
ar
X

iv
:1

60
1.

00
98

3v
1 

 [p
hy

si
cs

.p
la

sm
-p

h]
  5

 J
an

 2
01

6

On the Quasicollisionality of Plasmas with Small-Scale Electric Turbulence
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Chaotic electromagnetic fields are common in many relativistic plasma environments, where they can be
excited by instabilities on kinetic spatial scales. When strong electric fluctuations exist on sub-electron scales,
they may lead to small-angle, stochastic deflections of the electrons’ pitch-angles. Under certain conditions,
this closely resembles the effect of Coulomb collisions in collisional plasmas. The electric pitch-angle diffusion
coefficient acts as an effective collision – or “quasi-collision” – frequency. We show that quasi-collisions may
radically alter the expected radiative transport properties of candidate plasmas. In particular, we consider the
quasi-collisional generalization of the classical Faraday effect.

I. INTRODUCTION

Electromagnetic turbulence has enormous significance to
many astrophysical plasmas. It is believed to play a signifi-
cant role, for example, in the mediation of supernova shocks
andγ-ray bursts [1–4]. In other high-energy-density (HED)
environments, such as the laboratory setting, the manipulation
and control of electromagnetic turbulence is crucial to fusion
energy science and inertial confinement fusion (ICF) [5, 6].
Stochastic electromagnetic fields are important to laboratory
astrophysics laser-plasma experiments as well [7, 8]. In many
cases, these fields reside at extremely small spatial scales. For
this reason, the consideration of particle transport and radia-
tion production in these plasmas requires a special treatment.

In our previous work, Ref. [9], we showed that sub-Larmor-
scale (“small-scale”) magnetic turbulence induces particle
dynamics reminiscent of binary Coulomb interactions. A
stochastic magnetic field is deemed “sub-Larmor-scale”, with
respect to a sub-population of electrons, if the electrons’ef-
fective Larmor radius,rL ≡ γeβmec

2/e〈δB2〉1/2 is greater
than, or comparable to, the magnetic correlation length,λB ,
i.e.,λB . rL. Hereβ = v/c is the dimensionless particle ve-
locity, 〈δB2〉1/2 is the rms value of the fluctuating magnetic
field, me is the electron mass,c is the speed of light,e is the
electric charge, andγe is the electron’s Lorentz factor.

The random small-angle deflections of electrons, caused by
small-scale magnetic fields, leads to an effective collisionality.
This is because the magnetic deflections are always transverse
to the direction of motion; thus, they resemble, in the small
deflection angle regime, random Coulomb deflections. The
magnetic “quasi-collision” frequency is equal to the (small-
angle) pitch-angle diffusion coefficient. In this work, we
will show that this concept may be readily generalized to the
case of relativistic electrons moving through electric turbu-
lence. Although electric fields, in general, lead to both trans-
verse and parallel accelerations, if the electron is movingsuf-
ficiently fast, then the transverse change in momentum will
be far greater than the parallel impulse – hence, the electron’s
motion will approximately match the purely transverse deflec-
tions seen in the magnetic case.

In this work, we will properly define the “small-scale”
regime for pure electric turbulence, and we will derive the
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pitch-angle diffusion coefficient – i.e. the quasi-collision fre-
quency. We will, furthermore, investigate the consequences
this realization of quasi-collisionality has for the dielectric
properties of plasmas with these small-scale electric fields.
In particular, we will explore Faraday rotation in magnetized
plasmas with small-scale electric fluctuations. We will show
that strong small-scale fields, and the accompanying strong
quasi-collisionality, may radically modify the Faraday rota-
tion effect in these plasmas – possibly leading, in fact, to neg-
ative rotation measures.

Finally, we will consider the environments best suited
for the physical realization of these effects. We will argue
that plasmas with mildly relativistic electrons, but yet non-
relativistic ions, are likely required. We will show that plas-
mas with short-wavelength ion acoustic turbulence presenta
very likely candidate.

