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Recent experiments with dilute trapped Fermi gases observed that weak interactions can drasti-
cally modify spin transport dynamics and give rise to robust collective effects whose fundamental
quantum origins are not well understood, including global demagnetization, macroscopic spin waves,
spin segregation, and spin self-rephasing. In this work, we develop a framework for analyzing the
dynamics of weakly interacting fermionic gases following a spin-dependent change of the trapping
potential in regimes where standard mean-field and kinetic theory treatments are invalid. The key
idea is the projection of the dynamics onto a set of lattice spin models defined on the single-particle
mode space. Collective phenomena, including the global spreading of quantum correlations in real
space, arise as a consequence of the long-ranged character of the spin model couplings. The spin
model formulation provides a simple analytic picture of the experimental observations and illumi-
nates the interplay between spin, motion, Fermi statistics, and interactions. Our results suggest a
number of directions for future experiments in the weakly interacting regime.

The interplay between spin and motional degrees of
freedom in interacting electron systems has been a long-
standing research topic in condensed matter physics. In-
teractions can modify the behavior of individual elec-
trons and give rise to emergent collective phenomena such
as superconductivity and colossal magnetoresistance [1].
Theoretical understanding of non-equilibrium dynamics
in interacting fermionic matter is limited, however, and
many open questions remain. Ultracold atomic Fermi
gases, with precisely controllable parameters, offer an
outstanding opportunity to investigate the emergence of
collective behavior in out-of-equilibrium settings.

Progress in this direction has been made by re-
cent spin transport measurements in ultracold spin-1/2
fermionic vapors, where an initially spin polarized gas
was subjected to a constant magnetic field gradient [2–
4] (Fig. 1(a)), and to a spin-dependent harmonic trap-
ping frequency [5–8], equivalent to a spatially-varying
gradient. Even in the weakly interacting regime, dras-
tic modifications of the single-particle dynamics were re-
ported. Moreover, despite interactions being spatially
local, collective phenomena were observed, including de-
magnetization and transverse spin-waves in the former,
and a time-dependent separation (segregation) of the
spin densities and spin self-rephasing in the latter. Al-
though mean-field and kinetic theory formulations have
explained some of these phenomena [8–18], a general the-
ory capable of describing all the time scales, dramatic
changes in spin polarizations, and the interplay between
spin, motion, and interactions has not been developed.

In this work, we develop a theoretical framework that
accounts for the coupling of spin and motional degrees of
freedom in weakly interacting systems and reproduces all
phenomena of the aforementioned experiments. The key
idea is the representation of the state as a superposition
of spin configurations which live on a lattice whose sites
correspond to modes of the underlying single-particle sys-
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FIG. 1. (Color online) (a) Spin-↑ and spin-↓ occupy
different single-particle eigenstates, labeled by mode index
n. (b) After a quench, |ψ〉 is a coherent superposition of
spins in many mode configurations (unoccupied modes are
represented by open circles). (c) In each configuration
particles are localized in mode space, with coherences
capturing motional effects. Spin dynamics are generated by
a spin model with long-range couplings determined by the
mode overlaps (brown, shaded).

tem (see Fig. 1(b)). Within each configuration, the dy-
namics is described by a spin model with long-ranged
couplings which generates collective quantum correla-
tions and entanglement (see Fig. 1(c)). In the weakly
interacting limit, each sector evolves independently; ac-
cumulated phase differences between sectors capture the
interplay of spin and motion. Using this formulation, we
gain a great deal of insight about the dynamics, and can
extract analytic solutions for spin observables and corre-
lations in several limits. Although spin models in energy
space [19–24] have been used before and agreed well with
experiments [5, 23, 25–29], their use was limited to pure
spin dynamics (no motion). In many ways, quantum
dynamics of weakly-interacting Fermi gases is less well
understood than it is in the strongly-interacting limit,
where interactions dominate and features of the dynam-
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ics tend to be universal [2, 30]. Our formulation allows us
to track motional degrees of freedom, compute local ob-
servables, and determine how correlations spread in real
space. This opens a route for investigations of generic
interacting spin-motion coupled systems beyond current
capabilities. The predictions of the spin model also sug-
gest directions for future experiments, which might, for
instance, investigate the scaling of dynamical quantities
or observe the collective rise of quantum correlations.

Numerical simulations of non-equilibrium fermionic
matter are notoriously difficult, and for many situations
no efficient algorithms presently exist. In contrast, a wide
variety of powerful analytical and numerical tools have
been developed for lattice quantum spin models [31–38],
making a spin model description of fermionic systems
potentially very useful. To demonstrate the capabilities
of this approach, we use time-dependent matrix product
state methods which are efficient in one-dimension [39].
We simulate systems of N = 10 − 20 particles; due to
the coupling of spin and motion, the complexity of these
simulations is similar to that of long-ranged and inho-
mogenous pure spin systems with N ∼ 100 spins. We
emphasize, however, that the mapping to a spin model,
the corresponding analytic solutions, and the physical in-
terpretations are valid in arbitrary dimensions. Thus the
method described here will be useful for more generic
cases as numerical techniques able to handle larger spin
systems continue to improve.

