.c.,

(32)

where we have defined singlet combinations of two triplets of A4 as

(xy)1 ≡ x1y1 + x2y2 + x3y3 ,

(xy)1′ ≡ x1y1 + x2y2ω
2 + x3y3ω ,

(xy)1′′ ≡ x1y1 + x2y2ω + x3y3ω
2 .

(33)

Note that CPµτ acts as

CPµτ : L1 → Lcp1 , L2 → Lcp3 , L3 → Lcp2 ,

H → H∗, Si → Scpi , ηi → η∗i ,

ϕ0 → ϕ0, ϕ1 → ϕ1 ,

(34)

and li and Ni transform like Li and ψcp denotes the usual CP conjugate of the chiral fermion ψ.

Therefore, f1, f
′
1,M11,M23, k0 are real and f3 = f∗2 , f ′3

∗ = f ′2 due to CPµτ . The parameters f2,3, f
′
2,3

can be further chosen real and positive by rephasing L2,3 and N2,3.

The mass matrix for (νiL, N
c
i , S

c
i ) after EWSB will be

M =

 0 MT
D

MD MR

 =


0 mT

D 0

mD MN ΛT

0 Λ µ

 , (35)

where

mD = diag(mDii) =
v√
2

diag(f1, f2, f3) ,

Λ = diag(u1, u2, u3)
√

3U∗ω diag(f ′1, f
′
2, f
′
3) ,

MN =


M11

M23

M23

 ,

µ = diag(µ1, µ2, µ3) ,

(36)
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where

Uω ≡
1√
3


1 1 1

1 ω ω2

1 ω2 ω

 . (37)

In this model, we are considering that ϕ0,1 acquire very small vevs which lead to the real Majorana

masses µi for Si and also

〈ηi〉 = ui , all real. (38)

We justify the hierarchy of vevs in appendix B.

Considering that MN is composed of bare masses, the ESS limit is naturally achieved [17]:

MN � {Λ,mD} � µ and also µ � Λ2/MN . We can see that there are two sources of lepton

number violation (LNV) in (32) 6: (a) large scales MN and (b) low scales µi ∼ 〈ϕ0,1〉.

At tree level and leading order we obtain

νi : Mν = mT
DΛ−1µ(ΛT)−1mD ,

Sci : MS = −ΛM−1
N ΛT ,

N c
i : MN ,

(39)

with light-heavy mixing

θ∗νS = mT
DΛ−1 ,

θ∗νN = mT
DM

−1
N .

(40)

Additional mixings can be seen in appendix A. We can see that the small LNV scale µ only enters

Mν while the large LNV scale MN contributes only to heavier masses. Given that the mass matrix

for the heavier states Ni are approximately unchanged, we can define

MN1 ≡M11, MN2 = MN3 ≡M23, (41)

assuming positive quantities. The leading correction can be seen in appendix A.

Explicitly, the light neutrino mass matrix is

Mν = 1
3

diag(mDii/f
′
i)Uω diag(µi/u

2
i )Uω diag(mDii/f

′
i) , (42)

which has the desired form (1) with

ai = 1
9
µi
m2
D11

u2
i f
′2
1

, k =
|mD22f

′
1|

|mD11f
′
2|
. (43)

6 If L(Ni) = L(Li) = −L(Si) = 1.
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We have used the shorthand mD11 ≡ f1v/
√

2; cf. (36). Fitting of the light neutrino parameters in

Fig. 3 implies

|ai| ≈ 0.2 – 2.1 meV ,

k ≈ 3.2 – 4.4 .
(44)

Also, the sign change of one of the ai needs to be generated by µi and not by u2
i which is always

positive.

Although frequently the heavier states Ni are chosen to lie above the TeV scale [17, 18], in

our case (i) negligible one-loop contribution for light neutrino masses, (ii) validity of the ESS

approximation and (iii) BBN constraints will essentially restrict MN to the electroweak scale; see

Sec. VI and (70) for a benchmark point.

V. APPROXIMATE U(1)µ−τ LIMIT

We consider first the limit where Z3 of A4 is only broken by the small quantities in µ. This

means that below the scale of 〈η〉, Z3 is only broken by light neutrinos masses. This approximate Z3

symmetry corresponds to the lepton flavor triality (LFT) [19] where lepton fields carry the discrete

charges

LFT : Li ∼ li ∼ Ni ∼ S′ci ∼ (1, ω, ω2) ; (45)

S′i is related to Si by change of basis Sci = (Uω)ijS
′c
j .

The heavy vevs of η conserve LFT when

〈ηi〉 = ui ≈ u0(1, 1, 1) . (46)

This feature is justified in appendix B. In this case, after ηi → 〈ηi〉 and in the limit k1 → 0, the

Lagrangian (32) is in fact invariant by the continuous version of (45) with charges [8]

U(1)µ−τ : Li ∼ li ∼ Ni ∼ S′ci ∼ (0, 1,−1) . (47)

It corresponds to the combination Lµ−Lτ of family lepton numbers. The approximate conservation

of U(1)µ−τ will lead to a number of consequences.
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In this limit the mass matrix (39) and mixing (40) of the heavy neutrinos Si yield

MS = −1
3


MS1 + 2MS2 MS1 −MS2 MS1 −MS2

? MS1 + 2MS2 MS1 −MS2

? ? MS1 + 2MS2

 ,

θ∗νS =
mD11√
3f ′1u0


1

k

k

Uω ,

(48)

where the masses read 7

MS1 ≡
(
√

3u0f
′
1)2

MN1

, MS2,3 ≡
(
√

3u0|f ′2|)2

MN2

. (49)

These relations allows us to trade f ′1u0 and f ′2u0 = f ′3u0 for physical masses:

|
√

3f ′1u0| =
√
MS1MN1 , |

√
3f ′2u0| =

√
MS2MN2 . (50)

The mass matrix MS is invariant by cyclic permutations and then (1, 1, 1) is an eigenvector.

