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Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of

electric field: Controlled electron transport
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Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence
of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry
potential, and, within these bands localized states are developed under the application of electric
field. Within a tight-binding framework we compute electronic transmission probability and average
density of states using Green’s function approach where the interaction parameter is treated under
Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be
obtained by tuning injecting electron energy, and thus, the present model can be utilized as a
controlled switching device.

PACS numbers: 72.20.Ee, 71.27.+a, 71.30.+h, 73.23.-b

I. INTRODUCTION

Electron transport in low-dimensional system has cre-
ated a lot of interest among researchers due to its im-
mense applicability in the field of nanoscience. Transport
in low-dimensional systems led to interesting quantum
effects. In one-dimension (1D) in presence of random
disorder all the eigenstates are exponentially localized ir-
respective of however weak is the strength of disorder,
this is the well-known phenomenon of Anderson local-
ization1. Based on this fact it is a common belief that
no mobility edge, energy eigenvalues separating localized
states from the extended states, can exist in 1D. In addi-
tion to Anderson localization there exists another kind of
localization which is Wannier Stark localization2 that oc-
curs due to application of bias voltage. It has also drawn
much attention like the case of Anderson localization.
Here localization is obtained even in absence of disorder
and only due to the resulting electric field. Many theoret-
ical3–7 and experimental8 analysis are available on Stark
localization just like Anderson localization. Even in this
case mobility edge could not be detected.
However, it has been pointed out that in correlated dis-

ordered systems all eigenstates are not localized9, rather
some states are of extended in nature as well. In a work
Dunlap et al. considered a random dimer model10 and
showed that the system supports extended eigenstates
at certain discrete eigenvalues. Similarly, a number of
works have also appeared in the literature11–14 to estab-
lish the presence of delocalized states along with the lo-
calized ones thereby exhibiting metal to insulator tran-
sition. With all these special classes of lattice models,
Aubry-Andre (AA) model15 always gives a a classic sig-
nature in transport phenomena. The on-site potential in
the AA 1D chain has the form of a cosine function16–18:

ǫn = λ cos(Qna) (1)

where λ is the modulation amplitude, Q is an irra-

tional multiple of π and a is the lattice spacing. It is a
quasiperiodic lattice something intermediate between pe-
riodic and random disordered systems. The parameter λ
has an important role on the localization behavior of the
eigenstates. Using Thouless formula19 Aubry and Andre
demonstrated that this model exhibits energy indepen-
dent metal insulator transition in the parameter space
of the Hamiltonian at λ = 2t, where t represents the
nearest-neighbor hopping integral. For λ < 2t all eigen-
states are extended and in case of λ > 2t all are localized,
the equality relation is the point of duality with exotic
critical eigenstates which are neither extended nor local-
ized. This interesting feature of the AA model aroused
immense curiosity in the minds of researchers to advance
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FIG. 1: (Color online). Schematic diagram of a 1D tight-
binding chain coupled to two 1D semi-infinite electrodes, viz,
source and drain.

in this field. Large number of articles dealt with this
model both for 1D chain as well as in case of ladder20,21.
However to the best of our knowledge, the study of the
phenomenon of Stark localization in an AA chain in pres-
ence of Hubbard interaction is absent in literature. In the
present manuscript we have elaborately studied the phe-
nomena of localization in a 1D AA chain in absence and
presence of electron-electron (e-e) interaction. First we
analyze the effect of applied bias voltage on the local-
ization behavior of AA chain in absence of any Hubbard
interaction and finally we approach to the case in pres-
ence of interaction. Thus we see how an interesting inter-
play of localization as well as mobility edge phenomena
occurring.
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Rest of the article is arranged as follows. In Section
II we present the model and theory based on which the
results have been derived and discussed in Section III.
Lastly we conclude in Section IV.

