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Abstract

How should a network experiment be designed to achieve high statistical power? Experimental treat-

ments on networks may spread. Randomizing assignment of treatment to nodes enhances learning

about the counterfactual causal effects of a social network experiment and also requires new method-

ology (Aronow and Samii, 2013; Bowers et al., 2013; Toulis and Kao, 2013, ex.). In this paper we

show that the way in which a treatment propagates across a social network affects the statistical power

of an experimental design. As such, prior information regarding treatment propagation should be in-

corporated into the experimental design. Our findings run against standard advice in circumstances

where units are presumed to be independent: information about treatment effects is not maximized

when we assign half the units to treatment and half to control. We also show that statistical power

depends on the extent to which the network degree of nodes is correlated with treatment assignment

probability. We recommend that researchers think carefully about the underlying treatment propaga-

tion model motivating their study in designing an experiment on a network.
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1 Introduction

We consider the problem of designing experiments to causally identify propagation on networks. In

fields across the social and physical sciences, there is considerable and growing interest in understanding

how features propagate over the vertices (i.e., nodes) in a graph (i.e., network) via the graph topology.

Furthermore, precise questions about causal peer, spillover and propagation effects are becoming more

common. Recent theoretical developments highlight the barriers to the identification of causal peer/con-

tagion effects in networks with non-randomized, observational, data (Lyons, 2011; Shalizi and Thomas,

2011). Several recent papers have employed randomized experimental designs to facilitate the identifica-

tion of causal peer effects (Aral and Walker, 2011; Ostrovsky and Schwarz, 2011; Bapna and Umyarov,

2015; Bond et al., 2012; Ichino and Schndeln, 2012; Nickerson, 2008). Aral and Walker (2011) study

peer effects in Facebook application adoption through the randomization of ‘viral’ features in a Face-

book application. Bond et al. (2012) conduct an experiment to study social influence in voting behavior

and other forms of political activity on Facebook during the 2010 congressional election. Ichino and

Schndeln (2012) conduct a field experiment during a national election in Ghana to gauge how voter

registration responds to the placement of election monitors at registration workstations – an effect that

is hypothesized to spread geographically through the road network. Bapna and Umyarov (2015) run a

field experiment to determine whether peers influence each others’ adoption of premium online social

network services for which they have to pay.

Recent methodological work enables scholars make statistical inferences about peer effects when

the topology of a network is known (Bowers et al., 2013; Aronow and Samii, 2013; Toulis and Kao,

2013). However, there is little in the way of informative methodological research regarding the design

of randomization schemes that account for the form(s) of peer effect(s) in which the researcher is inter-

ested.1 In this project we consider the performance of different randomization designs using the methods

of Bowers et al. (2013), Aronow and Samii (2013) and Toulis and Kao (2013) under different mod-

els of propagation. Each of the methods we consider depends upon a typology of exposure conditions

based on the treatment status of each node and the topology of the graph. For example, a node could

be treated directly by an experimenter, isolated from treatment (i.e., several hops away from any treated

nodes) or exposed to the treatment at one degree of separation without control by the experimenter. The

1For now, we set to the side the work on identifying how much of a total average effect can be attributed to mechanisms other
than direct treatment assignment — for example, the work on spillovers and indirect effects McConnell et al. (2010); Sinclair
(2011); Nickerson (2008, 2011); Hudgens and Halloran (2008); Sobel (2006); Tchetgen and VanderWeele (2010); VanderWeele
(2008, 2010); VanderWeele et al. (2011, 2012); VanderWeele and Tchetgen (2011); VanderWeele and Tchetgen Tchetgen
(2011); Miguel and Kremer (2004); Chen et al. (2010); Ichino and Schündeln (2012)