We can diagonalize it by

V ∗S = U∗ω(−i)U∗23 . (51)

giving

V T
S MSVS = diag(MS1 ,MS2 ,MS3) . (52)

The matrix U23 was defined in (17). Therefore, S1 is a Majorana fermion of U(1)µ−τ charge 0 and

S2,3 are degenerate Majorana fermions that form a (pseudo-)Dirac pair of fields with charge ±1.

The latter implies that LNV effects induced by S2,3 exchange will vanish in this limit.

The active-sterile ν-S mixing reduces to

(θνSVS)∗ = (−i) mD11√
3u0f ′1

diag(1, k, k)


1 0 0

0 1√
2
− i√

2

0 1√
2

i√
2

 . (53)

It is important to note that in this approximation

(θνSVS)ei = 0 , for i = 2, 3, (54)

and the electron flavor is only coupled to S1.

7 We keep using the same name Si for the heavy neutrino fields although they have a small component of νciL and
NiR.
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VI. ONE-LOOP CONTRIBUTIONS AND BBN CONSTRAINTS

Now we should compute the one-loop contributions to light neutrino masses. When the lightest

heavy RHN mass lies below 100 MeV, the one-loop contributions to 0ν2β can be sizable [20], al-

though such a sterile neutrinos are severely constrained by cosmological data [21]. Heavy neutrinos

with electroweak scale masses can still induce sizable contributions [18, 22] and the dominant (and

finite) one comes from light neutrino self-energies with higgs or Z exchange [23–25].

We can write the self-energy contribution as

M1-l
ν =

1

(4πv)2
MT
D

(
M−1
R F (MRM

†
R) + F (MRM

†
R)M−1

R

)
MD , (55)

where the loop function F (x) is given by

F (x) ≡ x

2

[
3

ln(x/M2
Z)

x/M2
Z − 1

+
ln(x/M2

h)

x/M2
h − 1

]
, (56)

with MZ and Mh being the Z and Higgs boson masses, respectively; v = 246 GeV is the electroweak

scale. This contribution should be added to the tree-level contribution (42) coming from the ESS

mechanism. We should note that heavy neutrinos masses MR at the electroweak scale leads to a

contribution (55) functionally similar to the tree-level contribution M2
D/MR, but smaller only by

the loop factor 1/16π2 [23] [notice F
(
(100 GeV)2

)
/v2 ≈ 1.5]. Therefore, the one-loop contribution

in the ESS mechanism can be possibly large since the cancellation that occurs in the tree-level

mass matrix is not expected to carry over to the one-loop contribution.

We can adapt the one-loop contribution for generic type-I seesaw (55) to the extended seesaw

with mass matrix (35) as

M1-l
ν =

1

(4πv)2
mT
D

{
M−1
N ΛTVS M̂

−1
S 2F (M̂2

S)V T
S ΛM−1

N + VN M̂
−1
N 2F (M̂2

N )V T
N

}
mD . (57)

We have first block diagonalized MR (see appendix A) and then used the basis where MS and MN

is diagonal (M̂S and M̂N ). It is also possible to write the expression in terms of the light-heavy

mixing angles as

M1-l
ν =

1

(4πv)2

{
(θνSVS)∗M̂S 2F (M̂2

S)(θνSVS)† + (θνNVN )∗M̂N 2F (M̂2
N )(θνNVN )†

}
. (58)

We can see that generically the contribution from the heavier states Ni dominates over the

contribution from Si because the smaller mixing angle θ2
νN/θ

2
νS ∼ Λ2/M2

N is compensated by

MN/MS ∼M2
N/Λ

2 and F (x) grows with x.

For our purposes, it is useful to define the adimensional function g(x) as

g(Mi/100 GeV) ≡ 2F (M2
i )

Mi × 100 GeV
. (59)
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A slightly different definition can be seen in [26]. This function peaks at the electroweak scale

Mi ≈ 93.3 GeV with maximum 3.64 and decreases away from the peak with rate slower than M−1
i

for Mi & 100 GeV; see behaviour in Fig. 5. This function allows us to rewrite (57) as

M1-l
ν =

100 GeV

(4πv)2
mT
D

{
M−1
N ΛTVS g(X̂S)V T

S ΛM−1
N + VN g(X̂N )V T

N

}
mD . (60)

We have used the shorthand X̂S ≡ diag(MSi)/100 GeV and similarly for X̂N .
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FIG. 5: Plot of the function in (59) where gmax = 3.63547 and the maximum occurs at M ≈ 93.3 GeV.

Computing (60) in our model in the U(1)µ−τ symmetric limit, we obtain the texture

M1-l
ν =


? 0 0

0 0 ?

