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Coupled-wire constructions have proven to be useful tools to characterize Abelian and non-Abelian
topological states of matter in two spatial dimensions. In many cases, their success has been com-
plemented by the vast arsenal of other theoretical tools available to study such systems. In three
dimensions, however, much less is known about topological phases. Since the theoretical arse-
nal in this case is smaller, it stands to reason that wire constructions, which are based on one-
dimensional physics, could play a useful role in developing a greater microscopic understanding of
three-dimensional topological phases. In this paper, we provide a comprehensive strategy, based on
the geometric arrangement of commuting projectors in the toric code, to generate and character-
ize coupled-wire realizations of strongly-interacting three-dimensional topological phases. We show
how this method can be used to construct pointlike and linelike excitations, and to determine the
topological degeneracy. We also point out how, with minor modifications, the machinery already
developed in two dimensions can be naturally applied to study the surface states of these systems,
a fact that has implications for the study of surface topological order. Finally, we show that the
strategy developed for the construction of three-dimensional topological phases generalizes readily to
arbitrary dimensions, vastly expanding the existing landscape of coupled-wire theories. Throughout
the paper, we discuss Zm topological order in three and four dimensions as a concrete example of
this approach, but the approach itself is not limited to this type of topological order.
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I. INTRODUCTION

The experimental discovery of the integer and frac-
tional quantum Hall effects excited enormous interest
in the study of topological states of matter in two di-
mensional space. Strongly interacting states of matter
distinguished by the presence of excitations with frac-
tional quantum numbers or nontrivial boundary modes
have attracted particular attention from theorists. Over
time, a vast arsenal of theoretical tools has been devel-
oped to study such systems, from the microscopic (e.g.,
numerical techniques to study lattice models with topo-
logically ordered ground states) to the macroscopic (e.g.,
topological quantum field theories).

Wire constructions, which were first undertaken for
the integer [1–3], and later the fractional [4–15], quan-
tum Hall effect, are conveniently poised midway be-
tween these two extremes. The approach in this case
is to model a topological phase by starting from an
anisotropic theory of decoupled gapless quantum wires,
and then introducing local couplings between the wires
to produce a gapped state of matter with an isotropic
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low-energy description. This approach has the virtue
of yielding the edge theory, itself that of a Luttinger
liquid, directly, and of providing means to construct
the low-lying quasiparticle excitations of the bulk quan-
tum liquid. Furthermore, because wire constructions
make use of well-understood one-dimensional physics,
such as Abelian (or non-Abelian) bosonization, one
can construct analytically tractable theories of states
of matter for which no topological field theory is known
(such as, for example, the Moore-Read state [5], and
many others). In recent years, wire constructions have
also been used to study fractional topological insula-
tors (FTIs) [10, 11, 14] and spin liquids [16, 17], and
also to develop an extension [11] of the ten-fold way for
noninteracting fermions [18–21] to strongly-correlated
systems.

Since the prediction [22] and discovery [23–25] of
three-dimensional Z2 topological insulators (TIs), there
has been a growing interest in understanding topo-
logical states of matter in three spatial dimensions.
In addition to generalizing these time-reversal invari-
ant Z2 topological insulator to the strongly-interacting
regime [26–28], there has been an effort to derive ef-
fective field theories describing the bulk of such TIs,
and to determine the bulk-boundary correspondence
in such theories that yields the hallmark single Dirac
cone on the two-dimensional surface [29–33]. Further
work has undertaken efforts to understand broader fea-
tures of three-dimensional topological states of matter,
such as the statistics of pointlike and linelike excita-
tions [34, 35]. For example, it has been shown that
certain three-dimensional topological phases can only
be distinguished by the mutual statistics among three
linelike excitations [35].

Another major direction of work concerns three-
dimensional systems whose surfaces are themselves two-
dimensional topological states of matter. The simplest
example of this phenomenon occurs on the surface of
a Z2 TI when time-reversal symmetry is locally bro-
ken by a magnetic field on the surface, in which case
a half-integer surface quantum Hall effect develops [36–
39]. Further theoretical work has shown that generic
three-dimensional topological phases, including but not
limited to the fermionic Z2 TI, can exhibit more ex-
otic surface topological phases that cannot exist with
the same realization of symmetries for local Hamilto-
nians in purely two-dimensional space. This family
of surface phenomena is known as surface topological
order [40–47]. Several recent works [47, 48] have ap-
proached the question of surface topological order by
applying the quasi-one-dimensional physics of wire con-
structions, although it appears that this approach neces-
sitates the use of an unusual “antiferromagnetic” time-
reversal symmetry rather than the usual (physical) re-
alization of reversal of time, which acts on-site. It is
possible that a fully three-dimensional wire construction

could remedy this peculiarity, although such a descrip-
tion is still lacking.

Layer constructions, in which planes of two-
dimensional topological liquids are stacked on top of
one another and coupled, were used to construct the
single surface Dirac cone of the three-dimensional Z2

TI [49] and to study surface topological order [50]. Wire
constructions of three-dimensional topological states of
matter have also recently been undertaken, yielding
Weyl semimetals [51, 52] and a class of fractional topo-
logical insulators [53]. However, in all three cases, dif-
ferent methods are used to develop the wire construc-
tions themselves, and little effort has been made to ex-
tend these constructions beyond the specific problem at
hand in each example. In order to attack the most dis-
tinctive aspects of topological states of matter in three
dimensions, such as surface topological order, it is there-
fore necessary to develop a framework that lends itself
readily to a variety of approaches with minimal modifi-
cations.

In this paper, we provide a comprehensive strat-
egy to design wire constructions of strongly-interacting
Abelian topological states of matter in three dimensions.
The strategy that we present is to start with decoupled
quantum wires placed on the links of a two-dimensional
square lattice, and then to couple the wires with many-
body interactions associated with each star and plaque-
tte of the lattice. In this way, each interaction term that
couples neighboring wires can be viewed as correspond-
ing to one of the commuting projectors that enters Ki-
taev’s toric code Hamiltonian [54]. This correspondence
simplifies the application of a criterion, first proposed by
Haldane, to ensure that these interaction terms do not
compete, and are sufficient in number to gap out all
gapless modes in the array of quantum wires when pe-
riodic boundary conditions are imposed along all three
spatial directions.

When all interaction terms satisfy this criterion, the
Hamiltonian is frustration-free, and taking the strong-
coupling limit produces a gapped three-dimensional
state of matter. With this done, one can proceed to
characterize this state of matter in terms of its point-
like and linelike excitations, as well as their statistics,
and calculate the topological degeneracy, if any, of the
ground-state manifold. The class of three-dimensional
models studied in this work features a topological de-
generacy given by (det κ)3, where the integer-valued
matrix κ contains information about the mutual statis-
tics of pointlike and linelike excitations in the theory.
This is in close analogy with the K-matrix formalism
developed for two-dimensional topological states of mat-
ter [55]. When periodic boundary conditions are re-
laxed by the presence of two-dimensional terminating
surfaces, we further show that gapless surface states
result. One can apply the coupled-wire techniques al-
ready developed in two dimensions to study the various
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gapped surface states that can be produced by intro-
ducing interwire hoppings or interactions on the surface,
provided that the added terms are compatible with the
interactions in the bulk.

In addition, we show that the above strategy for con-
structing three-dimensional Abelian topological states
of matter can be readily extended to arbitrary di-
mensions, vastly expanding the existing scope of the
coupled-wire approach. Indeed, much as it is possi-
ble to define higher-dimensional versions of the toric
code on hypercubic lattices (see, e.g., Ref. [56]), one
can arrange a set of decoupled quantum wires on a d-
dimensional hypercubic lattice and couple them with
interactions defined on stars and plaquettes of this lat-
tice. Applying Haldane’s compatibility criterion, one
can show that these interactions produce a gapped
(d + 1)-dimensional state of matter, whose excitations
and topological properties can be investigated much as
in the three-dimensional case.

The structure of this paper is as follows. In Sec. II,
we develop in detail the strategy discussed above for
constructing three-dimensional topological phases from
coupled wires. In Sec. II A, we establish the basic no-
tation used to describe the array of decoupled quantum
wires. In Sec. II B, we present Haldane’s compatibility
criterion and a class of many-body interactions between
wires that satisfy it. (This class is mainly chosen for an-
alytical expedience, and is not the only class of interac-
tions that can be constructed according to our strategy.)
In Sec. II C, we show how to use the interacting arrays
of quantum wires defined in Secs. II A and II B to study
states of matter with fractionalized excitations. In par-
ticular, we show how to construct pointlike and linelike
excitations, and determine their statistics, as well as the
topological ground state degeneracy. Next, in Sec. II D
we exemplify our strategy with perhaps the simplest
type of topological order in three dimensions, namely
Zm topological order. Furthermore, we investigate the
surface states of these Zm-topologically-ordered states
of matter, and find that they are unstable to interwire
hoppings. Additionally, a surface fractional quantum
Hall effect with Hall conductivity [(2e)2/h]×(1/2m) can
develop at the expense of breaking time-reversal sym-
metry on the surface. We also discuss how these obser-
vations regarding surface states can be extended to the
more general class of interwire interactions introduced
in Sec. II B.

Next, in Sec. III, we outline the generalization of our
results to arbitrary dimensions. In Sec. III A, we dis-
cuss how to define d-dimensional hypercubic arrays of
quantum wires that are analogous to the square array
of quantum wires used to construct three-dimensional
topological states. Then, in Sec. III B, we generalize
the results of Sec. II B regarding the definitions of ap-
propriate interwire couplings and their compatibility in
the strong-coupling limit. Finally, in Sec. III C, we pro-

vide an example of this generalization by constructing
Zm-topologically-ordered states of matter in four di-
mensions, and constructing their pointlike, linelike, and
membranelike excitations, before concluding in Sec. IV.

II. THREE-DIMENSIONAL WIRE
CONSTRUCTIONS

In this section, a method to construct arrays of cou-
pled wires realizing topological phases of matter in
three-dimensional space is presented. We begin by
defining a class of gapless theories describing decoupled
wires, before moving on to a discussion of interwire cou-
plings. In particular, we provide a set of algebraic crite-
ria that are sufficient to determine whether the theory
is gapped when periodic boundary conditions are im-
posed.

A. Decoupled wires

We consider a two-dimensional array of 2N quantum
wires, labeled by Latin indices j = 1, . . . , 2N , placed on
the links of a two-dimensional square lattice embedded
in three-dimensional Euclidean space. Each quantum
wire is assumed to be gapless and nonchiral, and there-
fore to contain 2M gapless degrees of freedom, labeled
by Greek indices α = 1, . . . , 2M . We take the wires (of
length L) to lie along the z-direction, and the square
lattice to lie in the x-y plane. We will impose periodic
boundary conditions in all directions (x, y, and z) until
further notice. The set of decoupled quantum wires is
described by the quadratic Lagrangian

L̂0 =
1

4π

L∫

0

dz

[(
∂tΦ̂

)T
K
(
∂zΦ̂

)
−
(
∂zΦ̂

)T
V
(
∂zΦ̂

)]

(2.1a)

where

Φ̂(t, z) ..=
(
φ̂1,1(t, z) . . . φ̂1,2M (t, z) |

· · · | φ̂2N,1(t, z) . . . φ̂2N,2M (t, z)
)T (2.1b)

is a vector that collects the 2M scalar fields φ̂j,α(t, z)
defined in each of the j = 1, . . . , 2N wires. We use ver-
tical bars as a visual aid to separate degrees of freedom
defined in different wires. The block-diagonal 4MN -
dimensional matrix

K ..= 12N ⊗K, (2.1c)

where 12N is the unit matrix of dimension 2N and K
is a 2M × 2M symmetric matrix with integer entries,
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yields the equal-time commutation relations

[
∂zφ̂j,α(z), φ̂j′,α′(z

′)
]

= i 2π δjj′ K
−1
αα′ δ(z − z′). (2.1d)

We will omit the explicit time dependence of the fields
from now on. Finally, the block-diagonal 4MN × 4MN
matrix

V ..= 12N ⊗ V, (2.1e)

where the 2M × 2M matrix V is real, symmetric, and
positive-definite. The matrix V is set by microscop-
ics within each wire, and will usually be taken to be
a diagonal matrix in this work. However, the matrix
K, which enters the commutation relations (2.1d), con-
tains crucial data that define the fundamental degrees
of freedom in a wire. The final data necessary to com-
plete the definition of the theory describing the two-
dimensional array of decoupled quantum wires is the
4MN -dimensional “charge-vector”

Q ..=
(
Q | Q | . . . | Q

)T
. (2.1f)

The 2M -dimensional integer vector Q collects the U(1)

electric charges associated with the scalar fields φ̂j,α,
α = 1, . . . , 2M .

The theory defined by Eqs. (2.1) can be viewed as
an effective low-energy description of a two-dimensional
array of decoupled physical quantum wires containing
fermionic or bosonic degrees of freedom.

For fermions, each wire j = 1, . . . , 2N contains M

flavors of chiral scalar fields φ̂j,αR and φ̂j,αL , where

αR,L = 1, . . . ,M label right- and left-moving degrees
of freedom, respectively. These fields obey the chiral
equal-time commutation relations

[
∂zφ̂j,αR(z), φ̂j′,α′R

(z′)
]

= +i 2π δjj′ δαRα′R
δ(z − z′),

[
∂zφ̂j,αL(z), φ̂j′,α′L

(z′)
]

= −i 2π δjj′ δαLα′L
δ(z − z′),

[
∂zφ̂j,αR(z), φ̂j′,αL(z′)

]
= 0, (2.2a)

and therefore, for fermions, the 2M × 2M matrix K
entering Eq. (2.1d) is given by

Kf ..=

M⊕

α=1

(
+1 0
0 −1

)
. (2.2b)

We further adopt the convention that the charge-vector

Qf ..=
(
1 . . . 1

)T
, (2.2c)

in units where the electron charge e is set to unity, for a
fermionic wire with 2M channels. Treating an array of
fermionic quantum wires within Abelian bosonization,
as we do here, further requires the use of Klein factors,

which are needed in order to assure that fermionic ver-
tex operators (defined below) defined in different wires
anticommute with one another. These Klein factors can
be subsumed into the equal-time commutation relations

for the scalar fields φ̂j,αR and φ̂j,αL . This can be done

by integrating both sides of Eqs. (2.2a) over all z and
fixing the arbitrary constant of integration to be the
Klein factor necessary to ensure the appropriate anti-
commutation of vertex operators. We refer the reader
to the Appendix of Ref. [57] for more details on this
procedure.

For bosons, each wire j = 1, . . . , 2N instead con-

tains M flavors of nonchiral scalar fields φ̂j,α1
and φ̂j,α2

,

where α1,2 = 1, . . . ,M label “charge” and “spin” de-
grees of freedom, respectively. These fields obey the
equal-time commutation relations

[
∂zφ̂j,α1

(z), φ̂j′,α′1(z′)
]

= 0,
[
∂zφ̂j,α2

(z), φ̂j′,α′2(z′)
]

= 0, (2.3a)
[
∂zφ̂j,α1

(z), φ̂j′,α2
(z′)
]

= i 2π δjj′ δα1α2
δ(z − z′),

so that the K-matrix for bosons is

Kb ..=

M⊕

α=1

(
0 1
1 0

)
. (2.3b)

We take the bosonic charge vector to be

Qb ..= 2
(
1 0 . . . 1 0

)T
, (2.3c)

in units where the electron charge e is set to unity, so

that the fields φ̂j,α1
carry a U(1) electric charge, while

φ̂j,α2
is neutral. (Of course, one could define a “spin

vector” analogous to Q that encodes the coupling to
another U(1) gauge field for spin, but, for simplicity, we
will work exclusively with electric charges here.)

The fundamental excitations of a fermionic or bosonic
wire can be built out of the vertex operators

ψ̂†f,b;j,α(z) ..= exp
(
−i (Kf,b)αα′ φ̂j,α′(z)

)
, (2.4)

for any j = 1, . . . , 2N and α = 1, . . . , 2M , where we
have adopted the convention of summing over repeated
indices. Any local operator acting within a single wire
can be built from these vertex operators. Similarly, op-
erators spanning multiple wires can be built by taking
products of vertex operators from each constituent wire.
The charges of the excitations created by these vertex
operators are measured by the charge operator

Q̂j,α ..=
Qα
2π

δαα′

L∫

0

dz ∂zφ̂j,α′(z), (2.5)
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for any j = 1, . . . , 2N and α = 1, . . . , 2M , where L is
the length of a wire. The normalization of the charge
operator is taken to be such that

[Q̂j,α, ψ̂
†
f,b;j′,α′(z)] = Qα δjj′ δαα′ ψ̂

†
f,b;j′,α′(z) (2.6)

at equal times, indicating that the vertex operator

ψ̂†f,b;j,α carries the charge Qα.