2



performance of randomized experimental designs on networks depends on (1) the exposure conditions

of theoretical interest (say, direct treatment versus indirect treatment; or more generally some propa-

gation flow parameter), (2) the topology of the network, (3) the ways in which the propagation model

affects nodes in each exposure condition, and (4) the exposure condition distribution as determined by

the randomization design.2

In what follows, we study the problem of causal inference given treatment propagation in the context

of a fixed graph topology and a single round of randomized treatment followed by a single round of

response measurement. We review methods that have been proposed in the literature for designing and

analyzing single-round (pre versus post), fixed graph experimental data; and also review the substantive

experimental applications that have used such designs. We then conduct a simulation study motivated by

the registration monitor randomization in Ichino and Schndeln (2012), using the Ghanaian network of

roads between voter registration stations as a realistic moderate sized graph. In the simulation study, we

consider the performance of alternative experimental designs that varying the treatment probability: the

number of nodes assigned to initial treatment, who is treated: the association between treatment probabil-

ity and node degree (i.e., a node’s number of ties), and how they are treated: different parameterizations

of the propagation model.

1.1 Recent Methodological Innovations in

Statistical Inference for Propagated Causal Effects

We consider two general approaches to statistical inference about causal effects when those effects may

propagate through a network. The flexible approach developed by Bowers et al. (2013) is a hypothesis

testing framework designed to evaluate whether differences between the treatment and control groups are

more effectively characterized by one model of treatment effects, which can include propagation effects,

than another model. Bowers et al. (2013) focus on a natural sharp null model of no treatment effects (i.e.,

stochastic equivalence across all experimental conditions). The null distribution is derived exactly or

generated approximately through repeated computations of the test statistic using permutations in which

the treatment vector is re-randomized according to the experimental design and the hypothesized effects

of the propagation model are removed. There are two highly appealing properties of this approach.

First, any test statistic, including general distributional comparisons such as the Kolmogorov-Smirnov

(KS) test statistic, can be used to evaluate the differences between treatment and control. Second, the

2We direct readers to Basse and Airoldi (2015) for a methodological investigation similar to ours. They consider the problem
of designing a randomized experiment to minimize estimation error when outcomes are correlated on a network. Their focus
is, however, on estimating the direct effects of treatment, not on identifying indirect or propagation effects.
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approach can accommodate any model of treatment effects on a network, as the methodology does not

require any form of independence assumption or the derivation of an estimator for the model parameters.

The methods developed by Aronow and Samii (2013) and Toulis and Kao (2013) compliment those

proposed by Bowers et al. (2013) in that they propose methods for estimating average causal peer effects.

Aronow and Samii (2013) develops randomization-based methods and Toulis and Kao (2013) develops

both randomization and model-based approaches to estimating causal peer effects. In both Aronow and

Samii (2013) and Toulis and Kao (2013), the target estimate is the average difference between nodes in

different network/treatment exposure conditions. Aronow and Samii (2013) do not stipulate a constrained

set of conditions, but present methods that can be applied to any partition of nodes into network/treatment

exposure conditions. They present an example in which nodes in a graph are directly treated and assume

that treatment can only propagate one degree, which results in four conditions: control, which are nodes

that are not directly assigned treatment and are not tied to any treated nodes; direct, which are nodes

that are treated and not tied to any treated nodes, direct + indirect, which are nodes that are directly

treated and are tied to treated nodes; and isolated direct, which are nodes that are untreated and are tied

to treated nodes. Toulis and Kao (2013) define k-level treatment of a unit as (1) a unit not receiving

direct treatment, and (2) having exactly k directly treated neighbors. A k-level control is any vertex with

at least k neighbors who did not (1) receive direct treatment and (2) is not connected to any vertices who

were directly treated. These approaches assume that the researcher is interested in specific comparisons

of averages and require that the researcher articulate mechanisms by which the probability of exposure

to treatment may differ across units.

Both Aronow and Samii (2013) and Toulis and Kao (2013) recognize the unique challenges that arise

in the context of inference regarding response to network/treatment exposure conditions. The limitations

are based in the topology of the graph. Since most exposure conditions of interest in the context of in-

terference involve the position of a node in a network, under most randomization designs (e.g., uniform

random assignment to treatment), each node is not equally likely to be assigned to each exposure condi-

tion. Take the example of 2-level exposure in the framework of Toulis and Kao (2013). A node with only

one partner would have zero probability of being assigned to the 2-level treatment group. Aronow and

Samii (2013) do not discuss this issue at length, but imply a limitation in the derivation of their Horvitz-

Thompson type estimators (Horvitz and Thompson, 1952). The estimators they define require that the

analyst be able to calculate the probability πi(dk), the probability that node i is in exposure condition

dk and that 0 < πi(dk) < 1 for each node i. This means that the framework proposed by Aronow and

Samii (2013) cannot be applied to the comparison of exposure conditions to which all nodes cannot be
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assigned. Toulis and Kao (2013) are more explicit in their discussion of this limitation. They define a

causally valid randomization design to be one in which at least one node is k-level treated and one is

k-level controlled.

