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Abstract. We prove that the Apéry constants for a certain class of Fano

threefolds can be obtained as a special value of a higher normal function.

1. Introduction

The application of normal functions in areas peripheral to Hodge theory has
emerged as a topic of research over the last decade [3],[4],[9],[15],[16],[18]; areas
related to physics have accounted for much of this growth. The goal of this work is
to use normal functions to give a ‘motivic’ meaning to constants arising in quantum
differential equations associated to a certain class of Landau-Ginzburg models.

In [3], there is a explicit computation of a higher normal function associated with
the Landau-Ginzburg mirror of a rank 4 Fano threefold, which turns out to be the
value of a Feynman Integral. We want to present a similar approach, but instead
of a Feynman integral, we will express some Apéry constants ([2],[14],[10],[11]) in
terms of a special values of the associated higher normal functions.

Landau-Ginzburg models are the natural object for ‘mirrors’ of Fano manifolds;
more precisely, mirror symmetry relates a Fano variety with a dual object, which
is a variety equipped with a non-constant complex valued function. For example, a
LG model for P2 is a family of elliptic curves and more generally, the LG model of
a Fano n-fold is a family of Calabi-Yau (n− 1)-folds. In general, mirror symmetry
relates symplectic properties of a Fano variety with algebraic ones of the mirror
and vice versa.

In this work we will be mainly concerned with the Landau-Ginzburg models for
a special class of threefolds, namely the ones whose associated local system is of
rank three, with a single nontrivial involution exchanging two maximally unipotent
monodromy points. Looking at the classification in [5], one finds the short list
V12, V16, V18 and “R1”, where the first three are rank 1 Fanos appearing in [14] and
the latter is a rank 4 threefold with −K3 = 24 (K the canonical divisor). The
involutions for these LG models have essentially been described in [14] and [3].
In the presence of an involution, it is possible to move the degeneracy locus of a
higher cycle from the fiber over 0 to its involute, a property which we use for the
construction of the desired normal function.

Let P∆◦ be a toric degeneration of any of the varieties considered above; then
each one of these will have a mirror Landau-Ginzburg model, which is a family
of K3 surfaces in P∆, that can be constructed as follows. Let φ be a Minkowski
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2 GENIVAL DA SILVA JR.

polynomial for ∆, then the family of K3 is:

(1.1) Xt := {1− tφ(x) = 0} ⊂ P∆

Let

(1.2) ωt = 1
(2πi)2ResXt

(
dx1

x1
∧ dx2

x2
∧ dx3

x3

1− tφ

)
and γt the invariant vanishing cycle about t = 0. We define the period of φ by

(1.3) Πφ(t) =

∫
γt

ωt =
∑

ant
n

where an is the constant term of φn. We say that an is the period sequence of φ.
Consider a polynomial differential operator L =

∑
Fk(t)Pk(Dt) where Pk(Dt) is

a polynomial in Dt = t ddt , then L · Πφ(t) = 0 is equivalent to a linear recursion
relation. In practice, to compute L one uses knowledge of the first few terms of the
period sequence and linear algebra to guess the recursion relation. The operator L
is called a Picard Fuchs operator.

Example 1.1. The Picard-Fuchs operator for the threefold V12 is:

(1.4) D3 − t(1 + 2D)(17D2 + 17D + 5) + t2(D + 1)3

More generally, one also gets the same linear recursion on the power-series coef-
ficients bn of solutions of inhomogeneous equations L( · ) = G, G a polynomial in t,
for n ≥ deg(G).

Definition 1.2 ([14]). Given a linear homogeneous recurrence R and two solutions
an, bn ∈ Q with a0 = 1, b0 = 0, b1 = 1, if there is a L-function L(x) and c ∈ Q∗
such that:

(1.5) lim
bn
an

= cL(x0)

We say that 1.5 is the Apéry constant of R.

When we have a family of Calabi-Yau manifolds, a common way to look for
Apéry constants is by considering the Picard-Fuchs equation. As described above,
the coefficients of the power series expansion of the solutions of this equation satisfy
a recurrence and in some cases the Apéry constant exists, see [2] for a wide class of
examples. Beyond this “classical” case, we can also talk about quantum recurrences,
which are recurrences arising from solutions of the Quantum differential equations
satisfied by the quantum periods, which are defined using quantum products, see
[13].