B. Interwire couplings and criteria for producing
gapped states of matter

Given the two-dimensional array of decoupled and
gapless quantum wires defined in Sec. II A, we would like
to devise a systematic way of introducing strong single-
particle or many-body couplings between adjacent wires
in order to yield a variety of gapped topologically-
nontrivial three-dimensional phases of matter. Our
strategy will be to extend the approach taken in
Ref. [11], which considered one-dimensional chains of
wires, to two dimensions. We begin by adding to the
quadratic Lagrangian L̂0 defined in Eq. (2.1) a set of
cosine potentials

L̂{T } :=

L∫

0

dz
∑

T
UT (z) cos

(
T TK Φ̂(t, z) + αT (z)

)
.

(2.7)

Here, the 4MN -dimensional integer vectors T encode
tunneling processes between adjacent wires. This inter-
pretation becomes transparent upon recognizing that,
up to an overall phase,

e−i T T K Φ̂(z) =

2N∏

j=1

2M∏

α=1

[
ψ̂†f,b;j,α(z)

]Tj,α
, (2.8)

where ψ̂†f,b;j,α are the vertex operators defined in

Eq. (2.4). [We follow Ref. [11] in using the shorthand

notation (ψ̂†f,b;j,α)−1 ≡ ψ̂f,b;j,α and in employing an ap-
propriate point-splitting prescription when multiplying
fermionic operators.] For generic tunneling vectors T ,
Eq. (2.8) describes a many-body or correlated tunneling
that amounts to an interaction term in the Lagrangian

L̂ ..= L̂0 + L̂{T }. (2.9)

The real-valued functions UT (z) ≥ 0 and αT (z) in
Eq. (2.7) encode the effects of disorder on the ampli-
tude and phase of these interwire couplings.

Distinct states of matter can be realized by restricting
the sum over tunneling vectors T in Eq. (2.7) to ensure
that the interaction terms (2.8) satisfy certain symme-
tries. For all examples considered in this work, we will

assume that either charge or number-parity conserva-
tion holds. The former is imposed by demanding that

QT T = 0 ∀ T , (2.10a)

while the latter is imposed by relaxing the above re-
quirement to

QT T = 0 mod 2 ∀ T . (2.10b)

For a detailed discussion of how further symmetry
requirements constrain the tunneling vectors T , see
Ref. [11].

We are now prepared to discuss the strategy we em-
ploy to produce gapped states of matter from the above
construction. We first recall that the array of decou-
pled quantum wires consists of 4M N gapless degrees
of freedom. As noted in Ref. [58], and later employed in
Refs. [11, 57], a single cosine term in the sum in Eq. (2.7)
is capable of removing (i.e., gapping out) at most two
of these gapless degrees of freedom from the low-energy
sector of the theory. This occurs in the limit UT →∞,
where the argument of the cosine term becomes pinned
to its classical minimum. Therefore, in principle it takes
only 2MN cosine terms to gap out all 4M N degrees of
freedom in the bulk of the array of quantum wires when
periodic boundary conditions are imposed. Matters are
complicated somewhat by the nontrivial commutation
relations (2.1d), which ensure that cosine terms corre-
sponding to distinct tunneling vectors T and T ′ do not
commute in general. Consequently, it is possible that
quantum fluctuations may lead to competition between
the various cosine terms that frustrates the optimiza-
tion problem of simultaneously minimizing all of these
terms. However, in Ref. [58], Haldane observed that if
the criterion

T TKT ′ = 0 (2.11)

holds, then the cosine terms associated with the tun-
neling vectors T and T ′ can be minimized indepen-
dently, and therefore do not compete with one another.
[Note that each tunneling vector T must also satisfy
Eq. (2.11), i.e., we require that T TKT = 0 for all T .]
Therefore, if one can find a “Haldane set” H of 2MN
linearly-independent tunneling vectors, all of which sat-
isfy Eq. (2.11), then it is possible to gap out all degrees
of freedom in the array of quantum wires by adding suf-
ficiently strong interactions of the form (2.7). If such
a set H is found, then it suffices to restrict the sum in
Eq. (2.7) to T ∈ H, and to posit that all couplings UT
are sufficiently large in magnitude to gap out all modes
in the array of quantum wires.

We now present a simple geometric prescription to aid
in the determination of the existence (or lack thereof)
of a Haldane set H for a two-dimensional array of quan-
tum wires with some set of desired symmetries. This
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N

EW

S

s

p

FIG. 1. A single unit cell of the square array of wires,
consisting of a single star s and plaquette p. The dashed
nearest-neigbor links belong to neighboring unit cells. The
midpoint of each link hosts a quantum wire, represented by
the symbol×, aligned along the z-direction (out of the page).
Any plaquette p is surrounded by four quantum wires located
at the four cardinal points pN , pW , pS , and pE , repectively.
Similarly, any star s is surrounded by four quantum wires
located at the four cardinal points sN , sW , sS , and sE .

prescription capitalizes on the fact that we have chosen
all 2N quantum wires to lie on the links of a square lat-
tice. (In principle, this is not the only possible choice of
lattice geometry, but it provides a simple way of count-
ing degrees of freedom in any dimension, as we will see
below and in Sec. III.) On a square lattice with 2N sites,
there are N “stars” (centered on the vertices of the lat-
tice) and N “plaquettes” (centered on the vertices of
the dual lattice), assuming that periodic boundary con-
ditions are imposed as in Fig. 1. If we associate the tun-
neling vectors Ts and Tp with each star s and plaquette
p, respectively, then we have a set of 2N tunneling vec-
tors. Since there are 4MN gapless degrees of freedom
in the array of decoupled quantum wires, we can obtain
the necessary number 2MN of tunneling vectors by ex-
panding this set to include M “flavors” of tunneling

vectors T (j)
s and T (j)

p for each star and plaquette, re-
spectively. We label these flavors using a teletype index
j = 1, . . . ,M . Imposing the Haldane criterion (2.11)
on this set of tunneling vectors then yields the set of
equations

T (j)T
s K T (j′)

s′ = 0 ∀ s, s′, j, j′, (2.12a)

T (j)T
p K T (j′)

p′ = 0 ∀ p, p′, j, j′, (2.12b)

(a)

�v
(j)
1 v

(j)
1

v
(j)
2

�v
(j)
2

T (j)
s

(b)

w
(j)
2

�w
(j)
2

w
(j)
1 �w

(j)
1T (j)

p

FIG. 2. Pictorial representation of the tunneling vectors

(2.13). The 2M -dimensional integer-valued vectors v
(j)
1,2 and

w
(j)
1,2 determine the linear combinations of bosonic fields in

each wire that enter the cosine term associated with each
star or plaquette, respectively.

T (j)T
s K T (j′)

p = 0 ∀ s, p, j, j′. (2.12c)

If the above equations are satisfied, then the set of 2MN
tunneling vectors is a Haldane set, and therefore capable
of yielding a gapped phase in the strong-coupling limit.

We now turn to the problem of building 2MN tun-

neling vectors T (j)
s and T (j)

p . Enumerating all solutions
to this problem for all matrices K is beyond the scope of
the present work. However, we will present below one
way of constructing these tunneling vectors that builds
in the minimal symmetries of charge and/or parity con-
servation [Eqs. (2.10)] and greatly reduces the number
of equations that must be solved [relative to Eqs. (2.12),
which contain an infinite number of linear equations in
the thermodynamic limit N →∞ if no additional infor-
mation is provided]. In particular, if we desire charge
conservation [Eq. (2.10a)] to hold, we may define the
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tunneling vectors by their nonvanishing components

(T (j)
s )j,α ..= v

(j)
1,α

(
δj,sE − δj,sW

)

+ v
(j)
2,α

(
δj,sN − δj,sS

)
,

(2.13a)

(T (j)
p )j,α ..= w

(j)
1,α

(
δj,pW − δj,pE

)

+ w
(j)
2,α

(
δj,pN − δj,pS

)
,

(2.13b)

where we recall that j = 1, . . . , 2N labels the quantum
wires and α = 1, . . . , 2M labels the degrees of freedom

within a wire. Here, v
(j)
1 , v

(j)
2 , w

(j)
1 , and w

(j)
2 are arbi-

trary 2M -dimensional integer vectors. The Kronecker
deltas in the tunneling vector Ts ensure that its nonzero
entries are defined within the quantum wires sN , . . . , sW
to the north, . . . , west of the vertex on which star s is
centered. The Kronecker deltas in Tp select the quan-
tum wires pN , . . . , pW , which are defined similarly for
the plaquette p (see Fig. 1). With these definitions, one
verifies that Eq. (2.10a) holds independently of the form

of v
(j)
1,2, w

(j)
1,2, and the charge-vector Q for a single wire.

Similarly, when we wish to impose number-parity
conservation [Eq. (2.10b)], we may define for any j =
1, . . . , 2N and any α = 1, . . . , 2M

(T (j)
s )j,α ..= v

(j)
1,α

(
δj,sE + δj,sW

)

+ v
(j)
2,α

(
δj,sN + δj,sS

)
,

(2.14a)

(T (j)
p )j,α ..= w

(j)
1,α

(
δj,pE + δj,pW

)

+ w
(j)
2,α

(
δj,pN + δj,pS

)
,

(2.14b)

and verify that Eq. (2.10b) holds independently of the

form of v
(j)
1,2, w

(j)
1,2, and Q.

Henceforth, we will focus on the charge-conserving
tunneling vectors defined in Eqs. (2.13), as all general
criteria discussed below have analogues for the parity-
conserving tunneling vectors defined in Eqs. (2.14).

The charge-conserving tunneling vectors defined in
Eqs. (2.13) are expressed in a convenient pictorial form
in Fig. 2. From this pictorial representation, it is clear
that any two distinct, adjacent stars (be they of the
same flavor or different flavors) share a single wire be-
tween them. The same statement holds for plaquettes.
However, adjacent stars and plaquettes share two wires
between them, regardless of the flavor. Therefore, one
can show that Eqs. (2.12) are satisfied if and only if

v(j)T
µ K v(j′)

µ = 0, (2.15a)

w(j)T
µ K w(j′)

µ = 0, (2.15b)

v
(j)T
1 K w

(j′)
2 − v(j)T

2 K w
(j′)
1 = 0, (2.15c)

for all j and j′ = 1, . . . ,M and µ = 1, 2. Equations
(2.15) are fundamental to our construction, as each solu-
tion to these equations for a given dimension 2M of the

matrix K may in principle describe a distinct gapped
phase of matter.

Observe that Eqs. (2.15) are symmetric under 1↔ 2
and j↔ j′. Therefore, these criteria amount to a set of
5M(M+1)/2 linear equations in 8M2 variables. This is
important for two reasons. First, the number of equa-
tions does not scale with the number 2N of quantum
wires in the array. This ensures that a single solution to
these equations holds for any system size when periodic
boundary conditions are imposed. Second, this set of
equations is underconstrained for any M (i.e., there are
always more variables than equations). This means that
for generic matrices K of fixed dimension 2M , there is
in principle more than one solution to Eqs. (2.15).

We aim to construct gapped states of matter that
have an isotropic low-energy description. Consequently,
it is natural to demand that the tunneling vectors de-
fined in Eqs. (2.13) and depicted in Fig. 2 are indepen-
dent of direction. This can be achieved by imposing the
additional constraints

v
(j)
1 = v

(j)
2 =.. v(j) (2.16a)

and

w
(j)
1 = w

(j)
2 =..w(j). (2.16b)

Note that Eq. (2.15c) is solved independently of the

form of the 2M -dimensional vectors v
(j)
µ and w

(j)
µ if

Eqs. (2.16) hold. These constraints reduce the total
number of variables contained in the tunneling vectors
Ts and Tp from 8M2 to 4M2, and the number of non-
trivial equations to 2M(M + 1)/2, i.e.,

v(j)TK v(j′) = 0, (2.17a)

w(j)TK w(j′) = 0, (2.17b)

which are merely rewritings of Eqs. (2.15a) and (2.15b).
With this, we have arrived at the simplest incarnation
of our construction. We will henceforth assume that
Eqs. (2.17) hold for appropriate choices of the 2M , 2M -
dimensional vectors v(j) and w(j). However, note that
Eqs. (2.16) are sufficient but not necessary in order to
produce a state of matter that has an isotropic low-
energy description. We will therefore comment, as ap-
propriate, on how our results below generalize to cases

where v
(j)
1 6= v

(j)
2 and w

(j)
1 6= w

(j)
2 .

C. Fractionalization

1. Change of basis

In this section, we outline how to use two-dimensional
arrays of coupled quantum wires, like those described
in the previous two sections, to study phases of matter
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with fractionalized excitations. To this end, let us as-
sume that we have a Haldane set H containing 2MN

tunneling vectors T (j)
s and T (j)

p with j = 1, . . . ,M de-
fined by Eqs. (2.13) that satisfy (2.16) and the Hal-
dane criterion (2.17). With these assumptions, the two-
dimensional array of coupled quantum wires acquires
a gap in the strong-coupling limit, yielding a three-
dimensional gapped state of matter.

As discussed in the previous section, the phase of
matter obtained in this way is a system of strongly-
interacting fermions or bosons. However, for the pur-
poses of studying fractionalization, it is convenient to
work in a basis where the “fundamental” constituents
of each wire are not fermions or bosons, but (possibly
fractionalized) quasiparticles. This is achieved by mak-
ing the change of basis

˜̂
Φ(z) ..= W−1 Φ̂(z), (2.18a)

Ṽ :=WT V W, (2.18b)

K̃ ..= WTKW, (2.18c)

Q̃ ..= WTQ, (2.18d)

T̃ ..= W−1 T , (2.18e)

where

W ..= 12N ⊗W, (2.18f)

for some invertible 2M × 2M integer-valued matrix W .
This change of variables has several virtues. First, K̃
remains symmetric and integer valued. Second, Q̃ re-
mains integer valued. Third, this change of variables
leaves the quantity T TK Φ̂(z), which enters the argu-
ment of the cosine terms in Eq. (2.7), invariant, i.e.,

T̃ T K̃ ˜̂
Φ(z) = T TK Φ̂(z). (2.19)

Thus, the linear transformation (2.18) does not change
the character of the interaction itself, although it al-
ters the tunneling vector T and the 4MN -dimensional
vector Φ̂ of bosonic fields. Furthermore, one verifies
that the linear transformation (2.18) does not alter the
compatibility criteria (2.15) or the quantity QT T that
determines the presence or absence of charge or number-
parity conservation.

Given the possibility of performing a change of basis
of the form (2.18), we may now take a different ap-
proach. Instead of viewing the wire construction as a
theory, with the Lagrangian (2.9), of scalar fields obey-
ing the commutation relations (2.1d) with a K-matrix
Kf [Eq. (2.2)] for fermions or Kb [Eq. (2.3)] for bosons,
we may also view it as a theory, with the Lagrangian

˜̂
L ..=

˜̂
L0 +

˜̂
L{T̃ }, (2.20)

of scalar fields obeying the new equal-time commutation
relations
[
∂z

˜̂
φj,α(z),

˜̂
φj′,α′(z

′)
]

= i 2π δjj′ K̃
−1
αα′ δ(z − z′), (2.21)

for j, j′ = 1, . . . , 2N and α, α′ = 1, · · · , 2M , which are
neither fermionic nor bosonic in nature. We allow K̃ to
be any symmetric, invertible, 2M × 2M integer matrix,
as long as it is related to Kf or Kb by a transforma-
tion of the form (2.18). Interactions between wires that
yield a gapped state of matter can be constructed by
following the procedures of the previous section. The

2M N integer tunneling vectors T̃ (j)
s and T̃ (j)

p obtained

in this way form a Haldane set H̃ related to the Hal-
dane set H by the transformation (2.18). For reasons of
simplicity that will become clear momentarily, we will
concern ourselves in this paper primarily with the tun-

neling vectors T̃ (j)
s and T̃ (j)

p whose nonzero entries are
equal to ±1. (Of course, nothing prevents us from also
considering cases where this does not hold.) The coun-

terparts T (j)
s and T (j)

p of these tunneling vectors under
the transformation (2.18) generically have entries with
magnitude larger than 1. This fact will be of importance
to us now, as we turn to the issue of compactification.