In the analysis that follows, we consider the Aronow and Samii (2013) and Bowers et al. (2013)

approaches to inference with experiments on networks. The methods proposed by Toulis and Kao (2013)

are very similar to those of Aronow and Samii (2013), and their concepts of k-level treated and k-level

controlled can be seen as special cases of the exposure conditions defined in Aronow and Samii (2013).

Furthermore, the methods of Aronow and Samii (2013) have the added advantage of adjusting the treat-

ment effect estimates (and variance estimates) for the unequal exposure condition probabilities. These

Horvitz-Thompson type adjustments will correct for any associations between exposure condition prob-

abilities and potential outcomes (e.g., higher degree nodes may exhibit higher baseline response values

and be more likely to be indirectly exposed to treatment through propagation).

2 Design as a Function of Graph Topology

Walker and Muchnik (2014) reviews several applications of experiments in networked environments –

including studies that are not focused on propagation – and outline several of the fundamental chal-

lenges to designing experiments on networks. They summarize the problem of design in experiments on

networks succinctly (p. 1949):

“The natural connectivity of our world does not only present a challenge to the conventional

paradigm of experimental design, but also reveals opportunities to leverage connectivity

through the creation of novel treatment mechanisms that incorporate both experimental sub-

jects and the connections between them.”

The practical implication of the dependence between subjects via the network is that efficient experi-

mental designs will account for graph topology. The treatment assignment algorithms presented in Toulis

and Kao (2013) render a clear picture of how the importance of network structure can complicate design.

Considering the problem of assuring that sufficient numbers of vertices end up in the k-treated and k-

controlled designs, Toulis and Kao (2013) present sequential randomization designs that assure that fixed

numbers of vertices are assigned to the groups under comparison: for example, if a researcher desires to

know the effect of the treatment on nodes having 2 directly connected neighbors in the network a design

should ensure enough nodes with degree 2 assigned treatment versus not assigned treatment. Though

powerful in their ability to control the distribution of vertices across exposure conditions, the complex
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sequential randomization algorithms proposed by Toulis and Kao (2013) make closed-form calculation

of the probability of exposure condition assignment intractable in most cases, which may be why they

do not derive their estimators using Horvitz-Thompson adjustments such as those in Aronow and Samii

(2013). An example of a non-sequential randomization design for which it is straightforward to derive

the Horvitz-Thompson weights is one in which the probability of treatment is biased with respect to

vertex degree (e.g., disproportionately treating higher degree vertices). To provide an intuitive example

regarding why it might be advantageous to treat high degree vertices at a greater rate than low degree

vertices; suppose the researcher is interested in comparing nodes isolated from treatment (e.g., more

than two degrees from any directly treated node) to nodes that are adjacent to a treated node, but are not

directly treated. Each node that is directly treated is removed from both exposure conditions of interest,

so there is an incentive to treat a small proportion of nodes. However, if too few nodes are treated, there

will be too few nodes in the adjacent-to-treated condition. By focusing the treatment on higher degree

nodes, it takes fewer directly treated nodes to accomplish a sizable sample of adjacent-to-treated nodes.

Depending upon the structure of the network and the mechanism by which treatment can propagate,

there may be a considerable gain in statistical power from biasing treatment towards high degree nodes,

as compared to uniform assignment to treatment.