Setup– We consider N identical fermionic atoms of
mass ma with a spin-1/2 degree of freedom α ∈ {↑, ↓}
trapped in a one dimensional harmonic oscillator of fre-
quency ω, V 0(x) = 1

2maω
2x2. The atoms experience

contact s-wave collisions, parameterized by the scatter-
ing length as. The sample begins spin-polarized in the ↓
state, where atoms are non-interacting and populate dis-
tinct trap modes. The collective spin is then rotated to
the X-axis, and the Hamiltonian quenched to the spin-
dependent form Ĥ = Ĥsp + Ĥint, (~ = 1) with

Ĥsp =
∑
α

∫
dxψ̂†α(x)

(
− 1

2ma

∂2

∂x2
+ V α(x)

)
ψ̂α(x),

Ĥint =
2as
maa2

⊥

∫
dxρ̂↑(x)ρ̂↓(x). (1)

Here ψ̂α(x) is the fermionic field operator for spin α at

point x, ρ̂α(x) = ψ̂†α(x)ψ̂α(x), and we have integrated
over two transverse directions with small confinement
length a⊥ � aH , aH = (maω

2)−
1
2 . Expanding the field

operators in the basis of single-particle eigenstates φαn(x)
with associated creation operator ĉ†nα and defining the in-
teraction parameter u↑↓ = 2as/(maaHa

2
⊥), Ĥint becomes

u↑↓
∑
nmpq Anmpq ĉ

†
n↑ĉm↑ĉ

†
p↓ĉq↓. The interaction parame-

ters Anmpq = aH
∫
dxφ↑n(x)φ↑m(x)φ↓p(x)φ↓q(x) depend on

mode overlaps (Fig. 1(c)).
We consider V α=↑,↓(x) = V 0(x) + ∆V α(x), with

∆V α(x) generated by a magnetic field with a con-

stant gradient, ∆V α(x) = ±Bx, or a linear gradient,
∆V α(x) = ±ω2

Bm
2
ax

2/2. In both cases the single-particle
Hamiltonian can be written as:

Ĥsp =
∑
n

[
ω̄(n+ 1/2)N̂n + ∆ω (n+ 1/2) σ̂Zn

]
, (2)

with N̂n = ĉ†n↑ĉn↑ + ĉ†n↓ĉn↓, and {σ̂Xn , σ̂Yn , σ̂Zn } ≡∑
α,β ĉ

†
nα~σαβ ĉnβ where ~σ is a vector of Pauli matrices.

The constant gradient shifts the trap for spin up (down)
by x0 (−x0), with x0 = B

maω2 , but does not change the
frequency; ω̄ = ω and ∆ω = 0. In a noninteracting
gas the ↓ and ↑ densities and the magnetization oscil-
late at frequency ω due to this motion [16, 40]. A lin-
ear gradient adds an additional harmonic potential term,
resulting in different trap frequencies for the two spins:
ω̄ = (ω↑ + ω↓)/2 and ∆ω = (ω↑ − ω↓)/2. The non-
interacting spin densities undergo a breathing motion in
their respective traps, leading to oscillations in the to-
tal magnetization [40]. A finite ∆ω causes dephasing
through rotations of the magnetization in the XY plane
with mode-dependent rates.
The generalized spin model approximation– The

quench projects the initially polarized state, which
we take to be the ground state in this work,
onto the eigenmode basis of Ĥsp. The state
after the quench |ψ〉t=0 is a coherent superpo-
sition of many product states each characterized
by a set of populated modes ni = {ni1,ni2, . . . ,niN}:
|ψ〉t=0 =

∑
i di
⊗N

j=1

(
ĉ†
nij↑

+ ĉ†
nij↓

)
|0〉. The coefficients

di are determined by the change of basis.
Our key approximation is that single particle modes

either remain the same or are exchanged between two
colliding atoms. Exact numerical calculations confirm
the validity of this approximation in the weakly inter-
acting regime [41]. For each set ni the resulting total
Hamiltonian takes the form of an XXZ spin model,

Ĥsm
ni = Ĥsp

ni +
∑
n 6=m∈ni

∑
ν=X,Y,Z J

ν
nmσ̂

ν
nσ̂

ν
m , (3)

plus additional small density-σ̂Z couplings [41]. Here,
the Ising, JZnm ≡ Annmm, and exchange, JXnm = JYnm =
J⊥nm ≡ Anmmn, couplings result from the overlap be-
tween the ↑ and ↓ single-particle eigenstates (Fig. 1(c))
and are long-ranged (∼ 1/

√
|n−m|) [41]. In our approx-

imation, each sector ni evolves independently, but with
ni-dependent parameters, under Eq. 3. When computing
observables, we account for both the fully quantum me-
chanical, interaction-driven spin dynamics within each
ni sector, as well as single-particle dynamics from the
coherences between sectors.
Spin observables– The local and collec-

tive magnetizations are given by ~̂S(x) =
1
2

∑
nm,α,β φ

α
n(x)φβm(x)

(
ĉ†αn ~σαβ ĉ

β
m

)
and ~̂S =

∫
dx ~̂S(x).

Fig. 2 summarizes the results for a constant gradient
with N = 10 [42]. At short times the collective mag-
netization 〈ŜX〉 ((a) and (e)) exhibits characteristic



3

 0
 20

 40
 60

 80
 100

 0.05
 0.15

 0.25
 0.35

 0.45

 1
 2
 3
 4
 5

!t
u"#/!

 0
 20

 40
 60

 80
 100

 0.05
 0.15

 0.25
 0.35

 0.45

 0
 1
 2
 3
 4
 5

u"#/!!t

b dca

f hge

!t !t !t

!t !t !t
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FIG. 2. (Color online) Magnetization dynamics for a constant gradient. Collective 〈ŜX〉 (a) (and (e)) displays global
interaction-induced demagnetization, which damps single-particle oscillations. Collective (generic) Ising solutions, black lines,

give the demagnetization envelopes. Local magnetizations 〈ŜX,Y,Z(x)〉(b-d) (and f-h) reflect similar behavior.

single-particle oscillations at frequency ω; these quickly
dephase and are modulated by a global envelope with a
longer time scale. Similar behavior is observed for the
local magnetizations 〈ŜX,Y,Z(x)〉 (b-d, f-h). Although
the total 〈ŜY,Z〉 magnetizations are zero at all times,
the local quantities 〈ŜY,Z(x)〉 evolve due to coherences
between mode configurations. Their dynamics, however,
are damped by interactions (Fig 2 (b-d, f-h)).