0 ? 0

 , (61)

whose nonzero entries correspond to Lµ − Lτ = 0. Explicitly,

(M1-l
ν )ee ≈ 10 keV ×

m2
D11

GeV2

[
− g(x1)

MN1/MS1

+ g
(MN1

MS1

x1

)]
,

(M1-l
ν )µτ ≈ 10 keV ×

m2
D22

GeV2

[
− g(x2)

MN2/MS2

+ g
(MN2

MS2

x2

)]
,

(62)

where xi ≡ MSi/100 GeV. We have used Eqs. (36), (51) and VN = U23. We note that indeed

the one-loop contribution can lead to an unacceptably large contribution. For example, for mD ∼

1 GeV,MN ∼ 10 TeV,MS ∼ 100 GeV, the one-loop contribution leads to a few keV. From Fig. 5 we

also see that to lower the contributions from (62) to acceptable values by increasing MN requires

very large values of the order of 107 GeV. Therefore, to have TeV scale (or lower) right-handed

neutrinos, we need to lower the scale of mD or arrange some cancellation between either the various
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one-loop contributions or between the tree and one-loop ones [25]. We consider this possibility

unappealing and do not pursue it any further.

In order to preserve our predictions of Sec. III we confine ourselves to the case where the loop

induced contributions (62) are negligible compared to the tree level ones in (1). To visualize the

possible regions in parameter space, we show in Fig. 6 the regions (blue) in the MN1-mD11 plane

(left) and MN2-mD22 plane (right) where the one-loop contribution is at most 10% of the tree-level

contribution for the ee (left) and µτ (right) entries. For definiteness we fix the tree-level values to

(M tree
ν )ee = 2 meV, RN1 ≡MN1/MS1 = 102 ,

(M tree
ν )µτ = 24 meV , RN2 ≡MN2/MS2 = 102 .

(63)

These values are in agreement with (28) and (29). We choose to plot the dependence on MNi

because the one-loop contributions depend dominantly on MNi (rather than on the lighter MSi) in

the ESS approximation. For example, if we increase the ratios RNi , the blue regions shrinks down

only slightly for large MNi . For completeness, we also show the curves for unit ratio (dashed).
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FIG. 6: The blue regions satisfy |(M1-l
ν )ee|/|(M tree

ν )ee| ≤ 0.1 (left) or |(M1-l
ν )µτ |/|(M tree

ν )µτ | ≤ 0.1 (right)

with the reference values (63). The blue dashed curves obey unit ratios. The points inside the orange regions

are the ones necessary to fit the ee (left) or µτ (right) tree-level entries of the light neutrino mass matrix

through (64) or (65) restricted to (66) and (63). The orange dashed curves correspond to the subset of

points for Rµ1 = 0.03 (left) and Rµ2 = 0.076 (right). The green regions cover the points where τS1 ≤ 0.1

(left) or τS2
≤ 0.1 (right) for RN1

= RN2
= 100. The green dashed curves yields the life-time of 0.1 s but

with RN1
= 270 (left) or RN2

= 400 (right). The crosses mark the benchmark points in (70). See text for

details.

The next step is to ensure that the tree-level contribution themselves – as they depend on the

model parameters as in (43) – lie in the necessary ranges of (28) and (29) (also Fig. 3). For that
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purpose, we rewrite the sum of all relations for ai in (43) as( mD11

10keV

)2
(

100 GeV

MN1

)(
µ̄i
MS1

)
=
|(M tree

ν )ee|
meV

, (64)

where µ̄i ≡
∑

i µi/3. We have also used (50) to eliminate f ′1u0. An analogous relation is valid for

the µτ entry: (
MD22

10keV

)2(100 GeV

MN2

)(
µ̄i
MS2

)
=
|(M tree

ν )µτ |
meV

. (65)

As µ̄i �MS1 in order to satisfy the ESS approximation, we require

Rµ1 ≡
µ̄i
MS1

≤ 0.1 and Rµ2 ≡
µ̄i
MS2

≤ 0.1 . (66)

These conditions define allowed regions for MN1-mD11 and MN2-mD22 which are shown as orange

regions in Fig. 6. We also show in dashed orange curves the values where the above ratios assume

the values Rµ1 = 0.03 (left) and Rµ2 = 0.0076 (right). We use the same reference values in (63).

The conclusion is that the overlapping (allowed) regions impose upper bounds on the heavy

RHN states:

MN1 ,MN2 . 340 GeV . (67)

This constraint puts the RHN states Si at the GeV scale. We also note that had we allowed

M1-l
ν ∼M tree

ν , MN1 would be unbounded but restricted to a narrow band M2
D11

/MN1 ∼ 10−11 GeV

for MN1 & 1 TeV. A similar consideration applies to MN2 .

As the last constraint, we note that mDii can not be pushed to arbitrarily low values because

it necessarily makes the lighter BSM states Si to be very long lived 8. In order to not spoil the

successful prediction of Big Bang nucleosinthesis (BBN), we require that the life-times of all the

BSM states do not exceed 0.1 s. It is enough to require that for the lighter Si states. As their

masses lie at the GeV scale or lower, the main decay modes involve W or Z exchange through

active-sterile mixing with decay into light neutrinos, electrons or pions [30]; see appendix C for

more details. The allowed regions are shown in green in Fig. 6 where the border is determined

by the fixed N − S ratios of (63); the interior refers to RN1 > 102 (left) or RN2 > 102 (right) in

accordance to the ESS approximation. For completeness, we also show as dashed green curves the

points where τ = 0.1 s and RN1 = 270 (left) or RN2 = 400 (right).