2. Compactification, vertex operators, and fractional
charges

Although the transformation (2.18) might appear in-
nocuous, there is a fundamental difference between the

theory with the Lagrangian
˜̂
L defined in Eq. (2.20) and

the original fermionic or bosonic theory with the La-
grangian L̂ defined in Eq. (2.9) when periodic boundary
conditions are imposed in the z-direction (as we have
assumed from the outset). In the latter theory, which
is a theory of interacting electrons or bosons treated
within bosonization, the traditional choice of compact-

ification for the scalar fields φ̂j,α(z) with j = 1, . . . , 2N
and α = 1, · · · , 2M is

φ̂j,α(z + L) ≡ φ̂j,α(z) + 2π nα, (2.22)

for nα ∈ Z2M . This choice ensures the single-valuedness
of the fermionic or bosonic vertex operators (2.4) un-
der z → z + L, and, in turn, that of the Lagrangian
L̂ = L̂0 + L̂{T }, as one can re-write L̂{T } in terms of the

correlated tunnelings (2.8), which reduce to products of
these vertex operators. However, depending on the tun-

neling vectors T (j)
s,p , there may be other, less stringent,

compactifications of these scalar fields that also render
the Lagrangian L̂ single-valued under z → z + L. The
parsimonious course of action is to choose the “minimal”
compactification, i.e., the smallest compactification ra-
dius that still maintains the single-valuedness of L̂ under
z → z + L.
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If the tunneling vectors T (j)
s and T (j)

p correspond to

the tunneling vectors T̃ (j)
s and T̃ (j)

p under the transfor-
mation (2.18) whose only nonzero entries are equal to
±1, then there is a clear choice of minimal compactifi-
cation. This choice can be obtained as follows. Working
in the tilde basis, we can rewrite the interactions using
the relation [analogous to (2.8)]

e−i T̃ T K̃ ˜̂
Φ(z) =

2N∏

j=1

2M∏

α=1

[
˜̂
ψ†f,b;j,α(z)

]T̃j,α
, (2.23a)

thereby implicitly defining a new set of fermionic or
bosonic vertex operators,

˜̂
ψ†f,b;j,α(z) ..= exp

(
−i

2M∑

α′=1

K̃αα′
˜̂
φj,α′(z)

)
. (2.23b)

The minimal compactification is then obtained by de-
manding that this new set of vertex operators be single
valued under z → z + L. For any j = 1, . . . , 2N and
α = 1, · · · , 2M , this is achieved by imposing the peri-
odic boundary conditions

˜̂
φj,α(z + L) ≡ ˜̂

φj,α(z) + 2π K̃−1
αα′ nα′ , (2.24)

for nα ∈ Z2M . Here, there is an important difference

with respect to Eq. (2.22). Because K̃ is an integer-

valued matrix, K̃−1 is generically a rational-valued ma-

trix. The field
˜̂
φj,α(z) is thus allowed to advance by

rational (rather than integer) multiples of 2π when the
coordinate z is advanced through a full period L. This
crucial distinction is what allows for the existence of
fractionally-charged operators in the coupled wire ar-
ray, as we now demonstrate.

Fractional quantum numbers appear in the wire con-
struction because the compactification condition (2.24)
allows for the existence of “quasiparticle” vertex opera-
tors

q̂†j,α(z) ..= exp
(
−i

˜̂
φj,α(z)

)
(2.25)

for any j = 1, . . . , 2N and α = 1, · · · , 2M that are
multivalued under the operation z 7→ z + L. The fact
that these vertex operators generically carry fractional
charges can be seen by considering the transformed
charge operator

˜̂
Qj,α ..=

Q̃α
2π

2M∑

α′=1

δαα′

L∫

0

dz ∂z
˜̂
φj,α′(z) (2.26)

for any j = 1, . . . , 2N and α = 1, · · · , 2M . Its normal-
ization is here chosen such that the fermionic or bosonic
vertex operators defined in Eq. (2.23b) have charge Q̃α.

FIG. 3. (Color online) Pictorial representation of star and
plaquette excitations created by the operators (2.31). The
filled blue circle represents a soliton created by the opera-
tor (2.31a) in the corresponding wire, while the purple and
orange crosses represent defective stars with solitons of op-
posite signs. Similarly, the filled green square represents a
soliton created by the operator (2.31b), and the purple and
orange squares represent defective plaquettes with solitons
of opposite signs.

Indeed, for any j, j′ = 1, . . . , 2N and α, α′ = 1, · · · , 2M ,
the equal-time commutator

[
˜̂
Qj,α, q̂

†
j′,α′(z)

]
= Q̃α δjj′ K̃

−1
αα′ q̂

†
j′,α′ (2.27)

indicates that, since K̃−1 is generically a rational ma-

trix, the quasiparticle operator q̂†j′,α′ generically has a

rational charge. In particular, if Q̃ = Q under the trans-
formation (2.18), and K̃−1 has at least one rational en-

try with magnitude smaller than 1, the operator q̂†j′,α′
must then carry a fractional charge.

3. Pointlike and linelike excitations

We now outline the relationship between the quasi-
particle vertex operators defined in Eq. (2.25) and (pos-
sibly fractionalized) excitations in the array of coupled
quantum wires. In the strong-coupling limit UT̃ (z) →
∞, the compatibility criteria (2.15) ensure that the
quantity

T̃ T K̃ ˜̂
Φ(z) + αT̃ (z), (2.28)

where T̃ = T̃ (j)
s , T̃ (j)

p is pinned to a classical minimum

of the corresponding cosine potential in L̂{T̃ }. Following

Refs. [4, 5] and subsequent works, we identify excitations
in the coupled-wire theory with solitons that increment

the “pinned field” T̃ K̃ ˜̂
Φ(z) by an integer multiple of 2π.

These excitations can therefore be viewed as living on
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(a) (b)

(c) (d)

FIG. 4. (Color online) Deconfinement of star defects within a plane. (a) Creating a single soliton (blue circle) creates a star
defect (purple cross) and an anti-star defect (orange cross). The corresponding creation operator is defined in Eq. (2.31a).
(b) Creating a chain of solitons moves a star defect by healing one while creating another. Consequently, it costs no extra
energy to separate the two star defects. (c) To turn a corner, it may be necessary to heal a defect with an antisoliton (white
circle). (d) When two star defects meet, they annihilate one another. A completely analogous description of plaquette defects
also holds starting from the operators Eq. (2.31b).

either the stars or the plaquettes of the square lattice,
rather than within the wires themselves.

We now demonstrate that products of an appropriate
number of quasiparticle vertex operators of the form
(2.25) can be used to move the soliton defects to ad-

jacent stars and plaquettes. To see this, we write
out the pinned fields explicitly for all MN tunneling

vectors T̃ (j)
s with j = 1, . . . ,M defined on the stars

s = 1, . . . , N ,

T̃ (j)T
s K̃ ˜̂

Φ(z) =
2M∑

α,α′=1

ṽ(j)
α K̃αα′

[
˜̂
φsE ,α′(z)−

˜̂
φsW ,α′(z) +

˜̂
φsN ,α′(z)−

˜̂
φsS ,α′(z)

]
, (2.29a)

and for all MN tunneling vectors T̃ (j)
p with j = 1, . . . ,M defined on the plaquettes p = 1, . . . , N ,

T̃ (j)T
p K̃ ˜̂

Φ(z) =

2M∑

α,α′=1

w̃(j)
α K̃αα′

[
˜̂
φpW ,α′(z)−

˜̂
φpE ,α′(z) +

˜̂
φpN ,α′(z)−

˜̂
φpS ,α′(z)

]
. (2.29b)

For any star s = 1, . . . , N or plaquette p = 1, . . . , N from the square lattice and for any α, β = 1, . . . , 2M , observe
that, by Eq. (2.21), the equal-time commutators

[
2M∑

α′=1

K̃αα′
˜̂
φsC ,α′(z), ∂z′

˜̂
φsC ,β(z′)

]
=

[
2M∑

α′=1

K̃αα′
˜̂
φpC ,α′(z), ∂z′

˜̂
φpC ,β(z′)

]
= −i 2π δαβ δ(z − z′) (2.30)

hold. Here, the uppercase Latin index C = N,W,S,E labels the four cardinal directions. Equation (2.30) indicates

that the pair of fields
˜̂
φsC ,α and

˜̂
φpC ,α can be viewed as canonical conjugates to the pair of fields

∑
α′ K̃αα′

˜̂
φsC ,α′

and
∑
α′ K̃αα′

˜̂
φpC ,α′

(z) that enter the pair of pinned fields T̃ (j)T
s K̃ ˜̂

Φ and T̃ (j)T
p K̃ ˜̂

Φ, respectively. Interpreted this
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way, Eqs. (2.30) suggest that, for any j = 1, . . . ,M , sC = sN , sW , sS , sE , and pC = pN , pW , pS , pE , the operators

Ŝ(j)†
sC

(z) := exp

(
−i

2M∑

α=1

ṽ(j)
α

˜̂
φsC ,α(z)

)
(2.31a)

and

P̂ (j)†
pC

(z) := exp

(
−i

2M∑

α=1

w̃(j)
α

˜̂
φpC ,α(z)

)
(2.31b)

act on the pinned fields as

Ŝ(j)†
sN

(z′)
[
T̃ (j)T
s K̃ ˜̂

Φ(z)
]
Ŝ(j)
sN

(z′) = T̃ (j)T
s K̃ ˜̂

Φ(z) + 2π |ṽ(j)|2 Θ(z − z′), (2.32a)

Ŝ(j)†
sW

(z′)
[
T̃ (j)T
s K̃ ˜̂

Φ(z)
]
Ŝ(j)
sW

(z′) = T̃ (j)T
s K̃ ˜̂

Φ(z)− 2π |ṽ(j)|2 Θ(z − z′), (2.32b)

Ŝ(j)†
sS

(z′)
[
T̃ (j)T
s K̃ ˜̂

Φ(z)
]
Ŝ(j)
sS

(z′) = T̃ (j)T
s K̃ ˜̂

Φ(z)− 2π |ṽ(j)|2 Θ(z − z′), (2.32c)

Ŝ(j)†
sE

(z′)
[
T̃ (j)T
s K̃ ˜̂

Φ(z)
]
Ŝ(j)
sE

(z′) = T̃ (j)T
s K̃ ˜̂

Φ(z) + 2π |ṽ(j)|2 Θ(z − z′), (2.32d)

and

P̂ (j)†
pN

(z′)
[
T̃ (j)T
p K̃ ˜̂

Φ(z)
]
P̂ (j)
pN

(z′) = T̃ (j)T
p K̃ ˜̂

Φ(z) + 2π |w̃(j)|2 Θ(z − z′), (2.32e)

P̂ (j)†
pW

(z′)
[
T̃ (j)T
p K̃ ˜̂

Φ(z)
]
P̂ (j)
pW

(z′) = T̃ (j)T
p K̃ ˜̂

Φ(z) + 2π |w̃(j)|2 Θ(z − z′), (2.32f)

P̂ (j)†
pS

(z′)
[
T̃ (j)T
p K̃ ˜̂

Φ(z)
]
P̂ (j)
pS

(z′) = T̃ (j)T
p K̃ ˜̂

Φ(z)− 2π |w̃(j)|2 Θ(z − z′), (2.32g)

P̂ (j)†
pE

(z′)
[
T̃ (j)T
p K̃ ˜̂

Φ(z)
]
P̂ (j)
pE

(z′) = T̃ (j)T
p K̃ ˜̂

Φ(z)− 2π |w̃(j)|2 Θ(z − z′), (2.32h)

respectively. To verify Eqs. (2.32), one integrates both
sides of the equalities entering Eq. (2.30) over the vari-
able z′ and use the identity

∫ L

0

dz′ δ(z − z′) = −Θ(z − z′), (2.33)

where Θ(z − z′) is the Heaviside step function.

Evidently, the operators Ŝ
(j)†
sC

and P̂
(j)†
pC

defined in
Eqs. (2.31) create 2π solitons in the pinned fields

T̃ (j)T
s K̃ ˜̂

Φ and T̃ (j)T
p K̃ ˜̂

Φ, respectively. However, the
link sC on star s is shared with the star s′ adjacent
to s along the cardinal direction C = N,W,S,E, and,
likewise, the link pC on plaquette p is shared with the
plaquette p′ adjacent to p along the cardinal direction
C = N,W,S,E. Therefore,

Ŝ(j)†
sN

(z′)
[
T̃ (j)T
s′ K̃ ˜̂

Φ(z)
]
Ŝ(j)
sN

(z′) = T̃ (j)T
s′ K̃ ˜̂

Φ(z)− 2π |ṽ(j)|2 Θ(z − z′), (2.34a)

Ŝ(j)†
sW

(z′)
[
T̃ (j)T
s′ K̃ ˜̂

Φ(z)
]
Ŝ(j)
sW

(z′) = T̃ (j)T
s′ K̃ ˜̂

Φ(z) + 2π |ṽ(j)|2 Θ(z − z′), (2.34b)

Ŝ(j)†
sS

(z′)
[
T̃ (j)T
s′ K̃ ˜̂

Φ(z)
]
Ŝ(j)
sS

(z′) = T̃ (j)T
s′ K̃ ˜̂

Φ(z) + 2π |ṽ(j)|2 Θ(z − z′), (2.34c)

Ŝ(j)†
sE

(z′)
[
T̃ (j)T
s′ K̃ ˜̂

Φ(z)
]
Ŝ(j)
sE

(z′) = T̃ (j)T
s′ K̃ ˜̂

Φ(z)− 2π |ṽ(j)|2 Θ(z − z′), (2.34d)

and

P̂ (j)†
pN

(z′)
[
T̃ (j)T
p′ K̃ ˜̂

Φ(z)
]
P̂ (j)
pN

(z′) = T̃ (j)T
p′ K̃ ˜̂

Φ(z)− 2π |w̃(j)|2 Θ(z − z′), (2.34e)

P̂ (j)†
pW

(z′)
[
T̃ (j)T
p′ K̃ ˜̂

Φ(z)
]
P̂ (j)
pW

(z′) = T̃ (j)T
p′ K̃ ˜̂

Φ(z)− 2π |w̃(j)|2 Θ(z − z′), (2.34f)
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P̂ (j)†
pS

(z′)
[
T̃ (j)T
p′ K̃ ˜̂

Φ(z)
]
P̂ (j)
pS

(z′) = T̃ (j)T
p′ K̃ ˜̂

Φ(z) + 2π |w̃(j)|2 Θ(z − z′), (2.34g)

P̂ (j)†
pE

(z′)
[
T̃ (j)T
p′ K̃ ˜̂

Φ(z)
]
P̂ (j)
pE

(z′) = T̃ (j)T
p′ K̃ ˜̂

Φ(z) + 2π |w̃(j)|2 Θ(z − z′), (2.34h)

respectively. Note the sign difference with respect to
Eq. (2.32). This difference also stems from Fig. 2. Con-

sequently, we interpret the operators Ŝ
(j)†
sC

and P̂
(j)†
pC

as creating a defect-antidefect pair straddling the links
sC = sN , sW , sS , sE or pC = pN , pW , pS , pE , respec-
tively (see Fig. 3).

The defect and antidefect created by applying one of

the operators Ŝ
(j)†
sC

and P̂
(j)†
pC

can be propagated away
from one another in the x-y plane by subsequent ap-
plications of the same operators on adjacent links, each
of which “heal” one defect while creating another. An
example of such a process is shown in Fig. 4. In the
strong-coupling limit in which we work, this process
does not generate any additional excitations, indicat-
ing that star and plaquette defects are deconfined in
the x-y plane. Furthermore, one can show that, in the
same strong-coupling limit, these defects are also decon-
fined in the z-direction (see Appendix for more details).
Consequently, we conclude that the wire construction
supports deconfined pointlike excitations, namely the
star and plaquette defects. When these defects are sep-
arated from one another, there is a “string” of solitons
connecting them. These strings are a crucial ingredient
for determining the topological degeneracy, as we will
see in the next section.

The wire construction also supports deconfined line-
like excitations. For any j = 1, . . . ,M , pairs of linelike
defects connecting the points z1 and z2 in a wire labelled
by the link sC = sN , sW , sS , sE or pC = pN , pW , pS , pE
can be created by the bi-local operators

Ŝ(j)†
sC

(z1, z2) ..= Ŝ(j)†
sC

(z2) Ŝ(j)
sC

(z1)

= exp

(
− i

2M∑

α=1

ṽ(j)
α

z2∫

z1

dz ∂z
˜̂
φsC ,α(z)

)
,

(2.35a)

P̂ (j)†
pC

(z1, z2) ..= P̂ (j)†
pC

(z2) P̂ (j)
pC

(z1)

= exp

(
− i

2M∑

α=1

w̃(j)
α

z2∫

z1

dz ∂z
˜̂
φpC ,α(z)

)
,

(2.35b)

a pictorial example of which is depicted in Fig. 5(a).
Similarly to the propagation of star and plaquette de-
fects outlined in the previous paragraph, applying a
string of the above operators creates a membrane with
linelike defects at its boundaries in the z-x and y-z
planes as is illustrated Fig. 5(b).

The membranes created by applying strings of the
operators defined in Eqs. (2.35) necessarily extend in
the x-z or y-z planes. Membranes extending in the x-
y plane can also be created by applying the operators
defined in Eqs. (2.31) over a membrane as opposed to
a string, as in Fig. 5(c-d). As with the x-z and y-z
membranes, the boundary of an x-y membrane supports
linelike defects.

4. Energetics of pointlike and linelike defects

At this stage, a brief comment is in order regarding
the energetics of the pointlike and linelike defects de-
fined in Sec. II C 3. It is misleading to compute the
energy cost of such a defect in the strong-coupling limit
|UT̃ | → ∞, as in this limit, the perfectly sharp soli-

tons created by the operators Ŝ
(j)†
sC

and P̂
(j)†
pC

[recall
Eqs. (2.32)] cost no energy from the point of view of the
cosine terms (2.7). This is simply because these soli-
tons increment the argument of a cosine term abruptly
at some z by an integer multiple of 2π, which amounts
to a discontinuous jump between exact minima of the
cosine potential. However, the presence of an infinitesi-
mal kinetic term of the form (2.1a) gives a finite stiffness
κ to the pinned field. In this case, the optimal soliton
profile is no longer the perfectly sharp one generated by

the operators Ŝ
(j)†
sC

and P̂
(j)†
pC

, but a slightly deformed
one where the interpolation between minima of the co-
sine potential is smeared over a length scale ξ.

