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First arriving signals in layered waveguides.
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Abstract

The first arriving signal (FAS) in a layered waveguide is investi-
gated. It is well known that the velocity of such a signal is close to
the velocity of the fastest medium in the waveguide, and it may be
bigger than the fastest group velocity given by the dispersion diagram
of the waveguide. Usually the FAS pulse decays with the propagation
distance. A model layered waveguide is studied in the paper. It is
shown that the FAS is associated with the pseudo-branch structure
of the dispersion diagram. The velocity is determined by the slope of
the pseudo-branch. The decay is exponential and it depends on the
structure of the pseudo-branch. A new type of reference integral is
introduced for FAS.

1 Introduction

Consider a layered 2D acoustic waveguide, which is homogenous in the x-
direction and has a sandwich structure in the y-direction. The media con-
stituting the waveguide can be elastic, liquid or gaseous. Waves in such a
waveguide are described by a dispersion diagram in the (k, ω) coordinates
(k is the wavenumber in the x-direction, ω is the temporal circular fre-
quency). Usually the dispersion diagram is a graph consisting of several
branches (curves). Each point of the dispersion diagram is characterized by
two important parameters, namely by phase velocity vp = ω/k and group
velocity vg = dω/dk (the last one is the slope of the corresponding branch of
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the dispersion diagram). It is well known that wave pulses propagate in the
waveguide with corresponding group velocities.

It is well known also that in the experiment typically one can observe
the first arriving signal (FAS) propagating with the velocity of the fastest
medium in the structure of the waveguide. In the case of a single elastic
isotropic medium the velocity of the FAS is close to the velocity of the longi-
tudinal waves. In some cases the velocity of the FAS is bigger than any of the
group velocities provided by the dispersion diagram. The FAS pulse decays
with propagation distance unlike the pulses corresponding to usual modal
pulses (the latter are called guided waves in the medical-related literature).

The most known applications of FAS are related to medical acoustics
(see e.g. [1, 2]). A long bone can be considered as a tubular waveguide
constituted of three media: a thin outer layer of dense (cortical) bone, a
sponge bone underneath, and a liquid marrow core in the center. The fastest
wave that can theoretically propagate in such media (taken separately as
infinite spaces) is the longitudinal wave in the cortical bone. The sponge
bone and the marrow bear much slower waves. However, when a standard
analysis of a waveguide is performed (say, by the finite element method) the
dispersion diagram contains no branch having group velocity close to the
longitudinal cortical velocity. A standard interpretation of the FAS is [3],
where this type of waves is treated as head waves. In [3] a thin cortical layer
is substituted by an elastic half-space.

The author is not aware of a satisfying theory of the FAS propagation.
The FAS can be interpreted as a head wave only for a very thick cortical layer.
According to the concept of the first Fresnel zone, the thickness for which a
layer can be replaced by a halfspace should be much bigger than

√
λL, where

λ is the wavelength of the fastest wave, and L is the propagation distance.
For typical values of λ = 1mm, L = 5cm this thickness should be much bigger
than 7mm, which is not typical. Moreover, the head wave model predicts a
power decay, while a more refined model (see below) predicts an exponential
decay.

The aim of the current paper is to present a model of FAS based on
analysis of dispersion diagrams of a layered waveguide. It is known for a
long time [4] that a wave process in a layered waveguide can be treated as
an interaction between the modes of different types and velocities. Thus,
the dispersion diagram has a “terrace-like” structure formed by overlapping
of different sets of branches. Since typically no crossing of the branches
can happen (except the branches corresponding to non-interacting waves),
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there occur quasi-crossings at which the type of the mode is changing. A
typical fragment of a dispersion diagram is shown in Fig. 1. Approximately,
this diagram can be visually split into two sets of branches corresponding to
fast waves (having big slope) and to a slow wave (having small slope). At
each quasi-crossing the fast wave becomes slow and vice versa. The visible
line of the biggest slope (although this line can be composed of segments
corresponding to different branches, so it is a pseudo-branch) is related to
the FAS. Fig. 1 displays a dispersion diagram of a model two-media acoustic
waveguide studied in the paper.
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Fig. 1: A typical dispersion diagram

In the current paper this idea is developed into an analytical model.
An approximation of a fragment of the dispersion diagram near the line of
the biggest slope is constructed. A pulse shape is derived in the form of
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a reference integral. A new type of reference integral is introduced for the
studied case. The properties of the FAS pulse are derived from those of the
reference integral.

