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Space-Time Representation of People Based on
3D Skeletal Data: A Review

Fei Han∗, Brian Reily∗, William Hoff, and Hao Zhang

Abstract—Spatiotemporal human representation based on 3D visual perception data is a rapidly growing research area. Based on the
information sources, these representations can be broadly categorized into two groups based on RGB-D information or 3D skeleton
data. Recently, skeleton-based human representations have been intensively studied and kept attracting an increasing attention, due to
their robustness to variations of viewpoint, human body scale and motion speed as well as the realtime, online performance. This
paper presents a comprehensive survey of existing space-time representations of people based on 3D skeletal data, and provides an
informative categorization and analysis of these methods from the perspectives, including information modality, representation
encoding, structure and transition, and feature engineering. We also provide a brief overview of skeleton acquisition devices and
construction methods, enlist a number of public benchmark datasets with skeleton data, and discuss potential future research
directions.

Index Terms—Human representation, skeleton data, 3D visual perception, space-time features, survey
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1 INTRODUCTION

HUman representation in spatiotemporal space is a fun-
damental research problem extensively investigated in

computer vision and machine intelligence over the past few
decades. The objective of building human representations
is to extract compact, descriptive information (i.e., features)
to encode and characterize a human’s attributes from per-
ception data (e.g., human shape, pose, and motion), when
developing recognition or other human-centered reasoning
systems. As an integral component of reasoning systems,
approaches to construct human representations have been
widely used in a variety of real-world applications, includ-
ing video analysis [1], surveillance [2], robotics [3], human-
machine interaction [4], augmented and virtual reality [5],
assistive living [6], smart homes [7], education [8], and many
others [9], [10], [11].

During recent years, human representations based on 3D
perception data have been attracting an increasing amount
of attention [12], [13], [14], [15]. Comparing with 2D visual
data, additional depth information provides several advan-
tages for building 3D human representations. Depth images
provide geometric information of pixels that encode the
external surface of the scene in 3D space. Features extracted
from depth images and 3D point clouds are robust to vari-
ations of illumination, scale, and rotation [16], [17]. Thanks
to the emergence of affordable structured-light color-depth
sensing technology, such as the Microsoft Kinect [18] and
Asus Xtion PRO LIVE [19] RGB-D cameras, it is much easier
and cheaper to obtain depth data. In addition, structured-
light cameras enable us to retrieve the 3D human skeletal
information in real time [20], which used to be only possible
when using expensive and complex vision systems (e.g.,
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motion capture systems [21]), thereby significantly popu-
larizing skeleton-based human representations. Moreover,
the vast increase in computational power allows researchers
to develop advanced computational algorithms (e.g., deep
learning [22]) to process visual data at an acceptable speed.
The advancements contribute to the boom of utilizing 3D
perception data to construct reasoning systems in computer
vision and machine learning communities.

Since the performance of machine learning and reason-
ing methods heavily relies on the design of data representa-
tion [23], human representations are intensively investigated
to address human-centered research problems (e.g., human
detection, tracking, pose estimation, and action recognition).
Among a large number of human representation approaches
[24], [25], [26], [27], [28], [29], most of the existing 3D based
methods can be broadly grouped into two categories: rep-
resentations based on local features [30], [31] and skeleton-
based representations [32] [33] [34]. Methods based on local
features detect points of interest in space-time dimensions,
describe the patches centered at the points as features, and
encode them (e.g., using bag-of-word models) into represen-
tations, which can locate salient regions and are relatively
robust to partial occlusion. However, methods based on lo-
cal features ignore spatial relationships among the features.
These approaches are often incapable of identifying feature
affiliations, and thus the methods are generally incapable
to represent multiple individuals in the same scene. These
methods are also computationally expensive because of the
complexity of the procedures including keypoint detection,
feature description, dictionary construction, etc.

On the other hand, human representations based on 3D
skeleton information provide a very promising alternative.
The concept of skeleton-based representation can be traced
back to the early seminal research of Johansson [49], which
demonstrated that a small number of joint positions can
effectively represent human behaviors. 3D skeleton-based
representations also demonstrate promising performance in
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TABLE 1
Existing Surveys in Related Fields

Year Review Papers Focus
2015 Lun and Zhao [35] Human motion recognition with Kinect
2014 Aggarwal and Xia [16] Human activity recognition from 3D data
2014 Ruffieux et al. [36] Datasets for human gesture recognition
2013 Borges et al. [37] Video-based human behavior understanding
2013 Chen et al. [38] Human motion analysis using depth imagery
2013 Han et al. [17] Computer vision with Kinect
2013 Ke et al. [39] Video-based human activity recognition
2013 LaViola [40] 3D gestural interaction
2013 Ye et al. [41] Human activity recognition from depth data
2012 Chaaraoui et al. [42] Human behaviour analysis for ambient-assisted living
2011 Aggarwal and Ryoo [43] Human activity analysis
2010 Ji and Liu [44] View-invariant human motion analysis
2010 Poppe [45] Vision-based human action recognition
2008 Zhou and Hu [46] Human motion tracking for rehabilitation
2006 Moeslund et al. [47] Vision-based human motion capture and analysis
2001 Moeslund and Granum [48] Computer vision-based human motion capture

real-world applications including Kinect-based gaming, as
well as in computer vision research [22], [50]. 3D skeleton-
based representations are able to model the relationship of
human joints and encode whole body configuration. They
are also robust to scale and illumination changes, and can
be invariant to camera view as well as human body rotation
and motion speed. In addition, many skeleton-based repre-
sentations can be computed at a high frame rate, which can
significantly facilitate online, real-time applications. Given
the advantages and previous success of 3D skeleton-based
representations, we have witnessed a significant increase of
new techniques to construct such representations in recent
years, as demonstrated in Fig. 1, which underscores the need
of this survey paper focusing on the review of 3D skeleton-
based human representations.
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Fig. 1. Number of 3D skeleton-based human representations published
in recent years according to our comprehensive review.