2.1 Design is Dependent on a Model of Propagation

In the classical experimental framework, a counterfactual causal effect for a person i is defined as the sit-

uation where that person’s outcome, Yi(Zi = 1) under one treatment would differ from that same person’s

outcome under a different treatment Yi(Zi = 0) (given at the same moment in time): Yi(Zi) 6=Yi(Z′i),Zi 6=

Z′i . That is, a causal effect is understood in the subjunctive tense. And we can write this comparison

for a single person because we presume that treatment assigned to person i will have no effect on the

outcomes presented by any other person in the experiment — that there is no interference between the

treatment or outcomes of person i and those of any other person. The validity of the classical experimen-

tal framework, in which a lack of interference is assumed or assured through design, and the researcher

is interested in differences between control and directly treated units, addresses mechanisms for effects

only indirectly. A given mechanism or theory tends to motivate a study with implications for a given

comparison and clever design can rule out competing theoretical explanations for the same comparison

(positive, negative, large, small, absent, etc.). The links between theoretical models and the analysis and

design of experiments on social networks cannot be so loose especially if a scholar desires to learn about

propagation processes. In the classical experimental setup, the groups to be compared are obvious and
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determined by the direct experimental conditions. However, once the assumption of no interference is

relaxed, and especially if there is interest in evaluating the effects of interference, an implicit or explicit

theoretical model of interference must be drawn upon to guide the search for propagation’s footprint.

Both the methods of Aronow and Samii (2013) and Bowers et al. (2013) require that the researcher

draw upon a theoretical model of interference. In Aronow and Samii (2013), a model of interference

must be used to identify the exposure conditions (e.g., adjacent to a treated unit, 2 degrees of separation

from a treated unit, etc.) to be compared in the study. The model used with the methods of Aronow and

Samii (2013) need not provide precise predictions about to which nodes the treatment will propagate and

how, but the model must be complete enough to identify the groups of nodes for which different potential

outcomes will be observed under a given direct treatment assignment regime. For the methods proposed

by Bowers et al. (2013), there is great value in a precise analytic model of interference. Their approach

compares the observed data in which the effect of a treatment, through a parameterized interference

model, has been removed, to data generated by permuting the initial treatment and removing the effects

as parameterized through the interference model. As such, it is not possible to use the methods of Bowers

et al. (2013) without specifying a model of interference.

The need to specify a model of propagation in order to identify an efficient experimental design leads

us to question where researchers might start in developing such models. There is a vibrant literature,

primarily in the fields of physics and applied mathematics, on graph dynamics, that provides several

excellent starting points for analytical models of propagation. These models include the susceptible-

infected-recovered disease epidemic models (Kermack, 1927; Anderson, 1982; Hethcote, 2000; Daley,

2005), the Bass Diffusion Model (Bass and Jain, 1994; Lenk and Rao, 1990) and the Hopfield network J.

(1982) and the voter model Clifford (1973); Liggett (1997); Durrett (1991). In the simulation study that

follows, we present and use a variant of the Ising model, a model that contains several of those mentioned

above as special cases (Gallavotti, 1999). The Ising model is a general formulation for stochastic binary-

state dynamics. Many models of opinion dynamics are based on the classical Ising model of magnetic

spins. Here, each node is in either the spin-up or spin-down state, and transitions occur according to

dynamical rules that minimize the Hamiltonian of ferromagnetic interactions.

3 Simulation Study

In what follows we conduct a simulation study in which we evaluate the statistical power of the methods

proposed by Aronow and Samii (2013) and Bowers et al. (2013). The objective of this simulation study
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is to demonstrate that the statistical power of these procedures depends upon design parameters that are

intuitively meaningful in the context of propagation and that power is maximized at design parameters

that differ considerably from those commonly used in experiments without interference – random uni-

form division of the sample into half control and half treatment. It is outside the scope of the current

study to compare the merits of the methods proposed by Aronow and Samii (2013) with those proposed

by Bowers et al. (2013): further, we see the two approaches as complementary in the same way that

hypothesis testing and estimation complement one another. We hope that our simulation will illustrate

the importance and feasibility of simulation analysis for parameterizing designs for studies of propaga-

tion in networks. Throughout this simulation we use the Ghana voter registration station network from

Ichino and Schndeln (2012) as our example network. This network is derived from the roads connecting

the registration stations. Two registration stations are considered to be tied if they are within 20km of

each other on the road network. This results in a network with 868 vertices, and a density of 2.2%. The

network is depicted in Figure 3.