II. MODEL AND THEORY

Figure 1 depicts a one-dimensional AA chain coupled
to two semi-infinite leads. The chain comprising N
atomic sites is subjected to an incommensurate Aubry
potential. We describe the model embracing the tight-
binding formalism and Hamiltonian for the entire system
can be expressed as,

H = HS +Hchain +Htun +HD (2)

where the different sub-Hamiltonians are described as fol-
lows. The Hamiltonians for the semi-infinite source and
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FIG. 2: (Color online). Variation of voltage dependent on-site
potentials in a 1D chain with 200 atomic sites when the bias
voltage is fixed at 0.2V. Three different electrostatic potential
profiles, one linear and two non-linear, are taken into account
those are represented by three different colored curves.

drain electrodes are HS(D) and they can be written ex-
plicitly as,

HS(D) =
∑

p

ǫ0d
†
pdp +

∑

p

t0[d
†
p+1dp + h.c.] (3)

where ǫ0 and t0 correspond to the on-site energy and
nearest-neighbor hopping integral, respectively, in the
electrodes. Creation and annihilation operators of elec-
tron inside the electrodes in the nth Wannier state are
respectively denoted by d†n and dn.
The second term in Eq. 2 describes the Hamiltonian

for the 1D AA chain. In absence of electron-electron in-
teraction, the AA chain has on-site energy of the form
ǫi = λ cos(Qia) where, a represent the lattice constant,
Q is an irrational multiple of π and i correspond to po-
sitions of atomic sites. Therefore Hamiltonian for a non-
interacting AA chain is of the form

Hchain =
∑

i

ǫic
†
i ci +

∑

i

t[c†i+1ci + h.c.] (4)

t being nearest-neighbor hopping integral in the chain.
As we apply bias voltage V across the chain, it results an

electric field to develop across it and the on-site energy
gets modified to ǫ′i = ǫi + ǫi(V ). Here ǫi(V ) is the volt-
age dependent part of on-site energy arising solely due to
bare electric field and is chosen to be of the linear form
ǫi(V )=V/2− iV/(N +1). If we assume the effect of elec-
tron screening the potential profile will be of non-linear
nature as shown in Fig. 2. The linear profile is shown by
the green line while non-linear counterpart is depicted
by the blue and pink ones. The variation of electrostatic
potential profile certainly depends on the material itself.
But for our model calculations we consider these three
different profiles, and, we believe that with our results
general features of electric field on electron transmission

across a junction can be clearly analyzed. c†i and ci de-
note the creation and annihilation operators respectively
in the AA chain.
The third term represents coupling Hamiltonian due

to the coupling of the AA chain and side-attached leads,
and it reads as

Htunn = τS [c
†
1d0 + h.c.] + τD[c†NdN+1 + h.c.] (5)

where τS and τD give the strengths by which the system
is coupled to source and drain, respectively.
Now if we incorporate on-site Coulomb interaction in

the AA chain through Hubbard term along with the effect
of bias voltage, the Hamiltonian takes the form,

Hchain =
∑

i,σ

ǫ′i,σc
†
i,σci,σ +

∑

〈ij〉,σ

t[ci,σ†cj,σ + c†j,σci,σ]

+
∑

i

Uc†i↑ci↑c
†
i↓ci↓ (6)

where U is the Coulomb interaction strength.
To study electronic behavior of such an interacting sys-

tem we use Hartree-Fock mean field22–24 theory. In this
approach, Eq. 6 can be written as

Hchain =
∑

i

ǫ′′i↑ni↑ +
∑

〈ij〉

t
[

c†i↑cj↑ + c†j↑ci↑

]

+
∑

i

ǫ′′i↓ni↓ +
∑

〈ij〉

t
[

c†i↓cj↓ + c†j↓ci↓

]

−
∑

i

Ui〈ni↑〉〈ni↓〉

= Hc,↑ +Hc,↓ −
∑

i

Ui〈ni↑〉〈ni↓〉 (7)

where, Hc,↑ and Hc,↓ are Hamiltonians for the up and
down spin electrons, respectively, similar to Eq. 4 with
modified on-site energies as ǫ′′i,↑ = λ cos(Qia) + ǫi(V ) +