Suppose that this optimal soliton profile is known.

Then, it is possible to redefine the operators Ŝ
(j)†
sC

and

P̂
(j)†
pC

in such a way that they act on the pinned fields
as in Eqs. (2.32), but now with the perfectly sharp soli-
ton profile replaced by the optimal one. [Note that this
redefinition can be done without altering the fundamen-
tal commutation relations (2.21) on length scales longer
than ξ.] The energy cost of such an optimal soliton is
composed of two contributions: one from the cosine po-
tential (assumed to be large) and one from the stiffness
(assumed to be small but finite).

Once the finite energy cost of a single soliton has
been determined, it is readily seen that the stringlike
and membranelike operators defined in Sec. II C 3 can-
not dissociate into smaller pointlike or linelike operators
without an energy cost that is extensive in the number
of solitons used to build the string or membrane. For
example, if one tries to pull apart the string of soli-
tons shown in Fig. 4(b) so that all solitons in the string
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(a) (b)

(c) (d)

FIG. 5. (color online) (a) Linelike defect created from the operators (2.35) along the z direction. (b) Menbranelike defect
created from the operators (2.35) along the x-z plane. (c) Growing a star membrane in the x-y plane from the product of
the operators (2.31a). (d) Membranelike defect in the x-y plane. Darker purple or orange crosses indicate defective stars
with a “double-strength” soliton, where two kinks of the same sign coexist in the same wire.

are disconnected, one necessarily increases the energy
by an amount proportional to the number of solitons in
the chain. This is because each solition in the latter sce-
nario costs energy due to two cosine terms (in addition
to the stiffness). In contrast, when the solitons form
a string, the only energy cost due to the cosine terms
occurs at the two ends of the string.

Finally, one might be concerned that the energetic ef-
fects discussed above could lead to confinement of star
and plaquette defects. However, provided that the stiff-
ness κ � |UT̃ |, this does not occur because entropic
effects render deconfinement more desirable.

5. Statistics of pointlike and linelike defects

We have enumerated the pointlike and linelike exci-
tations for a class of two-dimensional arrays of coupled
quantum wires by showing how to use solitons to build
open stringlike and open membranelike operators sup-
porting these defects on their boundaries. The statistics
of these excitations are readily accessible within the wire
formalism, as we now explain.

In principle, there are several types of statistics to
consider. The first type, that of different types of point-
like excitations, must be trivial in three dimensions by
homotopy arguments. [59] (Essentially, such arguments
hinge on the fact that any loop that one particle makes
around another in three dimensions can be deformed to
a point without passing through the other particle.)

The second type, that of pointlike and linelike exci-
tations, can be nontrivial in three dimensions, and will
be computed below for the class of models defined here.

The third type of statistics, that between linelike ex-
citations, can also be nontrivial in three dimensions, but
can be shown to be trivial in the present class of models.

Let us first examine the mutual statistics between
pointlike and linelike defects. Using the identity

eÂ eB̂ = eB̂ eÂ e[Â,B̂] (2.36)

which follows from the Baker-Campbell-Hausdorff
lemma whenever [Â, B̂] is a c-number, one can show
from Eq. (2.21) that, for any j, j′ = 1, . . . , N and for any
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sC , sC′ = sN , sW , sS , sE or pC , pC′ = pN , pW , pS , pE ,

Ŝ(j)†
sC

(z) P̂ (j′)†
p
C′

(z′1, z
′
2)

= P̂ (j′)†
p
C′

(z′1, z
′
2) Ŝ(j)†

sC
(z) e

+i 2π ṽ(j)T K̃−1 w̃(j′) δs
C
,p
C′ ,

(2.37a)

Ŝ(j)†
sC

(z′1, z
′
2) P̂ (j′)†

p
C′

(z)

= P̂ (j′)†
p
C′

(z) Ŝ(j)†
sC

(z′1, z
′
2) e
−i 2π ṽ(j)T K̃−1 w̃(j′) δs

C
,p
C′ ,

(2.37b)

whenever z′1 < z < z′2.
With these relations in hand, one can readily com-

pute the algebra of the membrane and string operators
that are used to create and propagate pointlike and line-
like defect-antidefect pairs. As discussed in Ref. [35],
this algebra determines the phase obtained by wind-
ing a pointlike excitation around a linelike excitation.
The computation of this phase is cumbersome to write
down, but nevertheless quite straightforward—a con-
venient way to see this comes from the pictorial rep-
resentation of such a braiding process (see Fig. 6 for
an example). From this pictorial representation, one
sees immediately that the membrane and string oper-
ators associated with stars commute with one another
(and likewise for plaquettes), as they never intersect in
a wire. However, membranes associated with star de-
fects and strings associated with plaquette defects (and
vice versa) always intersect with one another during a
braiding process. The total phase arising from commut-
ing one operator past the other can then be read off from
the picture using Eqs. (2.37). We find that the statis-
tical phase obtained by braiding a pointlike plaquette
defect around a linelike star defect is given by

θjj′

2π
= ṽ(j)T K̃−1 w̃(j′) = w̃(j′)T K̃−1ṽ(j) (2.38)

for any j, j′ = 1, . . . ,M , where the second equality fol-
lows from the fact that K̃−1 is a symmetric matrix.

At this point, we remark that, although the construc-
tion of operators undertaken in this section and in the

previous section has assumed that ṽ
(j)
1 = ṽ

(j)
2 = ṽ(j) and

w̃
(j)
1 = w̃

(j)
2 = w̃(j), this construction proceeds with only

minor modifications in the more general case ṽ
(j)
1 6= ṽ

(j)
2

and w̃
(j)
1 6= w̃

(j)
2 . However, in the latter case, one finds

that the statistical angle must obey

θjj′

2π
= ṽ

(j)T
1 K̃−1 w̃

(j′)
2

!
= ṽ

(j)T
2 K̃−1 w̃

(j′)
1 (2.39)

for any j, j′ = 1, . . . ,M . The second equality in Eq.
(2.39) must be imposed as a consistency condition.
Otherwise, the statistical angle θjj′ would depend on
whether the string and membrane operators used to

FIG. 6. Pictorial representation for braiding a pointlike
plaquette defect [defined in Eq. (2.31b)] around a linelike
star defect along the z-direction [defined in Eq. (2.35a)].

compute the statistics intersected on vertical or horizon-
tal bonds. (See, e.g., Fig. 6, where the string and mem-
brane intersect on a horizontal bond.) Thus, we must
demand that Eq. (2.39) holds, as otherwise the low-
energy description of the theory would be anisotropic.

We close this section by outlining the reason why the
line-line statistics in this class of models is trivial. The
statistical phase describing the line-line statistics is com-
puted using membrane surfaces arranged as in Fig. 7.
From this, it is clear that the relevant operator product
to consider is of the form

Ŝ(j)†
sC

(z1, z2) P̂ (j′)†
p
C′

(z′1, z
′
2) = Ŝ(j)†

sC
(z1, z2) P̂ (j′)†

p
C′

(z′1, z
′
2) exp


−i

2M∑

α,β=1

ṽ(j)
α w̃

(j′)
β

z2∫

z1

dz

z′2∫

z′1

dz′
[
∂z

˜̂
φsC ,α(z), ∂z′

˜̂
φp

C′ ,β
(z′)
]



(2.40)

for any j = 1, . . . ,M , sC = sN , sW , sS , sE , and pC′ = pN , pW , pS , pE , where it is assumed that the interval
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FIG. 7. Pictorial representation of braiding a star line and
a plaquette line. Recalling that periodic boundary condi-
tions are imposed in all directions, one sees that the green
membrane forms a cylinder that encircles the star-type line
on the boundary of the blue membrane. In Eq. (2.40) it is
shown that this process yields no overall statistical phase.

[z1, z2] ⊂ [z′1, z
′
2] or vice versa. However, by differenti-

ating Eq. (2.21) with respect to z′, one sees that the
commutator in the exponential is proportional to the
derivative of a delta function. Integrated over both z
and z′, this yields zero for the statistical angle between
two lines. In a similar manner, one can show that the
three-line statistics (c.f. Ref. [35]) is trivial in this class
of models.

This discussion of the excitations of the coupled-wire
construction provides sufficient information to deter-
mine the minimal topological ground-state degeneracy
of the theory, as we now show.

6. Topological ground-state degeneracy

The theory defined in Eq. (2.20) by the Lagrangian
˜̂
L =

˜̂
L0 +

˜̂
L{T̃ } generically exhibits a ground-state de-

generacy when defined on the three-torus obtained by
imposing periodic boundary conditions in the x-, y-, and
z-directions. We present an argument as to why this is
the case.

First, recall that, when periodic boundary conditions
are imposed in the x- and y-directions, for a square lat-
tice with 2N links, there are 4M N degrees of freedom
(2M per wire). There are also M N star and M N pla-

quette terms entering
˜̂
L{T̃ }, each of which gaps out two

of these degrees of freedom. The number of star and

plaquette operators in
˜̂
L{T̃ } is therefore sufficient to

gap out the bulk of the wire array, as mentioned above.

However, there are two constraints,

∏

p∈P
ei T̃ (j)T

p K̃ ˜̂
Φ(z) = 1 (2.41a)

and

∏

s∈S
ei T̃ (j)T

s K̃ ˜̂
Φ(z) = 1, (2.41b)

that hold for all j = 1, . . .M and all z. Here, P and
S are the sets of all plaquettes and stars in the square
lattice, respectively. These constraints result from the
fact that

∑

p∈P
T̃ (j)
p =

∑

s∈S
T̃ (j)
s = 0 (2.42)

for each j = 1, . . .M . These constraints are inherently

nonlocal in nature, as removing any of the T̃ (j)
s,p for fixed

j from the set H̃ invalidates them. This necessitates
the existence of additional, nonlocal (i.e., extensive-in-
size) operators in the theory that commute with the

Hamiltonian
˜̂
H associated with

˜̂
L [see Eq. (2.20)], and

with each other, in order for the number of independent
commuting operators and degrees of freedom to match.
The ground-state degeneracy is related to the represen-
tation of the algebra of these nonlocal operators that
has the smallest dimensionality. We will now enumer-
ate these operators, compute their algebra, and deduce
from this algebra the ground state degeneracy of the
wire construction. One important result will be that
there is a unique (i.e., non-degenerate) ground state

if |det K̃| = 1, a result that is familiar from Abelian
Chern-Simons theories in (2+1) dimensions [55, 60–62]
and reappears in the present (3+1)-dimensional context.

We are going to define two types of non-local oper-
ators out of the local operators (2.31) and the bi-local
operators (2.35).

First, we define the non-local string operators

Ô(j)
S,Γx

(z) ..=
∏

sC∈Γx

Ŝ(j)†
sC

(z), (2.43a)

Ô(j)
S,Γy

(z) ..=
∏

sC∈Γy

Ŝ(j)†
sC

(z), (2.43b)

Ô(j)
S,Γz

..= Ŝ(j)†
s0

(0, L), (2.43c)

and

Ô(j)
P,Γx̂

(z) ..=
∏

pC∈Γx̂

P̂ (j)†
pC

(z), (2.43d)

Ô(j)
P,Γŷ

(z) ..=
∏

pC∈Γŷ

P̂ (j)†
pC

(z), (2.43e)

Ô(j)
P,Γẑ

..= P̂ (j)†
p0

(0, L), (2.43f)
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Ô(j)
P,�ẑ

Ô(j)
P,�x̂

Ô(j)
P,�ŷ

FIG. 8. Pictorial representation of the plaquette-type string
operators defined in Eqs. (2.43). The star-type string oper-
ators are defined similarly.

which commute with the Hamiltonian
˜̂
H associated with

˜̂
L [see Eq. (2.20)]. Here, Γx is a non-contractible closed
path traversing the entire square lattice along the di-
rection x, while Γx̂ is a non-contractible closed path
traversing the entire dual lattice along the direction x̂.
Similarly, the non-contractible closed paths Γy and Γŷ
traverse the square lattice along the y- and ŷ-directions,
respectively. Finally, Γz and Γẑ are non-contractible
closed paths traversing a wire in the z and ẑ direc-
tions so as to contain the links sC = sN , sW , sS , sE , and
pC = pN , pW , pS , pE , respectively. For a pictorial repre-
sentation of these string operators, see Fig. 8. These
operators can be interpreted physically as describing
processes in which particle-antiparticle pairs of differ-
ent types of star or plaquette defects are created, and
where the particle propagates along a non-contractible
loop that encircles the entire torus before annihilating
with its antiparticle.

Second, we define the non-local membrane operators

Ô(j)
S,Ωxy

(z) ..=
∏

sC∈Ωxy

Ŝ(j)†
sC

(z), (2.44a)

Ô(j)
S,Ωxz

..=
∏

sC∈Γx

Ŝ(j)†
sC

(0, L), (2.44b)

Ô(j)
S,Ωyz

..=
∏

sC∈Γy

Ŝ(j)†
sC

(0, L), (2.44c)

and

Ô(j)
P,Ωx̂ŷ

(z) ..=
∏

pC∈Ωx̂ŷ

P (j)†
pC

(z), (2.44d)

Ô(j)
P,Ωx̂ẑ

..=
∏

pC∈Γx̂

P (j)†
pC

(0, L), (2.44e)

(a)

Ô(j)
S,⌦xz

(b)

Ô(j)
S,⌦xy

FIG. 9. Pictorial representations of the star-type mem-
brane operators defined in Eqs. (2.44). In (a), the membrane
is parallel to the x-z plane (there is also a similarly-defined
membrane parallel to the y-z plane). In (b), the membrane
is parallel to the x-y plane. Plaquette-type membrane oper-
ators are represented similarly.

Ô(j)
P,Ωŷẑ

..=
∏

pC∈Γŷ

P (j)†
pC

(0, L), (2.44f)

which also commute with the Hamiltonian
˜̂
H associated

with
˜̂
L [see Eq. (2.20)]. Here, Ωxy is a membrane cov-

ering all links of the square lattice in the x-y plane at a
constant z, while Ωx̂ŷ is a membrane covering all links
of the dual lattice in the x̂-ŷ plane at a constant z. The
membranes Ωxz (Ωx̂ẑ) and Ωyz (Ωŷẑ) contain the non-

contractible closed paths Γx (Γx̂) and Γy (Γŷ). Similarly
to the string operators, these membrane operators can
be interpreted as describing processes in which a linelike
defect and its anti-defect are created as a pair, before
one of the defects propagates along a non-contractible
loop on the torus and annihilates with its partner. For
pictorial representations of these membrane operators,
see Fig. 9.
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These 12M operators can be divided into two sets of
6M , with the equivalent algebras

Ô(j)
S,Γz
Ô(j′)
P,Ωx̂ŷ

= Ô(j′)
P,Ωx̂ŷ

Ô(j)
S,Γz

e−i 2π ṽ(j)TK̃−1w̃(j′)
,

(2.45a)

Ô(j)
S,Γy
Ô(j′)
P,Ωẑx̂

= Ô(j′)
P,Ωẑx̂

Ô(j)
S,Γy

e+i 2π ṽ(j)TK̃−1w̃(j′)
,

(2.45b)

Ô(j)
S,Γx
Ô(j′)
P,Ωŷẑ

= Ô(j′)
P,Ωŷẑ

Ô(j)
S,Γx

e+i 2π ṽ(j)TK̃−1w̃(j′)
,

(2.45c)

and

Ô(j)
S,Ωxy

Ô(j′)
P,Γẑ

= Ô(j′)
P,Γẑ
Ô(j)
S,Ωxy

e+i 2π ṽ(j)TK̃−1w̃(j′)
,

(2.46a)

Ô(j)
S,Ωzx

Ô(j′)
P,Γŷ

= Ô(j′)
P,Γŷ
Ô(j)
S,Ωzx

e−i 2π ṽ(j)TK̃−1w̃(j′)
,

(2.46b)

Ô(j)
S,Ωyz

Ô(j′)
P,Γx̂

= Ô(j′)
P,Γx̂
Ô(j)
S,Ωyz

e−i 2π ṽ(j)TK̃−1w̃(j′)
.

(2.46c)

Note that all string and membrane operators associated
with stars commute with one another, as do all string
and membrane operators associated with plaquettes.