The rest of the paper is organized as follows. Section II
briefly reviews the analytic theory of pitch-angle diffusion in
small-scale random electric fields. We then show that the
pitch-angle diffusion coefficient, itself, acts as an effective
collision frequency. In Section III, we explore the impli-
cations for electromagnetic wave propagation in magnetized
plasmas with high quasi-collisionality. Next, Section IV con-
siders environments favorable for the realization of theseef-
fects. Finally, Section V is the conclusions. We use cgs units
throughout the paper.

II. ANALYTIC THEORY

Suppose an electron test particle is moving, with speed,v,
through an external random electric field. We will assume that
the electric field fluctuates very slowly – such that the particle
dynamics, on relevant time-scales, are largely unaffectedby
the field’s time-variability.

For “small-scale” turbulence, the principal time-scale
which governs particle transport is the time to transit a sin-
gle electric field correlation length,λt

E – where the “t” super-
script indicates that the correlation length is specified along
the path with a “transverse” component of the electric field.
If the transit time,τ tE ∼ λt

E/v, is much less than the field-
variability time-scale,Ω−1

r , then we may treat the electric field
as approximately time-independent.

To proceed, we it be helpful to discuss the radiation pro-
duced by an electron moving through an external random
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field. In a random electromagnetic field, the acceleration
occurs principally along the extent of a correlation length.
Since we assume that the electron is moving ultrarelativisti-
cally, it will undergo a slight deflection,δαE , as it traverses
λt
E . If δαE is much less than the radiation beaming angle,

∆θ ∼ 1/γe, then the electron will move approximately rec-
tilinearly, undergoing only slight random deflections along its
path. In this case, the radiation will be beamed along the ex-
tent of the electron’s relatively fixed direction of motion.An
observer on axis would, therefore, see a signal for the elec-
tron’s entire trajectory. Furthermore, the radiation spectrum
will be wholly determined by the statistical properties of the
underlying acceleration mechanism [10] – which, in this case,
is an electric field. The electron emits radiation in the small-
angle jitter regime when the acceleration mechanism is a ran-
dom (static) magnetic field [1, 11–16]. Similarly, the radiation
produced by ultrarelativistic electrons moving through elec-
trostatic turbulence, in the small-scale regime, is nearlyiden-
tical; for this reason, it is considered a subclass of small-angle
jitter radiation [17, 18].

We have previously shown that these random deflections
initiate pitch-angle diffusion in sub-Larmor-scale magnetic
turbulence, and that this diffusion coefficient is intimately re-
lated to the radiation spectrum [15, 16]. Later, we showed that
this relation holds for small-scale electric turbulence, as well
[18].

We consider an electric field as “small-scale” if:

Ω−1

r ≫ τ tE , (1a)

∆θ ≫ δαE . (1b)

Since the electron is moving ultrarelativistically, the com-
ponent of its acceleration transverse to its direction of motion
will be far larger than the parallel component. Thus, its motion
occupies the small deflection angle regime when∆θ ≫ δαE

– which is the reason its radiation spectrum resembles the jit-
ter spectrum. Additionally, transverse accelerations leave the
particle’s kinetic energy fixed. For this reason, we will assume
a constantv.

Next, since the deflections are assumed to be small,δαE ∼
∆pt/p – wherep = γemev is the kinetic momentum of the
electron, and∆pt is the change in its transverse momentum.
Since∆pt/τE ∼ eEt, whereEt is the component of the elec-
tric field perpendicular (transverse) to the electron’s direction
of motion,∆pt/p ∼ eEt/γemev; thus:

δαE ∼ eEt

γemev
τE . (2)

Consequently, sinceDelec.
αα ∼ δα2

E/τE , the electric diffusion
coefficient must be:

Delec.
αα =

λt
E

γ2
ecβ

3
〈Ω⊥

E

2〉, (3)

where:

Ω⊥
E ≡ eEt/mec. (4)

A. Pitch-angle Diffusion as Effective Collisionality

The small-angle electric deflections are analogous to
electron-ion collisional deflections in a number of ways; they
both approximately conserve particle energy, and they bothin-
duce deflections that are approximately transverse to the elec-
tron’s initial velocity.