U〈ni,↓〉 and ǫ′′i,↓ = λ cos(Qia) + ǫi(V ) + U〈ni,↑〉, ni,σ =

c†i,σci,σ being the number operator. The last term in

the above equation (Eq. 7) represents a shift in the to-
tal energy and it depends on the average number of up
and down spin electrons. Once we get the decoupled
Hamiltonians for up and down spin electrons, we find
the eigenvalues self-consistently considering some initial
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guess values of 〈ni,↑〉 and 〈ni,↓〉. With the starting guess
values of 〈ni,σ〉 we diagonalize the Hamiltonians Hc,↑ and
Hc,↓, and compute a new set of values for 〈ni,σ〉. Next
we replace the initial guess values with the new set of
values of 〈ni,σ〉 and repeat the process until the values of
all 〈ni,σ〉 converges. Substituting the final set of values in
the Hamiltonians we calculate the two-terminal transmis-
sion probability using the Landauer formula. Transmis-
sion probability for up or down spin evaluated separately
in terms of Green’s function from the relation25

Tσ(E) = Tr[ΓSG
r
chain,σΓDGa

chain,σ] (8)

where ΓS(D) is the coupling matrix bearing the imaginary
part of the self-energy ΣS(D), arising due to the coupling
between chain and the semi-infinite leads. Gr

chain,σ and
Ga

chain,σ are the retarded and advanced Green’s functions
of the chain which include the effect of electrodes. Thus
we can write25 Gchain,σ = (E−Hc,σ−ΣS−ΣD)−1. Total
transmission probability is given by T (E) =

∑

σ

Tσ(E).

We also evaluate the average density of states (ADOS)
using the relation ρ(E) = −(1/Nπ)Tr[Im[Gr

chain]].
During the computation we use λ = 1 in unit of t

(eV), except for Fig. 5 where λ is varying, and set Q =

(1 +
√
5)/2.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we present the results based on the
above theoretical formulation. Throughout the numer-
ical calculations we set c = h = e = 1 and measure all
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FIG. 3: (Color online). Total transmission probability (pink
color) and average DOS (green color) vs. energy E for a
non-interacting chain (U = 0), where (a) and (b) correspond
to the chain with identical site potentials while (c) and (d)
represent the Aubry chain. For the left column we set V=0,
and, it is 0.2 for the right column. The results are computed
for the linear bias drop across the chain.

energies in unit of t. First we study the case of elec-
tron transmission through a non-interacting AA chain in
presence of bias voltage and then we consider effect of
Hubbard interaction into it.

Figures 3(a) and (b) present the results for the case of
a non-interacting 1D chain in absence of incommensurate
potential i.e., the chain becomes a perfect 1D lattice. For
such a case we choose the bare site potentials to zero,
without loss of generality. In Fig. 3(a) we set the bias
voltage V to zero, while it is fixed at 0.2 in Fig. 3(b).
In absence of external bias voltage all the energy eigen-
states are extended in nature, and therefore, the trans-
mission probability is finite at all energy eigenvalues.
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FIG. 4: (Color online). Total transmission probability and
average DOS as a function of energy E for an interacting
chain with U = 2, where (a)-(d) correspond to the identical
meaning as in Fig. 3. All the other parameters are same as
considered in Fig. 3.
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FIG. 5: (Color online). T -E and ρ(E)-E curves for a 200
site interacting chain (U = 2) for different values of λ, where
(a), (b), (c) and (d) correspond to λ = 0.5, 1, 2 and 2.5,
respectively. For all these cases we set V = 0.

In presence of finite bias eigenstates at the band edges
are no longer extended as it is evident from Fig. 3(b)
that the transmission probability is zero while inside the
band eigenstates are extended as we have finite trans-
mission probability. It indicates that the choice of Fermi
energy is quite important. If it is chosen to lie well inside
the energy band the chain will be of conducting nature,
while if it lies near the band edges the chain behaves as
an insulator. Such sharp transitions of the conducting
behavior gives an idea of existence of mobility edges in
presence of a finite bias. In the same figure, cases (c) and
(d) represent the transmission probability and ADOS of
a non-interacting AA chain in absence and presence of
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a linear bias drop. Presence of incommensurate poten-
tial leads to splitting of band. We see that there are two
gaps embedded inside three bands. In presence of bias
voltage, say V = 0.2, the energy eigenstates belonging to
the outermost two bands have negligible contribution to
transmission unlike those of the middle band, and hence
extended energy eigenstates as well as the localized ones
are present leading to metal-insulator transition. The
more we increase the bias voltage, more number of local-
ized states will appear and at one stage all the states will
be localized.
Next we study the interplay between electric field and