We are after the minimal topological ground-state de-
generacy that is consistent with Eqs. (2.45) and (2.46).
There are redundancies among the 12M operators de-
fined in Eqs. (2.43) and (2.44) that reduce the total
number of independent equations above to 3M . For ex-
ample, observe that

Ô(j)
S,Γx
Ô(j′)
P,Γẑ

= Ô(j′)
P,Γẑ
Ô(j)
S,Γx

e+i 2π ṽ(j)TK̃−1w̃(j′)
. (2.47a)

It is consistent with Eqs. (2.45c) and (2.46a), to make

either the identification Ô(j)
S,Γx

≡ Ô(j)
S,Ωxy

or the identi-

fication Ô(j′)
P,Γẑ

≡ Ô(j′)
P,Ωŷẑ

for all j, j′ = 1, . . . ,M when

acting on the ground-state subspace. This indicates that
one can remove either Eq. (2.45c) or Eq. (2.46a) from
the algebra without changing the number of indepen-
dent degrees of freedom. For concreteness, suppose we
do away with Eq. (2.46a). Then, similarly, using the
relations

Ô(j)
S,Γz
Ô(j′)
P,Γx̂

= Ô(j′)
P,Γx̂
Ô(j)
S,Γz

e−i 2π ṽ(j)TK̃−1w̃(j′)
, (2.47b)

Ô(j)
S,Γz
Ô(j′)
P,Γŷ

= Ô(j′)
P,Γŷ
Ô(j)
S,Γz

e−i 2π ṽ(j)TK̃−1w̃(j′)
, (2.47c)

we can remove Eqs. (2.46b) and (2.46c) from the alge-
bra. With the redundant operators removed, we are left
with a set of 6M nonlocal operators obeying the algebra
of Eqs. (2.45).

The ground-state degeneracy on the three-torus

T3 ≡ S1 × S1 × S1 (2.48)

can be deduced from the algebra (2.45) as follows. First,
observe that the operators entering Eqs. (2.45) do not
create any excitations, as understood in Sec. II C 3, as
the strings and membranes on which these operators
act are always closed by virtue of the periodic bound-
ary conditions we have imposed. Consequently, the

string operators Ô(j)
S,Γz

, Ô(j)
S,Γx

, and Ô(j)
S,Γy

togther with

the membrane operators Ô(j′)
P,Ωx̂ŷ

, Ô(j′)
P,Ωx̂ẑ

, and Ô(j′)
P,Ωŷẑ

commute with the Hamiltonian
˜̂
H associated with the

Lagrangian
˜̂
L. The ground-state manifold must then

transform as a representation of the algebra (2.45). If
so, the representation of the algebra (2.45) with the
smallest dimension determines the minimal topological
ground-state degeneracy. Equations (2.45) consist of
three independent copies of the generalized “magnetic
algebra,” which is ubiquitous in studies of the ground-
state degeneracy of abelian topological states of mat-
ter [55, 62, 63]. The minimum-dimensional representa-
tion of any one of the three algebras in Eqs. (2.45) has
dimension detκ, where

κ−1
jj′

..= ṽ(j)T K̃−1 w̃(j′) =
θjj′

2π
(2.49)

is an M ×M -dimensional symmetric matrix [64]. We
conclude that the class of coupled wires considered in
this work has a ground-state degeneracy DT3 on the
three-torus given by

DT3 = (detκ)3. (2.50)

Combining Eq. (2.50) with the definition of the ma-
trix κ provided in Eq. (2.49), one can verify the claim
made earlier in this section, namely that DT3 = 1 if

|det K̃ = 1|. To see this, recall that the inverse of the

matrix K̃ is given by

K̃−1 =
1

det K̃
C
K̃
, (2.51)

where C
K̃

is the cofactor matrix associated with K̃.

Since K̃ is an integer-valued matrix, it follows that C
K̃

is

also integer valued, and that det K̃ is an integer. Com-
bining these facts with our assumption that ṽ(j) and
w̃(j) are vectors whose only nonzero entries are equal to
±1, one concludes that κ−1

jj′ is an integer for all j and

j′ = 1, . . . ,M . Consequently, each line of Eqs. (2.45)
becomes a trivial commutation relation for all j and j′,
and we conclude that D

T3 = 1.
Nontrivial states of matter for which detDT3 = 1 are

examples of short-range entangled (SRE) or symmetry-
protected topological (SPT) states of matter [65, 66].
Although such states of matter do not yield quasiparti-
cle excitations with fractionalized charges or statistics,
and are therefore not of primary interest to us here,
they are nevertheless readily treated within the formal-
ism developed in this paper.
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7. Topological field theory

We close the discussion of the general class of three-
dimensional wire constructions considered in this work
by commenting on the topological field theory charac-
terizing the low-energy behavior of these theories. In the
study of the braiding statistics of quasiparticle excita-
tions undertaken in Sec. II C 5, we found that these wire
constructions host both pointlike and stringlike excita-
tions of M types, labeled by j = 1, . . . ,M . We also ob-
served that winding a pointlike defect of type j around
a stringlike defect of type j′ yields a statistical phase
θjj′ , and that all other statistical phases were trivial.

We wish to capture this statistical “interaction” be-
tween quasiparticles with a topological field theory, in
a manner similar to the way in which Chern-Simons
(CS) theories in (2+1) dimensions can be used to en-
code the statistics of pointlike quasiparticles. Studies of
topologically-ordered superconductors [67] and (3+1)-
dimensional topological insulators [29, 30] have shown
that the statistics of theories where pointlike excitations
acquire a nontrivial phase when encircling vortex lines
can be encoded in so-called BF theories. For example,
in a (3+1)-dimensional topolgical insulator, the statis-
tical phase of π that a quasiparticle acquires when it
circles a vortex line is encoded in the BF Lagrangian
density [29, 31, 67]

LBF ..=
1

2π
εµνρλ aµ ∂ν bρλ, (2.52)

where µ = t, x, y, z runs over all spacetime indices, εµνρλ

is the fully antisymmetric Levi-Civita symbol, and sum-
mation over repeated Greek indices is implied. Here, the
one-form aµ is an emergent gauge field that couples to
the quasiparticle current density, and bµν is an antisym-
metric two-form that couples to the vortex-line density.
The natural generalization of this BF Lagrangian to our
setting is obtained by introducing M species of one-

forms a
(j)
µ and M species of two-forms b

(j)
µν , one for each

type of pointlike and stringlike excitation, respectively.
This results in the multicomponent BF Lagrangian den-
sity

LBF ..=
κjj′

4π
εµνρλ a(j)

µ ∂ν b
(j′)
ρλ , (2.53)

where the M × M matrix κ is defined in Eq. (2.49)
and summation over repeated Greek and teletype in-
dices is implied. This discussion indicates that the class
of coupled wires considered so far falls into the same
equivalence class of topological states of matter as the
(3+1)-dimensional fractional topological insulators [26–
28, 31, 53]. This is consistent with the example of Zm
topological order in three spatial dimensions that we
discuss in the next section.

Before moving on, we address the question of how
this discussion would have been different if we had in-
stead considered the more general case ṽ

(j)
1 6= ṽ

(j)
2 and

w̃
(j)
1 6= w̃

(j)
2 [recall Eqs. (2.15) and (2.17)]. As we ob-

served after Eq. (2.38), this more general case requires
us to impose the consistency condition (2.39) in order
for the statistics of pointlike and linelike excitations to
be well-defined. However, because, in this case, there is
a well-defined statistical angle θjj′ , one may define the

matrix κ−1
jj′ in terms of θjj′ by making use of the relation

(2.49), leading again to the multicomponent BF theory
defined in Eq. (2.53). This observation can be taken
as a justification a posteriori for considering from the
outset, as we did, the simpler class of models in which

ṽ
(j)
1 = ṽ

(j)
2 = ṽ(j) and w̃

(j)
1 = w̃

(j)
2 = w̃(j).

D. Example: Zm topological order in
three-dimensional space from coupled wires

Having developed a tool box for the construction of
a class of two-dimensional arrays of coupled quantum
wires, we now turn to an illustration of this frame-
work in action. In this section, we show how to realize
the simplest type of three-dimensional topological order,
namely Zm topological order, within the wire formalism
developed in the previous sections. This class of exam-
ples includes the three-dimensional toric code, which is
an example of Z2 topological order.

1. Definitions and interwire couplings

Our starting point is a set of 2N decoupled two-
component bosonic quantum wires placed on the links of
a square lattice. (We will also discuss momentarily how
one can arrive at a class of Z2m-topologically-ordered
states starting from fermions, although it turns out to
be simpler to focus on the bosonic case.) We take the
decoupled quantum wires to be described by the La-
grangian (2.1) with

K ..= 12N ⊗Kb, (2.54)

where Kb was defined in Eq. (2.3b), and we take M = 1
so that Kb is a 2 × 2 matrix. With the K-matrix de-
fined in this way, the canonical equal-time commutation
relation for the theory of decoupled wires is given by

[
∂zφ̂j,1(z), φ̂j′,2(z′)

]
= i 2π δjj′ δ(z − z′)

=
[
∂zφ̂j,2(z), φ̂j′,1(z′)

]
.

(2.55)

The charge vector that fixes the coupling of the two

bosonic fields φ̂j,1 and φ̂j,2 to external gauge potentials
is given by

Qb ..= 2
(
1 0

)T
, (2.56)
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so that φ̂j,1 can be interpreted as the “charge” mode

and φ̂j,2 can be interpreted as the “spin” mode.
It is convenient to write down the interwire couplings

for this model in the new basis defined by the transfor-
mation (2.18) with

W ..= diag(1,m), (2.57)

so that the transformed K-matrix and charge-vector are
given by

K̃m ..=

(
0 m
m 0

)
, (2.58a)

Q̃ ..= Qb. (2.58b)

In this example, we will impose time-reversal symme-
try (TRS), which constrains the allowed interwire cou-
plings. TRS acts on the bosonic fields as

˜̂
φj,α(t, z) 7→ (−1)α−1 ˜̂

φj,α(−t, z) (2.59)

for all j = 1, . . . 2N and α = 1, 2. Note that this is not
the only possible choice for the action of TRS (see, e.g.,
Ref. [57]), but that this representation of TRS squares
to unity, as expected for bosons.

Before proceeding to write down the interwire cou-
plings, we first point out that a theory similar to the one
defined by the universal data (2.58) can also be reached
starting from wires supporting spinless fermions defined
by the data

Kf ..=

(
+1 0
0 −1

)
, (2.60a)

Qf ..=
(
1 1

)T
, (2.60b)

using the transformation

W ′ ..=

(
−1 −m
−1 +m

)
. (2.61)

In this alternative interpretation of Eqs. (2.58), we view
the original bosons as being composite objects consist-
ing of paired fermions, since the transformed K-matrix
and charge vector read

K̃ ′m ..= W ′TKf W
′ = 2 K̃m, (2.62a)

Q̃′m ..= W ′TQf = −Qb. (2.62b)

The additional multiplicative factors of 2 on the right-
hand sides of the above equations can be seen as evi-
dence of this pairing. Furthermore, the action of TRS
on the bosonic fields after performing the transforma-
tion (2.61) is still given by (2.59), indicating that the
theory defined by the data (2.62) and the theory de-
fined by the data (2.58) transform in the same way un-
der TRS.

(a)

eTs

(0, +)

(0, +)(0,�)

(0,�)

(b)

eTp (+, 0)

(+, 0)

(�, 0)

(�, 0)

FIG. 10. Pictorial representations of the tunneling vectors
(a) T̃s and (b) T̃p built using the vectors ṽ and w̃ defined in
Eqs. (2.63). The signs ± indicate whether a ±1 appears in
the tunneling vector associated with that link.

Hence, although we choose to focus here on the
bosonic case, with universal data given by Eqs. (2.58),
all results that follow could be interpreted as arising
from paired fermions, so long as m is taken to be even.

We couple the 2N quantum wires with a Lagrangian
˜̂
L{T̃ }, defined as in Eq. (2.7), for tunneling vectors T̃
defined as in Eqs. (2.13) with (see Fig. 10)

ṽ1 ≡ ṽ2 ≡ ṽ ..=
(
0 +1

)T
, (2.63a)

w̃1 ≡ w̃2 ≡ w̃ ..=
(
−1 0

)T
. (2.63b)

It is readily verified that these tunneling vectors sat-
isfy the criteria (2.17), which ensure that the interac-

tion terms in
˜̂
L{T̃ } are sufficient to gap out the array

of quantum wires when periodic boundary conditions
are imposed. Furthermore, the cosine terms associated
with the tunneling vectors (2.63) are even under TRS,
as desired.
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2. Excitations

Excitations of the array of coupled wires can be con-
structed using the procedure outlined in Sec. II C 3. In
particular, one can define the vertex operators

Ŝ†sC (z) := exp
(
−i

˜̂
φsC ,2(z)

)
(2.64a)

and

P̂ †pC (z) := exp
(

+i
˜̂
φpC ,1(z)

)
, (2.64b)

which create 2π kinks in the pinning fields

T̃ T
s K̃mΦ̃(z)=

˜̂
φsE ,1(z)− ˜̂

φsW ,1(z)+
˜̂
φsN ,1(z)− ˜̂

φsS ,1(z)

(2.65a)

and

T̃ T
p K̃mΦ̃(z)=

˜̂
φpE ,2(z)− ˜̂

φpW ,2(z)+
˜̂
φpS ,2(z)− ˜̂

φpN ,2(z),

(2.65b)

respectively. The vertex operators defined in Eq. (2.64a)
can be used to create and propagate star defects, as
shown in Fig. 4, and the vertex operators defined in
Eq. (2.64b) can be used similarly for plaquette defects.

Using the charge operator
˜̂
Qj,α defined in Eq. (2.26), we

find the equal-time commutators

[
˜̂
Qj,α, Ŝ

†
sC

(z)
]

= +
2

m
δj,sC δα,1,[

˜̂
Qj,α, P̂

†
pC

(z)
]

= 0.
(2.66)

This demonstrates that the star defects propagated by
the operator Ŝ†sC (z) carry a fractional charge 2/m, while

the plaquette defects propagated by the operator P̂ †pC (z)

are charge-neutral. Hence, anticipating a connection to
3D toric code models that we will demonstrate shortly,
we refer to the star defects as “electric” excitations, and
to the plaquette defects as “magnetic” excitations.

The bilocal operators

Ŝ†sC (z1, z2) ..= Ŝ†sC (z2) ŜsC (z1)

= exp

(
− i

z2∫

z1

dz ∂z
˜̂
φsC ,2(z)

)
,

(2.67a)

and

P̂ †pC (z1, z2) ..= P̂ †pC (z2) P̂pC (z1)

= exp

(
+ i

z2∫

z1

dz ∂z
˜̂
φpC ,1(z)

)
,

(2.67b)

can be used to create and propagate linelike defects that
extend in the z-direction, as in Fig. 5(a) and (b). Line-
like defects lying in the x-y plane can be created and
propagated by repeated application of the vertex oper-
ators in Eqs. (2.64), as in the example of Fig. 5(c) and
(d).

The statistical angle θ obtained upon winding of the
pointlike and linelike excitations created by these oper-
ators can be computed from Eq. (2.38), which gives

θ = −2π/m. (2.68)

The case m = 2 produces the expected statistical phase
of π between “electric” quasiparticles and “magnetic”
strings in the 3D toric code. We will see this resem-
blance borne out in the next section, where we compute
the ground state degeneracy.

3. Ground state degeneracy on the three-torus

The nonlocal string and membrane operators used to
obtain the ground state degeneracy on the three-torus
T3 for this example can be assembled from the vertex
operators defined in Eqs. (2.64) and the bilocal opera-
tors defined in Eqs. (2.67), as outlined in Sec. II C 6. As
discussed in Sec. II C 6, it is sufficient to consider the
algebra of star-type string operators and plaquette-type
membrane operators to deduce the degeneracy. This is
given by

ÔS,Γz ÔP,Ωx̂ŷ = ÔP,Ωx̂ŷ ÔS,Γz e
+i 2π/m, (2.69a)

ÔS,Γy ÔP,Ωẑx̂ = ÔP,Ωẑx̂ ÔS,Γy e
−i 2π/m, (2.69b)

ÔS,Γx ÔP,Ωŷẑ = ÔP,Ωŷẑ ÔS,Γx e
−i 2π/m. (2.69c)

[See Eqs. (2.43) and (2.44) for definitions of these op-
erators.] Each line of Eqs. (2.69) contributes an m-fold
topological degeneracy, for a total degeneracy on the
three-torus

DT3 = m3. (2.70)

Note that for m = 2, which corresponds to the case
of Z2 topological order, the ground-state degeneracy is
8-fold. This is the expected topological degeneracy of
the three-dimensional toric code [56, 68], which is an
important sanity check.

4. Surface states

All properties that we have discussed so far pertain to
the bulk of the array of coupled wires, as we have always
imposed periodic boundary conditions in all spatial di-
rections. However, the wire formalism provides means
to address the surface states as well. We first illustrate
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FIG. 11. Example of an array of quantum wires with
open boundary conditions in the y-direction and periodic
boundary conditions along all other directions. The dashed
links indicate the presence of periodic boundary conditions
in the x-direction. The crosses represent quantum wires on
the links of the square lattice that are inequivalent modulo
the periodic boundary conditions. In this example, Nx = 3
and Ny = 2. Consequently, there are 2Nx Ny + Nx = 15
wires in the array, and 2Nx Ny − Nx = 9 wires are gapped
by the allowed tunneling vectors. Consequently, there are 6
wires in the array that remain gapless when these tunneling
vectors are included (3 on the top face and 3 on the bottom
face, represented by the purple crosses).

this fact with the example of the Zm theories discussed
in this section, before commenting on surface states in
more generality.