The combination of all the constraints discussed above, leads to the overlapping regions of Fig. 6.

The parameters are restricted to the values listed in Table I. The restriction means that points

8 We assume all the scalars to be heavier than Si.
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outside the overlapping region violate some constraint above for the reference values (63).9 Points

inside the overlapping regions need to be further checked for all the constraints as they depend on

other parameters not shown in the figures. Moreover, the parameters are not all independent as

one ratio is fixed through (44) and

mD22

mD11

MN1

MN2

√
RN2√
RN1

= k . (68)

To use tree-level values different from (63) but restricted to (28) and (29), we just need to reread

Fig. 6 with the vertical axis relabeled as

mD11 → mD11

√
2 meV

(Mν)tree
ee

,

mD22 → mD22

√
24 meV

(Mν)tree
µτ

.

(69)

That is possible because all the defining relations, Eqs. (62) (64), (65) and the active-sterile mixing

θνS in the decay rates (ap. C) depends on m2
D11

or m2
D22

. For the same reason, the blue and

orange curves of the right figure of Fig. 6 are identical to the ones on the left if we identify mD22 =

mD11

√
24/2, where

√
24/2 is basically the factor k.

mD11
/10−5 GeV 5 – 8 mD22

/10−5 GeV 12 – 28

MN1
/GeV 80 – 340 MN2

/GeV 25 – 340

MN1
/MS1

100 – 270 MN2
/MS2

100 – 400

µ̄i/MS1 0.03 – 0.1 µ̄i/MS2 0.0076 – 0.1

TABLE I: Approximate parameter values extracted from Fig. 6.

As an example, the following values pass all the constraints and are also marked in Fig. 6 by

crosses:

MD11 = 7× 10−5 GeV , MN1 = 200 GeV , MS1 = 1.33 GeV , µ̄i ∼ 100 MeV ,

MD22 = 2.1× 10−4 GeV , MN2 = 100 GeV , MS2 = 1 GeV.
(70)

The intermediate scales
√

3u0f
′
1 ≈ 16 GeV and

√
3u0f

′
2 = 10 GeV can be obtained from (50). They

set a lower bound for the scales 〈ηi〉 ∼ u0 & 10 GeV and 〈ϕ0〉 ∼ 〈ϕ1〉 & µi ∼ 0.1 GeV while the

9 The actual green regions may lie slightly to the left for two reasons: (i) we only include the dominant decay modes
for Si listed in appendix C and (ii) the strict life-time limit for successful BBN may be slightly relaxed depending
on the details of the model at the BBN era [27].
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masses can be chosen Mη ∼ u0 &Mϕ ∼ 10 GeV. Using the values in (70) as a benchmark, we plot

in Fig. 7 the ratio of the one-loop contribution to the tree-level value of |mν
ββ | = |(M tree

ν )∗ee| = 2 meV

where now we vary MS1 and rescale MN1 simultaneously by fixing RN1 = 150. For the benchmark

values (70), the one-loop contribution is indeed less than 10% of the tree-level value. We also show

the ratio of the life-time to the limit of 0.1 s (solid gray) and confirm that MS1 needs to be larger

than around 1 GeV.

ÈHMΝLee
1-lÈ�2 meV

ÈmΒΒ
S È�0.3eV

ΤS1
�0.1 s

10´

10-1 100 101 102 103 104
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MS1
@GeVD

FIG. 7: Ratio of one-loop to tree-level contribution (2 meV) to the ee entry (0ν2β parameter) of the light

neutrino mass matrix (solid black) as a function of MS1 (MN1 scales with MS1 through MN1 = RN1MS1). We

also show the contribution coming only from N1 (dashed) and S1 (dotted) exchange; the latter is multiplied

by 10 for visualization. The contribution for 0ν2β parameter from S1 exchange (green dashed) relative to

the limit 0.3 eV is shown as well; we use the expression in (79). The solid gray curve shows the life-time for

S1 relative to 0.1 s. The other parameters are fixed as mD11 = 7× 10−5 GeV and RN1 = 150.

Finally, we can estimate the amount of cancellation that is built-in in our ESS mechanism

implementation. Rewriting (64) in the form of the naive seesaw relation,

|(M tree
ν )ee| = εee

m2
D11

MS1

, (71)

we extract

εee =
µ̄i
MN1

≈ 10−3 – 10−4 , (72)

if we use Table I. Analogously, for the µτ entry, we obtain εµτ ≈ 10−3 – 2× 10−6. These values are

in agreement with the radiative stability conditions discussed in Ref. [18] that estimated a lower

bound of ε > 10−6 for a GeV scale right-handed neutrino mass.
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VII. OTHER PHENOMENOLOGICAL CONSTRAINTS AND U(1)µ−τ BREAKING

We analyze here other phenomenological constraints coming from the existence of GeV scale

heavy neutrino Si with mixing with the light neutrinos at the order of

|(θVS)e1|2 =

(
mD11√
3u0f ′1

)2

=
m2
D11

MS1MN1

= 10−12 ×
( mD11

10 keV

)2
(

100 GeV

MN1

)(
1 GeV

MS1

)
.