In [14], Golyshev uses quantum recurrences of the threefolds V10, V12, V14, V16, V18

to find Apéry constants; his method is basically to use a result of Beukers [[14],
Proposition 3.3] for the rational cases and apply a different approach for the non-
rational ones. In the course of the proof of his results, he also describes the involu-
tion we mentioned above, but only for V12, V16 and V18. The main theorem of this
manuscript is:

Theorem 1.3. Let X be a Fano threefold, in the special class described above. Then
there is a higher normal function N , arising from a family of motivic cohomology
classes on the fibers of the LG model, such that the Apéry constant is equal to N (0).
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As an immediate corollary of this result and Borel’s theorem, the Apéry constant
for these cases must be a Q-linear combination of ζ(3) and (2πi)3, which provides
a uniform conceptual explanation of this feature of the results in [14] and [3].

Remark 1.4. We note that throughout this paper, the cycle groups are taken modulo
torsion (⊗Q).

Acknowledgements. I thank my advisor Matt Kerr for sharing his ideas with me,
and also C. Doran and A. Harder for discussions regarding this work. The author
acknowledges the travel support from NSF FRG Grant 1361147 and the support of
CNPq program Science without borders.

2. Construction of the “toric” motivic classes

We assume the reader is familiar with the basic notions of Toric geometry, see
[7] for a brief review or [8] for a more comprehensive treatment. Let

(2.1) φ =
∑

amxm ∈ C[x±1, y±1, z±1]

be a Laurent polynomial with coefficients in C and ∆ be the Newton polytope
associated with φ, which we will assume to be reflexive. (A list of all 3-dimensional
reflexive polytopes is available at [5].) We briefly review the construction of the
anti-canonical bundle and the facet divisors on the toric variety P∆. Let x, y, z be
the toric coordinates on P∆ and for each codimension 1 face σ ∈ ∆(1), choose a
point oσ with integral coordinates, and write Rσ for the 2-plane through σ . Then
take a basis m1,m2 for the translate (R3

σ ∩ Z3) − oσ and complete it to a basis
m1,m2,m3 for Z3 such that

(2.2) R≥0〈±m1,±m2,m3〉 ⊃ ∆− oσ

Change coordinates, by setting xσj = xmj , j = 1, 2, 3. Consider the subset

(2.3) D∗σ = {xσ1 , xσ2 ∈ C∗} ∩ {xσ3 = 0}
of P∆; let Dσ be the Zariski closure of D∗σ, and set

(2.4) D :=
∑

σ∈∆(1)

[Dσ] = P∆\(C∗)3.

Henceforth we shall write x, y, z for x1, x2, x3.
A standard result in toric geometry is that the sheaf O(D) is ample and in case

∆ is reflexive; it is also the anti-canonical sheaf for P∆, and hence P∆ is Fano in
this case.

Given non vanishing holomorphic functions f1, . . . , fn on a quasi-projective va-
riety Y , we denote the higher Chow cycle given by the graph of the fj in Y × (P1)n

by 〈f1, . . . , fn〉 ∈ CHn(Y, n).

Definition 2.1. A 3 dimensional Laurent polynomial φ is tempered if the symbol
〈xσ, yσ〉D∗

σ
∈ CH2(D∗σ, 2) is trivial, for all facets σ, where D∗σ ⊂ D∗σ is the zero

locus of the facet polynomial φσ.

Remark 2.2. The definition above can be restated as follows: For Xt a general
K3 surface of the family induced by φ, let X∗t = Xt ∩ (C∗)3; then φ is tempered
if the image of the higher Chow cycle ξt := 〈x, y, z〉X∗

t
∈ CH3(X∗t , 3) under all

residue maps vanishes. (Equivalently, viewed as an element of Milnor K-theory
KM

3 (C(Xt)), ξt belongs to the kernel of the Tame symbol, cf. [17].)
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Figure 1. Newton polytope for the Laurent polynomial φ = x+
y + z + (xyz)−1. Taken from [5].

In this work, we will focus on a special class of Laurent polynomials, namely
Minkowski polynomials. See [1] for the basic definitions and properties of Minkowski
polynomials.