Where the two effects differ, however, is in the nature of
the stochasticity. In an idealized scenario, an electron ina
collisional plasma is continuously deflected by ions along its
trajectory. In contrast, an electron moving through small-scale
electric turbulence is deflected on a characteristic spatial scale
of finite length: the correlation length. Thus, the two descrip-
tions are only equivalent on a coarse-graining. Indeed, the
electron motion in small-scale turbulence resembles electron-
ion collisions only on spatial scales greater than – or similar
to – the electric correlation length.

Thus, we must require that:

L & λt
E , (5)

whereL is the characteristic length scale of the system. With
regard to the propagation properties of plasmas, this dimen-
sion is on the order of the wave packet size. For pure plane
waves, however,L is unlimited.

Next, we may infer this effective collision frequency di-
rectly from Eq. (3). The pitch-angle deflections are assumed
to be small. Thus, atτc, the following condition must hold:

Delec.
αα τc ∼ 1. (6)

Therefore,Delec.
αα must be the effective “collision” frequency.

B. A Phenomenological Definition of the Quasi-Collision
Frequency

EstimatingDelec.
αα , in real plasmas, may be difficult since it

depends upon the small-scale correlation length – a quantity
which requires knowledge of the electric spectral distribution
to obtain. In principle, if the nature of the instability which
produces the electric fluctuations is known, then we may pro-
duce a rough estimate of the characteristic spatial scales which
ultimately set the correlation length. However, in many cases,
the type of turbulent fluctuations may not be known; hence, an
a priori estimate of the electric spectrum may not be available.

In Ref. [9], we showed that the emission coefficient,jω
— which is the radiant power per unit frequency per unit
volume per unit solid-angle — is directly proportional to
the (magnetic) quasi-collision frequency; this is akin to the
Bremsstrahlung radiation equivalent which defines an effec-
tive electron-ion collision frequency [19]:

jBrems
ω = Re[n]

(

ω2
pekBTe

8π3c3

)

νei, (7)

where Re[n] is the real part of the plasma’s index of refraction,
ωpe =

√

4πnee2/me is the (non-relativistic) electron plasma
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frequency,Te is the electron temperature,ne is the electron
number density,kB is the Boltzmann constant, andνei is an
electron-ion collision frequency. The jitter equivalent follows
a similar pattern; to wit [9]:

j jitter
ω ∼

(

meω
2
pe

24π2c

)

γ2

ee
2β2Dmag.

αα , (8)

where:

Dmag.
αα ∝ λt

B

γ2
ecβ

〈Ω2

B〉, (9)

is the magnetic pitch-angle diffusion coefficient. Comparing
Eqs. (9) and (3), it is clear that the main difference is theβ-
factor in the denominator.

Since relativistic electrons in small-scale electric turbu-
lence, also, emit jitter radiation [17, 18], we may do the same
here. First, we must consider the total radiated power of the
electron. To this end, we use the general Larmor formula,
which is given by [20]:

Ptot. =
2e2γ6

e

3c

[

β̇
2 − (β × β̇)2

]

. (10)

For purely electric fields, we have the acceleration:

β̇ = − 1

γe
[ΩE − β (β ·ΩE)] . (11)

However, we are assuming that the transverse acceleration
dominates, hence:

β̇ ≈ − 1

γe
Ω

⊥
E , (12)

and, therefore:

P jitter
tot ≈ 2

3
cr2eγ

2

eE
2

t , (13)

wherere = e2/mec
2 is the classical electron radius. Next,

the small-angle jitter radiation spectrum has a characteristic
frequency known as the jitter frequency,

ωj = γ2

ekEβc, (14)

wherekE is the dominant wave number of the (small-scale)
turbulent fluctuations. Next, we may write the spectral power
for a single electron as:

Pjitter(ω) ≡
dP

dω
∼ P jitter

tot

ωj
. (15)

Substitution of Eq. (14) into Eq. (13), results in the expression:

Pjitter(ω) ∼
2

3
λt
Eβ

−1

(

e4

m2
ec

4

)

E2

t , (16)

where the relation,k−1

E ∼ λt
E , has been employed [16]. Com-

paring this result to Eq. (3), we find that the power spectrum is
directly proportional to the pitch-angle diffusion coefficient:

Pjitter(ω) ∼
2

3

e2

c
γ2

eβ
2Delec.