To demonstrate that the model problem studied in the paper has a di-
rect connection with more complicated practical problems, we plot in Fig. 2
a dispersion diagram for symmetrical Lamb waves for a material with the
Poisson ratio σ = 0.4. The Young modulus and the density are equal to 1,
the thickness is 2 (all parameters are dimensionless for simplicity).
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Fig. 2: A dispersion diagram for symmetrical Lamb waves

One can see a clear resemblance between Fig. 1 and Fig. 2. In both
situations there are two types of waves (waves in different media in the first
case, and shear / longitudinal waves in the second case). If the number of
types of waves is bigger then the amount of sets of branches and pseudo-
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branches is bigger, and the pattern is visually more complicated.
The structure of the paper is as follows. In Section 2 a model two-

media problem is formulated. In Section 3 a numerical modeling of pulse
propagation in the two-media problem is performed. The presence of FAS
and its exponential decay are established. In Section 4 the signal in the
waveguide is represented in the form of a reference integral. The reference
integral is studied in Section 5.

2 A model waveguide

Consider a waveguide in the (x, y)-plane occupying the strip −H1 ≤ y ≤ H2

(see Fig. 3). The layer H1 ≤ y ≤ 0 is filled with the medium having density
and speed of sound equal to ρ1, c1, respectively. The layer 0 ≤ y ≤ H2 is
filled with the medium with the parameters ρ2, c2. The wave equations in
the media are as follows:

c2j (∂
2
x + ∂2

y)uj = üj, (1)

where uj(x, y, t), j = 1, 2 are the field variables (say, acoustical potentials),
notation üj stands for the second time derivative.
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Fig. 3: Geometry of a model waveguide

The boundary conditions are as follows. The surface y = −H1 is acous-
tically hard (Neumann):

∂yu1(x,−H1, t) = 0. (2)

On the interface y = 0 the pressure and the normal velocity are continuous:

ρ1u1(x, 0, t) = ρ2u2(x, 0, t), ∂yu1(x, 0, t) = ∂yu2(x, 0, t). (3)

The surface y = H2 is acoustically hard, but a point source is located at the
point (0, H2):

∂yu2(x,H2, t) = δ(x)f(t), (4)
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where δ is the Dirac delta-function, f(t) is the time shape of the probe pulse.
The observation point is located at (L,H2), i. e. the function u2(L,H2, t) is
recorded.

The problem of finding the signal on the receiver is quite standard and it
can be solved easily. Namely, perform the Fourier transform of all variables
in the time domain:

Uj(x, y, ω) = Ft[uj(x, y, t)], F (ω) = Ft[f(t)], (5)

where the direct and inverse Fourier transform in the time domain are given
by the relations

Ft[g(t)] =

∞
∫

−∞

g(t)eiωtdt, F−1
t [G(ω)] =

1

2π

∞
∫

−∞

G(ω)e−iωtdω, (6)

Then, perform the Fourier transform of Uj in the x-direction:

Ũj(k, y, ω) = Fx[Uj(x, y, ω)], (7)

where

Fx[g(x)] =

∞
∫

−∞

g(x)e−ikxdx, F−1
x [G(k)] =

1

2π

∞
∫

−∞

G(k)eikxdk. (8)

Finally, get a 1D problem for Ũj(k, y, ω) as functions of y. These functions
should obey the equations

(∂2
y + α2

j )Ũ1(k, y, ω) = 0, αj = αj(k, ω) =

√

ω2

c2j
− k2. (9)

The following boundary conditions should be valid:

∂yŨ1(k,−H1, ω) = 0, ∂yŨ2(k,H2, ω) = F (ω), (10)

∂yŨ1(k, 0, ω) = ∂yŨ2(k, 0, ω), ρ1Ũ1(k, 0, ω) = ρ2Ũ2(k, 0, ω). (11)

The solution of (9), (10), (11) can be found:

Ũ2(k,H2, ω) = F (ω)
M(k, ω)

N(k, ω)
, (12)
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M(k, ω) =
α1

α2

sin(α1H1) sin(α2H2)−
ρ1
ρ2

cos(α1H1) cos(α2H2), (13)