The dynamics can be understood as follows. For spin
independent potentials, JZnm = J⊥nm and ∆ω = 0. The
Hamiltonian Ĥsm

ni is SU(2) symmetric and commutes

with ~̂S2, where ~̂S ≡ 1
2

∑
n ~̂σn, and so its eigenstates

can be labelled by the total spin S. When a gradi-
ent is applied, the SU(2) symmetry is broken by terms
∆nm = JZnm−J⊥nm (∆ω = 0 for a constant gradient), and
the Hamiltonian can be rewritten as ĤS

ni + Ĥδ
ni , where

ĤS
ni = Eni −

u↑↓
4

∑
n 6=m∈ni

[
J⊥nm~σn · ~σm + ∆̄σ̂Zn σ̂

Z
m

]
,

Ĥδ
ni = −u↑↓

4

∑
n6=m∈ni

δnmσ̂
Z
n σ̂

Z
m, (4)

Eni = ω̄
∑
n∈ni(n+ 1/2) is a constant, ∆̄ is the average

value of ∆nm, and δnm = ∆nm− ∆̄. ĤS
ni commutes with

~̂S2 so only Ĥδ
ni induces transitions between manifolds of

different S. For a sufficiently weak gradient, and δnm �
J⊥nm, a large energy gap G, which we call the Dicke gap,
opens between the S = N/2 “Dicke” manifold and the
S = (N/2− 1) manifold [41]. The system remains in the
Dicke manifold when terms in Ĥδ

ni are small compared to
this gap, and dynamics resulting from the collective Ising
term in ĤS

ni is given by 〈ŜX〉ni = N
2 cosN−1

(
u↑↓∆̄t

)
, and

〈ŜY,Z〉ni = 0. Since the interaction parameters JZnm and
J⊥nm vary slowly with parameter index, the dynamics of
〈ŜX〉ni is approximately the same for all i, and a single
configuration n0 ≡ {0, 1, · · ·N − 1} well reproduces the
demagnetization envelope (Fig. 2(a)).

For strong gradients, mode-exchange processes are
suppressed and only mode-preserving processes re-
main significant. The effective interaction Hamil-
tonian becomes a generic Ising model ĤIsing

ni =
−u↑↓

4

∑
n 6=m∈ni J

Z
nmσ̂

Z
n σ̂

Z
m, which also admits a simple

expression for the spin magnetization dynamics [35–38]
〈ŜX〉ni =

∑
n∈ni

∏
m 6=n∈ni cos

(
u↑↓JZnmt

)
. In this limit

the demagnetization envelope can be captured by the n0

realization of the generic Ising solution (Fig. 2(e)).

Using a perturbation analysis, the short time dy-
namics of the XXZ Hamiltonian [43] is given by
〈ŜX〉 = 〈ŜX〉t=0

(
1− (t/τM )2

)
+O(t3), where τM is de-

fined as the demagnetization time. By analyzing the
scaling of the interaction parameters we find that τM ∼(
Nu↑↓x2

0

)−1
, a prediction that agrees well the numerical

scaling ∼ u−1
↑↓ x

−2
0 N−0.823 [41]. Similar behavior was re-

ported in Ref. [2] in the weakly-interacting regime where
the demagnetization rate scaled roughly with the interac-
tion strength. Although the experiment was conducted in
two dimensions, we expect the scaling analysis to remain
valid due to the collective character of the dynamics. We
note that the spin echo pulse applied in Refs. [2, 3] modi-
fies the single-particle physics [40], but does not affect the
interaction-induced collective demagnetization. Investi-
gating these scalings in the weakly-interacting regime is
a possible direction for future experiments.

Fig. 3 (a) [(b)] shows the numerically-obtained total
magnetization vs. interactions for weaker [stronger] lin-
ear gradient. In a weak gradient the magnetization re-
mains nearly constant for a sufficiently strong gradient,
and the collective spin dynamics is a global precession
in the XY plane (inset). This self-rephasing effect was
experimentally reported in Ref. [5]. The Z magnetiza-
tion exhibits a clear, long-time spatial separation of the
spin densities (spin segregation): the ↑ (↓) atoms accu-
mulate at the center (edge) of the cloud. Spin segregation
in fermionic gases, first reported in Ref. [7], occurred at
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FIG. 3. (Color online) Magnetization dynamics for a linear

gradient. (a) As interactions increase, 〈 ~̂S〉 precesses
collectively in the XY plane (inset), leading to

self-rephasing (constant |〈 ~̂S〉|). (b) For a stronger gradient,
demagnetization envelopes (black lines) are predicted by the

generic Ising solutions. The local ŜZ(x) magnetization
exhibits spin segregation oscillations (c,d) at a rate
proportional to the interaction strength.

timescales set by the mean interaction energy, and re-
versed sign when interactions were switched from attrac-
tive to repulsive. We observe this behavior in our numer-
ical simulations, and the spin model provides a simple
interpretation.

For a weak gradient, the single-particle term
∝ ∆ω gives rise to the largest inhomogene-
ity. In this limit the Hamiltonian simplifies to
−u↑↓

4

∑
n6=m J

⊥
nm~σn · ~σm +

∑
n ∆ω(n+ 1

2 )σ̂Zn . When
∆ω〈n〉 � G, where G is the Dicke gap and 〈n〉 is the
average mode occupation, the system remains in the
Dicke manifold. After projecting Ĥsp onto the Dicke
states, the dynamics of total spin observables is just a
collective precession in the XY plane of the generalized
Bloch vector, i.e 〈Ŝ±(t)〉 = 〈Ŝ±(0)〉e±2it(〈n〉+ 1

2 )∆ω,
with Ŝ± = ŜX ± iŜY , as seen in Fig. 3(a, inset). At
leading order the system stays entirely in the Dicke
manifold, 〈ŜZ〉 = 0, and spin segregation does not occur.
However, the gradient generates a coupling between
the S = N/2 and the S = (N/2 − 1) states, which
induces Rabi-type oscillations with lowest-order angular
frequency ∼ G [41]. The gap G is also a measure of
the mean-field interaction energy ∼ NJ̄⊥u↑↓ for fully
collective interactions. For weaker interactions or larger
inhomogeneities, the oscillations decay due to population
of other spin manifolds, e.g., S = (N/2−2). For stronger
gradients the condition ∆ω〈n〉 � G is violated, and the
demagnetization envelope is instead given by the generic
Ising solutions (Fig. 3(b)).

