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Abstract

We investigate the thermodynamic limit of a class of particle systems in random interaction that

encompasses coupled oscillators systems and neuronal networks. In these systems, the interactions

depend asymmetrically on the state of both particle and its amplitude is scaled by a Gaussian

random coefficient whose variance decays as the inverse of the network size. We show that the

empirical measure satisfies a large-deviation principle with good rate function achieving its minimum

at a unique probability measure, implying convergence of the empirical measure and propagation of

chaos. The limit is characterized through a complex non Markovian implicit equation in which the

network interaction term is replaced by a Gaussian field depending on the state of the particle.
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1 Introduction

Interacting particle systems in random environments are ubiquitous in the theory of complex systems.
They are useful to model a broad range of phenomena, from neural networks of the brain [26] to com-
munication networks [6], internet traffic [17], disordered physical systems [3] and economics and social
science [24]. A particularly important model in life science is the Kuramoto model of coupled oscilla-
tors [20] which is one of the seldom models that are completely solvable. All these models have in common

to be generally described by a variable (X i,N
t )i=1···N ∈ RN governing the state of each particle, and that

satisfies a stochastic differential equation of type:

dX i,N
t =



f(ri, t,X
i,N
t ) +

N∑

j=1

Jijb(X
i,N
t , Xj,N

t )



 dt+ λdW i
t . (1)
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In that equation, each particle has its own intrinsic dynamics governed by the map f(ri, ·, ·), where ri
accounts for the heterogeneous nature of the different particles; it is also subject to stochastic fluctuations
governed a Brownian motion (W i

t )t≥0 independent of the fluctuations of other particles. The summation

term describes the interactions: it is given by the product of a typical interaction term b(X i,N
t , Xj,N

t )
modulated by a coefficient Jij ∈ R governing the amplitude of the interaction of particle j onto i.

The heterogeneities of the intrinsic dynamics are classically taken into account by considering that
(ri)i=1···N are identically distributed (i.i.d.) random variables ri ∈ D, 1 ≤ i ≤ N , where D ⊆ R

d for
some d ∈ N∗ with distribution π ∈ M+

1 (D) absolutely continuous with respect to Lebesgue’s measure.
Similarly, the heterogeneous interaction amplitude are i.i.d. random variables. In order for the interaction
term to remain non-trivial (i.e., neither diverge nor disappear) in the thermodynamic limit, their law
depends crucially on the network size N . It is thus natural to consider that their mean is equivalent to
J̄
N

with J̄ ∈ R. A canonical situation that we refer to as the mean-field interactions model corresponds
to the case where the variance is negligible compared to 1

N
(typically, this covers the case where these

coefficients are deterministic). In that case, under sufficient regularity conditions on the intrinsic dynamics
and interaction maps, it is well known [30, 13, 22, 21] that the system enjoys the propagation of chaos
property and converges towards a McKean-Vlasov equation

dX̄t(r) =

(
f(r, t, X̄t(r)) + J̄

∫
b(X̄t(r), z)p(t, r

′, dz)dπ(r′)

)
dt+ λdWt, (2)

where p is the law of X̄ . We note that in this limit, the interaction term has become implicit and
deterministic, and the possible randomness of microscopic interactions do not affect in any way the
behavior of the macroscopic system.

There is only one regime preserving a nontrivial contribution of microscopic disorder in the thermo-
dynamic limit: this occurs when the variance of the interaction amplitudes is equivalent to σ2/N . This
regime is particularly rich, nonstandard, and still not fully understood. In this scaling, it was shown in dif-
ferent situations that the level of disorder has an important impact on the macroscopic behavior: in spin
glass systems, this parameter governs the glassy transition [25], in randomly connected neural networks,
this parameter governs a transition from trivial states to chaotic dynamics [26], and in the Kuramoto
model, a very singular and somewhat controversial transition occurs as disorder increase [10, 11, 27, 28].
Mathematically, important advances were achieved in the characterization of the thermodynamics limit
of Langevin spin glass systems by Ben-Arous, Dembo and Guionnet [3, 18, 1, 4]. These works are funda-
mental in the field in that they introduce a general methodology to characterize systems of bounded spins
with linear interactions only depending on the state of the other particles (i.e., b(x, y) = y). Their results
prove large deviations properties on the empirical measure, propagation of chaos and convergence towards
a non-Markov implicit equation, and in the spherical spin glass case, aging [1]. The same technique was
used in neuroscience in order to understand the dynamics rate models in which the interactions also only
depend on pre-synaptic cells via a sigmoid transform, b(x, y) = S(y), in discrete-time systems [23, 16],
and then developed to incorporate multiple populations, spatial extension and delays [7, 8]. These results
would apply to system (1) with b(x, y) ≡ B(y) sufficiently regular, and would prove a convergence towards
an equation of type:

dX̄t(r) =
(
f(r, t, X̄t(r)) + U X̄

t

)
dt+ λdWt, (3)

where U X̄
t would be a Gaussian process with mean and covariance:

{
E[U X̄

t ] = J̄
∫
D
E[B(X̄t(r

′))]dπ(r′)

Cov(UX̄
t ,U

X̄
s ) = σ2

∫
D
E[B(X̄t(r

′))B(X̄s(r
′))dπ(r′).

In applications, it is important to consider cases in which b(x, y) do depend on x. This is the case
in most accurate biophysical descriptions of neural networks [19, 14], of interacting oscillators [20], of
swarming models [9] and gases [5]. However, even from the physical viewpoint, it is not clear how previous
mathematical results extend to maps b(x, y) depending on x. Indeed, under Boltzmann’s molecular chaos
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ansatz - particles are iid and independent of the interaction amplitudes - and assuming b(x, y) ≡ B(y),

the terms
∑

j Jijb(X
i,N
t , Xj,N

t ) are likely to converge towards U X̄
t by the virtue of a functional central

limit theorem. But this is no longer true in the general case since the terms in the sum would no more
be independent. Moreover, is not immediately clear what could be a possible limit for that system.

We undertake here the mathematical analysis of the limits of equation (1) in the general case. In
the case of Gaussian interaction amplitudes, we will show that the averaged empirical measure satisfies a
weak large-deviation principle with a good rate function achieving its minimum at a unique probability
measure for sufficiently small times. This implies both convergence and propagation of chaos of the
system. While a similar short-time restriction for spin glass systems [3] was relaxed to the price of a
weak large-deviation principle [18], the dependence in x of the interaction terms seems to prevent such
extensions.

The paper is organized as follow. We introduce our mathematical setting in Section 2 and state
our results. Section 3 provides the proof of our weak Large Deviations Principle that relies on the
identification of the good rate function, an upper-bound result for compact sets, as well as a tightness
result. In Section 4, we demonstrate that the good rate function admits a unique minimum, that it is
also the unique solution of (3), and proves the convergence of the empirical measure toward it.