Let us begin by relaxing the constraint of periodic
boundary conditions that we have imposed until now.
We choose open boundary conditions in the y-direction,
while leaving periodic boundary conditions in the x and
z-directions. In this case, the surface of the system has
the same topology as the two-torus

T2 ..= S1 × S1. (2.71)

The latter can be viewed as a plane parallel to the x-z
plane whose adjacent sides have been identified. There
are two types of surface terminations of the square lat-
tice whose links host the constituent quantum wires in
the array. These are “rough” boundaries, which con-
sist of stars, and “smooth” boundaries, which consist of
plaquettes. For the sake of specificity, we will focus on
“smooth” boundaries, as in Fig. 11, for the time being.
All statements that we make about “smooth” bound-
aries below have analogs for the case of rough bound-
aries. However, the differences between the two types of
boundary are not always physically insignificant, as we
will provide shortly an example of a difference between
rough and smooth boundaries.

The effects of imposing these semi-open boundary
conditions are twofold. First, they increase the number
of gapless degrees of freedom in the array of coupled
wires, as the wires along the terminating surfaces of the
wire array are no longer identified with each other. Sec-
ond, they decrease the number of tunneling vectors in
the Haldane set H, as any stars or plaquettes that were

formerly completed by virtue of the periodicity of the
array of wires are now nonlocal, and therefore cannot be
included. This results in a number, which we will de-
termine momentarily, of “extra” gapless modes on the
terminating surfaces of the array of coupled wires.

We can determine the existence of gapless surface
states for the coupled-wire theory defined in Sec. II D 1
by the following counting argument. First, recall that,
when periodic boundary conditions are imposed, the
square lattice contains 2N quantum wires, placed on its
links. Let us write N ≡ Nx×Ny, where Nx counts either
the number of stars or the number of plaquettes along
the x-direction. The number Ny does the same along
the y-direction. When periodic boundary conditions are
relaxed along the y-direction, the wires along the bot-
tom and top faces of the array of wires (see Fig. 11) are
no longer identified with one another, which adds Nx
wires to the array. The total number of wires in the
array with the topology (2.71) is therefore

2NxNy + Nx, (2.72a)

and the associated number of gapless degrees of freedom
is

4NxNy + 2Nx. (2.72b)

Next, we count the number of available tunneling vec-
tors in the array of wires when the topology (2.71) is
imposed. Before relaxing periodic boundary conditions,
there are 2NxNy tunneling vectors in the Haldane set
H, which is sufficient to gap out all 4NxNy degrees
of freedom when periodic boundary conditions are im-
posed. However, when periodic boundary conditions are
relaxed in the y-direction, Nx tunneling vectors must be
removed from the set H. Consequently, the total num-
ber of degrees of freedom left once all allowed tunneling
vectors are included is given by

4NxNy + 2Nx − (4NxNy − 2Nx) = 4Nx. (2.73)

Since the remaining degrees of freedom must live on the
boundary, where we have deleted tunneling vectors from
the set H, we can split the remaining 4Nx degrees of
freedom evenly among the top and bottom edges of the
array of wires. This simply leaves Nx gapless quantum
wires on each exposed surface, i.e., 2Nx gapless degrees
of freedom on each of the top and bottom surfaces, re-
spectively. (An example of this counting procedure is
shown in Fig. 11.)

It is a nontrivial task to determine the exact surface
Lagrangian governing the remaining 2Nx gapless de-
grees of freedom on each terminating surface of the ar-
ray of wires. For example, in the case of Fig. 11, it
is tempting to deduce that the surface Lagrangian de-
scribes a theory of decoupled quantum wires built out

of the fields
˜̂
φi,1 that no longer enter any cosine terms

due to the removal of the “three-legged” stars that lie
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on the terminating surfaces, and their conjugate fields
˜̂
φi,2. However, the latter fields couple to the bulk of the
array of quantum wires via cosine terms associated with
the plaquettes that lie along the terminating surfaces.

Consequently, the fields
˜̂
φi,1 and

˜̂
φi,2 do not provide the

right basis for the gapless surface states.
However, despite the difficulty of determining a La-

grangian description of these gapless surface states, the
determination of the stability of these surface states and
the characterization of any proximal gapped phases are
readily feasible with the tools already developed in this
work.

The stability of the gapless surfaces can be addressed
by seeking out a set of 2Nx tunneling vectors, i.e., Nx
tunneling vectors for each terminating surface, to com-
plete the Haldane set H. These surface tunneling vec-
tors must be chosen to comply with all symmetries of
the problem, in this case TRS and charge conservation,
and must be compatible with the bulk tunneling vectors
in the sense of the Haldane criterion (2.11). If any num-
ber less than Nx tunneling vectors for each terminating
surface is found, then the gapless surface states are sta-
ble, since it is impossible to localize all gapless degrees of
freedom in the array of quantum wires with the topology
(2.71), while simultaneously preserving all symmetries.
If, instead, the necessary number of compatible tunnel-
ing vectors is found, then the gapless surface states are
unstable.

Each distinct set of tunneling vectors that completes
the Haldane set H realizes a two-dimensional gapped
state of matter on each exposed surface of the array of
quantum wires. The resulting gapped surface states can
be characterized, as in Sec. II C, by the set of deconfined
quasiparticle excitations defined on the surface.

In the remainder of this discussion, we will show that
the class of Zm-topologically-ordered states realized by
the wire construction defined in Sec. II D 1 has unsta-
ble surface states that can be gapped while maintaining
TRS and charge conservation. We will further show
that, if the surface termination is “rough” (i.e., if it
consists of stars), one can obtain a charge-conserving
gapped surface state with Laughlin topological order,
at the expense of explicit TRS-breaking at the surface.

We first show that the gapless surface states are un-
stable in the present example of a Zm-topologically-
ordered bulk. To do this, consider the following two
sets of tunneling vectors,

T1,j ..=
(
· · · | 0 0 | + 1 0 | − 1 0 | 0 0 | · · ·

)T
, (2.74a)

and

T2,j ..=
(
· · · | 0 0 | 0 +1 | 0 −1 | 0 0 | · · ·

)T
, (2.74b)

where j = 1, . . . , Nx indexes the gapless wires on the
top surface of the wire array (there is a similar set of

tunneling vectors that can be defined for the other sur-
face to complete each set). Each set of tunneling vectors
generates terms that allow bosons to hop between wires
on the surface. These two sets of tunneling vectors each
satisfy the Haldane criterion (2.11) with the K-matrix
(2.54), both among themselves and with the plaquettes
lining each smooth surface. (One can verify that this
is equally true for rough boundaries, where the lattice
terminates with stars rather than plaquettes.) Further-
more, the cosine terms that they generate preserve TRS,
defined as in Eq. (2.59), and charge conservation, de-
fined as in Eq. (2.10a) with the charge vector (2.56).
They therefore generate two distinct two-dimensional
gapped states of matter that preserve all symmetries of
the bulk: {T1,j} generates one with deconfined “mag-
netic” excitations, while {T2,j} and one with deconfined
“electric” excitations.

We now demonstrate that, in the presence of a set
of surface tunneling vectors that break TRS, a rough
terminating surface can be made into a fractional-
quantum-Hall-like state of matter with Laughlin topo-
logical order, while preserving charge conservation. In
this case, we can use another set of Nx tunneling vec-
tors, given by (for any j = 1, . . . , Nx)

T3,j ..=
(
· · · | 0 0 | + 1 +1 | − 1 +1 | 0 0 | · · ·

)T
,

(2.75)

which both conserve charge and satisfy the Haldane
criterion among themselves and with the stars lying
along the terminating surface, to gap the surface. Ob-
serve that these tunneling vectors pin the fields (for any
j = 1, . . . , Nx)

T T
3,j K̃m ˜̂

Φ = m
(

˜̂
φj,1 +

˜̂
φj,2

)
+m

(
˜̂
φj+1,1 − ˜̂

φj+1,2

)
,

(2.76)

which are neither even nor odd under the definition
of TRS given in Eq. (2.59). Therefore, the associ-
ated cosine potentials break TRS explicitly. We will
now show that the gapless surface in the presence of
the cosine terms generated by the tunneling vectors of
the form (2.75), in addition to being gapped, supports
pointlike excitations with fractional statistics, consis-
tent with a (fractional) quantum Hall effect on each
two-dimensional surface.

The excitations of the surface theory are defined, as
they are in the bulk, to be solitons in the pinned field

T T
3,j K̃m

˜̂
Φ for any j = 1, . . . , Nx. Define

˜̂
φj,± ..=

˜̂
φj,1 ± ˜̂

φj,2. (2.77)

We begin by observing that the equal-time commutators
[
∂z

˜̂
φj,±(z),

˜̂
φj′,±(z′)

]
= ±i

4π

m
δjj′ δ(z − z′),

[
∂z

˜̂
φj,±(z),

˜̂
φj′,∓(z′)

]
= 0,

(2.78)
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hold for any j, j′ = 1, . . . , Nx. One deduces from this
algebra [recall Eqs. (2.32)] that the local operator

q†j−1,j(z) ..= e
−i

[
˜̂
φj,+(z)+

˜̂
φj,−(z)

]/
2

= e−i
˜̂
φj,1(z) (2.79)

creates a −2π-soliton in T T
3,j−1 K̃m

˜̂
Φ and a +2π-soliton

in T T
3,j K̃

˜̂
Φ for any j = 1, . . . , Nx. Consequently, the

operator q†j−1,j can be interpreted as hopping a quasi-
particle from the link connecting wires j−1 and j to the
link connecting wires j and j+1. We will see below that
this quasiparticle has fractional statistics. Repeated ap-
plication of this operator on successive wires hops the
fractionalized quasiparticle along the x-direction, per-
pendicular to the wires. (Note that the vertex operator
associated with the other independent linear combina-

tion of the fields
˜̂
φj,±, namely

˜̂
φj,+−

˜̂
φj,−, does not cre-

ate a deconfined quasiparticle because repeated applica-
tion of this vertex operator generates additional defects
with each application. We therefore choose to ignore
this quasiparticle, as it is confined.)

A fractionalized quasiparticle can be moved along the
z-direction, parallel to the wires, by applying the bilocal
operator

q†j (z1, z2) ..= e−i
˜̂
φj,+(z2)/2 e+i

˜̂
φj,+(z1)/2

= e
− i

2

z2∫
z1

dz ∂z
˜̂
φj,+(z)

.

(2.80)

for any j = 1, . . . , Nx. Acting with q†j (z1, z2) on a
ground state transfers a quasiparticle from point z1 to
point z2 along wire j = 1, . . . , Nx.

This (pointlike) surface quasiparticle is an anyon
whose self-statistics is defined by the statistical angle
θ = π/m = 2π/2m, which is half the statistical an-
gle acquired when a pointlike excitation winds around
a linelike excitation in the bulk. This quasiparticle is
therefore only supported on the surface. The statistical
angle can be determined, as it was in Sec. II C 5, by the
algebra between the vertex operators (2.79) and (2.80)
that allow for the propagation of this quasiparticle along
any non-contractible loop of the toroidal terminating
surface. This algebra is given by

q†j−1,j(z) q
†
j (z1, z2) = q†j (z1, z2) q†j−1,j(z) e

−iπ/m,

(2.81)

where it is assumed that z1 < z < z2 and j = 1, . . . , Nx.
Accordingly, the excitation spectrum of the surface in
the presence of the correlated tunneling processes gener-
ated by the tunneling vectors (2.75) consists of a single
quasiparticle type with statistics π/m. Combining Eq.
(2.81) with the fact that TRS is broken on the surface
while charge is conserved, we conclude that the gapped
surface state selected by the many-body interaction en-
coded by the tunneling vectors (2.75) is a fractional

quantum Hall liquid with Laughlin topological order.
The Hall conductivity of this surface fractional quan-
tum Hall liquid is given by [(2e)2/h]×(1/2m), consistent
with the 2π/2m self-statistics of the surface quasiparti-
cle and the fundamental charge 2e of the underlying
bosonic quantum wires.

Finally, let us point out that the above discussion
of TRS breaking on the surface applies also to smooth
boundaries, although one must use the surface tunneling
vectors

T̃4,j ..=
(
· · · | 0 0 | + 1 +1 | + 1 −1 | 0 0 | · · ·

)T
,

(2.82)

instead of the ones defined in Eq. (2.75). This is nec-
essary in order to ensure Haldane-compatibility with
the plaquettes lining the smooth surface. However, ob-
serve that this choice of surface tunneling vectors breaks
charge conservation as well as TRS on the smooth sur-
face. The only remaining symmetry of the smooth sur-
face is then number-parity conservation, as defined in
Eq. (2.10b). However, the analysis of the excitations of
the surface theory in this case proceeds similarly to the
case of the rough surface, and the conclusion that the
surface supports a single deconfined quasiparticle with
self-statistics π/m remains.

The methods used in this section to address the sur-
face physics of the array of coupled quantum wires gen-
eralizes readily from the example discussed here to any
array of coupled quantum wires constructed in Sec. II.
One can determine the existence of gapless surface states
using the counting argument presented at the beginning
of this section, with slight modifications to account for
the M “flavors” of stars and plaquettes that are allowed
in the general case. One can then determine the stability
of these gapless surfaces by searching for a set of M Nx
tunneling vectors for each terminating surface that are
compatible with the bulk couplings. The process of
characterizing any symmetry-preserving or symmetry-
breaking gapped surface states that descend from these
gapless states is also the same. For every admissible set
of tunneling vectors satisfying the necessary compatibil-
ity requirements, there is an associated gapped surface.
The excitation spectrum of each gapped surface can be
studied using the methods of Sec. II C.

III. HIGHER-DIMENSIONAL WIRE
CONSTRUCTIONS

The strategy developed in Sec. II for construct-
ing fully gapped three-dimensional Abelian topological
states of matter from coupled quantum wires owes its
success to several factors. First, placing quantum wires
on the links of a square lattice in two spatial dimensions
allows for a simple enumeration of the number of gapless
degrees of freedom in the system. Second, the ability
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to encode many-body interactions in tunneling vectors
associated with stars and plaquettes makes straight-
forward the determination, via the Haldane criterion
(2.11), of the number of gapless degrees of freedom that
can be gapped out by these interactions. Third, the fact
that stars and plaquettes can share at most two wires al-
lows one to derive simple conditions, like those of Eqs.
(2.15), to determine whether the Haldane criterion is
satisfied. Finally, the existence of a subextensive num-
ber of nonlocal constraints, given in Eqs. (2.41), allows
for the existence of nonlocal operators that can encode
topological ground-state degeneracy, if such a degener-
acy is allowed by the chosen many-body interactions.

These four advantageous properties all arose because
we chose to arrange the wires and their couplings in a
manner reminiscent of the qubits and commuting pro-
jectors of the toric code. While the toric code is an
archetypal example of topological order in two spatial
dimensions, it can also be defined on hypercubic lattices
of dimension greater than two. In fact, in spatial di-
mensions four and higher, there are multiple toric codes
that are distinguished from one another by the number
of nonlocal constraints that give rise to the topological
degeneracy. It is therefore natural to ask the question
of whether or not it is possible to build Abelian topo-
logical phases in spatial dimension D ≥ 3 by arranging
quantum wires on a hypercubic lattice of dimension

d ..= D − 1 (3.1)

and coupling them in a manner reminiscent of a d-
dimensional toric code.

We will answer this question affirmatively. In Sec.
III A, we describe a family of hypercubic arrays of quan-
tum wires, and review some basic geometric facts about
such arrays. In light of these facts, we generalize in
Sec. III B the prescriptions of Sec. II B for defining com-
patible interwire couplings for a d-dimensional hyper-
cubic lattice of quantum wires that yield gapped D-
dimensional phases of matter in the strong-coupling
limit. Finally, in Sec. III C, we provide explicit exam-
ples of four-dimensional phases of matter constructed
according to these prescriptions.

A. Hypercubic arrays of quantum wires

Consider a d-dimensional hypercubic lattice. We will
view this lattice as being composed of elementary ob-
jects called k-cells, where k = 0, . . . , d is an integer. For
example, a 3-dimensional cubic lattice can be decom-
posed as a set of 0-cells (sites), 1-cells (bonds with sites
at either end), 2-cells (square plaquettes with four sites
at their corners), or 3-cells (cubic plaquettes with eight
sites at their corners). Any of these decompositions of
the lattice covers all sites of the lattice at least once.