Example 2.3. Consider the Minkowski polynomial φ = x+ y + z + (xyz)−1 with
Newton polytope ∆ with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) and (−1,−1,−1), see
figure 2. Let σ be the facet with vertices (1, 0, 0), (0, 1, 0), (−1,−1,−1) and fix
(−1,−1,−1) as the ’origin’ of the facet. Then clearly one possible choice of the
new toric coordinates is:

xσ = x2yz

yσ = xy2z

zσ = x−1

(2.5)

Moreover D∗σ = {zσ = 0}, so that D∗σ is given by the zero locus of the facet poly-
nomial φσ = 1 + xσ + yσ. Therefore ResD∗

σ
〈x, y, z〉X∗

t
= Reszσ=0〈xσ, yσ, zσ〉X∗

t
=

〈xσ, yσ〉D∗
σ

= 〈xσ,−1 − xσ〉 = 0. Similarly, any other facet σ of this polytope has
the property that 〈xσ, yσ〉D∗

σ
= 0.

The fact that the symbol 〈xσ, yσ〉D∗
σ

is trivial for all facets is not a coincidence;
in fact, this is always the case for three-dimensional Minkowski polynomials. More
precisely, we have:

Proposition 2.4. Every three-dimensional Minkowski polynomial is tempered.

Proof. In general, it is not true that every Laurent polynomial is tempered; one of
the features of Minkowski polynomials is that they give rise to a decomposition in
terms of rational irreducible subvarieties, a fact that will be strongly used below.
We use the equivalent definition of tempered as presented in remark 2.2.

Noting that Dσ := Dσ ∩Xt and D = D ∩Xt = ∪Dσ are independent of t 6= 0,
and X∗t = Xt \D, let ı : D → Xt and  : X∗t → Xt be the natural inclusions. The
localization exact sequence for higher Chow groups reads:

(2.6) · · · → CH2(D, 3)
ı∗→ CH3(Xt, 3)

∗→ CH3(X∗t , 3)
ResD→ CH2(D, 2) · · ·
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Now in general, Dσ is reducible, with components determined by the Minkowski
decomposition of σ. Write D = ∪Di as the resulting union of irreducible curves,
and D∗i = Di \ ∪j(Di ∩Dj). By the localization sequence (for Di), we have

(2.7) CH2(Di, 2) = ker

{
CH2(D∗i , 2)

Resij→ ⊕jCH1(Di ∩Dj , 1)

}
.

Since the edge polynomials of a Minkowski polynomial are cyclotomic,1 for every
i, j the composition

(2.8) CH3(X∗t , 3)
Resi→ CH2(D∗i , 2)

Resij→ ⊕jCH1(Di ∩Dj , 1)

sends ξt to zero. By (2.7), we therefore have Resiξ ∈ CH2(Di, 2) for every i.
Since in dimension 3 the irreducible pieces of a lattice Minkowski decomposition
are either segments or triangles with no interior points, all the Di are rational and
smooth. Moreover, since both the Minkowski polynomial and the decomposition
of the facet polynomials are defined over Q̄, the Di are rational over Q̄. Now the
Resiξ are clearly defined over Q̄ (as the Resσξt = 〈xσ, yσ〉 are), and so belong to
CH2(P1, 2) ∼= K2(Q̄) = {0},

Therefore Resiξt is trivial, and φ is tempered by Remark 2.2. �

Remark 2.5. The notion of Minkowski polynomial for dimension greater than 3
is not yet well understood. However, if we assume the lattice polytopes in the
Minkowski decompositions of facets have no interior points, then the proof above
will extend to dimension 4, since we would still have rationality of the Di (as above),
and no significant problems appear in the local-global spectral sequence for higher
Chow groups.

3. The Higher normal function N

Recall that if S is a smooth projective variety, then

(3.1) Hn
M(S,Q(n)) ∼= CHn(S, n) ∼= GrnγKn(S).

Not every member of our family Xt is smooth, but we can still have an element
in the motivic cohomology. Such elements can be explicitly represented via higher
Chow (double) complexes, so that we can still use standard formulas for Abel-Jacobi
maps [20, §8]:

(3.2) AJm,n : Hn
M(Xt,Q(n))→ Hn−1(Xt,C/Q(n)).

The Landau-Ginzburg models for the threefolds V12, V16, V18, and R1, may be
defined by (the Zariski closure of) the families {1− tφ = 0}, with φ given by:

V12 : φ =
(1 + x+ z)(1 + x+ y + z)(1 + z)(y + z)

xyz

V16 : φ =
(1 + x+ y + z)(1 + z)(1 + y)(1 + x)

xyz

V18 : φ =
(x+ y + z)(x+ y + z + xy + xz + yz + xyz)

xyz

R1 : φ =
(1 + x+ y + z)(xyz + xy + xz + yz)

xyz

(3.3)

1in fact the roots are ±1



6 GENIVAL DA SILVA JR.

Figure 2. Newton polytopes for (top) V18, R1 and (bottom)
V12, V16 respectively. Taken from [5].