N(k, ω) = α2

ρ1
ρ2

cos(α1H1) sin(α2H2) + α1 sin(α1H1) cos(α2H2). (14)

The field on the receiver can be obtained by inverting the Fourier transfor-
mations:

u2(x,H2, t) =
1

4π2

∫

∞
∫

−∞

F (ω)
M(k, ω)

N(k, ω)
eikx−iωtdkdω (15)

Formula (15) cannot be used directly, since zeros of the denominator
belong to the plane of integration. The principle of limiting absorption helps
to overcome this difficulty. Namely, for ω > 0 we assume that the velocities
cj have vanishing negative imaginary parts, while for ω < 0 the velocities cj
have vanishing positive imaginary parts. Due to this, for each ω the zeros of
N in the complex k-plane become displaced from the real axis.

The dispersion diagram represents the zeros of N(k, ω) (for real cj), i. e.
the dispersion equation is

α1 tan(α1H1)

α2 tan(α2H2)
= −ρ1

ρ2
. (16)

The roots of (16) are curves in the (k, ω) plane, each point of which cor-
responds to a wave freely propagating in the waveguide and having x- and
t-dependence of the form exp{i(kx− ωt)}.

3 Numerical demonstration of FAS

The following parameters have been selected for a numerical demonstration of
FAS presence: H1 = 1, H2 = 0.4, c1 = 1, c2 = 5, ρ1 = ρ2 = 1. The dispersion
diagram for this waveguide is shown in Fig. 4. The fastest pseudo-branch is
shown in the figure as a dash line. The pseudo-branch is composed of parts
of real branches of the diagram. One can see that for the selected parameters
the pseudo-branch is quite loose, i. e. the gaps between its parts are quite
wide.

For the demonstration we are using the prrobe pulse f(t) having the spec-
trum located in the part of the diagram shown in Fig. 4. Namely, we are using
the region 20 < ω < 40. In this region the slopes of the branches, dω/dk,
which are the group velocities of the guided waves, are smaller than 2.7. In
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Fig. 4: A dispersion diagram for the waveguide with H1 = 1, H2 = 0.4,
c1 = 1, c2 = 5, ρ1 = ρ2 = 1

the demonstration we are going to show the presence of a pulse whose veloc-
ity is approximately equal to the slope of the dashed line. This slope is equal
to 4.3. The velocity of FAS will be considerably higher than that of any of
the guided waves.

in Fig. 5 the shape of the pulse f(t) (in the left) and the spectrum of
this pulse (in the right) are shown. One can see that f(t) is a radio pulse
centered around t = 0. The central circular frequency is about ω0 = 28.

The results of the computations made by formula (15) for L = 10, 20, 30
are shown in Fig. 6, Fig. 7, Fig. 8, respectively. The field at the receiver, i. e.
u2(L,H2, t), is plotted. One can see that in all graphs there exists a small
pulse, which can be interpreted as FAS.
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Fig. 5: Probing pulse f(t) (left) and its spectrum (right)

Parameters of FAS approximately determined from these graphs are put
into Table 1. ToF is the “time of flight”, i. e. the travel time of FAS. One can
see that the velocity of the pulse is more than 4, and the amplitude decay is
close to exponential. Such a behavior is typical for FAS.

L ToF Amplitude
10 2.5 1.8 · 10−2

20 4.8 2.5 · 10−3

30 6.9 5.0 · 10−4

Table 1: Parameters of the FAS

4 Analysis of the dispersion diagram

Here our aim is to develop an analytical model of FAS. Transform the rep-
resentation (15) by making some obvious simplifications. First, let function
f(t) be real. Consider the function

u′
2(x,H2, t) =

1

4π2

∞
∫

0

∞
∫

−∞

F (ω)
M(k, ω)

N(k, ω)
eikx−iωtdkdω, (17)

i. e. exclude the negative values of ω. Obviously,

u2(x,H2, t) = 2Re[u′
2(x,H2, t)]. (18)
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Fig. 6: Output pulse for L = 10