3.1 Simulation Parameters and Definitions

We denote the treatment assigned to vertex i as Zi ∈ {0,1} and the vector of treatment assignments to

all vertices as Z = {Z1, . . . ,Zn}. The fixed potential outcome of vertex i that would be shown under

treatment vector Z is denoted Yi(Z). Under the sharp null of no treatment effect, all potential outcomes

are equal; Yi(Z) =Yi(Z
′) =Yi(Zi = 1,Z−i) =Yi(Zi = 0,Z ′−i) ∀Z 6=Z ′. Yit(Dit) is the potential outcome

of vertex i at time t under exposure condition Dit . The exposure condition indicates a mapping of the

graph topology and Z into the categories of exposure defined by the researcher (e.g., directly treated and

not tied to any directly treated vertices, not directly treated and adjacent to at least one directly treated

node).

The model we use for treatment propagation in our simulations is a variant of the Ising Model. The

initial treatment assignment of each vertex is drawn independently from Zi∼Bernoulli(α). The infection

probability at each iteration of propagation is

1
1+ exp( 2

F (ki−2mi))

, where k is number of (directly adjacent) neighbors, m is the number of previously exposed neighbors

(0 ≤ mi ≥ M), F is a “temperature” parameter that governs the extent to which the propensity to be

infected depends on the infection rate among i’s neighbors. We run the model for just two two time
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periods (t ∈ {0,1}). The Ising model controls actual infection after an experimenter assigns Zi at t = 0.

We specify the potential outcomes of the vertices in our simulation according to the following scheme

depending upon the infection status at a given time point. We denote this by Y (Zi0,Zi1), in which Zi0

indicates i’s initial treatment status and Zi1 indicates whether treatment propagates to i at time 1. We gen-

erate a baseline (pre-treatment) response Y (0,0) ∼U(0,1). Our simple treatment effect model changes

the baseline in the same, multiplicative, way regardless of the time or manner of “infection” (directly

assigned by researcher or propagated from a neighbor), and Y (1,0) = Y (0,1) = λY (0,0). We consider

values of λ ∈ {0.26,0.63}, which correspond to approximately one and two standard deviation shifts in

the mean of a standard uniform random variable, and simulate 1,000 treatment propagation and outcome

sets at each combination of F ∈ {0,10, . . . ,100} and α ∈ {0.05,0.10, . . . ,0.50}.

3.2 Application of Inference Methods

Aronow and Samii (2013) method requires that we define exposure conditions (which include assignment

to treatment and also the probability of exposure to a treatment via the network). We define the exposure

conditions with respect to what a researcher would be able to observe from the experimental design,

assuming the network were observed, and the response. Importantly, in defining the exposure conditions

of interest, we assume that the researcher does not exactly know the set of vertices to which the treatment

has propagated. We see this as more realistic than a situation in which the researcher knows exactly where

the treatment has propagated.

We define the following three distinct exposure conditions, differentiating between those vertices

treated initially (d1), those vertices that are untreated initially and are adjacent to at least one treated

vertex (d(0,1)), and those vertices that are untreated initially and are not adjacent to any treated vertices

(d(0,0)).

• d1 ≡ Di(Zi = 1,0≤ mit ≥M)

• d(0,0) ≡ Di(Zi = 0,mit = 0)

• d(0,1) ≡ Di(Zi = 0,mit ≥ 1)

Figure 1 gives a visual example of a subgraph drawn from the Ghana road network. In the study of the

Aronow and Samii (2013) methods, we focus on identifying the difference between the d(0,1) and d(0,0)

conditions.
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Figure 1: Illustration of exposure conditions. One draw from the Ising propagations with pr(Zi = 1) ∼
Bernoulli(.15) for t ∈ {0,1} and Temperature= 10.
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The Aronow and Samii (2013) estimand is the difference between vertices in two exposure condi-

tions. First, let

µ̂(dk) =
1
n

n

∑
i=1

I(Di = dk)
Yi(dk)

πi(dk)
,

be the estimator of the mean potential outcome among vertices in exposure condition dk, where πi(dk)

is the probability that vertex i ends up in condition dk. Then the estimator of the difference between

potential outcomes in the two exposure conditions is

τ̂(d(0,1),d(0,0)) = µ̂(d(0,1))− µ̂(d(0,0)).