(73)

where we have used (50) and simplified the notation for θνSVS . For the values (70),

|(θVS)e1|2 =
m2
D11

MS1MN1

∼ (7× 10−5 GeV)2

200 GeV × 1.33 GeV
∼ 2× 10−11 . (74)

The other mixing angles are either of the same order or vanishing in the limit of U(1)µ−τ conser-

vation; cf. (53). At the same time, the Yukawa couplings to the RHN in our model are even more

suppressed,

f1 ∼
7× 10−5 GeV

174 GeV
∼ 4× 10−7 ,

f2,3 ∼
2.1× 10−4 GeV

174 GeV
∼ 10−6 .

(75)

They are smaller than the electron Yukawa coupling and thus the Higgs coupling to the RHN are

very much suppressed (their are smaller than the mixing θνS). Hence, the main interactions of the

RHN to the SM fields occur through active-sterile mixing in (73).

However, it is clear that indirect detection constraints such as lepton universality violation or

electroweak precision tests are not able to restrict or probe such a small mixing angles [28, 29].

They are also unobservable through direct detection in meson decays [28–30] or in colliders [31].

Note that this scenario contrasts with models where Higgsses charged under Z3 [or U(1)µ−τ ] may

induce large lepton flavor violating Higgs decays [32].

For the same reason, lepton flavor violation (LFV) constraints are very weak in our model. The

suppression is even larger because LFV processes such as µ→ eγ or µ→ eee are forbidden in the

limit of U(1)µ−τ conservation. One can also see this in (53) as (θVS)ei(θVS)∗µi always vanish. Being

a larger group, U(1)µ−τ is more constraining than lepton flavor triality [19] and the former only

allows τ− → µ+e−e−. However, when this process is mediated only by heavy neutrinos, it occurs

through box diagrams that are very much suppressed [33]. These conclusions are not modified when

U(1)µ−τ breaking effects are considered. See appendix D.

At last, we can analyze the limits coming from neutrinoless double beta decay, which are the

strongest involving the mixing with the electron flavor. Since the active-sterile mixings are all
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vanishing or of the same order in the U(1)µ−τ symmetry limit, cf. (53), we expect that this process

will pose the strongest constraint on the mixings.

The half-life of the process is proportional to [18, 28]

1

T 0ν
1/2

∝

∣∣∣∣∣mν
ββ

〈p2〉
+

ns∑
i=1

(θV )2
ekMi

〈p2〉 −M2
i

∣∣∣∣∣
2

, (76)

where 〈p2〉 ∼ −(200 MeV)2 quantifies the effective momentum transfer inside the nucleus and Mi

represent the masses of the additional heavy neutrino states that mixes with the three active ones.

The light neutrino contribution depends on

mν
ββ ≡

∑
i

U2
eimi , (77)

with contributions arising from tree and loop contributions

(mν
ββ)∗ = (Mν)ee = (M tree

ν )ee + (M1-l
ν )ee + · · · . (78)

For CPµτ symmetric theories, it is confined to bands depending on the CP parities of the light

neutrinos [8]. For a review on generic aspects of 0ν2β see Ref. [34]. We are assuming we are

confined to the parameter space where the one-loop contributions are negligible compared to the

tree-level one.

Considering (76), we can define, in analogy to the light neutrino contribution [20],

mS
ββ ≡ |〈p2〉|

3∑
i=1

(θVS)2
eiMSi

M2
Si

+ |〈p2〉|
. (79)

where |〈p2〉| ≈ (253 MeV)2 (corresponding to 0.079× (0.9 GeV)2 in Ref. [25]) and we have already

specialized to 76Ge. We disregard the subdominant contribution from the heavier states Ni. If

the heavy neutrinos masses are much larger than the typical momentum transfer in the nucleus,

Mi � 200 MeV, we can approximate

mS
ββ = |〈p2〉|

3∑
i=1

(θV )2
ei

MSi

. (80)

Taking the GERDA+Helderberg-Moscow limit, T 0ν
1/2(76Ge) ≥ 3 × 1025yr at 90% C.L. [35], it

translates into ∣∣mν
ββ +mS

ββ

∣∣ . 0.3 eV . (81)

We can see that the contribution from light neutrinos predicted in our model (28) is at least two

orders of magnitude smaller than the limit above. It remains to be checked if the contribution from

Si exchange can give a larger contribution.
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In the limit where U(1)µ−τ (or LFT) in (47) is conserved, only S1 couples to the e flavor and

thus to 0ν2β; cf. (54). We can then write

mS1
ββ = −2.67× 10−5 eV ×

( mD11

10 keV

)2 102

RN1

(
GeV

MS1

)3

, (82)

where we have assumed that MS1 � 200 MeV. For the values (70), this contribution is negligible.

One could lower the MS1 mass to increase this contribution (including the correction in (79)) but

it hits the BBN constraint rather quickly. Such a feature is illustrated in Fig. 7 where the ratio of

the 0ν2β contribution from S1 exchange to the limit of 0.3 eV is shown in dashed green. Note that

we use the expression (79) to account for MS1 < 100 MeV. We can see that the mS
ββ is negligible

for MS1 larger than 1.33 GeV. Even if we allow the life-time of S1 to be around 1 s, it will be

still unobservable in future 0ν2β experiments. It is possible, however, that mS
ββ ∼ 30 meV for

MS1 ∼ 300 MeV and much larger than the light neutrino contribution.