2 Mathematical setting and main results

The interacting particle system (1) is a diffusion in random environment, and as such involves two
probability spaces:

• The intrinsic dynamics of the particles as well as their interaction amplitudes are random variables
on a complete probability space (Ω̃, F̃ ,P). These heterogeneities are taken into account through
the independent random variables (ri)i∈N and (Jij)i,j ∈ N2. They constitute the random environ-
ment of the dynamic and are frozen in time. Their realization do not depend on the evolution of
the system. We will denote E the expectation under P , and by EJ and PJ the expectation and
probability over the variables Jij only.

• The particles are driven by (Ω,F , (Ft)t,P) independent standard Brownian motions (W i
t ).

The resulting dynamics of the particles thus depends both on the random environment and on the
Brownian motions. We assume that the parameters of the dynamics of the network equations enjoy the
following regularity assumptions:

1. The function f is Kf -Lipschitz-continuous in its two variables.

2. The function b is bounded and Kb-Lipschitz-continuous in both variables. We note ‖b‖∞ its supre-
mum.

We assume that the initial conditions are independent and with a law that only depends on the hetero-
geneity parameters (ri)i=1,··· ,N . This initial condition, that we call chaotic, corresponds to the assumption
that there exists a collection of laws (µ0(r))r∈D ∈ M+

1 (R) such that

Law of (x0) =

N⊗

i=1

µ0(ri). (4)

The classical good assumptions on f and b ensures the well-posedness of the system:

Proposition 1. For each J ∈ RN×N , r ∈ DN , and T > 0, there exists a unique weak solution to the
system (1) defined on [0, T ] with initial condition (4). Moreover, this solution is square integrable.

Let T > 0, and QN
r
(J) be this unique weak solution restricted to the σ-algebra σ(X i,N

s , 1 ≤ i ≤ N, 0 ≤
s ≤ T ). QN

r
(J) is a probability measure on CN , where C := C

(
[0, T ],R

)
, and depends on both realizations
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of J and r. We are interested in proving a Large Deviation Principle (LDP) for the double-layer empirical
measure,

µ̂N =
1

N

N∑

i=1

δ(Xi,N ,ri). (5)

In this perspective, let us introduce the system without interaction, i.e. when Jij = 0 for all (i, j). In
this case, the law of a node with intrinsic dynamic with heterogeneity parameter r ∈ D is given by the
unique solution of this one-dimensional SDE:

{
dXt = f(r, t,Xt)dt+ λdWt

(X0)
L
=µ0(r).

(6)

We denote its restriction to the σ-algebra GT = σ(Xs, s ≤ T ) by Pr. As shown in [8, Appendix B], we can
integrate this probability on the possible realizations of r to obtain a well-defined probability measure
on M+

1

(
C × D

)
given by dP (x, r) := dPr(x)dπ(r). Under P⊗N , particles are i.i.d. so that Sanov’s

theorem ensures the existence of a full LDP for the empirical measure, with good rate function given by
the relative entropy I(.|P )1. The purpose of this article is to derive, from this result, another LDP for
the interacting system.

A direct application of Girsanov theorem yields that QN
r
(J) is absolutely continuous with respect to

Pr :=
⊗N

i=1 Pri , with density:

dQN
r
(J)

dPr

(x, r) = exp

(
N∑

i=1

∫ T

0

( 1
λ

N∑

j=1

Jijb(x
i
t, x

j
t )
)
dWt(x

i, ri) −
1

2

∫ T

0

( 1
λ

N∑

j=1

Jijb(x
i
t, x

j
t )
)2

dt

)
, (7)

where Wt(x, r) := xt−x0

λ
−
∫ t

0
f(r,s,xs)

λ
ds, ∀(x, r) ∈ C ×D in order to make W (., r) a Brownian motion

under Pr. Moreover, as done in [8, Appendix B], we can define properly the averaged probability measure
QN := E

(
QN

r
(J)
)
∈ M+

1

(
(C ×D)N

)
. We now state our main results.

Theorem 2. Under QN = E(QN
r
(J)) the law of the N -particles system averaged over all possible con-

figurations (realizations of (J, r)), µ̂N converges towards δQ.

This convergence is the consequence of the following two theorems. The first provides a weak LDP
for the empirical measure through an upper-bound for compact sets and the tightness of the sequence
QN
(
µ̂N ∈ .

)
. The second characterizes the unique minimum of the good rate function.

Theorem 3. 1. There exists a good rate function H : M+
1 (C ×D) such that for any compact subset

K of M+
1 (C ×D):

lim sup
N→∞

1

N
logQN(µ̂N ∈ K) ≤ − inf

K
H.

2. For any real number ε > 0, there exists a compact subset Kε such that for any integer N ,

QN (µ̂N /∈ Kε) ≤ ε.

This theorem is proved in section 3.

Theorem 4. The good rate function H is such that:

1We recall that if Σ is a Polish space, the relative entropy of ν ∈ M+

1
(Σ) with respect to µ is defined by:

I(ν|µ) :=







∫

log
dν

dµ
dν if ν ≪ µ,

∞ otherwise .
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1. It achieves its minimal value at a unique probability measure Q ∈ M+
1 (C ×D) satisfying:

Q ≃ P,
dQ

dP
(x, r) = E

[
exp

{
1

λ

∫ T

0

GQ
t (x)dWt(x, r) −

1

2λ2

∫ T

0

(GQ
t (x))

2dt

}]

where (Wt(., r))t∈[0,T ] is a Pr-brownian motion, and GQ(x) is, under P, a Gaussian process with
mean:

E [GQ
t (x)] =

∫

C×D

J̄b(xt, yt)dQ(y, r′)

and covariance:

E [GQ
t (x)G

Q
s (x)] =

∫
(
C×D

)2 σ
2b(xt, yt)b(xs, ys)dQ(y, r′).

2. This provides an implicit self-consistent equation on the limit distribution Q.

This theorem will be demonstrated in section 4.
Based on this result, we can further conclude on the following:

Theorem 5. For any connectivity matrix J , the system enjoys the propagation of chaos property. In
other terms, QN is Q-chaotic, i.e. for any bounded continuous functions (f1, · · · , fm) and any indexes
(k1, · · · , km), we have:

lim
N→∞

∫ m∏

j=1

fj(x
kj , rkj

)dQN (x) =
m∏

j=1

∫
fj(x)dQ(x).

This is a direct consequence of theorem 2, thanks to a result due to Alain-Sol Sznitman, see [29,
Lemma 3.1].

3 Large deviation principle

This section is devoted to proving the existence of a weak large deviations principle for the averaged
empirical measure. We start by constructing the appropriate good rate function before proving the
associated upper-bound and tightness results. Many point of the proof proceed as in precedent work
[3, 18, 7, 8]. To avoid reproduce fastidious proofs, already known in the literature, we will, in the sequel,
often rely on these precedent articles, and focus on the new difficulties arising from our setting.