Several survey papers were published in related research
areas such as motion and activity recognition. For example,
Han et al. [17] introduced how Kinect works and its general
applications in computer vision and machine intelligence.
Aggarwal and Xia [16] recently published a review pa-
per on human activity recognition from 3D visual data,
which summarized five categories of representations based
on 3D silhouettes, skeletal joints or body part locations,
local spatio-temporal features, scene flow features, and local
occupancy features. Several earlier surveys were also pub-
lished to review methods to recognize human poses, mo-
tions, gestures, and activities [35], [36], [37], [38], [39], [40],
[41], [43], [47], [48], as well as their applications [42], [46],
as summarized by the complete list in Table 1. However,
none of the survey papers specifically focused on the 3D
human representation based on skeletal data, which was

investigated by numerous research papers in literature and
continues to gain popularity in recent years.

The objective of this survey is to provide a comprehen-
sive overview of 3D skeleton-based human representations
published in the computer vision and machine intelligence
communities. We categorize and compare the reviewed ap-
proaches from multiple perspectives, including information
modality, representation coding, structure and transition,
and feature engineering methodology, and analyze the pros
and cons of each category. A comprehensive review on
methods to acquire and estimate 3D human skeleton and
a complete list of available benchmark datasets are also
included. Compared with the existing surveys, the main
contributions of this review include:

• To the best of our knowledge, this is the first survey
dedicated to human representations based on 3D skeleton
data, which fills the current void in the literature.

• The survey is comprehensive and covers the most recent
and advanced approaches. We review 158 3D skeleton-
based human representations, including 142 papers
that were published in the recent five years, thereby
providing readers with the complete, state-of-the-art
methods.

• This paper provides an insightful categorization and
analysis of the 3D skeleton-based representation con-
struction approaches from multiple perspectives, and
summarizes and compares attributes of all reviewed
representations.

The remainder of this review is organized as follows.
The background information including 3D skeleton acqui-
sition and construction as well as benchmark datasets is
presented in Section 2. Sections 3 to 5 discuss the categoriza-
tion of 3D skeleton-based human representations from four
perspectives, including information modality in Section 3,
encoding in Section 4, hierarchy and transition in Section
5, and feature construction methodology in Section 6. After
discussing the advantages of skeleton-based representations
and pointing out future research directions in Section 7, the
review paper is concluded in Section 8.
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Fig. 2. Examples of skeletal human body models obtained from different
sensors. The OpenNI library tracks 15 joints; The Kinect V1 SDK tracks
20 joints; The Kinect v2 SDK tracks 25; and MoCap systems can track
various numbers of joints.

2 BACKGROUND

The objective of building 3D skeleton-based human repre-
sentations is to extract compact, discriminative description
to characterize human’s attributes from 3D human skeletal
information. The 3D skeleton data encodes human body as
an articulated system of rigid segments connected by joints.
This section discusses how 3D skeletal data can be acquired,
including devices that directly provide the skeletal data and
computational methods to construct the skeleton. Available
benchmark datasets including 3D skeleton information are
also summarized in this section.

2.1 Direct Acquisition of 3D Skeletal Data

Several commercial sensors, including motion capture sys-
tems, time-of-flight sensors, and structured-light cameras,
allow for direct retrieval of 3D skeleton data. The 3D skeletal
kinematic human body models provided by the devices are
illustrated in Fig. 2.

2.1.1 Motion Capture Systems (MoCap)
Motion capture systems identify and track markers that
are attached to a human subject’s joints or body parts to
obtain 3D skeleton information. There are two main cate-
gories of MoCap systems, based on either visual cameras
or inertia sensors. Optical-based systems employ multiple
cameras positioned around a subject to track, in 3D space,
reflective markers attached to the human body. In MoCap
systems based on inertial sensors, each 3-axis inertial sensor
estimates the rotation of a body part with respect to a fixed
point. This information is collected to obtain the skeleton
data without any optical devices around a subject. Software
to collect skeleton data is provided with commercial MoCap
systems, such as Nexus for Vicon MoCap1, NatNet SDK
for OptiTrack2, etc. MoCap systems, especially based on
multiple cameras, can provide very accurate 3D skeleton
information at a very high speed. On the other hand, such
systems are typically expensive and can only be used in well
controlled indoor environments.

2.1.2 Structured-Light Cameras
Structured-light color-depth sensors are a type of camera
that uses infrared light to capture depth information about
a scene, such as Microsoft Kinect v1 [18], ASUS Xtion PRO

1. Vicon: http://www.vicon.com/products/software/nexus.
2. OptiTrack: http://www.optitrack.com/products/natnet-sdk.

LIVE [19], and PrimeSense [74], among others. A structured-
light sensor consists of an infrared-light source and a re-
ceiver that can detect infrared light. The light projector emits
a known pattern, and the way that this pattern distorts
on the scene allows the camera to decide the depth. A
color camera is also available on the sensor to acquire
color frames that can be registered to depth frames, thereby
providing color-depth information at each pixel of a frame
or 3D color point clouds. Several drivers are available to
provide the access to the color-depth data acquired by the
sensor, including the Microsoft Kinect SDK [18], the OpenNI
library [75], and the OpenKinect library [76]. The Kinect
SDK also provides 3D human skeletal data produced using
the method described by Shotton et.al [77]. OpenNI applies
NITE [78] – a skeleton generation framework developed
as proprietary software by PrimeSense, to generate a sim-
ilar 3D human skeleton model. Markers are not necessary
for structured-light sensors. They are also cheap and can
provide 3D skeleton information in real time. On the other
hand, since structured-light cameras are based on infrared
light, they can only work in an indoor environment. The
frame rate (30 Hz) and resolution of depth images (320×240)
are also relatively low.