Following Horvitz and Thompson (1952), Aronow and Samii (2013) show that

Var(τ̂(d(0,1),d(0,0))) ≤ 1/N2
(
Var(µ̂(d(0,1)))+Var(µ̂(d(0,0)))

)
. In the interest of brevity, we do not re-

produce the full variance estimators, but refer readers to Aronow and Samii (2013). A power analysis

gauges the probability that a true hypothesis would be rejected against different alternatives. In the results

that follow, we set the truth as τ = 0 and thus assess power to reject H0 : τ = 0 at the 0.05 significance

level.

We test hypotheses about effects following Bowers et al. (2013) using the Anderson-Darling k-sample

test statistic Scholz and Stephens (1987) to compare the outcome distributions of vertices in the three

different exposure conditions.3 Following the norms of assessing power against truth, we test hypotheses

generated by the correct Ising model record the amount of false rejections as the parameter values of λ

and F move away from their true values. The values of the parameters λ and F are manipulated to test

the null of no effects (i.e., λ = 1,F = ∞) in order to assess power. In the case of the methods proposed

by Bowers et al. (2013), we assess both the power against the null of no effects across all three exposure

conditions and the null of no difference between d(0,1) and d(0,0).

3.3 Results

The results from the Aronow and Samii (2013) tests are reported in Figure 2. Three distinct sets of

results are presented: (a) those with a multiplicative effect and stochastic propagation (i.e., Y (1,0) =

Y (0,1) = λY (0,0)), (b) those with an additive effect (i.e., Y (1,0) =Y (0,1) = λ +Y (0,0)), and (c) those

with an additive effect and certain propagation (i.e., Y (0,1) = Y (d(0,1))). We note three characteristics

of our results. First, the tests exhibit fairly low power overall, hitting a maximum of approximately 0.8,

3Randomization distributions are simulated using a development version of the RItools package for R(Bowers et al.,
2014).
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but sitting below and often far below 0.5. Second, the most powerful design is that in which α = 0.05,

the smallest proportion assigned to initial treatment. Third, as indicated by the relationship of power

with the x-axis of the plots in panels (a) and (b), the larger the sample of vertices in the d(0,1) condition

that are actually exposed to treatment in period one, as governed by the temperature parameter, the more

powerful the tests.
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(a) Multiplicative Effects (Y (1,0) = Y (0,1) = λY (0,0))
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(b) Additive Effects (Y (1,0) = Y (0,1) = λ +Y (0,0))
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Figure 2: Power Results: Aronow and Samii (2013) test. Lines are labeled by the proportion assigned to
treatment. High power depends on low proportions assigned to treatment. The network contains a total
of 868 nodes.

If a researcher wants to estimate the network exposure weighted average causal effect developed by

Aronow and Samii (2013) these kinds of results raise the question about whether the best approach to

randomization of treatment assignment is simple uniform assignment without any blocking or use of
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information about the fixed network. To investigate this we plot the correlation between m and Zi0 (i.e.,

the correlation between vertex degree and the initial treatment assignment). The networks depicted in

Figure 3 represent examples of treatment assignments biased in favor of high degree vertices (a) and

low degree vertices (b). The degree-treatment correlation results are given in Figure 4. We can see

that at each α value there is a strong positive relationship between the degree-treatment correlation and

statistical power. This indicates that for the Ghana network structure and the propagation/effects models

we have specified, designs that bias treatment assignment towards higher degree nodes would exhibit

greater statistical power. This finding generalizes what we know about the use of prognostic background

covariates to increase power in randomized experiments to the situation where network degree can be

thought of as a moderator of treatment effects.
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(a) Treating High Centrality Nodes

(b) Treating Low Centrality Nodes

Figure 3: Examples of treatment assignment to either high or low degree nodes in the Ghana 2008 Voter
Registration Fraud Experiment network. Vertices are registration stations and yellow nodes are assigned
to initial treatment.