3.1 Construction of the good rate function

For µ ∈ M+
1 (C ×D), we define the two following functions defined respectively on [0, T ]2×C and [0, T ]×C:






Kµ(s, t, x) :=
σ2

λ2

∫

C

b(xt, yt)b(xs, ys)dµ(y, r
′)

mµ(t, x) :=
J̄

λ

∫

C

b(xt, yt)dµ(y, r
′).

Both functions are bounded: |Kµ(s, t, x)| ≤ σ2‖b‖2
∞

λ2 and |mµ(t, x)| ≤ J̄‖b‖∞

λ
. Moreover, as µ charges

continuous functions, Kµ and mµ are continuous maps by the dominated convergence theorem.

SinceKµ has a covariance structure, we can define a probability space (Ω̃, F̃ , γ) and a family of stochas-
tic processes

(
Gµ(x)

)
x∈C,µ∈M+

1 (C×D)
, independent for different x, and such that Gµ(x) is a γ-centered

Gaussian process with covariance Kµ(., ., x) (see [18, Remark 2.14]). We denote Eγ the expectation under
γ.
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Remark 1. Let µ ∈ M+
1

(
C × D

)
, and let (eµi )i∈N be an orthonormal basis of L2

µ

(
C × D

)
. Let also for

any x ∈ C, t ∈ [0, T ], ρt,x ∈ L2
µ such that ρt,x(y, r) := b(xt, yt). As stated in [18], a possible explicit

construction for the Gµ(x) is given by

Gµ
t (x) :=

∑

i∈N

Ji(x)〈ρt,x, eµi 〉µ =
∑

i∈N

Ji(x)

∫
b(xt, yt)e

µ
i (y, r)µ(y, r),

where the
(
Ji(x)

)
i∈N,x∈C

are independent centered Gaussian variables of variance σ2.

We define

Xµ(x, r) :=

∫ T

0

(
Gµ

t (x) +mµ(t, x)
)
dWt(x, r) −

1

2

∫ T

0

(
Gµ

t (x) +mµ(t, x)
)2
dt.

Similarly, we define for any fixed N ∈ N

X i(x, r) :=

∫ T

0

Gi,N
t (x)dWt(x

i, ri)−
1

2

∫ T

0

Gi,N
t (x)

2
dt

with Gi,N
t (x) := 1

λ

∑N
j=1 Jijb(x

i
t, x

j
t ).

We will use in the demonstration the following inequalities related to the relative entropy. For p and
q two probability measures on a Polish space E, we recall the following identity (see e.g. [15, Lemma
3.2.13])

I(q|p) = sup

{∫

E

Φdq − log

∫

E

expΦdp ; Φ ∈ Cb(E)

}
,

which implies in particular that for any bounded measurable function Φ on E,
∫

C

Φdq − log

∫

C

expΦdp ≤ I(q|p). (8)

If Φ is a positive measurable function this inequality holds by monotone convergence, thus:
∫

C

Φdq ≤ I(q|p) + log

∫

C

expΦdp. (9)

We know state a key result to our analysis:

Lemma 6.
dQN

dP⊗N
= exp

{
NΓ(µ̂N )

}
.

where, for every µ ∈ M+
1 (C ×D),

Γ(µ) :=

∫

C×D

log

(
Eγ
[
exp

{
Xµ(x, r)

}])
dµ(x, r). (10)

Proof. Averaging the expression (7) on J and applying Fubini theorem, we find that QN ≪ P⊗N and,
by independence of the Jij ,

dQN

dP⊗N
(x, r) =

N∏

i=1

EJ
[
exp

(
X i(x, r)

)]
.

Here, x is the coordinate process taken under P⊗N , and displays no dependence with the Jij . More-

over
{
Gi,N

t (x), 0 ≤ t ≤ T
}

is, under PJ , a Gaussian process with covariance Kµ̂N
(t, s, xi), and mean

mµ̂N
(t, xi). We can thus write:

dQN

dP⊗N
= exp

{ N∑

i=1

log

(
Eγ
[
exp

{
X µ̂N (xi, ri)

}])}
= exp

{
NΓ(µ̂N )

}
.
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Γ has the following properties:

Proposition 7. For every µ ∈ M+
1

(
C ×D

)
,

1. Γ(µ) ≤ I(µ|P ). In particular, Γ(µ) whenever I(µ|P ) is.

2. If
2σ2‖b‖2

∞T

λ2 < 1, there exist real constants ι < 1 and η > 0, such that Γ(µ) ≤ ιI(µ|P ) + η.

Proof. (i):
Let Fµ denote the integrand in the formulation of Γ (10), and Fµ,M :

Fµ,M (x, r) := log

{
Eγ
[
M ∧ exp

{
Xµ(x, r)

}]}
.

The latter functional is positive bounded and measurable, thus inequality (9) holds. Taking M to infinity,
the monotone convergence theorem ensures that, for every a ≥ 1,

a

∫

C

Fµ(x)dµ(x, r) ≤ I(µ|P ) + log

{∫
exp aFµ(x)dP

}
= I(µ|P ) + log

{∫
Eγ
[
exp

{
Xµ(x, r)

}]a
dP (x, r)

}

Jensen
≤ I(µ|P ) + log

{∫
Eγ
[
exp

{
aXµ(x, r)

}]
dP (x, r)

}
Fubini
≤ I(µ|P ) + log

{
Eγ
[ ∫

exp
{
aXµ(x, r)

}
dP (x, r)

]}
.

(11)

W (·, r) being a Pr-Brownian motion, using the martingale property with a = 1 completes the proof.

(ii):
Let a > 1. As Gµ(x) cannot be extracted from the integral on dPr(x), we rely on Hölder inequality with
conjugate exponents (a, a

a−1 ) to make use of a martingale property.

∫
Eγ
[
exp

{
a

∫ T

0

(
Gµ

t (x) +mµ(t, x)
)
dWt(x, r) −

a

2

∫ T

0

(
Gµ

t (x) +mµ(t, x)
)2
dt
}]

dP (x, r) ≤
{∫

Eγ
[
exp

{
a2
∫ T

0

(
Gµ

t (x) +mµ(t, x)
)
dWt(x, r) −

a4

2

∫ T

0

(
Gµ

t (x) +mµ(t, x)
)2
dt
}]

dP (x, r)

} 1
a

×
{∫

Eγ
[
exp

{a2(a+ 1)

2

∫ T

0

(
Gµ

t (x) +mµ(t, x)
)2
dt
}]

dP (x, r)

} a−1
a

.

The first term is equal to 1 by the martingale property. The short-time hypothesis
2σ2‖b‖2

∞T

λ2 < 1
ensures finiteness of the second term: indeed, by Jensen and Fubini inequalities, we have

Eγ
[
exp

{a2(a+ 1)T

2

∫ T

0

(
Gµ

t (x) +mµ(t, x)
)2 dt

T

}]
≤
∫ T

0

∫
exp

{a2(a+ 1)T

2

(
Gµ

t (x) +mµ(t, x)
)2}

]
dt

T
.