As these families of K3s all have Picard rank 19, their Picard-Fuchs operators take
the form DPF =

∑3
i=0 Fk(t)(Dt)

k, with Fi(t) relatively prime polynomials. We
call F3(t) =: σ(DPF ), which is taken to be monic, the symbol of DPF . In the four
cases the symbols are

(3.4) 1− 34t+ t2, 1− 24t+ 16t2, 1− 18t− 27t2, and 1− 5
16 t+ 1

64 t
2,

respectively.

We shall adopt the notation X π→ P1 for the total space of each family, X ◦ =

X \ X0
π◦

→ A1
1
t

and X◦ = X \ X∞
π◦→ A1

t , for restrictions. Henceforward, X will

denote any threefold in the list V12, V16, V18, R1.

Proof of theorem 1.3. Associated to X is a Newton polytope ∆, and to the
latter we associate a Minkowski polynomial φ. Since by the proposition above, φ
is tempered, the family of higher Chow cycles lifts to a class [Ξ] ∈ CH3(X ◦, 3)
[[9],theorem 3.8], yielding by restriction a family of motivic cohomology classes
[Ξt] ∈ H3

M(Xt,Q(3)) on the Landau-Ginzburg model. (On the smooth fibers these
are just higher Chow cycles.)

The local system V = R2
trπ∗Z associated to the Landau-Ginzburg model of X

has the following singular points:

• V12 : t = 0, 17± 12
√

2,∞
• V16 : t = 0, 12± 8

√
2,∞

• V18 : t = 0, 9± 6
√

3,∞
• R1 : t = 0, 4, 16,∞

(Besides 0 and ∞, these are just the roots of σ(DPF ).)
In each case, we have an involution ι(t) = M

t , (M = 1, 1
16 ,
−1
27 , 64), exchanging

say t1 and t2 with 0 < |t1| < |t2| <∞. The involution ι gives then a correspondence
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I ∈ Z2(X × ι∗X ) which gives a rational isomorphism between V and ι∗V. Since
I induces an isomorphism, the vanishing cycle γt at t = 0 is sent to a rational
multiple of the vanishing cycle µt at t =∞. Hence in a neighborhood of t = 0, we
have:

(3.5)

∫
γt

I∗ωι(t) =

∫
I∗γt

ωι(t) = n

∫
µι(t)

ωι(t), n ∈ Q∗

Moreover, as a section of the Hodge bundle, ωt has a simple zero at t =∞ and
no zero or poles anywhere else. So I∗ωι(t) = Ctωt, for some C ∈ C∗. If we set

A(t) =
∫
γt
ωt, then A(0) = 1, and it follows that

(3.6) C = lim
t→0

n

(2πi)2A(t)

∫
µι(t)

ResXι(t)

(
dx
x ∧

dy
y ∧

dz
z

t−Mφ

)

= − n

M
Res3

p

(
dx ∧ dy ∧ dz
xyz · φ(x, y, z)

)
,

where p ∈ sing(X∞) is the point to which µι(t) contracts. Hence C is rational and
ω̃ := I∗ω is a rational multiple of tω.

Now let Ξ̃ := I∗Ξ ∈ H3
M(X◦,Q(3)) be the pullback of the cycle, with fiberwise

slices Ξ̃t. If AJ is the Abel-Jacobi map2 as above, then

(3.7) AJ3,3([Ξ̃t]) ∈ H2(Xt,C/Q(3)).

Taking Rt to be any lift of this class to H2(Xt,C), we may define a normal function
by:

(3.8) N (t) := 〈Rt, ωt〉

By [9, Prop. 4.1], N (t) has a power series of radius of convergence |t2| > |t1|.
Moreover, by [9, p. 474], we have

(3.9) DPF (N (t)) = σ(DPF )Y(t),

where Y(t) = (2πi)2〈ω̃t,∇2
Dt
ωt〉 is the Yukawa coupling.

Applying [9, Rem. 4.4], the right-hand side of (3.9) takes the form kt, where

(in view of (3.4)) k = limt→0
Y(t)
t . By writing ωt in terms of a basis of e

log(t)
(2πi)

NV
about t = 0, we find that k = Cκ where κ is the (rational) nonzero entry of N2.
We conclude that

(3.10) DPF (N (t)) = kt, k ∈ Q∗.