VIII. CONCLUSIONS

We have presented a new CP symmetry applicable to models with A4 flavor symmetry and other

groups with the structure H o Z3 such as ∆(27). To implement this type of CP symmetry, the

singlets 1′ that are fermions or carry other quantum numbers should appear in pair with another

1′′ with the remaining quantum numbers identical to those of 1′. This new CP symmetry allows

us to avoid the vev alignment problem in close analogy to the construction using Lµ−Lτ and CPµτ

symmetries [8]. This feature partly follows because the SM lepton fields are singlets of A4 and only

feel the Z3 subgroup which is contained in Lµ − Lτ .

We have constructed an explicit renormalizable model that leads to a new form for the light

neutrino mass matrix, cf. (1). It retains the successful predictions of CPµτ – namely maximal θ23,

maximal Dirac CP phase and trivial Majorana phases – but because of the A4 structure it also

predicts normal hierarchy with the lightest neutrino of only few meV; see (27). The CP parities

are also restricted to two possibilities which effectively fix the effective parameter mββ contributing

to neutrinoless double beta decay.

The model itself is based on the extended seesaw mechanism which naturally leads to relatively

light right-handed neutrinos Si and heavier Ni. After enforcing negligible one-loop contributions

to light neutrino masses, ensure the ESS approximation and require fast enough decay rate of the

BSM states to avoid BBN constraints we only find a small allowed region in the parameter space:

Ni neutrinos lie at the electroweak scale and the lighter Si lie at the GeV scale. To suppress the one-
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loop contributions, it is required that their Yukawa interactions with the SM fields should be smaller

than the electron Yukawa coupling. Consequently the active-sterile mixing is largely suppressed,

rendering the right-handed neutrinos practically unobservable in terrestrial experiments.

The flavor structure of the model is largely determined by the approximate conservation of the

combination Lµ − Lτ of lepton flavors, which suppresses various flavor changing processes such as

µ→ eγ. Moreover, only S1 mixes appreciably to νe and the mixing of S2,3 to the µτ flavors are of

the same order of magnitude.
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Appendix A: Block diagonalization of MR

The ESS mechanism naturally leads to two disparate scales for the right-handed neutrinos: the

lighter MS (SiR) and the heavier MN (NiR). So it is useful to write the complete neutrino mass

matrix (35) in a basis where MR is block diagonal:

M′ =

 0 M ′TD

M ′D M ′R

 ≈


0 −mDM
−1
N ΛT mT

D

(−mDM
−1
N ΛT)T MS 0

mD 0 M ′N

 . (A1)

The mass matrix MS is given by (39). The subleading correction to MN is

M ′N = MN + 1
2
(ΛTΛ∗M∗−1

N + tr.) , (A2)

where tr. indicates the transpose of the previous matrix.

The block diagonalization is performed by

UR ≈

0 1

1 0

1− θRθ†R/2 θR

−θ†R 1− θ†RθR/2

 , (A3)

with

θ∗R = ΛM−1
N . (A4)
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Further block diagonalization leads to the results in (39) and (40). The complete diagonalization

is performed by

νi → (Uν)ijνjL + (θνSVS)ijS
c
jR + (θνNVN )ijN

c
jR ,

SciR → (VS)ijS
c
jR + (−θ†νSUν)ijνiL + (θRVN )ijN

c
jR ,

N c
iR → (VN )ijN

c
jR + (mT−1

D MνUν)ijνiL + (−θ†RVS)ijS
c
jR .

(A5)

The fields in the left-hand side are in the flavor basis and appear in (32); the ones on the right-hand

side are the mass eigenfields and Uν is the PMNS matrix in the flavor basis. We have neglected

non-unitary effects and the small mixing angles θνS , θνN , θR were already given in Eqs. (40) and

(A4).

Appendix B: Comments on the potential

Here we justify the approximate conservation of U(1)µ−τ that follows from the Z3 conserving

vevs for η in (46).

We start by observing that when the potential for η is invariant by global rephasing, the potential

is identical to a potential with three Higgs doublets with A4 symmetry and we know that (46) can

be exactly a global minimum [36].

The addition of the two independent quartic terms that breaks U(1) but conserves ZD4 ,

I1 = η4
1 + η4

2 + η4
2 and I2 = (η1η2)2 + (η2η3)2 + (η3η1)2 , (B1)

can be chosen to maintain such alignment and also to make u0 real and positive. We stress that

these and other quartic terms are not invariant by U(1)µ−τ but only the Z3 subgroup. These terms

also help to maintain the deviations of 〈η〉 in the real direction since the coefficients are real because

of CPµτ .

Now we add the interactions of η with ϕ0 and ϕ1. The relevant terms are

V ⊃ 1
2
M2

0ϕ
2
0 + µ0ηϕ0(ηTη + h.c.) , (B2)

and

V ⊃M2
1 |ϕ1|2 +

{
µ1η[(ηη)1′′ + (ηη)∗1′ ]ϕ1 + h.c.