We now consider hypercubic arrays of quantum wires
labeled by a pair of integers (d, k0). Such an array con-
sists of a d-dimensional hypercubic lattice, embedded in
d+1 = D-dimensional space, with quantum wires placed
on the centers of the elementary k0-cells of the lattice,
for 1 ≤ k0 ≤ d− 1. For example, the arrays of quantum
wires considered in Sec. II are all of type (2, 1), since
the array consists of quantum wires placed on the links
of a square lattice. (Notice that this pair is the only
one allowed for d = 2.) We take the wires to extend
along a direction orthogonal to the d-dimensional sub-
space occupied by the hypercubic lattice. In the array
of quantum wires labeled by the pair (2, 1), for example,
the square lattice can be chosen to lie in a plane parallel
to the x-y plane, and the wires can be chosen to extend
along the z-direction. A hypercubic array of type (d, k0)
contains

Nw =

(
d

k0

)
N (3.2)

quantum wires, where N is the number of vertices (i.e.
0-cells) in the hypercubic lattice that hosts the array of
wires.

With the hypercubic array of quantum wires defined
in this way, we now define hypercubic analogs of stars
and plaquettes. Examples of these hypercubic stars and
plaquettes are shown in Fig. 12.

Hypercubic “stars” s are centered on each ks-cell of
the d-dimensional lattice with

ks ..= k0 − 1. (3.3a)

They consist of the 2[d− (k0 − 1)] nearest-neighbor k0-
cells (and the wires centered on these cells) that border
the (k0 − 1)-cell s. (See Fig. 12 for examples.) We
label the 2[d − (k0 − 1)] quantum wires belonging to a
hypercubic star s by the generalized cardinal direction

Cs ..= 1, . . . , 2[d− (k0 − 1)]. (3.3b)

There are

Ns =

(
d

k0 − 1

)
N (3.3c)

such hypercubic stars in the array of wires labeled by
(d, k0).

Hypercubic “plaquettes” p are centered on each kp-
cell of the d-dimensional lattice with

kp ..= k0 + 1. (3.4a)

They consist of the 2(k0 + 1) nearest-neighbor k0-cells
that border the (k0 + 1)-cell p. (See Fig. 12 for exam-
ples.) We label the 2(k0 + 1) quantum wires belonging
to a hypercubic plaquette p by the generalized cardinal
direction

Cp ..= 1, . . . , 2(k0 + 1). (3.4b)
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FIG. 12. Examples of hypercubic stars and plaquettes for
arrays of quantum wires of types (a) (2,1), (b) (3,1), and (c)
(3,2). Black crosses represent wires extending perpendicular
to all principal directions of the respective hypercubic lat-
tices. The numbers label generalized cardinal directions Cs

and Cp defined in Eqs. (3.3b) and (3.4b).

There are

Np =

(
d

k0 + 1

)
N (3.4c)

such hypercubic plaquettes in the array of wires labeled
by (d, k0).

For the square array of quantum wires studied in Sec.
II, which has d = 2 and k0 = 1, the generalized cardi-
nalities Cs and Cp each take values 1, . . . , 4. We identify
these with the traditional cardinal directions E,N,W, S
used in Sec. II.

Note that the substitution k0 → d − k0 exchanges
d − (k0 − 1) ↔ k0 + 1. Consequently, the hypercubic
array of quantum wires labeled by the pair (d, k0) is
dual to the array labeled by the pair (d, d− k0), in the
sense that the stars of the former are the plaquettes

of the latter, and the plaquettes of the former are the
stars of the latter. In even dimensions d, the hypercubic
array of wires labeled by (d, d/2) is therefore self-dual.
Consequently, modulo dualities, there is only one such
array for d = 3, as the pairs labeled by (3, 1) and (3, 2)
are dual to one another. The first case where there are
multiple hypercubic arrays of quantum wires is therefore
d = 4, which has the dual arrays (4, 1) and (4, 3), and
one self-dual array (4, 2).

B. Generalizing the results of Sec. II B

We now turn to the problem of choosing a compatible
set of tunneling vectors to gap the bulk of an array of
Nw quantum wires like those defined in Sec. III A. As
in Sec. II B, the starting point is an array of decoupled
quantum wires described by the quadratic Lagrangian
L̂0 defined in Eq. (2.1), except that the matrices K and
V are now of dimension 2MNw, and the vector of scalar
fields

Φ̂(t, z) ..=
(
φ̂1,1(t, z) . . . φ̂1,2M (t, z) |

· · · | φ̂Nw,1
(t, z) . . . φ̂Nw,2M

(t, z)
)T
.

(3.5)

This reflects that the quantum wires are now placed on
the elementary k0 cells of a d-dimensional hypercubic
lattice embedded in D = d + 1-dimensional Euclidean
space. We then add to the free theory the interaction
terms L̂{T } given in Eq. (2.7), and set ourselves the

challenge of finding a set of MNw tunneling vectors
T satisfying the Haldane criterion (2.11). We also de-
mand that these tunneling vectors respect some set of
symmetries—here, we will enforce only charge conserva-
tion [Eq. (2.10a)], but others, such as TRS or particle-
hole symmetry (see Ref. 11), may also be relevant. If
we can find such a set of tunneling vectors, then, in the
strong-coupling limit, UT → ∞ for all T , the array of
wires acquires a gap.

As in Sec. II, we reserve the Greek index α =
1, . . . , 2M for labeling the bosonic fields within each
wire. We reserve the Latin index j = 1, . . . , Nw for
labeling the wires. A component of the vector of scalar

fields Φ̂(t, z) is then φ̂j,α(t, z).

We claim that the following set of M Ns integer-
valued vectors of dimension 2MNw,

(T (j)
s )j,α ..= v(j)

α

d−(k0−1)∑

Cs=1

(
δj,sCs

− δj,s
Cs+d−(k0−1)

)
,

(3.6a)

and the following set of M Np integer-valued vectors of
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dimension 2MNw,

(T (j)
p )j,α ..= −w(j)

α

k0∑

Cp=1

(
δj,pCp

− δj,pCp+k0+1

)

+ w(j)
α

(
δj,pk0+1

− δj,p
2(k0+1)

)
,

(3.6b)

does the job, so long as the criteria (2.17) are satis-
fied. Here, v(j) and w(j) are 2M -dimensional vectors

that specify the linear combinations of the fields φ̂j,α
in each wire j that enter the cosine terms associated

with the tunneling vectors T (j)
s and T (j)

p , respectively.
(Their meaning is thus identical to the vectors of the
same names presented in Sec. II B.) Stars and plaque-
ttes are themselves labeled by the indices s = 1, . . . , Ns

and p = 1, . . . , Np, respectively. The teletype index
j = 1, . . . ,M labels M “flavors” of stars and plaque-
ttes. These flavors are necessary, as they were in Sec.
II B, to produce a number of tunneling vectors that is
sufficient to gap out all 2M gapless degrees of freedom
in each wire. (More on counting gapless degrees of free-
dom in a moment.)

The tunneling vectors defined in Eqs. (3.6) conserve
charge in the sense of Eq. (2.10a) for any 2M Nw-
dimensional charge vector Q = (Q | Q | · · · | Q)T [recall
Eq. (2.1f)]. To see that this is the case, it suffices to note
that the vectors v(j) and w(j) each enter their respec-
tive tunneling vectors with an equal number of + and
− signs. Consequently, no matter the values of QTv(j)

and QTw(j), this value is added and subtracted an equal
number of times. This fact provides a direct parallel
with the construction of Sec. II B, where the tunneling
vectors defined in Eqs. (2.13) conserve charge indepen-
dently of the form of the 2M -dimensional charge vector
Q of a single wire.

One can verify that the tunneling vectors (3.6) sat-
isfy the Haldane criterion (2.11), as expressed in Eqs.
(2.12), if Eqs. (2.17) hold, with the help of the following
observations. First, note that these tunneling vectors
coincide with the tunneling vectors (2.13) defined in Sec.
II B in the case (d, k0) = (2, 1), which was studied there.
Second, note that Eqs. (2.12a) and (2.12b) hold if Eqs.
(2.17) hold. Third, recall that if a hypercubic star s
and a hypercubic plaquette p overlap with one another,
then they share two wires (see Ref. [56]). With this in
mind, we can see that Eq. (2.12c) holds for the tunnel-
ing vectors (3.6) by focusing on the case where the star
s and plaquette p overlap [since Eq. (2.12c) holds triv-
ially otherwise]. This can be seen by looking only at
the parts of the tunneling vectors (3.6) that lie in the
crystal plane that contains the two wires in the union of
s and p. The projection of the tunneling vectors (3.6)
into this plane is, by construction, precisely the set of
tunneling vectors (2.13) defined in Sec. II B (but spe-

cialized from the outset to the case v
(j)
1 = v

(j)
2 = v(j)

and w
(j)
1 = w

(j)
2 = w(j)). Equation (2.12c) then follows.

Having seen that the tunneling vectors (3.6) en-
code charge-conserving many-body interactions and are
Haldane-compatible, one must next determine that
these tunneling vectors are sufficient in number to gap
out all 2M Nw gapless degrees of freedom in the array
of quantum wires.

Recall from the discussion in Sec. II B that, in order to
produce a gapped array of quantum wires, one requires
M Nw admissible tunneling vectors (since each admissi-
ble tunneling vector gaps out two gapless modes). It is
therefore necessary to compare the number of tunneling
vectors in the set defined in Eqs. (3.6) with the number
of wires in the array. From Eqs. (3.2), (3.3c), and (3.4c),
we see that

Ns +Np ≥ Nw, (3.7)

with strict equality occurring in arrays of type (2, 1),
which were studied in Sec. II.

In cases where Eq. (3.7) is an inequality, the ques-
tion arises of how one can account for the extra gapless
degrees of freedom. In this case, we can appeal to in-
tuition developed from the study of toric codes in arbi-
trary dimensions (see, e.g., Ref. [56]). In a toric code on
a hypercubic lattice of type (d, k0) (with spin-1/2 de-
grees of freedom, rather than quantum wires, placed on
the centers of elementary k0-cells of the d-dimensional
hypercubic lattice), the same inequality shown in Eq.
(3.7) holds (with the number of spins now given by Nw).
However, in the toric code of type (d, k0), there are pre-
cisely Ns + Np − Nw local constraints that account for
the discrepancy between the number of spin-1/2 degrees
of freedom and the total number of stars and plaque-
ttes. For example, in the three-dimensional toric code
labeled by (3, 1), the product of all two-dimensional pla-
quettes on the surface of a cubic unit cell of the lattice
is equal to 1. This introduces N local constraints, since
there are N such cubes in the lattice. From Eqs. (3.2),
(3.3c), and (3.4c), we have Nw = 3N , Ns = N , and
Np = 3N . The N local constraints thus account for
the Ns + Np − Nw = N missing degrees of freedom.
(Note that, similarly to the toric code, there are also
further nonlocal constraints among the tunneling vec-
tors. These are important for determining the topolog-
ical ground-state degeneracy.)

In the corresponding array of coupled quantum wires,
the local constraints described above translate into lin-
ear dependencies within the sets {T (j)

s } and {T (j)
p } for

each flavor j = 1, . . . ,M . In other words, if there are
Ns +Np > Nw tunneling vectors for each of the M fla-
vors of hypercubic stars and plaquettes, then precisely
Ns +Np−Nw of these tunneling vectors are linearly de-
pendent. This ensures that an array of quantum wires
with 2M Nw gapless degrees of freedom has precisely
MNw linearly independent tunneling vectors of the form
(3.6). We will provide an example of this linear depen-
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dence in the next section, where we present an array of
coupled wires of type (3, 1).

Once an appropriate set of interactions encoded by

the tunneling vectors T (j)
s and T (j)

p has been chosen,
for example by the construction outlined in this sec-
tion, the d-dimensional array of quantum wires becomes
a gapped D ≡ (d+ 1)-dimensional state of matter. The
excitations of this state of matter, as well as their (pos-
sibly) fractional quantum numbers and any associated
topological degeneracy on the D-torus, can be studied
using the methods of Sec. II C. As in that section, one
finds that excitations are created and propagated by

solitons in the pinned fields T (j)T
s KΦ and T (j)T

p KΦ.
Depending on the values of d and k0 that characterize
the underlying hypercubic lattice, these defects will be
pointlike, stringlike, or membranelike in nature. When
periodic boundary conditions are imposed, propagat-
ing these pointlike, stringlike, or membranelike defects
across the entire system defines nonlocal string and/or
membrane operators, whose algebra can be used to de-
termine the presence or absence of topological order in
the strongly-interacting, D-dimensional, gapped phase
of matter.

C. Example: Zm topological order in
four-dimensional space from coupled wires

In this section, we provide a concrete example of how
the construction of Abelian topological states of mat-
ter outlined in Sec. II can be generalized to higher di-
mensions. In particular, we construct four-dimensional
analogs of the Zm topological states of matter explored
in Sec. II D.

Our starting point is a cubic array of quantum wires
of type (3, 1), with periodic boundary conditions im-
posed in all four spatial directions from the outset. [We
will also consider in parallel a related realization of Zm
topological order that starts from the dual array of type
(3, 2).] This array has the stars and plaquettes shown
in Fig. 12(b). We use the coordinates x, y, and z to la-
bel directions within the cubic array, and w to label the
coordinate along each wire.

The initial Lagrangian of the system of decoupled
wires is precisely the one described in Sec. II D 1 for
a system with Nw = 3N quantum wires, each contain-
ing 2M = 2 gapless degrees of freedom. In particular,
starting from the free Lagrangian (2.1) with

K ..= 13N ⊗Kb, (3.8)

where the bosonic K-matrix Kb is defined in Eq. (2.3b),
we perform the change of basis (2.18) with the 2 × 2
matrix W given by Eq. (2.57). In this way, we obtain a

theory of decoupled wires with the K-matrix K̃m given
in Eq. (2.58). (It is worth pointing out here that this
initial phase of the construction is, as we have seen in
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FIG. 13. Pictorial representations of the tunneling vectors
(a) T̃s and (b) T̃p, defined in Eqs. (3.6), for the array of
quantum wires of type (3, 1). As in Fig. 10, they are built
using the vectors ṽ and w̃ defined in Eqs. (2.63).

this paragraph, independent of the dimensionality of the
array of quantum wires.)

Next, we couple the wires with the many-body in-

teractions
˜̂
L{T̃ }, defined as in Eq. (2.7), for tunneling

vectors T̃ given by Eqs. (3.6) with the two-dimensional
vectors ṽ and w̃ defined in Eqs. (2.63). These tunneling
vectors are shown in Fig. 13 for the array of type (3,1),
and in Fig. 14 for the array of type (3,2). Using these
pictorial representations of the tunneling vectors, one
can verify that both sets of tunneling vectors satisfy the
Haldane criterion (2.11) with the K-matrix (2.58), as
desired. Furthermore, it is straightforward to check that
these tunneling vectors are charge-conserving. They
satisfy Eq. (2.10a) for any charge vector Q of the form
(2.1f).

We now verify that the tunneling vectors depicted in
Figs. 13 and 14 are sufficient in number to produce a
gapped four-dimensional state of matter. We will focus
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FIG. 14. Pictorial representations of the tunneling vectors
(a) T̃s and (b) T̃p, defined in Eqs. (3.6), for the array of
quantum wires of type (3, 2). As in Figs. 10 and 13, they are
built using the vectors ṽ and w̃ defined in Eqs. (2.63).

here on the array of coupled wires of type (3, 1), since
the counting is identical for the array of type (3, 2). To
do this, we recall from Sec. III B that the total number
of tunneling vectors is given by Ns + Np = 4N , while
the total number of gapless degrees of freedom in the
array of decoupled quantum wires is 2Nw = 6N . Since
only 3N linearly independent tunneling vectors are nec-
essary to produce a fully gapped state of matter, there
must be a set of local constraints that removes N tun-
neling vectors from the Haldane set H. One can check
that this is indeed the case, as the set of six tunnel-
ing vectors Tp lining the surface of any cubic cell of the
three-dimensional cubic lattice are linearly dependent.
One can verify this statement by computing the Gram
matrix with elements

Gpp′ .
.= T T

p Tp′ , (3.9)

where the plaquettes p and p′ border such a cubic cell.
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FIG. 15. Pictorial representation of the six plaquette-
centered tunneling vectors Tp surrounding a cubic cell of
the array of quantum wires labeled by (3,1). (Folding sides
2, . . . , 5 upwards out of the page and placing side 6 on top
constructs the cubic cell.) The numbers 1, . . . , 6 label these
tunneling vectors in the order in which they appear in the
Gram matrix G in Eq. (3.10). The signs ± indicate whether
a ±1 appears in the tunneling vector associated with that
link.

One finds (see Fig. 15 for guidance) that

G =




4 −1 −1 +1 +1 0
−1 4 −1 0 +1 +1
−1 −1 4 +1 0 +1
+1 0 +1 4 −1 −1
+1 +1 0 −1 4 −1
0 +1 +1 −1 −1 4



, (3.10)

which has vanishing determinant, indicating that this
set of six tunneling vectors is linearly dependent. Since
the cubic lattice contains exactly N such cubes when
periodic boundary conditions are imposed, there are N
linearly dependent vectors that can be removed from
the Haldane set H. [Note that a similar set of local con-
straints for stars holds in the case of the array of wires
of type (3,2). This is due to the duality between hyper-
cubic arrays of types (d, k0) and (d, d − k0) mentioned
in Sec. III A.]