2.1.3 Time-of-Flight (ToF) Sensors

ToF sensors are able to acquire accurate depth data at a high
frame rate, by emitting light and measuring the amount of
time it takes for that light to return – similar in principle
to the established depth sensing technology, such as radar
and LiDAR. Comparing to other ToF sensors, the Microsoft
Kinect v2 camera offers an affordable alternative to acquire
depth data using this technology. In addition, a color camera
is integrated into the sensor to provide registered color data.
The color-depth data can be accessed by the Kinect SDK 2.0
[79] or the OpenKinect library (using the libfreenect2 driver)
[76]. The Kinect v2 camera provides a higher resolution of
depth images (512×424) at 30 Hz. Moreover, the camera is
able to provide 3D skeleton data by estimating positions of
25 human joints, with an improved tracking accuracy than
the Kinect V1 sensor. Similar to the first version, Kinect v2
has a working range from approximately 0.5 to 5 meters.

2.2 3D Joints Estimation and Skeleton Construction

Besides manual human skeletal joint annotation [56], [80],
[81], a number of approaches have been designed to auto-
matically construct a skeleton model from perception data.
Some of these are based on methods using in RGB imagery,
while others take advantage of the extra information avail-
able in a depth or RGB-D image. The majority of the current
methods are based on body part recognition, and then fit a
flexible model to the now ‘known’ body part locations. An
alternate main methodology is starting with a ‘known’ prior,
and fitting the silhouette or point cloud to this prior after the
humans are localized [31], [82], [83]. This section provides a
brief review of autonomous skeleton construction methods
based on visual data according to their used information. A
summary of the reviewed skeleton construction techniques
is presented in Table 2.

http://www.vicon.com/products/software/nexus
http://www.optitrack.com/products/natnet-sdk
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TABLE 2
Summary of Recent Skeleton Construction Techniques.

Reference Approach Input Data Performance
Shotton et al. [20], [51] Pixel-by-pixel classification Single depth image 3D skeleton, 16 joints, real-time, 200 fps

Ye et al. [52] Motion exemplars Single depth image 3D skeleton, 38mm accuracy
Jung et al. [53] Random tree walks Single depth image 3D skeleton, real-time, 1000fps
Sun et al. [54] Conditional regression forests Single depth image 3D skeleton, over 80% average precision
Charles and

Everingham [55] Limb-based shape models Single depth image 2D skeleton, robust to occlusions

Holt et al. [56] Decision tree poselets with
pictorial structures prior Single depth image 3D skeleton, only need small

amount of training data
Grest et al. [57] ICP using optimized Jacobian Single depth image 3D skeleton, over 10 fps

Baak et al. [58] Matching previous joint positions Single depth image 3D skeleton, 20 joints, real-time, 100 fps,
robust to sensor noise and occlusions

Taylor et al. [59] Regression to predict correspondences Single depth image and
multiple silhouette images 3D skeleton, 19 joints, real-time, 120fps

Zhu et al. [60] ICP on individual parts Depth image sequence 3D skeleton, 10fps, robust to occlusion

Ganapathi et al. [61] ICP with physical constraints Depth image sequence 3D skeleton, real-time, 125fps,
robust to self collision

Plagemann et al. [62],
Ganapathi et al. [25] Haar features and Bayesian prior Depth image sequence 3D skeleton, real-time

Zhang et al. [63] 3D non-rigid matching based on
MRF deformation model Depth image sequence 3D skeleton

Schwarz et al. [64] Geodesic distance & optical flow Depth and RGB image streams 3D skeleton, 16 joints, robust to occlusions

Wang et al. [65] Recurrent 2D/3D pose estimation Single RGB images 3D skeleton, robust to viewpoint
changes and occlusions

Fan et al. [66] Dual-source deep CNN Single RGB images 2D skeleton, robust to occlusions
Toshev and Szegedy [67] Deep neural networks Single RGB images 2D skeleton, robust to appearance variations

Dong et al. [68] Parselets/grid layout feature Single RGB images 2D skeleton, robust to occlusions
Akhter and Black [69] Prior based on joint angle limits Single RGB images 3D skeleton

Tompson et al. [70] CNN/Markov random field Single RGB images 2D skeleton, close to real-time
Elhayek et al. [71] ConvNet joint detector Multi-perspective RGB images 2D skeleton, nearly 95% accuracy

Gall et al. [72],
Liu et al. [73]

Skeleton tracking and
surface estimation Multi-perspective RGB images 3D skeleton, deal with rapid movements

and apparel like skirts

2.2.1 Construction from Depth Imagery
Due to the additional 3D geometric information that depth
imagery can provide, many methods are developed to build
3D human skeleton model based on a single depth image or
a sequence of depth frames.

Human joint estimation via body parts recognition is one
popular approach to construct the skeleton model [20], [51],
[53], [54], [55], [56], [62], [64]. A seminal paper by Shotton
et al. [20] in 2011 provided an extremely effective skeleton
construction algorithm based on body part recognition, that
was able to work in real time. A single depth image (inde-
pendent of previous frames) is classified on a per-pixel basis,
using a randomized decision forest classifier. Each branch in
the forest is determined by the simple relation between the
target pixel and various others. The pixels that are classified
into the same category form the body part, and the joint
is inferred by the mean-shift method from a certain body
part, using the depth data to ‘push’ them into the silhouette.
While training the decision forests takes a large number of
images (around 1 million) as well as a considerable amount
of computing power, the fact that the branches in the forest
are very simple allows this algorithm to generate 3D human
skeleton models within about 5 ms. An extended work was
published in [51], with both accuracy and speed improved.
Plagemann et al. [62] introduced an approach to recognize
body parts using Haar features [84] and construct a skeleton
model on these parts. Using data over time, they construct a
Bayesian network, which produces the estimated pose using
body part locations and starts with the previous pose as a
prior [25]. Holt et al. [56] proposed Connected Poselets to

estimate 3D human pose from depth data. The approach
utilizes the idea of poselets [85], which is widely applied for
pose estimation from RGB images. For each depth image, a
multi-scale sliding window is applied, and a decision forest
is used to detect poselets and estimate joint locations. Using
a skeleton prior inspired by pictorial structures [86], [87],
the method begins with a torso point and connect outwards
to body parts. By applying kinematic inference to eliminate
impossible poses, they are able to reject incorrect body part
classifications and improve their accuracy.