}
, (B3)

where µ1η can be complex and the singlet combination was defined in (33). Clearly there is no

U(1) rephasing symmetry for ϕ1 and no Goldstone will be generated.
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The mild hierarchy of ESS scales

100 MeV ∼ µi � f ′i
√

3u0 ∼ 10 GeV , (B4)

implies a mild hierarchy between u0 ∼ 〈ηi〉 and 〈ϕ0〉, 〈ϕ1〉. We can choose f ′i ∼ 0.1 so that

u0 ∼ 100 GeV ∼MN . For an order one k0, the small 〈ϕ0〉 ∼ 100 MeV can be generated from (B2)

by a vev seesaw analogous to type-II seesaw [37]. In this case Mϕ0 ∼ u0 is electroweak scale. For

〈ϕ1〉 a vev seesaw can not be implemented because (ηη)1′′ vanishes for the minimum (46). But we

can always take k1 ∼ 10−2, adjust the potential parameters to obtain 〈ϕ1〉 ∼ 10 GeV and make µ1η

in (B3) small enough so that (46) is only slightly disturbed. The mass of the lightest physical states

of ϕ1 will be around 〈ϕ1〉 and heavier than Si. Note that k0〈φ0〉 and k1〈φ1〉 should be comparable

because they lead to µi.

At last, in principle the new scalars could be produced in Higgs decays through the Higgs

portal but the current limits on the invisible Higgs decays are still weak [38] and can be avoided

by decreasing the portal interactions.

Appendix C: Decay rates for Si

In our theory the RHN heavy states Si are the lightest new states beyond the SM which lies at

the GeV scale. The dominant decay channels involve Z or W exchange through mixing with light

neutrinos or charged leptons [30]. The decays Sci → Scj + · · · are highly suppressed.

To ensure that the production of light nuclear elements in the early Universe (Big Bang nu-

cleosinthesis) are not disturbed by the presence of new particles, we require that the life-times of

the new states are shorter than 0.1 second. In that case these new particles are thermalized much

before the BBN era and they decay fast enough. RHNs lighter than around 100 MeV conflict with

direct detection constraints and are excluded [27, 39].

Assuming the U(1)µ−τ symmetry, the active-sterile mixing (53) leads to the dominant decay

channels [30]

Sc1 → π0νe, νeν̄ν, π
+e−,

Sc2,3 → π0νµ,τ , νµ,τ ν̄ν, π
+µ− .

(C1)

We neglect the decay to other channels. The decay rates for these processes can be taken from
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Ref. [30]:

Γ(Sc1 → π0νe) = |(θVS)e1|2
G2
F f

2
πM

3

32π

(
1−

m2
π0

M2

)2

,

Γ(Sc2 → π0νµ+τ ) =
(
|(θVS)µ2|2 + |(θVS)τ2|2

)G2
F f

2
πM

3

32π

(
1−

m2
π0

M2

)2

,

Γ(Sc1 → νeν̄ν) = |(θVS)e1|2
G2
FM

5

192π3
,

Γ(Sc2 → νµ+τ ν̄ν) =
(
|(θVS)µ2|2 + |(θVS)τ2|2

)G2
FM

5

192π3
,

Γ(Sc1 → π+e−) = |(θVS)e1|2
G2
F f

2
π |Vud|2M3

16π

((
1− m2

e

M2

)2

−
m2
π+

M2

(
1 +

m2
e

M2

))

×

√(
1− (mπ+ −me)2

M2

)(
1− (mπ+ +me)2

M2

)
,

Γ(Sc2 → π+µ−) = |(θVS)µ2|2
G2
F f

2
π |Vud|2M3

16π

(1−
m2
µ

M2

)2

−
m2
π+

M2

(
1 +

m2
µ

M2

)
×

√(
1− (mπ+ −mµ)2

M2

)(
1− (mπ+ +mµ)2

M2

)
.

(C2)

In each expression, M refers to the mass of the decaying particle and each decay rate contributes

twice due to the charge conjugate mode. Moreover, the expression for Sc3 are identical to the

expressions for Sc2 and note that we can write

|(θVS)e1|2 =
m2
D11

MS1MN1

,

|(θVS)µ2|2 + |(θVS)τ2|2 =
m2
D22

MS2MN2

= 2|(θVS)µ2|2 = 2|(θVS)τ2|2 .

(C3)

We are also assuming that U(1)µ−τ is slightly broken so that S2,3 are distinct Majorana fermions.

In the exact U(1)µ−τ limit, (Sc2 + iSc3 + S2 + iS3)/
√

2 = Sµτ̄ forms a Dirac heavy neutrino with

U(1)µ−τ charge unity while its conjugate carries charge −1. In this case, the decay rates of Sµτ̄

are the same as Sc2 without the factor two multiplication (the last one would be doubled due to

diagonal mixing).

Appendix D: Deviations of U(1)µ−τ

In the fermion sector our model is approximately invariant by U(1)µ−τ , which includes Z3 (45)

of A4. In the first approximation considered U(1)µ−τ is only broken in the neutrino sector by small
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µi ∼ 100 MeV in (35). Identical U(1)µ−τ charges (47) can be assigned to all the lepton fields (47)

if we change basis to

SciR = (Uω)ijS
′c
jR. (D1)

We show below the form of the mass matrices in this basis with small U(1)µ−τ breaking.

An additional U(1)µ−τ (and also LFT) breaking effect in the neutrino sector is induced by

deviations in 〈η〉 from (46), which can be parametrized as

〈η〉 = u0

{
(1, 1, 1) + ε2(1, ω2, ω) + ε3(1, ω, ω2)

}
. (D2)

The deviation is quantified by |εi| � 1. CPµτ is expected to be conserved as there is no CP violating

interactions for η. Hence we expect ε3 = ε∗2.