Moreover, since
√
a2(a+ 1)T

(
Gµ

t (x)+mµ(t, x)
)
∼ N

(√
a2(a+ 1)Tmµ(t, x), a

2(a+1)TKµ(t, t, x)
)
under

γ, we are able, for a− 1 small enough and under the short time hypothesis, to use the following identity,
valid for ζ ∼ N (α, β) with β < 1:

E

[
exp

{1
2
ζ2
}]

=
1√

1− β
exp

{ α2

2(1− β)

}
= exp

{1
2

( α2

1− β
− log(1 − β)

)}
. (12)

We thus conclude that as soon as
2σ2‖b‖2

∞T

λ2 < 1, there exists a constant cT , uniform in x ∈ C, such that:

{∫
Eγ
[
exp

{a2(a+ 1)

2

∫ T

0

(
Gµ

t (x) +mµ(t, x)
)2
dt
}]

dP (x, r)

} a−1
a

≤ exp
{
(a− 1)cT

}
.

7



Therefore, by (11):

Γ(µ) ≤ 1

a
I(µ|P ) + (a− 1)cT .

Although Γ is neither bounded or continuous, preventing to rely on Varadhan’s lemma, we will prove
that the map

H(µ) :=

{
I(µ|P )− Γ(µ) if I(µ|P ) < ∞,

∞ otherwise .

is a good rate function associated with the desired weak large deviations principle of theorem (3). To do
so, let us introduce a linearization of Γ depending on a parameter ν ∈ M+

1

(
C ×D

)
:

Γν(µ) :=

∫

C

log

(
Eγ
[
exp

{
Xν(x, r)

}])
dµ(x, r).

A key observation is that

exp
{
NΓν(µ̂N )

}
dP⊗N (x) =

(
exp

{
Γν(δ(x,r))

}
dP (x, r)

)⊗N

=: dQν(x, r)
⊗N .

Sanov’s theorem ensures that the empirical measure satisfies a full LDP under Q⊗N
ν , with good rate

function I(.|Qν). Shall Varadhan lemma apply, the good rate function would also be given by

Hν :





M+
1 (C ×D) → R

+

µ →
{
I(µ|P )− Γν(µ) if I(µ|P ) < ∞,

∞ otherwise .

We can show as in [8, Theorem 11] this intuitive result:

Theorem 8. Qν is a well defined probability measure on M+
1 (C×D), and Hν(µ) = I(µ|Qν). In particular

Hν is a good rate fonction.

We introduce the Vaserstein distance on M+
1 (C ×D), compatible with the weak topology:

dT (µ, ν) := inf
ξ

{∫
sup

0≤t≤T

|xt − yt|2 + |r − r′|dξ
(
(x, r), (y, r′)

)} 1
2

the infimum being taken on the laws ξ with marginals µ and ν. This metric will control the error between
H and its pleasant approximation Hν :

Theorem 9. 1. ∃CT > 0, such that for every µ, ν ∈ M+
1

(
C ×D

)
,

|Γν(µ)− Γ(µ)| ≤ CT

(
1 + I(µ|P )

)
dT (µ, ν).

2. If
2σ2‖b‖2

∞T

λ2 < 1, H is a good rate function.

Proof. The basic mechanism for the proof is similar to [2, Lemma 3.3-3.4]. However, the dependence
in x of the Gaussian Gµ(x) introduces specific technicalities on which we focus our attention to handle
point (i). Moreover, point (ii) previously shown without restriction on time in cases where b(x, y) is
independent of x is now shown under the short-time hypothesis of Proposition 7 (ii).
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In detail, it is proven in [7, 8] that Γν writes Γν(µ) = Γ1,ν(µ) + Γ2,ν(µ) with

Γ1,ν(µ) :=

∫

C×D

{
log
(
Eγ
[
exp

(
− 1

2

∫ T

0

Gν
t (x)

2dt
)])

− 1

2

∫ T

0

mν(t, x)
2dt

}
dµ(x, r),

Γ2,ν(µ) :=
1

2

∫ ∫ (∫
Gν

t (x)(dWt(x, r) −mν(t, x)dt)
)2

dγ
K̃T

ν,x
dµ(x, r)

+

∫ ∫
mν(t, x)dWt(x, r)dµ(x, r),

and

dγ
K̃T

ν,x
:=

exp
{
− 1

2

∫ T

0

(
Gν

t (x)
)2
dt
}

∫
exp

{
− 1

2

∫ T

0

(
Gν

t (x)
)2
dt
}
dγ

dγ.

Moreover, in [3, Appendix A], the authors demonstrated that for any fixed x ∈ C and ν ∈ M+
1

(
C ×D

)
,

γ
K̃T

ν,x
is a probability measure on Ω under which Gν(x) is a centered Gaussian process with covariance

K̃t
ν,x(s, u) :=

(∫ exp
{
− 1

2

∫ t

0

(
Gν

u(x)
)2
du
}
Gν

u(x)G
ν
s (x)

∫
exp

{
− 1

2

∫ t

0 (G
ν
u(x)

)2
du
}
dγ

dγ

)
.

The previous decomposition has the interest of splitting the difficulties: |Γν(µ) − Γ(µ)| ≤ |Γ1,ν(µ) −
Γ1(µ)| + |Γ2,ν(µ) − Γ2(µ)|. While the first term is easily controlled by CT dT (µ, ν) (see [8, Lemma.12]),
the semi-martingale term requires new tools. We will thereby restrict our proof to |Γ2,ν(µ) − Γ2(µ)| ≤
CT (1 + I(µ|P ))dT (µ, ν).

Note that if µ 6≪ P the inequality is satisfied as I(µ|P ) = ∞. We can then suppose µ ≪ P . This
implies that µ has a measurable density ρµ with respect to B

(
C ×D

)
:

dµ(x, r) = ρµ(x, r)dP (x, r) = ρµ(x, r)dPr(x)dπ(r).

Hence, for r ∈ D such that cµ(r) :=
∫
D
ρµ(x, r)dPr(x) 6= 0, we can properly define µr ∈ M+

1 (C) by

dµr(x) :=
ρµ(x,r)
cµ(r)

dPr(x). Of course µr ≪ Pr, and

dµ(x, r) = dµr(x)cµ(r)dπ(r). (13)

Remark that cµ is a measurable function in space, and that the set {r ∈ D, cµ(r) = 0} will not impact
the value of the integral of interest.