Another widely investigated methodology to construct
3D human skeleton models from depth imagery is based
on nearest-neighbor matching [52], [57], [58], [59], [60], [63].
Several approaches for whole-skeleton matching are based
on the Iterative Closest Point (ICP) method [88], which can
iteratively decide a rigid transformation such that the input
query points fit to the points in the given model under this
transformation. Using point clouds of a person with known
poses as a model, several approaches [57], [60] apply ICP
to fit the unknown poses by estimating the translation and
rotation to fit the unknown body parts to the known model.
While these approaches are relatively accurate, they suffer
from several drawbacks. ICP is computationally expensive
for a model with as many degrees of freedom as a hu-
man body. Additionally, it can be difficult to recover from
tracking loss. Typically the previous pose is used as the
known pose to fit to; if tracking loss occurs and this pose
becomes inaccurate, then further fitting can be difficult or
impossible. Finally, skeleton construction methods based on
the ICP algorithm generally require an initial T-pose to start
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the iterative process.

2.2.2 Construction from RGB Imagery
Early approaches and several recent methods based on deep
learning focused on 2D or 3D human skeleton construction
from traditional RGB or intensity images, typically by iden-
tifying human body parts using visual features (e.g., image
gradients, deeply learned features, etc.), or matching known
poses to a segmented silhouette.

Methods based on a single image: Many algorithms were
proposed to construct human skeletal model using a single
color or intensity image acquired from a monocular camera
[65], [68], [69], [89]. Wang et al. [65] constructs a 3D human
skeleton from a single image using a linear combination of
known skeletons with physical constraints on limb lengths.
Using a 2D pose estimator [89], the algorithm begins with a
known 2D pose and a mean 3D pose, and calculates camera
parameters from this estimation. The 3D joint positions are
recalculated using the estimated parameters, and the camera
parameters are updated. The steps continue iteratively until
convergence. This approach was demonstrated to be robust
to partial occlusions and errors in the 2D estimation. Dong et
al. [68] considered the human parsing and pose estimation
problems simultaneously. The authors introduced a unified
framework based on semantic parts using a tailored And-Or
graph. The authors also employed parselets and Mixture of
Joint-Group Templates as the representation.

Recently, deep neural networks have proven their ability
in human skeleton construction [66], [67], [70]. Toshev and
Szegedy [67] employed Deep Neural Networks (DNNs) for
human pose estimation. The proposed cascade of DNN re-
gressors obtains pose estimation results with high precision.
Fan et al. [66] uses Dual-Source Deep Convolutional Neural
Networks (DS-CNNs) for estimating 2D human poses from
a single image. This method takes a set of image patches as
the input and learns the appearance of each local body part
by considering their previous views in the full body, which
successfully addresses the joint recognition and localization
issue. Tompson et al. [70] proposed a unified learning frame-
work based on deep Convolutional Networks (ConvNets)
and Markov Random Fields, which can generate a heat-map
to encode a per-pixel likelihood for human joint localization
from a single RGB image.

Methods based on multipe images: When multiple im-
ages of a human are acquired from different perspectives by
a multi-camera system, traditional stereo vision techniques
can be employed to estimate depth maps of the human. Af-
ter obtaining the depth image, human skeleton model can be
constructed using the methods based on depth information
(Section 2.2.1). Although there exists a commercial solution
that uses marker-less multi-camera systems to obtain highly
precious skeleton data with 120 frames per second (FPS)
and approximately 50-25ms latency [90], computing depth
maps is usually slow and often suffers from problems
such as failures of correspondence search and noisy depth
information. To address these problems, algorithms were
also studied to construct human skeleton models directly
from the multi-images without calculating the depth image
[71], [72], [73]. For example, Gall et al. [72] introduced an
approach to fully-automatically estimate the 3D skeleton
model from a multi-perspective video sequence, where an

articulated template model and silhouettes are obtained
from the sequence. Another method was also proposed by
Liu et al. [73], which uses a modified global optimization
method to handle occlusions.

2.3 Benchmark Datasets With Skeletal Data
In the past five years, a large number of benchmark datasets
containing 3D human skeleton data were collected in differ-
ent scenarios and made available to the public. This section
provides a complete review of the datasets as listed in Table
3. We categorize and discuss these datasets according to the
type of devices used to acquire the skeleton information.

2.3.1 Datasets Collected Using MoCap Systems
Early 3D human skeleton datasets were usually collected by
a MoCap system, which can provide accurate locations of a
various number of skeleton joints by tracking the markers
attached on human body, typically in indoor environments.
The CMU MoCap dataset [91] is one of the earliest resources
that consists of a wide variety of human actions, including
interaction between two subjects, human locomotion, inter-
action with uneven terrain, sports, and other human actions.
The recent Human3.6M dataset [92] is one of the largest
MoCap datasets, which consists of 3.6 million human poses
and corresponding images captured by a high-speed MoCap
system. It contains activities by 11 professional actors in 17
scenarios: discussion, smoking, taking photo, talking on the
phone, etc., as well as provides accurate 3D joint positions
and high-resolution videos. The PosePrior dataset [69] is the
newest MoCap dataset that includes an extensive variety of
human stretching poses performed by trained athletes and
gymnasts. Many other MoCap datasets were also released,
including the Pictorial Human Spaces [93], CMU Multi-
Modal Activity (CMU-MMAC) [94] Berkeley MHAD [95],
Standford ToFMCD [25], HumanEva-I [96], and HDM05
MoCap [97] datasets.