αα , (17)

which is equivalent to the magnetic expression [9].
Finally, if we assume isotropic emission by all plasma elec-

trons, then the jitter emission coefficient may be obtained
from Eq. (17) with the multiplication ofne/4π. Thus:

j jitter
ω =

(

meω
2

pe

24π2c

)

γ2

ee
2β2Delec.

αα . (18)

Thus, Eq. (18) – once again – provides an attractive phe-
nomenological definition for the “jitter” collision frequency,
which may be obtained directly from the small-angle jitter ra-
diation emission coefficient.

III. “QUASI-COLLISIONAL” FARADAY EFFECT

Faraday rotation is the result of magnetically-induced bire-
fringence in a dielectric medium. When light propagates
through a plasma – parallel to a uniform magnetic field –
the left- and right-circular polarizations have differentindices
of refraction. Consequently, a linearly polarized wave would
suffer a rotation of its polarization axis as it traverses such a
medium, since any linear polarization may be envisioned as
the superposition left- and right-circular polarizations.

In Ref. [9], we showed that magnetic-induced quasi-
collisionality alters the expected form of this Faraday rotation,
∆Ψ, for magnetized plasmas. The “collisionless” Faraday ro-
tation is given by the, well-known, expression:

∆Ψcollisionless= λ2RM , (19)

whereλ is the electromagnetic radiation wavelength, and the
standardrotation measure is:

RM ≡ e3

2πm2
ec

2

ˆ

ne(z)B‖(z)dz, (20)

whereB‖(z) is the component of the magnetic field, atz, par-
allel to electromagnetic wave-vector. The “collisionless” and
“quasi-collisional” expressions have the ratio [9]:

∆Ψquasi-collisional

∆Ψcollisionless
≃
(

1− Z2
)

(1 + Z2)2
, (21)

where Z ≡ νeff/ω is the normalized quasi-collision fre-
quency,νeff is the (effective) quasi-collision frequency, and
ω = 2πc/λ. Additionally, quasi-collisions lead to absorption,
with an absorption coefficient,αFarad

absp , given by [9]:

αFarad
absp ≡ −

ω2

peνeff

c (ω2 + νeff
2)

[

1∓ 2Ωceω

(ω2 + νeff
2)

]

, (22)

whereΩce ≡ eB‖/mec and the± sign refers to the right- and
left-circular polarizations, respectively.

Eq. (19) formally holds for a non-relativistic, “cold” plasma
with ω ≫ Ωce andω3 ≫ ω3

pe. Consequently, it fails for the
scenario considered here, since Eq. (1) implies that the elec-
tron population is relativistic.
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Fortunately, the Faraday expression for relativistic veloci-
ties is a straightforward generalization of Eq. (19) [21]:

∆Ψcollisionless≈
K0(σ)

K2(σ)
λ2RM , (23)

whereσ ≡ mec
2/kBTe andKj(x) is a modified Bessel func-

tion of the second-kind. Thus, under the first-order substi-
tution rule for including the effects of collisions, i.e.ω →
ω+ iνeff, Eq. (21) will hold for the relativistic regime as well.
Likewise,

αFarad
absp → K0(σ)

K2(σ)
αFarad

absp . (24)

Finally, we will assume that the small-scale electric fluctu-
ations are predominantly along the direction of the ambient
magnetic field,B. This assumption allows us to disregard ad-
ditional complications, such as diffusion induced by “E cross
B” drifts.