The mass matrices (36) in the S′i basis read

Λ′ =
√

3u0


1 ε3 ε2

ε2 1 ε3

ε3 ε2 1

diag(f ′i) ,

µ′ = 1
3


µ1 + µ2 + µ3 µ1 + ωµ2 + ω2µ3 µ1 + ω2µ2 + ωµ3

? µ1 + ω2µ2 + ωµ3 µ1 + µ2 + µ3

? ? µ1 + ωµ2 + ω2µ3


(D3)

where the U(1)µ−τ breaking parametrization (D2) for 〈η〉 was used. The explicit change of basis

is induced by

Λ′ = UωΛ, µ′ = UωµUω . (D4)

Conservation of CPµτ implies ε3 = ε∗2 and real µi. In the mass matrices it implies the usual CPµτ

invariance:

XTΛ′X = Λ′∗ , XTµ′X = µ′∗ . (D5)

In the same basis, the Si neutrino mass matrix (48) becomes

−M ′(0)
S =


M

(0)
S1

M
(0)
S2

M
(0)
S2

 , (D6)
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where M
(0)
Si

were given in (49) and we have added the superscript (0) to indicate the U(1)µ−τ limit

explicitly. A generic deviation respecting CPµτ arising from 〈η〉 can be parametrized by

− δM ′S = M
(0)
S1


0 z12 z13

? z22 0

? ? z33

 , (D7)

where z13 = z∗12, z33 = z∗22.

The combination M ′S = M
′(0)
S + δM ′S is now diagonalized by

V ′S = iU23Oε , (D8)

where U23 denotes the maximal mixing matrix in (17). One can check that Oε is a real orthogonal

matrix given by

Oε ≈


1 −d′1 −d′2
d1 cθ −sθ
d2 sθ cθ

 . (D9)

The small parameters di are combinations of the small quantities in (D7) and are defined by

− UT
23δM

′
SU23 = M

(0)
S1


0 d1 d2

d1 c1 c2

d2 c2 −c1

 ; (D10)

all di, ci are real. The primed d′i are rotated asd′1
d′2

 =

 cθ sθ

−sθ cθ

d1

d2

 , (D11)

with angle tan 2θ = c2/c1. One can note that the angle θ depends only on the deviation parameters

ci and does not need to be small due to the degeneracy M
(0)
S2

= M
(0)
S3

. The formula (D9) is valid

as long as di, ci � 1 and covers the case where M
(0)
S1
� M

(0)
S2
∼ M

(0)
S1
di ∼ M

(0)
S1
ci so that the mass

splitting for S2,3 can be substantial:

MS2 = M
(0)
S2

+M
(0)
S1

√
c2

1 + c2
2 ,

MS3 = M
(0)
S2
−M (0)

S1

√
c2

1 + c2
2 .

(D12)

We are adopting MS3 < MS2 .
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Putting all together we find the deviation from (53):

(θVS) ≈ |(θV (0)
S )e1| diag(1, k, k)


1 −ε∗3 −ε∗2
−ε∗2 1 −ε∗3
−ε∗3 −ε∗2 1

× iU23Oε ,

= (θV
(0)
S )e1 diag(1, k, k)×


1 ε12 ε13

ε21 x22 x23

ε31 x32 x33

 ,

(D13)

where εij are small parameters that depend on the small parameters ε2,3 while xij are order one,

approximately unitary, quantities. The deviation from maximal (23) mixing in (53) can be large

due to S2,3 mass degeneracy in the U(1)µ−τ limit. Again the superscript (0) denotes the U(1)µ−τ

limit. Note that (θVS) has the structure 
u1 u2 u3

w1 w2 w3

w∗1 w∗2 w∗3

 , (D14)

characteristic of CPµτ invariance [8, 11]

Considering the deviation (D13) in ν − S mixing, we can include the effects of MS2,3 exchange

in 0ν2β as

mS
ββ = mS1

ββ

{
1 + ε212

M
(0)
S1

MS2

+ ε213

M
(0)
S1

MS3

}
, (D15)

where MS2,3 are now nondegenerate and include the U(1)µ−τ breaking effects. It is clear that the

contribution of S2 (S3) exchange can be comparable to S1 exchange only if

MS1/MS2,3 ∼ O(1/ε2) . (D16)

This can not happen in our theory.

We can also confirm that U(1)µ−τ breaking is not enough to induce observable lepton flavor

violating processes such as µ→ eγ. The vanishing rate is now proportional to the U(1)µ−τ breaking

effects. Considering only Si in the loop, the branching ratio yields [22]

B(µ→ eγ) ∼ 2× 10−30 ×
∣∣∣ ε21

0.1

∣∣∣2 × ∣∣∣∣(θV )eS1

10−6

∣∣∣∣4 G̃2
1 , (D17)

where G̃i = G(M2
Si
/M2

W )−G(0) and G(x) is defined in Ref. [22]. For example, G(12/802)−G(0) ≈

−10−4. Therefore, the predicted rate is much below the current MEG limit B(µ → eγ) < 2.4 ×
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10−12 [40] and there is no constraint even if (θV )eS1 is as large as 1%. One can also check that

S2,3 contributions lead to similar results. Future µ → e conversion experiments in nuclei [41] can

improve the limit by few orders of magnitude but our model predictions are still suppressed. Hence,

LFV processes constraints are much weaker than 0ν2β in our model.
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