Let ξ be a probability measure on
(
C × D

)2
with marginals µ and ν, and γξ be the law of a bi-

dimensional centered Gaussian process (G,G′) with covariance Kξ given by

Kξ(s, t, x) :=
σ2

λ2

∫ (
b(xs, ys)b(xt, yt) b(xs, ys)b(xt, zt)
b(xs, zs)b(xt, yt) b(xs, zs)b(xt, zt)

)
dξ
(
(x, r′), (z, r̃′)

)
. (14)

In the expression of Γ2,ν(µ) and Γ2(µ) we can then replace the triplet (Gµ, Gν , γ) by (G,G′, γξ). Let

ΛT

(
G(x)

)
=

exp

(
− 1

2

∫ T

0 Gt(x)
2dt

)

∫
exp

(
− 1

2

∫ T

0
Gt(x)2dt

)
dγξ

.

9



Then,

|Γ2,ν(µ)− Γ2(µ)| ≤
1

2

∣∣∣∣
∫ ∫ (∫

G′
t(x)(dWt(x, r) −mν(t, x)dt)

)2(
ΛT

(
G′(x)

)
− ΛT

(
G(x)

))
dγξdµ(x, r)

∣∣∣∣

+
1

2

∣∣∣∣
∫ ∫ {(∫

Gt(x)(dWt(x, r)−mµ(t, x)dt)
)2

−
(∫

G′
t(x)(dWt(x, r)−mν(t, x)dt)

)2}
ΛT

(
G(x)

)
dγξdµ(x, r)

∣∣∣∣

+
∣∣∣
∫ ∫

(mν −mµ)(t, x)dWt(x, r)dµ(x, r)
∣∣∣

C.S.

≤ 1

2

B1︷ ︸︸ ︷∫ ∫ ∣∣∣ΛT (G(x)) − ΛT (G
′(x))

∣∣∣
( ∫ T

0

Gt(x)(dWt(x, r) −mν(t, x)dt)
)2

dγξdµ(x, r)

+
1

2

∏

ε=±1

(∫ ∫
ΛT (G(x))

( ∫ T

0

(
Gt(x) + εG′

t(x)
)
(dWt(x, r) −mν(t, x)dt)

)2
dγξdµ

) 1
2

︸ ︷︷ ︸
B2

+
1

2

∏

ε=±1

(∫ ∫
ΛT (G(x))

{∫ T

0

Gt(x)
(
(1 + ε)dWt(x, r) −

(
mµ(t, x) + εmν(t, x)

)
dt
)}2

dγξdµ

) 1
2

︸ ︷︷ ︸
B3

+

(∫ ∣∣∣
∫ T

0

(mν −mµ)(t, x)dWt(x, r)
∣∣∣
2

dµ

) 1
2

︸ ︷︷ ︸
B4

.

Remark that these four terms are of the form

∫ ∫
F (G,G′)(x)

( ∫ T

0

Ht(G,G′, µ, ν)(x)
(
αdWt(x, r) −Mt(µ, ν)(x)dt

))2
dγξdµ(x, r)

with α equals 0 or 1. Controlling them will be the object of the following technical lemma.

Lemma 10. For µ, ν ∈ M+
1 (C ×D), let

A(µ, ν) :=

∫ ∫
F (G,G′)(x)

( ∫ T

0

Ht(G,G′, µ, ν)(x)
(
αdWt(x, r) −Mt(µ, ν)(x)dt

))2
dγξdµ(x, r)

where (G,G′) are, under γξ, centered Gaussian processes with covariance given by (14), H and M are
continuous progressively measurable processes, F is a positive measurable function, and α ∈ {0, 1}. Then,

A(µ, ν) ≤ CT

(
α
(
I(µ|P )+1

)
sup

C×[0,T ]

{
Eξ
[
H4

t F
2
]} 1

2

+α sup
C×[0,T ]

{
Eξ
[
FH2

t

]}
+ sup

C×[0,T ]

{
M2

t Eξ
[
FH2

t

]})
. (15)

Proof.

A(µ, ν) ≤ 2α

∫ ∫
F
(∫ T

0

HtdWt

︸ ︷︷ ︸
NT

)2
dγξdµ+ 2

∫ ∫
F
(∫ T

0

HtMtdt
)2

dγξdµ(x, r).

Ito calculus gives

N2
T = 2

∫ T

0

HtNtdWt +

∫ T

0

H2
t dt,

10



so that.

A(µ, ν) ≤ 4

∫ ∫ T

0

Eξ
[
αHtFNt

]
dWt

︸ ︷︷ ︸
ÑT

dµ+ 2

∫ ∫ T

0

Eξ
[
αFH2

t

]
dtdµ+ 2T

∫ ∫ T

0

M2
t Eξ
[
FH2

t

]
dtdµ, (16)

The two last terms of the righthand side of (16) are easy to handle taking the supremum on C × [0, T ].
The first one vanishes if α = 0, but is tricky when α = 1. In this last case, inequality (9) brings

∫
ÑTdµ

C.S

≤ 2
(∫

〈Ñ〉T dµ
) 1

2

(
I(µ|P ) + log

{∫
exp

{ Ñ2
T

4〈Ñ〉T
}
dP

}) 1
2

.

As Ñ is a P -local martingale, Dambis-Dubins-Schwarz theorem ensures that
Ñ2

T

4〈Ñ〉T
has the same law as

B2
〈Ñ〉T

4〈Ñ〉T
, where B is some P -Brownian Motion, so that exists a universal constant C satisfying

log

{∫
exp

{ Ñ2
T

4〈Ñ〉T
}
dP

}
≤ C.

Hence
∫

Ñtdµ ≤ C̃
( ∫ ∫ T

0

Eξ
[
HtFNt

]2
dtdµ

) 1
2 (
I(µ|P ) + 1

) 1
2

C.S.
≤ C̃sup

x∈C

{
Eξ
[
〈N〉tH2

t F
2
]} 1

2
(∫ T

0

Eξ
[ ∫ N2

t

4〈N〉t
dµ
]
dt
) 1

2 (
I(µ|P ) + 1

) 1
2

≤ CT sup
C×[0,T ]

{
Eξ
[
H2

sH
2
t F

2
]} 1

2 (
I(µ|P ) + 1

)
.

Cauchy-Schwarz inequality then yields the result.

To bound our four terms, we only have to check the majoration of the quantities αEξ
[
H4

t F
2
]
,

αEξ
[
FH2

t

]
, and M2

t Eξ
[
FH2

t

]
by the Vaserstein distance times a uniform constant on C × [0, T ]. We

will prove this for the first term, as an example, and leave the three other terms as an exercice to the
involved readers. Remark that,

ΛT (G(x)) = exp

{
− log

(∫
exp

(
− 1

2

∫ T

0

Gt(x)
2dt
)
dγξ

)
− 1

2

∫ T

0

Gt(x)
2dt

}
,

so that we can apply Jensen inequality to obtain

ΛT (G(x)) ≤ exp
{σ2‖b‖2∞T

2λ2

}
.