The properties of the curve represented by Eq. (21) are ex-
plored in Ref. [9]. In Figure 1, we have plotted Eq. (21) as a
function of the electric fluctuation strength (the “rms” value
of the electric field) for mildly relativistic electrons (γe ∼ 2).
As shown in Ref. [18], the small deflection angle regime holds
well even at these mildly relativistic speeds. Five curves ap-
pear in Figure 1, each differing by the electric correlation
length, which is chosen to be equal to the relativistic electron
skin-depth,de = c

√
γe/ωpe (the reasons for this choice will

become more apparent in the following section). The electron
number densities are:ne = 1, 102, 104, 106, and108 cm−3;
the electromagnetic wave frequency,ω/2π, is 10 GHz.

The curves in Figure 1 exhibit a universal feature: the ro-
tation angle reverses sign when the electric fluctuation field is
sufficiently strong. As〈E2〉1/2 → ∞, the rotation is com-
pletely nullified. Notice that, for typical interstellar densities
(ne ∼ 1 cm−3), a noticeable effect can be seen for electric
field strengths> 1.0 G.

Next, since strong quasi-collisions imply strong “colli-
sional” absorption, we must consider the result of Eq. (24) –
which will, in turn, constrain the strength of the ambient mag-
netic field. In Figure 2, the e-folding distance (i.e.1/αFarad

absp )
is plotted as function ofB0 for thene = 108 cm−3 case from
Figure 1. We see that the “collisional” absorption occurs on
a many kilometer length scale. WithB0 = 10 G, the signal
would be reduced to a factor of0.01 around44 km. Thus,
the limiting factor in the possible observation of the quasi-
collisional Faraday effect is this absorption; which is, nec-
essarily, strong when the quasi-collision frequency is large.

In the penultimate section, we will argue that small-scale
ion acoustic turbulence may present the ideal realization of
electric quasi-collisionality in actual space, astrophysical, and
laboratory plasmas.

IV. SMALL-SCALE ELECTRIC TURBULENCE IN REAL
PLASMAS

For the realization of small-scale electric turbulence, the
second condition from Eq. (1) is most difficult to satisfy. Us-
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Figure 1. (Color online) Normalized Faraday rotation angle– i.e. Eq.
(21) – vs. the electric fluctuation strength for various electron densi-
ties. The electron number densities are (from right to left): ne = 1,
10

2, 104, 106, and108 cm−3; the electron temperature is0.511 MeV
(or γe ∼ 2), andω/2π = 10 GHz. These curves exhibit a universal
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rotation is completely nullified.
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8 cm−3 case from Figure 1. We see that the “col-
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44 km.

ing τE ∼ c/λt
E andλt

E ∼ k−1

E , this condition is equivalent
to:

k2Ec
2

Ω2
r

≫ 1. (25)

In accord with Refs. [17, 18], we may be inclined to choose
“cold” electron langmuir waves to mediate the turbulence.
The dispersion relation, in this case, would beΩr = ωrel.

pe –
whereωrel.

pe ≡ ωpe/
√
γe, is the relativistic plasma frequency.
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Thus, Eq. (25) would require that:

kEc ≫ ωrel.
pe , (26)

or, equivalently, that the correlation length is smaller than the
electron skin-depth. However, this is problematic. The ther-
mally corrected, ultra-relativistic, dispersion relation for elec-
tron langmuir waves is[22]:

Ω2

r =
σ

3
ω2

pe+
9

5
k2c2. (27)

Thus, the condition thatΩr ≃ ωrel.
pe contradicts Eq. (26),

since these “cold” plasma waves require that(27/5)k2c2 ≪
σω2

pe ∼ ω2
pe/γe. Therefore, electron Langmuir turbulence

may not self-consistently satisfy all the conditions that we re-
quire.

Alternatively, we may consider turbulence mediated by the
ion population. In this case, we must be careful to specify
electric fluctuations that exist on spatial scales comparable to
the Debye length,λD, since the ion time-scales will be suffi-
ciently long enough that electrons will effectively screenout
these fields on electron scales; i.e. these “large-scale” electric
fields have very little effect on the electron population.