The results from the model-testing methods of Bowers et al. (2013) in Figures 5–7 differ in their

implications from the results based on estimation. First, the power in these tests is much higher overall.

This makes some sense: we are using the correct propagation model and only varying parameters, a good

test should eventually reject values of parameters that are distant from the truth. The methods focused
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Figure 4: When node degree is correlated with probability of treatment assignment, the power to detect
indirect effects increases.
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on differences of averages do not include much information about the propagation model except as a

weight arising indirectly from what we can observe, so those procedures have less information to use

in statistical inference in this simulation study. Second, when we focus on the test of the sharp null of

no effects when all three exposure conditions are included, we see that the low values of α exhibit low

power. However, when the test compares only d(0,1) against d(0,0), which can be considered a test for

propagation effects (i.e., excluding directly treated vertices), the lower α designs perform better. This

tradeoff between the power to detect any effect versus the power to detect propagated effects replicate the

findings from Bowers et al. (2013): in order to learn about propagation, one should assign relatively few

nodes to treatment, in order to test an overall null of no effects, then more power arises from more directly

assigned to treatment nodes. There is also a positive association between the number of vertices in the

d(0,1) condition that are exposed to treatment by period one and the power of the tests. This last result

arises from the fact that, when few in the d(0,1) condition are exposed to treatment, the d(0,1) outcomes

are, in large part, equivalent to the d(0,0) outcomes.
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Figure 5: Power with multiplicative effects model and true Ising propagation model following Bowers
et al. (2013) .

3.4 Summary

We have shown that learning about a simple model of propagation of treatment through a network (via

comparisons of nodes possibly indirectly exposed to the treatment to nodes not exposed to treatment) can

be enhanced when relatively few of the nodes in a network are assigned treatment. And our analysis acts

an example for those desiring to evaluate their own models of propagation and networks and experimental
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Figure 6: Power with additive effects model and true Ising propagation model following Bowers et al.
(2013) .
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Figure 7: Power with additive effects and certain propagation and true Ising propagation model following
Bowers et al. (2013).

designs before going into the field. We have not shown how the Bowers et al. (2013) approach performs

when an incorrect model is assessed. We did not do this because we are focusing on design — and power

analysis requires that we create a truth against which to compare alternatives. Bowers et al. (2013) show

that, in the analysis stage, hypothesis tests may have very low or no power if the model being assessed

has no bearing on the underlying mechanism, but we are not certain what kind of design advice would

follow from such findings — merely increasing the size of a fixed network may be impossible. We have

also not considered how design affects statistical power when there is uncertainty regarding the network
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structure. To incorporate uncertainty regarding the network a stochastic model for the network would

need to be integrated into the analytical procedure(s) (e.g., Desmarais and Cranmer, 2012).

4 Conclusion

We describe the challenges in experimental design that arise when the researcher is interested in studying

the process of propagation on a network with the objective of drawing causal inference. The experimen-

tal designs that work most effectively in experiments in which there is no interference are unlikely to

be directly transferable to experimental research on propagation. We review two recently developed

frameworks for statistical inference regarding interference in networks. One commonality we draw from

these two frameworks is that theoretical analytic models of propagation play a key role in their applica-

tion, which means that theory features more prominently in the statistical analysis of experimental data

generated for the study of propagation than in the classical, non-interference, experimental framework.

We present a simulation study to (1) illustrate how simulation can be a useful guide in identifying

design parameters for experimental studies of interference and (2) study the properties of the two frame-

works for statistical inference presented in the front end of the paper. Three broad findings from the

simulation study are notable. First, statistical power depends upon design parameters and, for example,

the optimal proportion assigned to initial treatment may be much lower than the conventional 0.5 that is

found in the non-interference experimental literature. Second, the relationship between design param-

eters and power depends upon the framework for statistical inference. Third, our results regarding the

positive relationship between the degree-treatment correlation and power indicates that randomization

designs that take into account graph topology are likely to exhibit substantial power gains over uniform

randomization designs. Taken together, the results from the simulation study underscore the importance

of considering design parameters for experimental studies of propagation, as the standards of the classical

experimental framework are unlikely to apply.
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