This yields

∣∣ΛT (G(x)) − ΛT (G
′(x))

∣∣ ≤ exp
{σ2‖b‖2∞T

2λ2

}( 1

2

∫ T

0

∣∣Gt(x)
2 −G′

t(x)
2
∣∣dt

︸ ︷︷ ︸
F1

+

∣∣∣ log
(∫

exp
(
− 1

2

∫ T

0

Gt(x)
2dt
)
dγξ

)
− log

(∫
exp

(
− 1

2

∫ T

0

G′
t(x)

2dt
)
dγξ

)∣∣∣
︸ ︷︷ ︸

F2

)
.

(17)
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Moreover,

F2(x) =

∣∣∣∣ log
(Eξ

[
exp

{
− 1

2

∫ T

0
Gt(x)

2dt
}]

Eξ
[
exp

{
− 1

2

∫ T

0
G′

t(x)
2dt
}]
)}∣∣∣∣ ≤

∣∣∣∣ log
(
1 +

Eξ
[
1
2

∫ T

0

∣∣Gt(x)
2 −G′

t(x)
2
∣∣dt
}]

Eξ
[
exp

{
− 1

2

∫ T

0
G′

t(x)
2dt
}]

)}∣∣∣∣

≤ 1

2
exp

{σ2‖b‖2∞T

2λ2

}
Eξ
[ ∫ T

0

∣∣Gt(x)
2 −G′

t(x)
2
∣∣dt
] C.S.

≤ CT Eξ
[ ∫ T

0

(
Gt(x)−G′

t(x)
)2
dt
] 1

2

≤ CT

{∫ ∫ T

0

(
b(xs, ys)− b(xs, zs)

)2
dtdξ

(
(y, r′), (z, r̃′)

)} 1
2 ≤ CT dT (µ, ν) (18)

so that one has for p ∈ {1, 2},

Eξ
[
G2p

t (x)F2(x)
]
≤ Eξ

[
G2p

t (x)
]
CT dT (µ, ν) ≤ CT

σ2p‖b‖2p∞
λ2p

dT (µ, ν)

as for

Eξ
[
G2

tF2

]
mν(t, x) ≤ CT

σ2‖b‖3∞J̄

λ3
dT (µ, ν),

where both upper-bounds is uniform in (x, t). Isserlis’ Theorem allows showing similar upper-bounds for
the terms involving F1.

3.2 Upper-bound and Tightness

We prove here a weak LDP relying on an upper-bound inequality for compact subsets, and tightness of

the family
(
QN
(
µ̂N ∈ .

))

N
. To prove the first point, we take advantage of the full LDP followed by µ̂N

under
(
Qν

)⊗N
, and control an error. The second point will rely on the exponential tightness of P⊗N .

These proofs are very close to the one developed by Guionnet [18].

Theorem 11. Under the condition
2σ2‖b‖2

∞T

λ2 < 1, we have:

1. For any compact subset K of M+
1 (C ×D),

lim sup
N→∞

1

N
logQN(µ̂N ∈ K) ≤ − inf

K
H.

2. For any real number ε > 0, there exists a compact set Kε of M+
1 (C ×D) such that, for any integer

N ,
QN (µ̂N /∈ Kε) ≤ ε.

Proof. (1): Let δ < 0. We can find an integer M and a family (νi)1≤i≤M of M+
1 (C ×D) such that

K ⊂
M⋃

i=1

B(νi, δ),

where B(νi, δ) =
{
µ|dT (µ, νi) < δ

}
. A very classical result (see e.g. [12, lemma 1.2.15]), ensures that

lim sup
1

N
logQN(µ̂N ∈ K) ≤ max

1≤i≤p
lim sup

1

N
logQN (µ̂N ∈ K ∩B(νi, δ)).

12



Lemma 10 yields:

QN (µ̂N ∈ K ∩B(ν, δ)) =

∫

µ̂N∈K
⋂

B(ν,δ)

exp
{
NΓ(µ̂N)

}
dP⊗N

=

∫

µ̂N∈K
⋂

B(ν,δ)

exp
{
N
(
Γ(µ̂N )− Γν(µ̂N )

)}
exp

{
NΓν(µ̂N )

}
dP⊗N .

Observe that, for conjugate exponents (p, q),

QN(µ̂N ∈ K ∩B(ν, δ)) =

∫

µ̂N∈K
⋂

B(ν,δ)

exp
{
N
(
Γ(µ̂N )− Γν(µ̂N )

)}
dQ⊗N

ν

≤ Q⊗N
ν

(
µ̂N ∈ K ∩B(ν, δ)

) 1
p

(∫

µ̂N∈K
⋂

B(ν,δ)

exp
{
qN
(
Γ(µ̂N )− Γν(µ̂N )

)}
dQ⊗N

ν

) 1
q

, .

(19)

Then, by definitions of Γ and Γν :

∫

µ̂N∈K
⋂

B(ν,δ)

exp
{
qN
(
Γ(µ̂N )− Γν(µ̂N )

)}
dQ⊗N

ν =

∫

µ̂N∈K∩B(ν,δ)

(
N∏

i=1

Eγ
[
expX µ̂N (xi, ri)

]

Eγ
[
expXν(xi, ri)

]
)q

dQ⊗N
ν

=

∫

µ̂N∈K∩B(ν,δ)

Eγ
[

N∏

i=1

(
exp

(
X µ̂N (xi, ri)−Xν(xi, ri)

)) ∏N
i=1 expX

ν(xi, ri)

Eγ
[∏N

i=1 expX
ν(xi, ri)

]
]q

dQ⊗N
ν

Jensen
≤

{∫

µ̂N∈K∩B(ν,δ)

Eγ
[

N∏

i=1

(
exp q

(
X µ̂N (xi, ri)−Xν(xi, ri)

)
expXν(xi, ri)

)]
dP⊗N

︸ ︷︷ ︸
BN

} 1
q

,

so that

QN(µ̂N ∈ K ∩B(ν, δ)) ≤ Q⊗N
ν

(
µ̂N ∈ K ∩B(ν, δ)

) 1
pB

1
q

N

The first term of the righthand side can be controlled by large deviations estimates. The second term
boundness ensue from the following lemma 12, proven in Appendix 5.

Lemma 12. For any real number q > 1, and if
2σ2‖b‖2

∞T

λ2 < 1, there exists a strictly positive real number
δq such that, for any δ < δq, there exists a function Cq(.) in R such that limδ→0 Cq(δ) = 0 and:

BN ≤ exp{Cq(δ)N}.

Concluding the proof of the first point can now be done exactly as in [3, Lemma 4.7].