On the basis of the above arguments, we conclude
that the cubic arrays of types (3, 1) and (3, 2) both yield
fully gapped, four-dimensional states of matter when
periodic boundary conditions are imposed. The excita-
tions of both states of matter can be studied according
to the methodology laid out in Sec. II C, and by exam-
ple in Sec. II D 2. As in that section, the building blocks
of excitations in the array of coupled wires are the local
operators

Ŝ†sCs

(w) ..= exp
(
−i

˜̂
φsCs

,2(w)
)

(3.11a)
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and

P̂ †pCp

(w) ..= exp

(
+i

˜̂
φpCp

,1(w)

)
, (3.11b)

and the bilocal operators

Ŝ†sCs

(w1, w2) ..= Ŝ†sCs

(w2) ŜsCs

(w1)

= exp

(
− i

w2∫

w1

dw ∂w
˜̂
φsCs

,2(w)

)
,

(3.12a)

and

P̂ †pCp

(w1, w2) ..= P̂ †pCp

(w2) P̂pCp

(w1)

= exp

(
+ i

w2∫

w1

dw ∂w
˜̂
φpCp

,1(w)

)
.

(3.12b)

Here, we recall that the coordinate along each wire is
now labeled by w, and that the indices Cs = 1, . . . , 2[d−
(k0−1)] and Cp ..= 1, . . . , 2(k0 +1) label the generalized
cardinal directions associated with each star or plaque-
tte.

The effects of the operators defined in Eqs. (3.11) and

(3.12) on the pinned fields T T
s K̃ Φ̃ and T T

p K̃ Φ̃ can be
computed analogously to Eqs. (2.32) and (2.34). As
shown there, these operators generate solitons in a sin-
gle wire and give rise to the excitations of the array of
coupled wires. One can deduce whether the excitations
created and propagated by these operators are point-
like, stringlike, or membranelike by first acting with one
of these operators on a single link. This creates some
number of defective stars or plaquettes (depending on
the coordination number of that link and whether or
not the operator acts along the direction of the wire).
From there, one can grow a surface with excitations on
its boundary by attempting to heal all defects created
in this way with further applications of the operators
defined in Eqs. (3.11) or (3.12). Processes analogous to
this one are shown in Figs. 4 and 5 for the array of type
(2, 1) studied in Sec. II. As in Sec. II D 2, the electric
charge associated with these defects can be computed
as in Eq. (2.66). The excitations of the array of type
(3, 1) differ in character from those of the array of type
(3, 2), as we shall now see.

The excitations of the array of type (3, 1) can be
pointlike, linelike, or membranelike in nature. To see
this, note that applying the operator Ŝ†sCs

(w) in the

wire labeled by sCs
creates two defective stars, as there

are two stars bordering each link in the array of wires.
These defective stars can be propagated away from one
another, much as in Fig. 4, by further applications of the

operator Ŝ†sCs

(w). Consequently, we may view the de-

fective stars as pointlike excitations with electric charge
±2/m [recall Eq. (2.66)], connected by a “string” of
solitons. One can also construct linelike excitations,
for example by acting instead with the bilocal opera-
tor Ŝ†sCs

(w1, w2), similarly to Fig. 5(a)-(b).

On the other hand, suppose that one applies the op-
erator P̂ †pCp

(w) in the wire labeled by pCp
. In this

case, one creates four defective plaquettes, as each
link is shared by four plaquettes. Attempting to heal
these defects by subsequent applications of the operator
P̂ †pCp

(w) leads to a two-dimensional membrane of soli-

tons with linelike defects on its edge, much like in Fig.
5(c)-(d). Furthermore, one can also create a 3-brane of
solitons with two-dimensional membranelike excitations
on its terminating surfaces, by applying the operator
P̂ †pCp

(w1, w2) instead of P̂ †pCp

(w).

A similar set of excitations can be constructed for
the case of the array of type (3, 2). The only differ-
ence is that, in this case, the stars naturally form soli-
ton membranes, similarly to the plaquettes in the array
of type (3, 1). This makes sense in light of the dual-
ity between these two arrays of quantum wires, which
exchanges stars and plaquettes, and therefore also nec-
essarily exchanges star and plaquette defects.

We now demonstrate that the gapped four-
dimensional phases of matter associated with the cubic
arrays of types (3, 1) and (3, 2) are topologically ordered.
calculating the minimal topological ground-state degen-
eracy on the four-torus,

T4 ≡ S1 × S1 × S1 × S1, (3.13)

by generalizing the analysis of Sec. II C 6, i.e., by pre-
senting the algebra of nonlocal operators from which
the degeneracy is derived. We focus on the array of
type (3, 1), as the degeneracy of the array of type (3, 2)
is the same by the duality discussed in Sec. III A. In
both cases, the origin of the multidimensionality of the
ground-state manifold is the nontrivial (for m > 1)
equal-time algebra

Ŝ†j (w) P̂ †j (0, L) = P̂ †j (0, L) Ŝ†j (w) e−i 2π/m,

P̂ †j (w) Ŝ†j (0, L) = Ŝ†j (0, L) P̂ †j (w) e+i 2π/m,
(3.14)

which holds independently of dimensionality or lattice
geometry as it is a property of operators defined in a
single wire. Consequently, there is no obstruction to
repeating this analysis for any hypercubic array of type
(d, k0).

The ground state degeneracy on T4 of the array of
type (3, 1) is encoded in the algebra of the nonlocal op-
erators

ÔP,Ωx̂ŷẑ (w) ..=
∏

pCp
∈Ωx̂ŷẑ

P †pCp

(w), (3.15a)
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ÔP,Ωx̂ŷŵ ..=
∏

pCp
∈Ωx̂ŷ

P †pCp

(0, L), (3.15b)

ÔP,Ωx̂ẑŵ ..=
∏

pCp
∈Ωx̂ẑ

P †pCp

(0, L), (3.15c)

ÔP,Ωŷẑŵ ..=
∏

pCp
∈Ωŷẑ

P †pCp

(0, L), (3.15d)

which act along 3-branes, and

ÔS,Γx(w) ..=
∏

sCs
∈Γx

Ŝ†sCs

(w), (3.15e)

ÔS,Γy (w) ..=
∏

sCs
∈Γy

Ŝ†sCs

(w), (3.15f)

ÔS,Γz (w) ..=
∏

sCs
∈Γz

Ŝ†sCs

(w), (3.15g)

ÔS,Γw ..= Ŝ†s0(0, L), (3.15h)

which act along strings. The volume Ωx̂ŷẑ, the surface
Ωx̂ŷ, the line Γx, etc. are defined analogously to their
counterparts in Sec. II C 6. Their algebra is found to be

ÔP,Ωx̂ŷẑ (w) ÔS,Γw = ÔS,Γw ÔP,Ωx̂ŷẑ (w) e+i 2π/m,

(3.16a)

ÔP,Ωx̂ŷŵ ÔS,Γz (w) = ÔS,Γz (w) ÔP,Ωx̂ŷŵ e
−i 2π/m,

(3.16b)

ÔP,Ωx̂ẑŵ ÔS,Γy (w) = ÔS,Γy (w) ÔP,Ωx̂ẑŵ e
−i 2π/m,

(3.16c)

ÔP,Ωŷẑŵ ÔS,Γx(w) = ÔS,Γx(w) ÔP,Ωŷẑŵ e
−i 2π/m,

(3.16d)

where we have made extensive use of Eq. (3.14). Simi-
larly to what was found in Sec. II D 3, each line of the
above algebra is independent from (i.e., commutes with)
the others, and contributes an m-fold topological degen-
eracy. We conclude that the total topological degener-
acy on the four-torus of this state of matter is

DT4 = m4. (3.17)

For m = 2, the 16-fold degeneracy coincides with the
ground-state degeneracy of the four-dimensional toric
code defined on the hypercubic lattice of type (4, 1) [56].
For m > 1, we have therefore arrived at a state of mat-
ter whose low-lying excitations and topological ground-
state degeneracy on the four-torus are consistent with
a Zm-topologically-ordered phase in four spatial dimen-
sions.

From here, one could further generalize the discus-
sion of Sec. II D 4 in order to enumerate the possi-
ble gapped or gapless states of matter on the three-
dimensional boundary of the four-dimensional bulk

topological phase. Terminating the cubic lattice of type
(3, 1) in the y-direction, say, leads to a surface lattice of
type (2, 1), i.e., a square lattice with wires on the links.
One is then free to impose any single-particle tunneling
or many-body interactions one wishes on the surface,
so long as these surface terms are Haldane-compatible
with the bulk. For example, one could search the space
of tunneling vectors like those defined in Sec. II B to
generate a set of allowed many-body interactions. This
method of studying the surface states can be readily
generalized to any hypercubic array of quantum wires
of type (d, k0), like those studied in Sec. III, to answer
questions about higher-dimensional generalizations of
the concept of surface topological order, for example.

The discussion of this section can be generalized to
arrays of quantum wires of type (d, k0) to produce
Zm-topologically-ordered phases in higher dimensions.
Many of these higher-dimensional topological states of
matter are particularly interesting in that they exhibit
topological order at finite temperature [56]. The lowest-
dimensional Zm-topologically-ordered phase exhibiting
topological order at finite temperature is the toric code
of type (4,2). The discussion of this section demon-
strates that one cannot realize a topological state of
matter in the universality class of the toric code of type
(4,2) starting from an array of quantum wires of type
(3,1) or (3,2). This is because both of these arrays yield
topological states of matter whose degeneracy is consis-
tent with the toric code of type (4,1) [recall Eq. (3.17)].
However, this does not preclude the possibility of design-
ing arrays of quantum wires to yield topological states of
matter in D = 5 or greater that have topological order
at finite temperature. The detailed study of such phases
is beyond the scope of this work, but nevertheless a very
interesting problem for future study.

IV. CONCLUSION

In this paper, we have outlined a general strategy for
designing Abelian topological phases of matter inD spa-
tial dimensions by coupling an array of quantum wires
in d = D − 1 dimensions. This strategy hinges on the
use of counting arguments introduced by Haldane [58]
to search for a set of compatible many-body interactions
that yields a gapped state of matter when the couplings
associated with these interactions are taken to infinity.
The enumeration of the set of possible interactions, and
the determination of their compatibility, is aided by as-
sociating each interaction term with one of the general-
ized stars and plaquettes of a d-dimensional hypercubic
lattice embedded in D-dimensional space. In this sense,
the interactions that produce a gapped state of matter
are arranged in a manner reminiscent of the commuting
projectors in a d-dimensional toric code.

We found that many simplifications arise due to this
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similarity, making these theories analytically tractable
much as their forebears in two dimensions. In par-
ticular, the excitations of the arrays of coupled wires
can be studied thanks in part to analogies with similar
excitations in the d-dimensional toric code. The frac-
tional charge and statistics of these excitations is readily
accessible with standard tools from Abelian bosoniza-
tion. Furthermore, when periodic boundary conditions
are imposed, the topological degeneracy (if any) of
the strongly-interacting, gapped, D-dimensional state
of matter can be determined with these tools. Finally,
when the array of coupled wires is defined on a manifold
with boundary, the stability of gapless surface states on
the d-dimensional boundary of the D-dimensional topo-
logical phase can be addressed conveniently with the
same formalism in one less spatial dimension, provided
that any single-particle tunnelings or many-body inter-
actions added to the surface are compatible with those
in the bulk.

There are many directions for future work in light of
these findings. First, it is important to note that the
class of many-body interactions introduced in Secs. II B
and III B are not the only ones possible, even when
making use of the analogy to d-dimensional toric codes;
there are many other sets of compatible tunneling vec-
tors that can be associated with the stars and plaque-
ttes of hypercubic lattices. Consequently, it would be
instructive to map out the set of all Abelian topological
phases possible in three and higher dimensions that are
accessible with this approach. Even in three spatial di-
mensions, there are many possible topological field theo-
ries beyond the BF-type theories explored in Sec. II C 7,
such as those studied in Refs. [32], [69], and [33]. It
would also be interesting to determine whether other
exactly solvable commuting-projector Hamiltonians, be-

sides toric codes, could be used as bases for wire con-
structions like the ones undertaken in this work, result-
ing in different classes of topological phases. Second,
it would be interesting to study the surface states of
these coupled-wire arrays in more detail. In particular,
finding a useful way to characterize gapless surfaces by
extending the formalism presented in this paper would
be a very useful pursuit, as one might ask the question
of whether it is possible to find novel non-Fermi liq-
uids or conformal field theories on interacting surfaces of
topological phases in three or more dimensions. In this
pursuit, it would also be crucial to make contact with
existing work on the bulk-boundary correspondence in
three dimensions [29, 30, 33]. Third, it is natural to ask
how to extend this formalism to describe non-Abelian
topological states of matter. This could be done by in-
vestigating the possibility of using non-Abelian, rather
than Abelian, bosonization to describe the gapless wires
and their couplings to one another, as has been done
in Refs. [5] and [70]. Fourth, as was hinted at in this
work, wire constructions of topological phases in spa-
tial dimensions greater than two could prove useful in
the study of surface topological order [40–47]. In par-
ticular, it may be possible to use non-Abelian bosoniza-
tion techniques on the surfaces of Abelian topological
phases to study non-Abelian surface topological orders
in a manner that treats the surface and bulk physics
simultaneously.
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Appendix A: Deconfinement of defects along the direction of a wire

In this Appendix, we demonstrate that a pair of star defects in three dimensions, like the one shown in Fig.
4(b), are deconfined from one another along the z-direction, despite the string of solitons connecting them. This
is because a link in the string, which consists of two solitons on two legs of a star (see Fig. 4), costs no additional
energy if the solitons are displaced relative to one another along the z-axes of their respective wires. While we focus
here on the specfic example of star defects in the Zm-topologically-ordered state of matter constructed in Sec. II D,
the same analysis can be adapted to demonstrate that pointlike star and plaquette defects are deconfined in any
dimension.

To see that this is the case, let us consider a star s with two 2π/m solitons on the eastern and western legs. We
parameterize these solitons by decomposing the bosonic fields as

φ̃sE ,1(z) = φ̃ zE ,1(z) + φ̃′sE ,1(z),

φ̃sW ,1(z) = φ̃ zW ,1(z) + φ̃′sW ,1(z),
(A1a)
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where

φ̃ z0,1(z) =
π

m

[
tanh

(
z − z0

ξ

)
+ 1

]
(A1b)

is a fixed soliton profile and the primed fields φ̃
′
sC ,1

(z) (C = N,S,E,W ) contain quantum fluctuations. If zE = zW ,

then we have

T̃ T
s K̃ Φ̃(z) = m

[
φ̃sN ,1(z)− φ̃sS ,1(z) + φ̃′sE ,1(z)− φ̃′sW ,1(z)

]
≡ T̃ T

s K̃ Φ̃′(z), (A2a)

whereas if zE 6= zW , we have

T̃ T
s K̃ Φ̃(z) = m

[
φ̃sN ,1(z)− φ̃sS ,1(z) + φ̃′sE ,1(z)− φ̃′sW ,1(z) + δφ̃s(z)

]
, (A2b)

where

δφ̃s(z) =
π

m

[
tanh

(
z − zE
ξ

)
− tanh

(
z − zW

ξ

)]
. (A2c)

In the limit ξ → 0 (i.e., the limit of perfectly sharp solitons),

δφ̃s(z) −→
2π

m
[Θ(z − zE)−Θ(z − zW )] , (A3)

so the difference in energy between the case with zE 6= zW and the case with zE = zW is given by

δEs = Us

∫
dz
[
cos
(
T̃ T
s K̃ Φ̃′(z) +mδφ̃s(z)

)
− cos

(
T̃ T
s K̃ Φ̃′(z)

)]

= Us

zE∫

zW

dz
[
cos
(
T̃ T
s K̃ Φ̃′(z) + 2π

)
− cos

(
T̃ T
s K̃ Φ̃′(z)

)]

= 0.

(A4)

Consequently, it costs no extra energy to move each soliton in a string up and down along each wire, as long as the
solitons are sufficiently sharp.
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[56] D. Mazáč and A. Hamma, Annals of Physics 327, 2096

(2012).
[57] T. Neupert, L. Santos, S. Ryu, C. Chamon, and

C. Mudry, Phys. Rev. B 84, 165107 (2011).
[58] F. D. M. Haldane, Phys. Rev. Lett. 74, 2090 (1995).
[59] J. Leinaas and J. Myrheim, Nuovo Cim. B 37, 1 (1977).
[60] X.-G. Wen, Phys. Rev. B 40, 7387 (1989).
[61] X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[62] X.-G. Wen, Int. J. Mod. Phys. B 05, 1641 (1991).
[63] D. Wesolowski, Y. Hosotani, and C.-L. Ho, Int. J. Mod.

Phys. A 09, 969 (1994).

[64] We henceforth assume that the vectors ṽ(j) and w̃(j)
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