2.3.2 Datasets Collected by Structured-Light Cameras
Affordable structured-light cameras are widely used for 3D
human skeleton data acquisition. Numerous datasets were
collected using the Kinect v1 camera in different scenarios.
The MSR Action3D dataset [121], [126] was captured using
the Kinect camera at Microsoft Research, which consists
of subjects performing American Sign Language gestures
and a variety of typical human actions, such as making a
phone call or reading a book. The dataset provides RGB,
depth, and skeleton information generated by the Kinect
v1 camera for each data instance. A large number of ap-
proaches used this dataset for evaluation and validation
[127]. The MSRC-12 Kinect gesture dataset [120], [128] is
one of the largest gesture databases available. Consisting of
nearly seven hours of data and over 700,000 frames of a
variety of subjects performing different gestures, it provides
the pose estimation and other data that was recorded with
a Kinect v1 camera. The Cornell Activity Dataset (CAD)
includes CAD-60 [117] and CAD-120 [110], which contains
60 and 120 RGB-D videos of human daily activities, respec-
tively. The dataset was recorded by aKinect v1 in different
environments, such as an office, bedroom, kitchen, etc.
The SBU-Kinect-Interaction dataset [123] contains skeleton
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TABLE 3
Publicly Available Benchmark Datasets Providing 3D Human Skeleton Information.

Release Year Dataset and Reference Acquisition device Other Data Source Scenario
2015 M2I [98] Kinect v1 RGB + depth human daily activities
2015 Multi-View TJU [99] Kinect v1 RGB + depth human daily activities
2015 PosePrior [69] MoCap color extreme motions
2015 SYSU 3D HOI [100] Kinect v1 color + depth human daily activities
2015 TST Intake Monitoring [101] Kinect v2 + IMU depth human daily activities
2015 TST TUG [102] Kinect v2 + IMU depth human daily activities
2015 UTD-MHAD [103] Kinect v1 + IMU RGB + depth atomic actions
2014 CMU-MAD [104] Kinect v1 RGB + depth atomic actions
2014 G3Di [105] Kinect v1 RGB + depth gaming
2014 Human3.6M [92] MoCap color movies
2014 Northwestern-UCLA Multiview [106] Kinect v1 RGB + depth human daily activities
2014 ORGBD [107] Kinect v1 RGB + depth human-object interactions
2014 SPHERE [108] Kinect depth human daily activities
2014 TST Fall Detection [109] Kinect v2 + IMU depth human daily activities
2013 Berkeley MHAD [95] MoCap RGB + depth human daily activities
2013 CAD-120 [110] Kinect v1 RGB + depth human daily activities
2013 ChaLearn [111] Kinect v1 RGB + depth Italian gestures
2013 KTH Multiview Football [112] 3 cameras color professional football activities
2013 MSR Action Pairs [113] Kinect v1 RGB + depth activities in pairs
2013 Multiview 3D Event [114] Kinect v1 RGB + depth indoor human activities
2013 Pictorial Human Spaces [93] MoCap color human daily activities
2013 UCF-Kinect [115] Kinect v1 color human daily activities
2012 3DIG [116] Kinect v1 color + depth iconic gestures
2012 CAD-60 [117] Kinect v1 RGB + depth human daily activities
2012 Florence 3D-Action [118] Kinect v1 color human daily activities
2012 G3D [119] Kinect v1 RGB + depth gaming
2012 MSRC-12 Gesture [120] Kinect v1 N/A gaming
2012 MSR Daily Activity 3D [121] Kinect v1 RGB + depth human daily activities
2012 RGB-D Person Re-identification [122] Kinect v1 RGB + 3D mesh person re-identification
2012 SBU-Kinect-Interaction [123] Kinect v1 RGB + depth human interaction activities
2012 UT Kinect Action [124] Kinect v1 RGB + depth atomic actions
2011 CDC4CV pose [56] Kinect v1 depth basic activities
2010 HumanEva [96] MoCap color human daily activities
2010 MSR Action 3D [121] Kinect v1 depth gaming
2010 Stanford ToFMCD [25] MoCap + ToF sensor depth human daily activities
2009 TUM kitchen [125] 4 cameras color manipulation activities
2008 CMU-MMAC [94] MoCap color cooking in kitchen
2007 HDM05 MoCap [97] MoCap color human daily activities
2001 CMU MoCap [91] MoCap N/A gaming + sports + movies

data of a pair of subjects performing different interaction
activities, one person acting and the other reacting. Many
other datasets captured using a Kinect v1 camera were also
released to the public, including the MSR Daily Activity
3D [121], MSR Action Pairs [113], Online RGBD Action
(ORGBD) [107], UTKinect-Action [124], Florence 3D-Action
[118], CMU-MAD [104], UTD-MHAD [103], G3D/G3Di
[105], [119], SPHERE [108], ChaLearn [111], RGB-D Person
Re-identification [122], Northwestern-UCLA Multiview Ac-
tion 3D [106], Multiview 3D Event [114], CDC4CV pose [56],
SBU-Kinect-Interaction [123], UCF-Kinect [115], SYSU 3D
Human-Object Interaction [100], Multi-View TJU [99], M2I
[98], and 3D Iconic Gesture [116] datasets. The complete list
of human-skeleton datasets are presented in Table 3.

2.3.3 Datasets Collected by Other Techniques

Besides the datasets collected by MoCap or structured-light
cameras, additional technologies were also applied to collect
datasets containing 3D human skeleton information, such as
multiple camera systems, ToF cameras such as the Kinect v2
camera, or even manual annotation.

Due to the low price and improved performance of
the Kinect v2 camera, it has become increasingly widely

adopted to collect 3D skeleton data. The Telecommunication
Systems Team (TST) created a collection of datasets using
Kinect v2 ToF cameras, which include three datasets for
different purposes. The TST fall detection dataset [109] con-
tains eleven different subjects performing falling activities
and activities of daily living in various ways; The TST TUG
dataset [102] contains 20 different individuals standing up
and walking around; and the TST intake monitoring dataset
contains food intake actions performed by 35 subjects [101].

Manual annotation approaches are also widely used to
provide skeleton data. The KTH Multiview Football dataset
[112] contains images of professional football players during
real matches, which is obtained using color sensors from 3
views. There are 14 annotated joints for each frame. Several
other skeleton datasets are collected based on manual anno-
tation, including the LSP dataset [81], and the TUM Kitchen
dataset [125], etc.