Proof of (2):
The proof of this theorem consists in using the relative entropy inequality (9) and the exponential

tightness of the sequence (P⊗N )N . The reader shall refer to [7, Theorem 2], to obtain the inequality:

I(QN |P⊗N ) =
N

2

∫
(
C×D

)N
∫ T

0

(∫ t

0

K̃t
µ̂N ,x1(t, s)

(
dWs(x

1, r1)−mµ̂N
(s, x1)ds

)
+mµ̂N

(t, x1)

)2

dtdQN (x, r)

≤ N ×
{∫ T

0

∫
(
C×D

)N
(∫ t

0

K̃t
µ̂N ,x1(t, s)

(
dWs(x

1, r1)−mµ̂N
(s, x1)ds

))2

dQN (x, r)

︸ ︷︷ ︸
φ(t,x,r)

dt+
J̄2T

λ2

}
.
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We then bound φ(t,x, r) uniformly in space to conclude:

sup
t≤T

φ(t,x, r) ≤ 2
σ4‖b‖4∞T

λ4
exp

{
2
σ4‖b‖4∞T

λ4

}
.

4 Existence and characterization of the limit

4.1 Uniqueness of the minimum

In this section, we rely on an original contraction argument to show that the good rate function H admits
a unique minimum. By a variational approach, we have shown in [7] that any minimum Q of the good
rate function H satisfies:

Q ≃ P,
dQ

dP
(x, r) = Eγ

[
exp

{
XQ(x, r)

} ]
. (20)

The map (x, r) → Eγ
[
exp

{
Xµ(x, r)

}]
is non-negative and measurable for every µ ∈ M+

1 (C × D).

Moreover, it is continuous as function of mµ(., x), Kµ(., ., x) and W.(x, r). Hence, we can properly define

L :=

{
M+

1

(
C ×D

)
→ M+

1

(
C ×D

)

µ → dL(µ)(x, r) := Eγ
[
exp

{
Xµ(x, r)

}]
dP (x, r).

In fact, as exp
{
Xµ(x, r)

}
is γ-almost surely finite, one can use Novikov criterion to show that L(µ)

defines a probability measure on C ×D. Equation (20) can be reformulated as follow: any minimum of
H must satisfy

Q ≃ P, Q = L(Q).

Remark 2. L(µ) is exactly Qµ introduced for Theorem 8.

Theorem 13. The map L admits a unique fixed point.

Proof. As in [3, Lemma 5.15], we can show that

dL(µ)

dP
(x, r) = exp

{∫ T

0

Hµ(t, x, r)dWt(x, r) −
1

2

∫ T

0

H2
µ(t, x, r)dt

}
,

where

Hµ(t, x, r) =

∫ t

0

K̃t
µ,x(t, s)

(
dWs(x, r) −mµ(s, x)ds

)
+mµ(t, x).

Let µ ∈ M+
1

(
C×D

)
, r ∈ D, and remark that x → dL(µ)

dP (x, r) is a Pr-martingale. Hence one can properly

define L(µ)r ∈ M+
1 (C) and use Girsanov theorem to remark that it is the unique weak solution of

{
dxt = f(r, t, xt)dt+HW̃

µ (t, xt, r)dt + λ(r)dW̃t

x0 = x̄0.

where W̃ is a P-Brownian motion, HW̃
µ (t, x, r) :=

∫ t

0
K̃t

µ,x(t, s)
(
dW̃s−mµ(s, x)ds

)
+mµ(t, x), and x̄0 ∈ R

is the realization of µ0(r). We denote its unique strong solution by
(
xµ
r (t)

)
t∈[0,T ]

. Let also ν ∈ M+
1

(
C ×

D
)
, and define similarly xν

r with same initial condition and Brownian motion. In what follow, we will

14



unambiguously drop the space index for our strong solutions, and the Brownian exponent for HW̃ . We
have

(
xµ
t − xν

t

)
=

∫ t

0

(
f(r, s, xµ

s ) +mµ(s, x
µ)− f(r, s, xν

s )−mν(s, x
ν)
)
ds

+

∫ t

0

∫ s

0

(
K̃s

µ,xµ(s, u)mµ(u, x
µ)− K̃s

ν,xν (s, u)mν(u, x
ν)
)
duds+

∫ t

0

∫ s

0

(
K̃s

µ,xµ(s, u)− K̃s
ν,xν (s, u)

)
dW̃uds.

(21)

First, remark that

mµ(t, x
µ)−mν(t, x

ν) =

∫

C×D

b(xµ
t , yt)− b(xν

t , yt)dµ(y) +

∫

C×D

b(xν
t , yt)− b(xν

t , zt)dξ
(
(y, r′), (z, r̃)′)

)

≤ Kb

∣∣xµ
t − xν

t

∣∣+Kb

∫

C×D

sup
s≤t

∣∣ys − zs
∣∣dξ

for any ξ ∈ M+
1

(
(C ×D)2

)
with marginals µ and ν. Let, for any χ ∈ M+

1

(
C ×D

)
, t ≤ T

Λt

(
Gχ(x)

)
=

exp

(
− 1

2

∫ t

0 Gχ
s (x)

2ds

)

∫
exp

(
− 1

2

∫ t

0
Gχ

s (x)2ds

)
dγ

dγ.

and remark that Jensen inequality gives 0 ≤ Λ ≤ exp
{σ2‖b‖2

∞T

2λ2

}
. Then

K̃t
µ,xµ(t, s)− K̃t

ν,xµ(t, s) = Eγ
(
Gµ

t (x
µ)Gµ

s (x
µ)Λt

(
Gµ(xµ)

)
−Gν

t (x
µ)Gν

s (x
µ)Λt

(
Gν(xµ)

))

= Eγ
[(
Gµ

t (x
µ)−Gν

t (x
µ)
)
Gµ

s (x
µ)Λt

(
Gµ(xµ)

)]
+ Eγ

[
Gν

t (x
µ)
(
Gµ

s (x
µ)−Gν

s (x
µ)
)
Λt

(
Gµ(xµ)

)]

+ Eγ
[
Gν

t (x
µ)Gν

s (x
µ)
(
Λt

(
Gµ(xµ)

)
− Λt

(
Gν(xµ)

))]
.

On one hand, Cauchy-Schwartz Theorem yields

Eγ
[(
Gµ

t (x
µ)−Gν

t (x
µ)
)
Gµ

s (x
µ)Λt

(
Gµ(xµ)

)]
≤ Eγ

[(
Gµ

t (x
µ)−Gν

t (x
µ)
)2] 1

2

exp
{σ2‖b‖2∞T

4λ2

}√
K̃t

µ,xµ(s, s)

≤ CT

{∫

C×D

(
b
(
xµ
t , yt

)
− b
(
xµ
t , zt

))2
dξ

} 1
2

≤ CT

{∫

C×D

sup
s≤t

∣∣ys − zs
∣∣2dξ

} 1
2

.