the Aubry ordering in 1D Hubbard chain. The trans-
mission characteristics together with ADOS of an AA
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FIG. 6: (Color online). T -E and ρ(E)-E characteristics for an
interacting AA chain considering 300 atomic sites with U = 2
and λ = 1. The results are shown for a linear bias drop when
V = 0.3.
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FIG. 7: (Color online). T -E and ρ(E)-E characteristics for
an interacting AA chain with N = 200, U = 2 and λ = 1
considering non-linear bias drop across the chain. In (a) set
the electrostatic potential profile as given by the pink line in
Fig. 2, while in (b) we choose it according to the blue line of
Fig. 2. Here we fix V = 0.2.

interacting chain are shown in Fig. 4. First row repre-
sents T (E) and ρ(E) as functions of E for an interacting
chain in absence of Aubry potential. In the half-filled
case we have a Mott insulator (Fig. 4(a)) with a single
gap at the band centre. For the 1D AA Hubbard chain,

we have a Mott gap at the center of the band, but ad-
ditional gaps appear due to Aubry potential as clearly
seen from Fig. 4(c). In absence of bias voltage, all the
eigenstates of the periodic as well as the AA Hubbard
chains have finite electron transmission probability. On
the other hand, in presence of finite bias localized states
appear at the band edges both in case of a 1D periodic
Hubbard chain (Fig. 4(b)) and 1D AA Hubbard chain
(Fig. 4(d)).
To investigate the precise role of λ on transmission

and ADOS we present results for different values of λ in
Fig. 5 setting V = 0. We see that for λ < 2t, all the
eigenstates are of extended in nature even in presence of
U . The fact that for λ < 2t all the eigenstates of 1D
AA chain behave like extended states and their behavior
remains unaltered even for U 6= 0 which can be noticed
from Figs. 5(a) and (b). It is well known that for λ = 2t
states are critical and for λ > 2t all the eigenstates are
localized, and for both these cases we have zero trans-
mission probability. Quite interestingly from Figs. 5(c)
and (d) we see that few conducting states appear in the
middle of the inner two bands when U 6= 0. Physically
it implies that electron-electron interaction changes the
behavior of the AA chain.
To test the invariant nature of the above discussed phe-

nomena with respect to the parameter values, in Fig. 6 we
present the characteristics features of transmission prob-
ability together with average density of states consider-
ing a chain with different set of parameter values where
N = 300 and V = 0.3. From the spectra it is clear that
all the physical pictures remain unchanged and certainly
it strengthens the invariant character of our analysis and
can be verified experimentally.
Till now we have shown all the cases in presence of

linear voltage drop across the chain. To get an idea re-
garding the behavior of transmission and average density
of states in presence of non-linear bias drop let us focus
on the results given in Fig. 7. Two different non-linear
profiles are taken into account following the curves (pink
and blue lines) shown in Fig. 2. For these two cases we
also get similar kind of band splitting and localization
phenomenon, but a careful observation suggests that the
transmission probability becomes higher for the flatter
profile (blue line of Fig. 2) compared to the other (pink
line of Fig. 2) one. With increasing the flatness the local-
ization effect due to electric field decreases, and, for the
limiting case i.e., when the bias drop takes place only
at the two edges of the chain, transmission probability
will be maximum when all the other parameters are kept
unchanged.

IV. CONCLUSION

In the present work we critically investigate the role
of electric field, developed due to external bias, in an
interacting 1D Aubry chain. The interaction parameter
is described within a Hartree-Fock mean field level un-
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der tight-binding framework where transmission proba-
bility and ADOS are evaluated from Green’s function ap-
proach. The interplay between Aubry lattice, Coulomb
correlation and electric field provides multiple mobility
edges at different energies. Under this situation if we
scan throughout the energy band window then electrons
can allow to pass from source to drain via the selec-

tive conducting energy channels providing finite electron
transmission, while for all other cases we get the insu-
lating phase since then no electron can transmit through
the localized channels. This phenomenon clearly empha-
sizes that the present model can be utilized as a selective
switching device.
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