3 INFORMATION MODALITY

Skeleton-based human representations are constructed from
various features computed from raw 3D skeletal data, where
each feature source is called a modality. From the perspective
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TABLE 4
Summary of 3D Skeleton-Based Representations Based on Joint Displacement Features.

Notation: In the feature encoding column: Concatenation-based encoding, Statistics-based encoding, Bag-of-words encoding. In the structure and
transition column: Low-level features, Body parts models, Manifolds; In the feature engineering column: Hand-crafted features, Dictionary

learning, Unsupervised feature learning, Deep learning. In the representation properties column: ‘T’ indicates that temporal information is used in
feature extraction; ‘VI’ stands for View-Invariant; ‘ScI’ stands for Scale-Invariant; ‘SpI’ stands for Speed-Invariant; ‘OL’ stands for OnLine; ‘RT’

stands for Real-Time.

Reference Approach Feature
Encoding

Structure
and Transition

Feature
Engineering T VI ScI SpI OL RT

Hu et al. [100] JOULE Ba Ll Un X X X
Wang et al. [106] Cross View Ba Bp Di X X
Wei et al. [114] 4D Interaction Co Ll Hc X X X
Ellis et al. [115] Latency Trade-off Co Ll Hc X X X X

Wang et al. [121], [129] Actionlet Co Ll Hc X X X
Barbosa et al. [122] Soft-biometrics Feature Co Bp Hc

Xia et al. [124] Hist. of 3D Joints St Ll Hc X X
Yun et al. [123] Joint-to-Plane Distance Co Ll Hc X X X

Yang and Tian [130], [131] EigenJoints Co Ll Un X X X X X
Chen and Koskela [132] Pairwise Joints Co Ll Hc X X X

Rahmani et al. [133] Joint Movement Volumes St Ll Hc X
Luo et al. [134] Sparse Coding Ba Ll Di X X

Jiang et al. [135] Hierarchical Skeleton Ba Ll Hc X X X X
Yao and Li [136] 2.5D Graph Representation Ba Ll Hc X X

Vantigodi and Babu [137] Variance of Joints St Ll Hc X X
Zhao et al. [138] Motion Templates Ba Ll Di X X X X
Yao et al. [139] Coupled Recognition Co Ll Hc X

Zhang et al. [140] Star Skeleton Ba Ll Hc X X X X X
Zou et al. [141] Key Segment Mining Ba Ll Di X X X

Kakadiaris and Metaxas [142] Physics Based Model Co Ll Hc X
Nie et al. [143] ST Parts Ba Bp Di X X

Anirudh et al. [144] TVSRF Space Co Mf Hc X X X X
Koppula and Saxena [145] Temporal Relational Features Co Ll Hc X

Wu and Shao [146] EigenJoints Co Ll De X X X X
Kerola et al. [147] Spectral Graph Skeletons Co Ll Hc X X X

of information modality, 3D skeleton-based human repre-
sentations can be classified into four categories, based on
joint displacement, orientation, raw position, and combined
information. Existing approaches falling in each categories
are summarized in detail in Tables 4–7, respectively.

3.1 Displacement-Based Representations
Features extracted from displacements of skeletal joints are
widely applied in many skeleton-based representations due
to the simple structure and easy implementation. They use
information from the displacement of skeletal joints, which
can either be the displacement between different human
joints within the same frame or the displacement of the same
joint across different time periods.

3.1.1 Spatial Displacement Between Joints
Representations based on relative joint displacements com-
pute spatial displacements of coordinates of human skeletal
joints in 3D space, which are acquired from the same frame
at a time point.

The pairwise relative position of human skeleton joints
is the most widely studied displacement feature for human
representation [121] [129] [130] [132] [136] [138]. Within the
same skeleton model obtained at a time point, for each joint
p = (x, y, z) in 3D space, the difference between the location
of joint i and joint j is calculated by pij = pi−pj , i 6= j. The
joint locations p are often normalized, so that the feature is
invariant to the absolute body position, initial body orienta-
tion and body size [121], [129], [130]. Chen and Koskela [132]

implemented a similar feature extraction method based on
pairwise relative position of skeleton joints with normaliza-
tion calculated by ‖pi − pj‖/

∑
i 6=j ‖pi − pj‖, i 6= j, which

is illustrated in Fig. 10(a).

Another group of joint displacement features extracted
from the same frame for skeleton-based representation con-
struction is based on the difference to a reference joint. In
these features, the displacements are obtained by calculating
the coordinate difference of all joints with respect to a ref-
erence joint, usually manually selected. Given the location
of a joint (x, y, z) and a given reference joint (xc, yc, zc)
in the world coordinate system, Rahmani et al. [133] de-
fined the spatial joint displacement as (∆x,∆y,∆z) =
(x, y, z) − (xc, yc, zc), where the reference joint can be the
skeleton centroid or a manually selected, fixed joint. For
each sequence of human skeletons representing an activity,
the computed displacements along each dimension (e.g.,
∆x, ∆y or ∆z) are used as features to represent humans.
Luo et al. [134] applied similar position information for
feature extraction. Since the joint hip center has relatively
small motions for most actions, they used that joint as the
reference. Lu et al. [124] introduced Histograms of 3D Joint
Locations (HOJ3D) features by assigning 3D joint positions
into cone bins in 3D space. Twelve key joints are selected
and their displacements are computed with respect to the
center torso point. Using linear discriminant analysis (LDA),
the features are reprojected to extract the dominant ones.
Since the spherical coordinate used in [124] is oriented with
the x axis aligned with the direction a person is facing, their
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TABLE 5
Summary of 3D Skeleton-Based Representations Based on Joint Orientation Features.