On the other hand,

Λt(G
µ(x)) = exp

{
− log

(∫
exp

{
− 1

2

∫ t

0

Gµ
s (x)

2ds
}
dγ

)
− 1

2

∫ t

0

Gµ
s (x)

2ds

}

so that using (17) and (18), we obtain

∣∣∣Λt

(
Gµ(xµ)

)
− Λt

(
Gν(xµ)

)∣∣∣ ≤ CT

{∫ t

0

∣∣Gµ
s (x

µ)2 −Gν
s (x

µ)2
∣∣ds+ Eγ

[ ∫ t

0

∣∣Gµ
s (x

µ)2 −Gν
s (x

µ)2
∣∣ds
}]}

.

As a consequence, we can use Cauchy-Schwartz inequality and Isserlis’ theorem to obtain

Eγ
[
Gν

t (x
µ)Gν

s (x
µ)
(
Λt

(
Gµ(xµ)

)
− Λt

(
Gν(xµ)

))]
≤ CT

{∫

C×D

sup
s≤t

∣∣ys − zs
∣∣2dξ

} 1
2

,
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therefore yielding

K̃t
µ,xµ(t, s)− K̃t

ν,xµ(t, s) ≤ CT

{∫

C×D

sup
u≤t

∣∣yu − zu
∣∣2dξ

} 1
2

.

The exact same proof applies to obtain

K̃t
µ,xµ(t, s)− K̃t

µ,xν (t, s) ≤ CT sup
u≤t

∣∣xµ
u − xν

u

∣∣.

Hence,

∣∣∣K̃t
µ,xµ(t, s)mµ(s, x

µ)− K̃t
ν,xν (t, s)mν(s, x

ν)
∣∣∣
2

≤ CT

{∫

C×D

sup
u≤t

∣∣yu − zu
∣∣2dξ + sup

u≤t

∣∣xµ
u − xν

u

∣∣2
}
.

Injecting these result in (21) writes

sup
s≤t

∣∣xµ
s − xν

s

∣∣2 ≤ CT

{∫ t

0

sup
u≤s

∣∣xµ
u − xν

u

∣∣2ds+
∫ t

0

sup
v≤s

(∫ v

0

(
K̃v

µ,xµ(v, u)− K̃v
ν,xν (v, u)

)
dW̃u

)2

ds

+

∫ t

0

∫

C×D

sup
u≤s

∣∣yu − zu
∣∣2dξds

}
.

Burkholder-Davis-Gundy inequality then ensures

E

[ ∫

D

sup
s≤t

∣∣xµ
r − xν

r

∣∣2(s)dπ(r)
]

︸ ︷︷ ︸
g(t)

≤ CT

{∫ t

0

g(s)ds+

∫ t

0

∫

C×D

sup
u≤s

∣∣yu − zu
∣∣2dξds

}
.

One can now use Gronwall lemma’s and take the infimum on ξ to obtain

dt
(
L(µ), L(ν)

)
≤ CT

∫ t

0

ds
(
µ, ν

)
ds.

The proof now relies on classical arguments.

4.1.1 Convergence of the process

We are now in a position to prove theorem 2.

Proof of Theorem 2. Indeed, for δ a strictly positive real number and B(Q, δ) the open ball of radius δ
centered in Q for the Vaserstein distance. We prove that QN (µ̂N /∈ B(Q, δ)) tends to zero as N goes to
infinity. Indeed, for Kε a compact defined in theorem 11, we have for any ε > 0:

QN(µ̂N /∈ B(Q, δ)) ≤ ε+QN(µ̂N ∈ B(Q, δ)c ∩Kε).

The set B(Q, δ)c ∩Kε is a compact, and theorem 11 now ensures that

lim sup
N→∞

1

N
logQN (µ̂N ∈ B(Q, δ)c ∩Kε) ≤ − inf

B(Q,δ)c∩Kε

H

and eventually, theorem 4 ensures that the righthand side of the inequality is strictly negative, which
implies that

lim
N→∞

QN (µ̂N /∈ B(Q, δ)) ≤ ε,

that is:
lim

N→∞
QN(µ̂N /∈ B(Q, δ)) = 0.
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4.1.2 Characterization of the limit

By Girsanov theorem, (20) implies that

dX̄t(r) =
(
f
(
r, t, X̄t(r)

)
+GX̄

t

(
X̄(r)

))
dt+ λdWt(r) (22)

where the processes
(
W (r)

)
r
, and

(
GX̄

t (x)
)
x
, are independent Brownian motions, Gaussian processes

respectively. The latter have mean

m(t, x) = J̄EZ̄

[
b
(
xt, Z̄t

)]

and covariance
C(t, s, x) = σ2

EZ̄

[
b
(
xs, Z̄s

)
b
(
xt, Z̄t

)]
,

where Z̄ denotes an independent copy of X̄, and EZ̄ is the expectation over Z̄.

5 Appendix

Proof of Lemma 12:

Proof. Recall that

BN =

∫

µ̂N∈K∩B(ν,δ)

E
[

N∏

i=1

(
exp q

(
X µ̂N (xi, ri)−Xν(xi, ri)

)
expXν(xi, ri)

)]
dP⊗N .

Using Holder inequality with conjugate exponents (ρ, η), one finds:

BN ≤
{

BN
1︷ ︸︸ ︷

∫ N∏

i=1

E
[
exp ρXν(xi, ri)

]
dP⊗N

} 1
ρ
{∫

µ̂N∈B(ν,δ)

E
[

N∏

i=1

exp qη
(
X µ̂N (xi, ri)−Xν(xi, ri)

)]
dP⊗N

︸ ︷︷ ︸
BN

2

} 1
η

(23)

On one hand, no new difficulty arises from the second term, and we can show, as in [7], that exists a
function C(δ) →

δ→0
0 such that

BN
2 ≤ exp{C(δ)N}.

On the other hand,

BN
1

Hölder
≤

(∫
Eν
[
exp

{
ρ2
∫ T

0

(
Gt(x) +mν(t, x)

)
dWt(x, r) −

ρ4

2

∫ T

0

(
Gt(x) +mν(t, x)

)2
dt

}]
dP (x, r)

)N
ρ

×
(∫

Eν
[
exp

{
(ρ+ 1)ρ2

2

∫ T

0

(
Gt(x) +mν(t, x)

)2
dt

}]
dP (x, r)

)N(ρ−1)
ρ

The first term in the righthand side equals one by Fubini Theorem and martingale property. Moreover,

under the hypothesis
2σ2‖b‖2

∞T

λ2 < 1 and for ρ − 1 small enough, we can show using (12), that exists a
constant CT , uniform on C, such that

Eν
[
exp

{
(ρ+ 1)ρ2

2

∫ T

0

(
Gt(x) +mν(t, x)

)2
dt

}]
≤ CT .

17



Hence, if we take ρ close enough to 1, and under the hypothesis
2σ2‖b‖2

∞T

λ2 < 1, we can find a finite
constant C2(ρ), limρ→1 C2(ρ) = 0, such that:

BN
1 ≤ eC2(ρ)N (24)
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