For each fixed positive ω find the roots of (16) by solving it as an equation
with respect to k. Denote by ξn(ω) the roots having positive imaginary
part or zero imaginary and positive real part. These roots correspond to
waveguide modes traveling in the positive x-direction or decaying in this
direction. Note that for for each ω > 0 and for x > 0 the integral with respect
to k in (17) can be considered as a contour integral, and the contour (the real
axis) can be closed in the upper half-plane. The integrand is an meromorphic
function in the upper half-plane, so the integral can be converted into a sum
of residual terms:

u′
2(x,H2, t) =

i

2π

∞
∫

0

F (ω)
∑

n

M(ξn(ω), ω)

N ′(ξn(ω), ω)
exp{iξn(ω)x− iωt}dω, (19)
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Fig. 7: Output pulse for L = 20

where
N ′(k, ω) = ∂kN(k, ω). (20)

Of course, (19) is a standard expansion of the wave field in the waveguide as
a sum of waveguide modes.

Let be c2 > c1. We are looking for the approximation the fastest pseudo-
branch of the dispersion diagram, i. e. of the part of diagram lying in prox-
imity of the line ω = kc2. The approximation should be valid near some
point ω = ω0, The vicinity of ω0 in which the approximation is valid should
be large enough to cover the temporal spectrum of the probing signal. We
are looking for some parametric representation ω = ω∗(β), k = k∗(β) of the
pseudo-branch. Since the pseudo-branch is composed of fragments of several
branches, we are looking for functions ω∗(β), k∗(β) which are discontinuous.
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Fig. 8: Output pulse for L = 30

When functions ω∗(β), k∗(β) are found they can be substituted into (19)
providing a contribution corresponding to FAS:

u′
fas(x,H2, t) =

i

2π

∞
∫

0

G(β) exp{ik∗(β)x− iω∗(β)t}dβ, (21)

G(β) = F (ω∗(β))
M(k∗(β), ω∗(β))

N ′(k∗(β), ω∗(β))

dω∗(β)

dβ
. (22)

Consider a proximity of the point (k0, ω0). The frequency ω0 is the central
frequency of the probing pulse, the wavenumber k0 will be defined later. Let
be

ω∗ = ω0 +∆ω, k∗ = k0 +∆k. (23)
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Perform a transformation of coordinates from the pair (∆k,∆ω) to the
pair (ζ, β), where

α2(k, ω) = α2(k0, ω0) + ζ, α1(k, ω) = α1(k0, ω0) + β. (24)

In the linear approximation the transformation can be written in the
matrix form

(

∆k
∆ω

)

= J ·
(

ζ
β

)

, (25)

where

J =

(

∂(ζ, β)

∂(∆k,∆ω)

)−1

=

(

−k0/α2(k0, ω0) ω0/(c
2
2α2(k0, ω0))

−k0/α1(k0, ω0) ω0/(c
2
1α1(k0, ω0))

)−1

. (26)

Direct computations yield

J =
(

c−2
1 − c−2

2

)−1

(

−α2(k0, ω0)/(k0c
2
1) α1(k0, ω0)/(k0c

2
2)

−α2(k0, ω0)/ω0 α1(k0, ω0)/ω0

)

=

(

J11 J12

J21 J22

)

.

(27)
An elementary analysis shows that the fastest pseudo-branch corresponds

to
H2α2 ≈

π

2
. (28)

Therefore, we can take α2(k0, ω0) = π/(2H2), and

k0 =

√

ω2
0

c22
− π2

(2H2)2
, α1(k0, ω0) =

√

ω2
0

c21
− ω2

0

c22
+

π2

(2H2)2
. (29)

The dispersion equation (16) can be approximately written in the form

α2(k0, ω0) tan(π/2 +H2ζ)

α1(k0, ω0) tan(H1(α0(k0, ω0) + β))
≈ −ρ2

ρ1
. (30)

Note that

tan(π/2 +H2ζ) ≈ − 1

H2ζ
. (31)

Thus, an approximate solution is as follows:

ζ = ζ(β) = − ρ1
H2ρ2

α2(k0, ω0)

α1(k0, ω0)
tan(H1(α1(k0, ω0) + β) + π/2). (32)
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Finally, the exponential factor in (21) can be rewritten as follows:

exp{i(k∗(β)x−ω∗(β)x)} = exp{i(k0x−ω0t)} exp{ia tan(sβ−r)−ibβ}, (33)

where

a = A(J11x− J21t), A = − ρ1
H2ρ2

α2(k0, ω0)

α1(k0, ω0)
, (34)

b = J22t− J12x, (35)

s = H1, (36)

r = −H1α1(k0, ω0)− π/2. (37)