Finally, if A(t) =
∑
ant

n is the period sequence, then B(t) =
∑
bnt

n = −N (t)+
A(t)N (0) is another solution for the Picard-Fuchs equation, so that

N (t) =
∑

(anN (0)− bn)tn.

Since the radii of convergence for the generating series of an and bn are both |t1| <
|t2|, while that of anN (0)− bn is |t2|, it follows that bn

an
→ N (0). �

Corollary 3.1. N (0) is (up to Q(3)) a multiple of ζ(3).

2In smooth fibers, AJ takes a rather simple form in terms of currents, see [19]
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Proof. The proof is a direct consequence of the following commutative diagram (See
[20]):

(3.11)

H3
M(X0,Q(3))

∼=−−−−→ Kind
5 (Q)yAJ3,3

yrb
J3,3(X0) −−−−→∼=

C
Q(3)

Where the lower isomorphism is the pairing with ω0 and rb is the Borel regulator.
The Abel-Jacobi map then reduces to the Borel regulator and by Borel’s theorem
it has to be multiple of ζ(3). �

Remark 3.2. An explicit computation of N (0) for R1 has been written in [3]; the
computation for V12 was done by M. Kerr and will be available in a forthcoming
paper. Below we present the explicit computation of N (0) in the case V16:

Example 3.3. Consider V16 which has a Minkowski polynomial given by φ =
(x + 1)(y + 1)(z + 1)(1 + x + y + z); We change the coordinates to simplify the
computations and use the same idea as [3]. The normal function N at 0 takes the
following form:

(3.12) N (0) =

∫
∇
R{x, y, (1− x− y)}

Where ∇ is the “membrane” ∇ =
{

(x,y) : −1 ≤ y ≤ 1 , −y ≤ x ≤ 1
}

. We have:

N (0) =

∫
∇
log(y)dlog

(
1− x− y

)
∧ dlog(x)

=

∫ 1

−1

log(y)
(∫ 1

−y

dx

x(1− x− y)

)
dy

=

∫ 1

−1

log(y)
(∫ 1

−y

dx

x(1− y)
+

∫ 1

−y

dx

(1− y)(1− x− y)

)
dy

= 2

∫ 1

−1

log(y)
log(−y)

(1− y)
dy

≡ 4

∫ 1

−1

log(1− y)
log(y)

y
dy mod Q(3)

≡ −4
∑
k≥1

1

k

∫ 1

−1

log(y)yk−1dy mod Q(3)

≡ 8
∑
k odd

1

k3
mod Q(3)

≡ 7ζ(3) mod Q(3)

(3.13)

where the Q(3) reflects the local ambiguity of N by a Q(3)-period of ω̃ (owing to
the choice of lift R). Since the Apéry constant is a real number, we normalize N
locally by adding such a period to obtain N (0) = 7ζ(3).

4. Concluding Remarks

The proof of Theorem 1.3 makes use of an involution of the family over t 7→ ±Mt
to produce a cycle with no residues on the t = 0 fiber, but with nontorsion associated
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normal function. That is, we use the involution to transport the residues of the
cycle we do know how to construct (via temperedness) to over t =∞.

What is absolutely certain is that without a second maximally unipotent mon-
odromy fiber (at t =∞ in our four examples), such a normal function cannot exist.
This follows from injectivity of the topological invariant into

HomMHS(Q(0), H3(X ∗,Q(3))) ⊂ ⊕λ∈ΣHomMHS(Q(0), H2(Xλ,Q)),

where Σ ⊂ P1 denotes the discriminant locus. As an immediate consequence,
nothing like Theorem 1.3 can possibly hold for Golyshev’s V10 and V14 examples.

While we could broaden the search to all local systems with more than one
maximally unipotent monodromy point, those having an involution (or some other
automorphism) represent our best chance for constructing cycles. Though it is
required to apply a couple of the tools of[9] as written, the h2

tr(Xt) = 3 assumption
is perhaps less essential; if we drop this, there are many other LG local systems with
“potential involutivity”. Inspecting data from [5], we see that the period sequences
35, 49, 52, 53, 55, 59, 60, 62, 97 and 151 have monodromies that suggest the presence
of an involution. This is something we will investigate in future works.

Finally, we omitted one case with h2
tr(Xt) = 3 ad an involution, namely B4 (cf.

[5]). This is because there is a second involution, namely t 7→ −t, wich probably
rules out a meaninful Apéry constant (as |t1| = |t2|).
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