Correlations– Our approach can be used to com-
pute higher-order correlations, such as the G++(x, x′) =
〈Ŝ+(x)Ŝ+(x′)〉 − 〈Ŝ+(x)〉〈Ŝ+(x′)〉 correlator shown in
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FIG. 4. (Color online) Real part of connected correlation
functions Re

[
G++(x, 0; t)

]
. (a) In a weak constant gradient,

correlations grow collectively. (b) In a linear gradient in the
self-rephasing regime, G++ exhibits a collective phase
rotation. For weaker interactions or stronger gradients (c,
d), interactions collectively damp the correlations arising
from quantum statistics (u↑↓ = 0, upper panels).

Fig. 4. Although the system is initially non-interacting,
G++(t = 0) shows finite anti-bunching correlations near
x ∼ x′ arising from Fermi statistics (mode entanglement)
[44, 45]. At later times, correlations behave collectively,
a distinct consequence of the long-range character of the
spin coupling parameters [46–50].

For a weak constant gradient, the collective Ising
model provides a good characterization of the correlation
dynamics. For each spin configuration G++

ni (x, x′; t) =
f i1(x, x′) cosN−2

(
2u↑↓∆̄t

)
− f i2(x, x′) cos2N−2

(
u↑↓∆̄t

)
,

where the functions f i1,2(x, x′) depend on the set of
populated modes [41]. G++ peaks at the time when the
system has completely demagnetized (Fig. 4(a)). For a
pure spin system with a collective Ising Hamiltonian,
the state at this time is a Schrödinger-cat state [51, 52].
For the linear gradient in the self-rephasing regime, we
observe collective precession of G++ (Fig. 4(b)). As
interactions decrease or the inhomogeneity increases,
correlations are strongly affected by the interplay be-
tween single-particle dynamics and interactions (Fig. 4(c,
d)). Mode entanglement tends to cause an almost linear
spreading of the correlations with time [53–55], while
interactions tend to globally distribute and damp those
correlations. Current experiments are in position to
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confirm these predictions.

Outlook– We have discussed an approach to model
the interplay of motional and spin degrees of freedom in
weakly interacting fermionic systems in spin-dependent
potentials. Simulations reproduce several collective dy-
namical phenomena that were recently observed in cold
gas experiments, and we can understand the physics be-
hind these effects with simple considerations. While we
focused on 1D systems to enable a rigorous comparison of
analytical predictions to unbiased numerical simulations,
we emphasize that the model, analytic solutions, and the-
oretical pictures developed are general. For larger sys-
tems and in higher dimensions, methods such as the dis-
crete truncated Wigner approximation [32–34], which is
uncontrolled but performed well in benchmark tests [56],
can be used to make direct comparison with experiments.
Our formulation may also be useful for modeling another
class of spin transport experiments [30, 57], in which dy-
namics is induced by an initial spatial separation of the
spin populations. While our model only works in the
weakly interacting limit, it has recently been pointed out
that local spin models can be formulated in the opposite,
strong coupling regime [58–61]. It could be interesting to
investigate ways to connect these formulations.
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Supplemental material for “Dynamics of interacting fermions in
spin-dependent potentials”

In this supplemental material we discuss the generalized spin model approximation and its range of validity, explain in
detail how spin segregation arises in a many body system, present dynamical scaling results, and discuss our numerical
methods.

THE GENERALIZED SPIN MODEL APPROXIMATION: VALIDITY AND DISCUSSION

The spin model approximation ignores interaction-induced changes of the single-particle motional quantum states
and is thus only valid when interactions are weak compared to the harmonic oscillator energy spacing, u↑↓ � ω. The
range of validity of this approximation is essentially when the system is “collisionless,” although the exact crossover
to the collisional regime depends not only on the interaction energy but also on the strength of the gradient for
the quenches discussed in this work [16]. When interactions are weak compared to the oscillator spacing, collisional
processes that do not conserve single particle energy can safely be ignored. However, processes that do conserve single
particle energy, but at the same time change the populated single particle modes, i.e. “resonant” mode changes, can
be important for a harmonic trap [64]. While there are a large number of such terms in a harmonic trap due to the
equal spacing of energy levels, realistic optical traps in cold atom experiments include anharmonicity which breaks
these degeneracies. In higher dimensions, the non-separability of the trapping potential suppresses the redistribution
of energy modes in the transverse directions. When the energy differences due to anharmonicity and non-separability
of the trapping potential are larger than the interaction strength, these terms will be suppressed. This was shown to be
the case for example in Refs. [23, 27, 28] where a pure spin model accurately described the experimental observations.
Additionally, at very low temperatures, Pauli blocking can partially prevent mode changing collisions for a spin-
polarized sample, as recently observed in Ref. [65]. However, even in a spin-polarized gas, spin- and mode-changing
processes may occur, resulting in a doubly occupied mode.

We compare exact diagonalization of the full Hamiltonian, including all interaction-induced mode changes, to the
spin model prediction for a small number of particles to test its validity. The results are shown in Fig. 5. Panel (a)

http://sourceforge.net/projects/openmps/
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FIG. 5. Spin model approximation vs. full Hamiltonian for 5 particles with x0 = 0.1a and u↑↓ = 0.35ω. (a) 〈ŜX〉 quench
dynamics for initial modes {0,1,2,3,4}, representing a zero temperature gas, along with (b) the connected correlator
G++(x = 0, x′ = 0.5aH). Single-particle oscillations is damped by interactions, and the long time dynamics is well-reproduced
by the spin model approximation with decay envelope given by the collective Ising solutions. (c) Dynamics for initial modes
{0,3,4,5,6} representing a more dilute gas. (d) Dynamics of a pure XXZ spin Hamiltonian with the same parameters, for each
of the lowest “one-hole” mode configurations. The dynamics of each configuration is very similar, explaining why the
dynamics of a quench – involving many configurations – can be approximated by a single configuration. The interaction
parameters vary slowly with parameter index, as shown in (e,f) for x0 = 0.1aH and (g,h) for x0 = 0.3aH .