Notation: In the feature encoding column: Concatenation-based encoding, Statistics-based encoding, Bag-of-words encoding. In the structure and
transition column: Low-level features, Body parts models, Manifolds; In the feature engineering column: Hand-crafted features, Dictionary

learning, Unsupervised feature learning, Deep learning. In the representation properties column: ‘T’ indicates that temporal information is used in
feature extraction; ‘VI’ stands for View-Invariant; ‘ScI’ stands for Scale-Invariant; ‘SpI’ stands for Speed-Invariant; ‘OL’ stands for OnLine; ‘RT’

stands for Real-Time.

Reference Approach Feature
Encoding

Structure
and Transition

Feature
Engineering T VI ScI SpI OL RT

Sung et al. [117] Orientation Matrix Co Ll Hc X X X
Fothergill et al. [128] Joint Angles Co Ll Hc X X X X X

Gu et al. [148] Gesture Recognition Ba Ll Di X X X
Sung et al. [149] Orientation Matrix Co Ll Hc X X X

Jin and Choi [150] Pairwise Orientation St Ll Hc X X X X X
Zhang and Tian [151] Pairwise Features St Ll Hc X X X

Kapsouras and
Nikolaidis [152] Dynemes Representation Ba Ll Di X

Vantigodi and
Radhakrishnan [153] Meta-cognitive RBF St Ll Hc X X X X

Ohn-Bar and Trivedi [154] HOG2 Co Ll Hc X X X
Chaudhry et al. [155] Shape from Neuroscience Ba Bp Di X X

Ofli et al. [156] SMIJ Co Ll Un X X X
Miranda et al. [157] Joint Angle Ba Ll Di X X X X

Fu and Santello [158] Hand Kinematics Co Ll Hc X X
Zhou et al. [159] 4D quaternions Ba Ll Di X X X X

Campbell and Bobick [160] Phase Space Co Ll Hc X X X
Boubou and Suzuki [161] HOVV St Ll Hc X X X X X

Sharaf et al. [162] Joint angles and velocities St Ll Hc X X X X X X
Salakhutdinov et al. [163] HD Models Co Ll De X X X X

Parameswaran
and Chellappa [164] ISTs Co Ll Hc X X X X

approach is view invariant.

3.1.2 Temporal Joint Displacement
3D human representations based on temporal joint displace-
ments compute the location difference across a sequence
of frames acquired at different time points. Usually, they
employ both spatial and temporal information to represent
people in space and time.

A widely used temporal displacement feature is imple-
mented by comparing the joint coordinates at different time
steps. Yang and Tian [130], [131] introduced a novel feature
based on the position difference of joints, called EigenJoints,
which combines three categories of features including static
posture, motion, and offset features. In particular, the joint
displacement of current frame with respect to the previous
frame and initial frame is calculated. Ellis et al. [115] intro-
duced an algorithm to reduce latency for action recognition
using the 3D skeleton-based representation that depends on
spatial-temporal features computed from the information in
three frames: the current frame, the frame collected 10 time
steps ago, and the frame collected 30 frames ago. Then, the
features are computed as the temporal displacement among
those three frames. Another approach to construct temporal
displacement representations incorporates the object being
interacted with in each pose [114]. This approach constructs
a hierarchical graph to represent positions in 3D space and
motion through 1D time. The differences of joint coordinates
in two successive frames are defined as the features. Hu et
al. [100] introduced the joint heterogeneous features learn-
ing (JOULE) model through extracting the pose dynamics
using skeleton data from a sequence of depth images. A
real-time skeleton tracker is used to extract the trajectories of

human joints. Then relative positions of each trajectory pair
is used to construct features to distinguish different human
actions.

(a) Displacement of pair-
wise joints [132]

(b) Relative joint displacement and joint
motion volume features [133]

Fig. 3. Examples of 3D human representations based on joint displace-
ments.

The joint movement volume is another feature construc-
tion approach for human representation that also uses joint
displacement information for feature extraction, especially
when a joint exhibits a large movement [133]. For a given
joint, extreme positions during the full joint motion are
computed along x, y, and z axes. The maximum moving
range of each joint along each dimension is then computed
by La = max(aj)−min(aj), where a = x, y, z; and the joint
volume is defined as Vj = LxLyLz , as demonstrated in Fig.
10(b). For each joint, Lx, Ly, Lz and Vj are flattened into a
feature vector. The approach also incorporates relative joint
displacements with respect to the torso joint into the feature.

3.2 Orientation-Based Representations

Another widely used information modality for human rep-
resentation construction is based on the joint orientations,
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TABLE 6
Summary of Representations Based on Raw Position Information.

Notation: In the feature encoding column: Concatenation-based encoding, Statistics-based encoding, Bag-of-words encoding. In the structure and
transition column: Low-level features, Body parts models, Manifolds; In the feature engineering column: Hand-crafted features, Dictionary

learning, Unsupervised feature learning, Deep learning. In the representation properties column: ‘T’ indicates that temporal information is used in
feature extraction; ‘VI’ stands for View-Invariant; ‘ScI’ stands for Scale-Invariant; ‘SpI’ stands for Speed-Invariant; ‘OL’ stands for OnLine; ‘RT’

stands for Real-Time.

Methods Approach Feature
Encoding

Structure
and Transition

Feature
Engineering T VI ScI SpI OL RT

Du et al. [22] BRNNs Co Bp De X
Kazemi et al. [112] Joint Positions Co Ll Hc X

Seidenari et al. [118] Multi-Part Bag of Poses Ba Ll Di X X X
Chaaraoui et al. [165] Evolutionary Joint Selection Ba Ll Di X

Reyes et al. [166] Vector of Joints Co Ll Hc X X
Patsadu et al. [167] Vector of Joints Co Ll Hc X X

Huang and Kitani [168] Cost Topology St Ll Hc
Devanne et al. [169] Motion Units Co Mf Hc X

Wang et al. [170] Motion Poselets Ba Bp Di X
Wei et al. [171] Structural Prediction Co Ll Hc X X