An illustration of the approximation of the dispersion diagram in the
vicinity of the point (k0, ω0) is given in Fig. 9. The form of the approximated
parametric curve is as follows:

(

k∗(β)
ω∗(β)

)

=

(

k0
ω0

)

+ J ·
(

ζ(β)
β

)

. (38)

5 Analysis of the reference integral

The reference integrals is the main tool in diffraction theory. Typically,
the reference integral has the integrand containing a non-exponential factor
(without a large parameter) and an exponential factor (with a large parame-
ter). There are many known types of reference integrals, say, a saddle-point
integral, an end point integral, a saddle point with a pole integral etc (see e.
g. [5]). Note that, unfortunately, in the rigorous understanding our integral
(39) is not a classical reference integral, since its structure is not becoming
simpler as a → ∞. Thus, our reasoning can be treated as approximate, but
not asymptotical.

Our aim is to estimate the integral of the form

I(a, b) =

∫

G(β) exp{i(a tan(sβ − r)− bβ)}dβ (39)

with real a, b, s, r. The integration is held over some real segment. Let G(β)
be analytical in some strip of the complex plane β surrounding the segment
of integration, maybe except the points

βj =
π(j + 1/2) + r

s
, j ∈ Z, (40)
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Fig. 9: Approximation of dispersion diagram by formulae (23), (29), (25),
(32)

where it can have poles (these points are poles of the tangent function).
Let the width of the strip of analyticity be much wider than 1/|s|. Initially
the integral should be treated as an improper integral on the segment with
deleted points βj .

Let a be positive. Transform the improper integral by adding small arcs
about the points βj (see Fig. 10, contour γ). Then transform the contour of
integration into γ′ (Fig. 10). The contour is shifted into the upper half-plane.
The shift should be much bigger than 1/|s|.

Note that
tan(φ) → i as Im[φ] → +∞, (41)
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Fig. 10: Contour of integration for (39)

thus

I(a, b) ≈ e−a

∫

γ′

G(β) exp{−ibβ}dβ = e−a

∫

γ

G(β) exp{−ibβ}dβ (42)

This formula gives the shape and the decay of the FAS pulse.
If a < 0 then contour γ should pass below the points βj , and the contour

γ′ should be shifted into the lower half-plane. The exponential e−a in (42)
should be replaced by e−|a|.

Finally, the integral is given by an approximate formula

I(a, b) ≈ e−|a|g(b), g(b) =

∫

γ

G(β) exp{−ibβ}dβ. (43)

According to the form of b given by (35), the velocity of the pulse prop-
agation is equal to

vfas =
J22

J12

, (44)

i. e. to the slope of the dashed line in Fig. 4. Thus, one can take

x = L, t =
L

vfas
, (45)

substitute them into (34) and get the decay in the form exp{−|a|} = exp{−κL},

κ = |A|
∣

∣

∣

∣

J11 −
J21J12

J22

∣

∣

∣

∣

. (46)

The parameters vfas = 4.3 and κ = 0.22 observed in Table 1 correspond to
frequency ω0 = 33, which is quite close to the central frequency of the pulse.
Note that velocity and the decay determined by formulae (44) and (46) vary
significantly within the spectrum of the probe pulse, so a more detailed study
is necessary for a better description of wide-band FAS pulses.
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6 Conclusion

It is shown that FAS pulses correspond to terrace-like structures of the dis-
persion diagrams. These structures are called pseudo-branches in the paper.
A typical form of the pseudo-branch is shown in Fig. 4. The pulse propaga-
tion velocity for FAS is equal to the slope of the dashed curve in Fig. 4, and
it can be bigger than any of the group velocities available in the considered
part of the dispersion diagram.

To study the FAS pulse, the dispersion diagram in the vicinity of the
pseudo-branch is approximated by a tangent function transformed by a linear
(matrix) transformation (25). As the result, the integral is reduced to the
form (39). The integral can be simplified by a shift of the integration contour.
The decay of the pulse is provided by behavior of the tangent function in the
complex plane. The pulse decays exponentially with the distance between
the source and the receiver.

The analytical results agree reasonably with the numerical demonstration.
The work is supported by the grants RFBR 14-02-00573 and Scientific

Schools-283.2014.2.
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