shows the dynamics of 〈ŜX〉 for five particles following a quench of a constant gradient with x0 = 0.1a and u↑↓ = 0.35ω.
The quench induces single-particle dynamics which we observe as fast oscillations at the trapping period. In the spin
model approximation, these oscillations are modified due to interactions and become damped at long times. The long
time demagnetization and damping of single particle oscillations are well captured by the spin model approximation.
Also plotted is the analytic solution for the collective Ising model which captures the demagnetization envelope.
Fig. 5(c) shows the dynamics for a different initial mode configuration – {0, 3, 4, 5, 6} – where Pauli blocking would
not prevent several resonant mode changing processes. For instance, the process (n = 0,m = 3)→ (n = 1,m = 2) is
resonant. The spin model approximation works well even in this case.

The initial state after a quench is a superposition of many different product states of spins, in different mode
configurations labeled ni. Because the interaction parameters vary slowly with parameter index, each ni has similar
interaction parameters and similar dynamics. Fig. 5(d) shows the dynamics for 5 spins evolved under a pure XXZ
Hamiltonian, with the same conditions as the dynamics in Fig. 5(a). Each curve represents a different “one-hole”
mode configuration of five spins that differs from n0 ≡ {0, 1, 2, 3, 4} by exactly one mode (n0 dynamics is also
shown). For instance, the initially occupied modes could be {0, 1, 2, 3, 5} or {0, 1, 2, 4, 5}, etc. All these configurations
contribute to the dynamics after a quench. Since they all have similar dynamics, however, we only need to consider
the n0 configuration to reproduce the demagnetization envelope. The slow variation of the interaction parameters
is illustrated in Fig. 5(e,f) where we plot the value of all the parameters JZnm and J⊥nm for modes n,m = 0 through
n,m = 15, sorted by value and labeled by a parameter index. In Fig. 5(g,h) we show that the interaction parameters
also vary slowly for a stronger gradient, x0 = 0.3aH . The slow variation of interaction parameters also helps explain
why mode changes are relatively unimportant: a mode change simply evolves the system to another mode configuration
where the dynamics are nearly the same.

The collective Ising solution gives the connected correlation function studied in the main text as
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FIG. 6. (a) Magnitude of of the total field Bnσ̂
Z
n , which contains both single particle (Bspσ̂Z

n ) and interaction (B
u↑↓
n σ̂Z

n )
terms, for a linear gradient with ∆ω = 0.08ω. Even for strong interactions (u↑↓ = 0.5ω), the Hamiltonian is not significantly
modified by the interaction-induced terms B

u↑↓
n which appear when JZ

nm 6= JZ
mn. (b) For u↑↓ = 0.5ω the B

u↑↓
n terms do not

grow with particle number.

G++
ni (x, x′; t) = f i1(x, x′) cosN−2

(
2u↑↓∆̄t

)
− f i2(x, x′) cos2N−2

(
u↑↓∆̄t

)
, where the functions f i1,2(x, x′) are given by

f i1(x, x′) =
1

4

∑
nm∈ni

(
φ↑n(x)φ↓n(x)φ↑m(x′)φ↓m(x′)− φ↑n(x)φ↓n(x′)φ↑m(x′)φ↓m(x)

)
,

f i2(x, x′) =
1

4

∑
nm∈ni

φ↑n(x)φ↓n(x)φ↑m(x′)φ↓m(x′). (S1)

In Fig. 5(b) we show the connected correlator G++(x, x′) evaluated at x = 0, x′ = 0.5aH , along with the analytic
solution for the n0 mode configuration. The spin model approximation and analytic solution do an excellent job of
reproducing the dynamics of the correlation function. For stronger gradients where the generic Ising model is a better
description of the dynamics,

G++
ni (x, x′; t) =

1

4

∑
n,m∈ni

(
φ↑n(x)φ↓n(x)φ↑m(x′)φ↓m(x′)− φ↑n(x)φ↓n(x′)φ↑m(x′)φ↓m(x)

) ∏
p 6=n,m∈ni

cos
(
JZnpt+ JZmpt

)

− 1

4

∑
n∈ni

(
φ↑n(x)φ↓n(x)

) ∏
p 6=n∈ni

cos
(
JZnpt

)∑
n∈ni

(
φ↑n(x′)φ↓n(x′)

) ∏
p 6=n∈ni

cos
(
JZnpt

) . (S2)

For a linear gradient, the direct interaction integrals are not symmetrical under mode exchange: JZnm 6= JZmn. The

spin model Hamiltonian includes terms Ĥas =
u↑↓
8

∑
n 6=m

(
JZnm − JZmn

) (
σ̂Zn N̂m − σ̂ZmN̂n

)
, where N̂n = N̂↑n + N̂↓n

and N̂α
n = ĉ†nαĉnα. These terms, when summed over the index m, represent an inhomogeneous magnetic field:∑

m Ĥ
as =

∑
nB

u↑↓
n σ̂Zn . This combines with the single particle field Bspn = ∆ω(n + 1/2) to yield a total σ̂Zn field

Bnσ
Z
n , where Bn = Bspn +B

u↑↓
n . We find that even for relatively strong interactions (u↑↓ = 0.5ω) B

u↑↓
n � Bspn for all

n, as illustrated in Fig. 6, so these additional terms can be neglected. Additionally, B
u↑↓
n does not grow with particle

number. Although these terms are not essential for the large-scale features of the dynamics, for completeness we
include them in numerical simulations.