When electric fluctuations exist on scales smaller than the
Debye shielding length, then “quasi-neutrality” can be bro-
ken. Thus, withmi ≫ γeme (wheremi is the ion mass), we
require that:

kEλD & 1, (28)

whereλD = vthe/ωpe, andvthe ∼ c is the electron thermal
velocity.

One possible realization of this condition is provided by the
very short wavelength branch of the ion acoustic mode. These
modes can exist in magnetized plasmas, and we assume for
our purposes that the wave-vector is nearly aligned with the
direction of the ambient magnetic field. For a non-relativistic,
“cold” plasma, IfkEλD & 1, the ion acoustic mode has the
frequency [23]:

Ωr =
ωpi

1 + (kλD)−2
, (29)

whereωpi is the ion plasma frequency. From this, we see that
Ωr ≈ ωpi whenkλD ≫ 1. Ion acoustic turbulence may be
strongly excited when the electron temperature far exceeds
the ion temperature [23] – a scenario which is required here,
since the ions are being treated as non-relativistic, whilethe
electrons are – at least – mildly relativistic (i.e.mi ≫ γeme).

V. CONCLUSIONS

In our previous work, Ref. [9], we investigated “quasi-
collisionality” induced by small-scale magnetic turbulence in,

otherwise, collisionless plasma environments. We found that
the pitch-angle diffusion coefficient [15, 16] acts as an effec-
tive collision frequency. In this work, we extended this con-
cept to small-scale electrostatic turbulence – in the relativistic
regime.

We derived the quasi-collision frequency – Eq. (3) – for rel-
ativistic electrons moving through small-scale electric turbu-
lence. Just as the electron-ion (Coulomb) collision frequency
may be conveniently defined by the Bremsstrahlung emission
coefficient, Eq. (18) offers a simple phenomenological rep-
resentation for the quasi-collision frequency in terms of the
(electric) jitter emission coefficient. Jitter radiation may be
directly observable in several of these plasma environments.
In fact, there is evidence that the (magnetic) jitter radiation
from mildly relativistic electrons may be observable in high-
intensity solid-density laser plasma experiments [24].

Next, we explored the consequences of high electrically-
induced quasi-collisionality for Faraday rotation in magne-
tized plasmas. We found – as we did, previously, for
magnetically-induced quasi-collisionality – that the Faraday
rotation measure,RM , may obtain negative values, in this
case. In fact, as the quasi-collision frequency becomes suf-
ficiently large,RM → 0.

We, furthermore, speculated upon the most likely set of
plasma parameters that would allow for direct observation
of this, modified, Faraday effect. We found that quasi-
collisional absorption may severely limit possible space and
astrophysical applications of our model – since strong quasi-
collisionality, also, implies strong “collisional” absorption.

Finally, we argued that plasmas with high-frequency, small-
scale, ion-acoustic turbulence – whereTe ≫ Ti – offer the
most likely environment in which these effects may be phys-
ically realized. Supernova remnant (SNR) shocks, for ex-
ample, may host ion-acoustic instabilities that may drive the
required strong, turbulent fluctuations [25]. Acoustic modes
have, additionally, been implicated in the phenomenon of pul-
sar eclipsing, and astrophysical accretion flows whereTi 6= Te

[23]. Thus, a number of astrophysical environments may be
favorable candidates.

However, owing to the high “collisional” absorption that
accompanies high quasi-collisionality, the Faraday signature
of these plasmas may be completely obscured. For this rea-
son, space and laboratory plasmas may be better suited for
the direct observation of this unique signature. Laser-plasmas,
specifically, are an attractive candidate – since sufficiently in-
tense laser pulses can quickly heat an electron population and
separate it from an ion background. Such a plasma configura-
tion is especially susceptible to ion-acoustic instabilities.

To conclude, the obtained results suggest that small-scale
electric fluctuations conceal a “collisional” signature, which
may provide a useful radiative diagnostic tool – via its strong
impact upon Faraday rotation in these plasmas – for the eval-
uation of small-scale electric turbulence in laboratory, astro-
physical, space and solar plasmas.
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