BEHAVIOR OF THE DICKE GAP G

We will now discuss the behavior of the gap between the spin-N/2 (“Dicke states”) and spin-(N/2 − 1) (“spin
wave states”), referred to as the Dicke gap G in the main text, for a general Heisenberg model of the form

Ĥ = − 1
4

∑
q 6=q′ Jqq′ ~̂σq · ~̂σq′ . The only condition we impose is that the coupling matrix J is real, for compactness of the

resulting formulas, and because all couplings considered in this work are real. Noting that the diagonal terms of J only
contribute an overall constant to the energy and hence do not affect the Dicke gap, they can be ignored. By direct cal-

culation, the energy of the (degenerate) Dicke states, defined as |N/2,mz〉 =

√(
N

N
2 +mz

)−1
(∑N

i=1 Ŝ
+
i

)N
2 +mz

| ↓ . . . ↓〉,

with mz the magnetization, is EDicke = 〈N/2,mz| − 1
4

∑
q 6=q′ Jqq′ ~̂σq · ~̂σq′ |N/2,mz〉 = −∑q 6=q′ Jq,q′/4. Because of

the SU(2) spin-rotation symmetry of Ĥ, the Dicke states are guaranteed to be eigenstates. The spin-wave states,
which span the total spin-(N/2 − 1) manifold, can be defined in terms of the Dicke states as |N/2 − 1,mz, k〉 =
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FIG. 7. Scaling of the Dicke gap G with magnetic field gradient and particle number. (Left panel) Scaling of the Dicke gap
with particle number for constant gradients of strength x0 = 0.05 and 0.1 and linear gradients of strength ωB = 0.1 and 0.4
(all quantities are measured in oscillator units). All gaps increase with N to a certain gradient-dependent critical value and
then decrease, with larger gaps for smaller gradients. (Right panels) Scaling of the Dicke gap at fixed particle number N = 10
and 20 with the constant (center panel) or linear (right panel) gradient strength. The gap closes for weaker gradient as the
particle number increases, demonstrating that larger particle numbers require smaller gradients to be in the near-Heisenberg
regime. For even smaller gradients, the gap increases with particle number, more effectively enforcing collective behavior.

√
(N−1)

(N2 −mz+1)(N2 −mz)
∑N
n=1 e

2πikn/N Ŝ+
n |N/2,mz − 1〉 , where k = 1, . . . , N − 1. In the case of a translationally invari-

ant Heisenberg coupling Jq,q′ = J|q−q′| with |q−q′| the chordal distance, the spin wave states as stated are eigenstates

of Ĥ, but when the interactions are not translationally invariant (as is the case for the spin models discussed in this
work), the spin wave states only form a basis for the spin-(N/2 − 1) subspace. Straightforward calculations lead to
the matrix elements of the Hamiltonian in this subspace:

〈N
2
− 1,mz, k| −

1

4

∑
q 6=q′

Jq,q′ ~̂σq · ~̂σq′ |
N

2
− 1,mz, k

′〉 = δk,k′EDicke +
1

N

∑
q 6=q′

Jq,q′
[
e

2πi
N (k′−k)q − e 2πi

N (k′q′−kq)
]
. (S3)

The Dicke gap is then defined as the difference between the smallest eigenvalue of this matrix and the energy of the
Dicke states. As two concrete examples, in the all-to-all case, Jq,q′ = J (1− δq,q′), the Dicke gap is G = JN , and in

the nearest-neighbor case Jq,q′ = δ|q−q′|,1J , G = 2 (1− cos (2π/N)) ∼ 4π2

N2 +O
(
1/N3

)
. These examples illustrate the

general observation that long-range, near-collective interactions cause the Dicke gap to grow with particle number,
while the Dicke gap decreases with N for sufficiently short-range interactions.

In Fig. 7 we show the Dicke gap G for a Heisenberg model with Jq,q′ = J⊥q,q′ , where J⊥ corresponds to different
realizations of the energy-lattice spin model. The leftmost panel shows the scaling of the gaps at fixed gradient strength
with particle number. The gaps are always larger for smaller gradient strength, showing that smaller gradients always
lead to a more collective, near-Heisenberg behavior. The rightmost panels show the behavior of the gaps at fixed
particle number as a function of gradient strength. For any fixed number of particles, there is a finite critical gradient
strength where the Dicke gap closes. This critical gradient decreases with increasing particle number. However,
at small enough gradient strengths, the Dicke gap is larger for increasing particle number. This demonstrates that
increasing the particle number can either increase or decrease the Dicke gap.

SPIN SEGREGATION

We can quantify spin segregation by the second moment of the spin density µ2z = 2
∫∞
−∞ dxx2〈ŜZ(x)〉. For a

homogeneous spin distribution, µ2z = 0. When the ↑ (↓) spins are concentrated more towards the edges of the trap,
the sign of µ2z is positive (negative). If we only consider dynamics within the Dicke manifold, 〈ŜZ(x)〉 = 0 at all
times, so we need to examine couplings to other total spin sectors. First we will describe how these terms lead to
spin segregation for two particles, and then discuss the many particle generalization. In this analysis we assume that
JZnm = J⊥nm and inhomogeneities come only from single-particle terms. For two particles the initial state occupies the
S = 1 (triplet) manifold. The mz = 0 triplet |t0〉 = 1

2 (| ↑↓〉+ | ↓↑〉) is coupled to the singlet |s〉 = 1
2 (| ↑↓〉 − | ↓↑〉)

by the inhomogeneity. Assuming the mode configuation is {0, 1} and fixed, the Hamiltonian and spin density in the
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{|s〉,|t0〉,|t−1〉,|t1〉} basis are

Ĥ =


−2J⊥10u↑↓ ∆ω 0 0

∆ω 0 0 0
0 0 −2∆ω 0
0 0 0 2∆ω

 ,

ŜZ(x) =
1

2


0 φ0(x)2 − φ1(x)2 0 0

φ0(x)2 − φ1(x)2 0 0 0
0 0 −φ0(x)2 − φ1(x)2 0
0 0 0 φ0(x)2 + φ1(x)2

 , (S4)

where we have assumed φ↑n(x) = φ↓n(x) = φn(x), a good approximation for weak gradients. Since the
mz = ±1 triplets are eigenstates of both the Hamiltonian and observable ŜZ(x) they do not contribute to
the dynamics. ŜZ(x) measures the spatially-resolved coherence between the |s〉 and |t0〉 states. It follows that

〈ŜZ(x; t)〉 ≈ ω2
B

4J⊥
10u↑↓

sin2
(
J⊥10u↑↓t

) (
φ0(x)2 − φ1(x)2

)
, which exhibits Rabi oscillations.

To understand spin segregation in a many body system we have to consider the coupling of the Dicke states
|N/2,mz〉 to sectors with different total S. To first order, local spin operators σ̂αn couple the Dicke states to the spin
wave states |N/2 − 1,mz, k〉 [25]. We will examine the dynamics within this subspace, assuming the population in
the spin wave sector is much smaller than that of the Dicke sector, suppressed by the small parameter ∆ω/u↑↓. We
also assume that the interactions are fully collective for simplicity. We use the matrix elements [25]:

〈N/2,m|σ̂Zn |N/2− 1,m′, k〉 = 2e2πikn/N

√
(N/2)2 −m2

N2(N − 1)
δm,m′

〈N/2− 1,m, k|σ̂Zn |N/2− 1,m′, k′〉 =
(

2e2πi(k′−k)n/N +Nδk,k′
) 2m

N(N − 2)
δm,m′ . (S5)

The single-particle inhomogeneity is
∑
n

n∆ωσ̂Zn so it is useful to consider the sums

Mm,k ≡ 〈N/2,m|
∑
n

n∆ωσ̂Zn |N/2− 1,m′, k〉, Pm,k,k′ ≡ 〈N/2− 1,m, k|
∑
n

n∆ωσ̂Zn |N/2− 1,m′, k′〉. (S6)

Writing |ψ〉 =
∑
m

cm|N/2,m〉+
∑
m,k

dm,k|N/2− 1,m, k〉, the Schrödinger equation implies

iċm = Gcm +
∑
k

Mm,kdm,k, iḋm,k = M∗m,kcm +
∑
k′

Pm,k,k′dm,k, (S7)

where we have re-zeroed the energy. We assume cm � dm,k and use the fact that Pm,k,k � Pm,k,k′ , for k 6= k′, which
leads to:

cm(t) ≈ cm(0)

(
1−

∑
k

|Mm,k|2
(
1− e−iGt

)
G|G|

)
, dm,k(t) ≈ −

∑
k′

|Mm,k′ |2
cm(0)M∗m,k

(G)3

(
1− e−iGt

)
, (S8)

implying

〈ŜZ(x; t)〉 =
1

2

∑
n,m,k

(
c∗m(t)dm,k(t)〈N/2,m|(φn(x))2σ̂Zn |N/2− 1,m, k〉+ H.c.

)
= 2

∑
n,m,k

(φn(x))2

√
(N/2)2 −m2

N2(N − 1)
Re[c∗m(t)dm,k(t)e2πikn/N ]. (S9)

The spin density is proportional to c∗m(t)dm,k(t) which measures the coherence between the Dicke and spin wave
states, which is the many body analogy to the two particle result. We see that the density 1) oscillates at frequency
G ∝ u↑↓, 2) has an inhomogeneous mode dependence which leads segregation in real space, and 3) is ∝ Sign[G] so
segregation reverses when interactions are switched from repulsive to attractive. We have assumed |Mm,k|/G and
|Pm,k,k|/G are small parameters. When this condition is not satisfied, interactions can not suppress the single particle
dynamics and the initially populated collective Dicke states will be depleted during time evolution.
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FIG. 8. Scaling. (a) Dynamics vs. N for a constant gradient x0 = 0.1aH , from which τM is extracted and found to scale like
τM ∼ N−.823, close to the N−1 prediction. (b) Dynamics and scaling of τM vs. x0 which agrees well with the prediction x−2

0 ,

for N = 10. (c) 〈ŜX〉/N vs. N , when ωB = 0.1ω, from which ωrot is extracted and agrees well with the prediction

ωrot = N∆ω. (d) 〈ŜX〉 vs. ωB for N = 10. Predictions fail when ωB ∼ u↑↓. (All cases are u↑↓ = 0.35ω.) (e) µ2z, vs. u↑↓;
oscillations become more pronounced for stronger interactions. ωseg scales linearly with u↑↓. 〈µ2z〉 ∼ u−.887

↑↓ , close to the

prediction of u−1
↑↓ .

SCALING OF DYNAMICAL QUANTITIES

The short time dynamics of a generic XXZ Hamiltonian for a state initially polarized along the X direction is [43]

〈ŜX〉 =
N

2
− (u↑↓t)2

32

∑
n 6=m

∆2
nm +O(t3) ≈ 〈ŜX〉t=0

(
1− (t/τM )2

)
, τM = 4(Nu↑↓)

−1

√∑
n6=m

∆2
nm, (S10)

where ∆nm ≡ JZnm − J⊥nm and τM is defined as the demagnetization time. For a linear gradient we expand the
parameters in x0/aH , set aH = 1, and find ∆nm = JZnm − J⊥nm ≈ 2x2

0Λnm, where

Λnm =
(

(n+ 1)J0
n+1,m − nJ0

n−1,m −
√
n(n+ 1)J0

n+1,n−1,m,m −
√

(n+ 1)(m+ 1)Jn+1,m+1,n,m +√
n(m+ 1)Jn−1,m+1,n,m +

√
(n+ 1)mAn+1,m−1,n,m −

√
nmJn+1,m+1,n,m

)
, (S11)

J0
nmpq =

∫∞
−∞ dxφn(x)φm(x)φp(x)φq(x), and J0

nm ≡ J0
nnmm. The formula Λnm ≈ nJ0

nm ∼
√
N works well, where

Xnm ≡
∑
n,m∈ni Xnm/(N(N − 1)) is the arithmetic average and we have used J0

nm ∼ 1/
√
N . We find that for

x0 � aH , ∆nm ∼ x2
0

√
N . Further assuming ∆2

nm ≈ (∆nm)2, this implies τM ∼
(
Nu↑↓x2

0

)−1
. Fig. 8(a) shows the

scaling of τN vs. N . Fitting the dynamics to a Gaussian decay function A exp(−t2/τ2
M ) we find that τM ∼ N−.823,

close to the prediction of N−1. In Fig. 8(b) we show the scaling of τM vs. x0, which agrees well with the x−2
0

prediction.
In Fig. 8(c,d) we show how 〈ŜX〉 depends on N and ωB , respectively. We use a cosine fitting function A cos(ωrott)

to extract the collective Bloch vector precession frequency ωrot and compare with the prediction N∆ω. In Fig. 8(c)
we use ωB = 0.1ω and a relatively large interaction strength u↑↓ = 0.35ω � ∆ω. This is the self-rephasing regime
so the prediction works well. In Fig. 8(d) we fix N = 10 and u↑↓ = 0.35ω, and vary ωB . We see deviations from the
prediction for large ωB , because interactions are not strong enough to protect against population leakage outside of
the Dicke manifold. In Fig. 8(e) we plot µ2z dynamics for various interaction strengths, fixing N = 10 and ωB = 0.1ω.
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For larger interactions the oscillations become smaller, faster, and less damped, confirming the “Rabi oscillation”
behavior of spin segregation. We fit µ2z to an offset cosine function A + B cos(ωsegt + φ) to extract the scaling of
the segregation frequency ωseg, and the average value of the segregation, 〈µ2z〉 = A. A linear fit of ωseg vs. u↑↓ with
slope of 0.86 confirms linear scaling with interaction energy. We find 〈µ2z〉 ∼ u−0.887

↑↓ , close to the prediction of u−1
↑↓ .

MATRIX PRODUCT STATE SIMULATIONS

The variational matrix product state (MPS) studies of the main text were performed using extensions of the open
source MPS library [62, 63]. We use an MPS anstaz which explicitly conserves total particle number, but does not
conserve the total magnetization. While the dynamics preserve the total magnetization, the initial collective rotation of
spins along the x direction involves a sum over many different magnetization sectors, and so leaving the magnetization
unconstrained is convenient. Following this collective rotation, the next step is to enact the sudden quench of trapping
parameters, which amounts to applying a spin-dependent displacement (ψ (x)→ ψ (x+ λ), constant gradient) or spin-
dependent dilation (ψ (x)→

√
λψ (λx), linear gradient) to the single-particle states. Since we assume harmonic traps,

the displacement and dilation operators are known analytically as

Ûdisplacement = e(â−â
†)λ/(

√
2aH) ,

Ûdilation = elnλ(â2−(â†)2)/2 , (S12)

where â and â† are the ladder operators of the original (no gradient) harmonic oscillator. Writing these ladder
operators in second quantized form on the energy lattice, the basis transformations above take the form of time
evolution under a hopping model with spin-dependent and inhomogeneous hopping amplitudes. Here, time evolution
refers to the fact that the operation consists of applying the exponential of an anti-Hermitian many-body operator.
In the constant gradient case, the hopping model contains only nearest-neighbor hopping, while the linear gradient
case is a model with only next-nearest neighbor hopping. We enact this effective time evolution by decomposing it
into a product of few-site unitaries using a Trotter decomposition with the error controlled by a small “step size” ∆λ,
and then applying these few-site unitaries to the MPS via standard techniques [31].

Next, we wish to perform time evolution under the long-range spin model

Ĥ =
u↑↓
4

∑
n 6=m

[
JZnm

(
N̂nN̂m − σ̂Zn σ̂Zm

)
− J⊥nm

(
σ̂Xn σ̂

X
m + σ̂Yn σ̂

Y
m

)
+

1

2

(
JZnm − JZmn

) (
σZn N̂m − σZmN̂n

)]
+u↑↓

∑
n

JnnN̂
↑
nN̂
↓
n +

∑
n

[
ω̄(n+ 1/2)N̂n + ∆ω (n+ 1/2) σ̂Zn

]
, (S13)

where Jnn ≡ Annnn. We perform time evolution using the second-order method of Zaletel et al. [66]. In this method,
an explicit matrix product operator (MPO) approximation to the propagator Û is formed from the MPO form of
the Hamiltonian, which is then applied to the state at time t, |ψ (t)〉 by variational minimization of the functional∣∣∣|φ〉 − Û |ψ (t)〉

∣∣∣2 over all MPSs |φ〉 with fixed resources. For the variational minimization, we perform four sweeps per

timestep and impose an upper limit on the discarded weight per bond of 10−9. The maximum bond dimension used
in the simulations of this work is roughly 2000.

In order to apply the method of Zaletel et al., we must construct an MPO representation of the Hamiltonian
Eq. (S13). For long-range interactions which are translationally invariant, Ĥ =

∑
i<j f (j − i) ÂiB̂j , a well-established

procedure exists for converting this interaction into an MPO [67, 68]. In this procedure, the function f (r) is fitted to
a sum of nexp exponentials via the ansatz f̃ (r) =

∑nexp

n=1 Jnλ
r
n, and then a known MPO construction of exponentially

decaying interactions is used. Interactions on the single-particle mode space lattice are not translationally invariant,
and so this procedure does not apply. However, we have devised a related procedure, in which an inhomogeneous
interaction Ĥ =

∑
i<j f (i, j) ÂiB̂j is modeled by a sum of exponentials with site-dependent weights and exponential

decay parameters via the ansatz f̃ (i, j) =
∑nexp

n=1 Ji,n
∏j−1
k=i λk,n. These parameters are variationally optimized using

an alternating least squares algorithm. Imposing the condition that the residual
∑
i<j

∣∣∣f (i, j)− f̃ (i, j)
∣∣∣2 < 10−7

leads to approximations with nexp ∼ 7 exponentials.
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