Gupta et al. [172] 3D Pose w/o Body Parts Co Ll Hc X X
Amor et al. [173] Skeleton’s Shape Co Mf Hc X X X
Sheikh et al. [174] Action Space Co Ll Hc X X X X

Yilma and Shah [175] Multiview Geometry Co Ll Hc X X
Gong et al. [176] Structured Time Co Mf Hc X X X

Rahmani and Mian [177] Knowledge Transfer Ba Ll Di X
Munsell et al. [178] Motion Biometrics St Ll Hc X X

Lillo et al. [179] Composable Activities Ba Ll Di X X X
Wu et al. [180] Watch-n-Patch Ba Ll Di X X X X

Gong and Medioni [181] Dynamic Manifolds Ba Mf Di X X X
Han et al. [182] Hierarchical Manifolds Ba Mf Di X X X X

Slama et al. [183], [184] Grassmann Manifolds Ba Mf Di X X X X X
Devanne et al. [185] Riemannian Manifolds Co Mf Hc X X X X X X
Huang et al. [186] Shape Tracking Co Ll Hc X X X X X

Devanne et al. [187] Riemannian Manifolds Co Mf Hc X X X X
Zhu et al. [188] RNN with LSTM Co Ll De X
Chen et al. [189] EnwMi Learning Ba Ll Di X X X

Hussein et al. [190] Covariance of 3D Joints St Ll Hc X X X X
Shahroudy et al. [191] Fourier Temporal Pyramid Ba Bp Un X X X
Jung and Hong [192] Elementary Moving Pose Ba Ll Di X X X X

Evangelidis et al. [193] Skeletal Quad Co Ll Hc X X X
Azary and Savakis [194] Grassmann Manifolds Co Mf Hc X X X X

Barnachon et al. [195] Hist. of Action Poses St Ll Hc X X
Shahroudy et al. [196] Feature Fusion Ba Bp Un X X

since in general orientation-based features are invariant to
human position, body size, and orientation to the camera.

3.2.1 Spatial Orientation of Pairwise Joints
Approaches based on spatial orientations of pairwise joints
compute the orientation of displacement vectors of a pair of
human skeletal joints acquired at the same time step.

A popular orientation-based human representation com-
putes the orientation of each joint to the human centroid in
3D space. For example, Gu et al. [148] collected the skeleton
data with fifteen joints and extracted features representing
joint angles with respect to the person’s torso. Sung et al.
[117] computed the orientation matrix of each human joint
with respect to the camera, and then transformed the joint
rotation matrix to obtain the joint orientation with respect to
the person’s torso. A similar approach was also introduced
in [149] based on the orientation matrix.

Another approach is to calculate the orientation of two
joints, called relative joint orientations. Jin and Choi [150]
utilized vector orientations from one joint to another joint,
named the first order orientation vector, to construct 3D
human representations. The approach also proposed a sec-

ond order neighborhood that connects adjacent vectors. The
authors used a uniform quantization method to convert
the continuous orientations into eight discrete symbols to
guarantee the robustness to noise. Zhang and Tian [151]
used a two mode 3D skeleton representation, combining
structural data with motion data. The structural data is
represented by pairwise features, relating the positions of
each pair of joints relative to each other. Orientations be-
tween two joints i and j was also used, which is given by
θ(i, j) = arcsin

(
ix−jx

dist(i,j)

)
/2π, where dist(i, j) denotes the

geometry distance between two joints i and j in 3D space.

3.2.2 Temporal Joint Orientation
Human representations based on temporal joint orientations
usually compute the difference between orientations of the
same joint across a temporal sequence of frames. Campbell
and Bobick [160] introduced a mapping from the Cartesian
space to the “phase space”. By modeling the joint trajectory
in the new space, the approach is able to represent a curve
that can be easily visualized and quantifiably compared to
other motion curves. Boubou and Suzuki [161] described
a representation based on the so-called Histogram of Ori-



10

ented Velocity Vectors (HOVV), which is a histogram of the
velocity orientations computed from 19 human joints in a
skeleton kinematic model acquired from the Kinect v1 cam-
era. Each temporal displacement vector is described by its
orientation in 3D space as the joint moves from the previous
position to the current location. By using a static skeleton
prior to deal with static poses with little or no movements,
this method is able to effectively represent humans with still
poses in 3D space in human action recognition applications.

3.3 Representations Based on Raw Joint Positions
Besides joint displacements and orientations, raw joint posi-
tions directly obtained from sensors are also used by many
methods to construct space-time 3D human representations.

Fig. 4. 3D human representation based on the Cov3DJ descriptor [190].

A category of approaches flatten joint positions acquired
in the same frame into a column vector. Given a sequence of
skeleton frames, a matrix can be formed to naively encode
the sequence with each column containing the flattened
joint coordinates obtained at a specific time point. Following
this direction, Hussein et al. [190] computed the statistical
Covariance of 3D Joints (Cov3DJ) as their features, as illus-
trated in Fig. 4. Specifically, given K human joints with each
joint denoted by pi = (xi, yi, zi), i = 1, . . . ,K , a feature
vector is formed to encode the skeleton acquired at time t:
S(t) = [x

(t)
1 , . . . , x

(t)
K , y

(t)
1 , . . . , y

(t)
K , z

(t)
1 , . . . , z

(t)
K ]>. Given a

temporal sequence of T skeleton frames, the Cov3DJ feature
is computed by C(S)= 1

T−1
∑T

t=1(S(t)−S̄(t)
)(S(t)−S̄(t)

)>,
where S̄ is the mean of all S. Since not all the joints are the
same informative, several methods were proposed to select
key joints that are more descriptive [165], [166], [167], [168].
Chaaraoui et al. [165] introduced an evolutionary algorithm
to select a subset of skeleton joints to form features. Then a
normalizing process was used to achieve position, scale and
rotation invariance. Similarly, Reyes et al. [166] selected 14
joints in 3D human skeleton models without normalization
for feature extraction in gesture recognition applications.

Another group of representation construction techniques
utilize the raw joint position information to form a trajectory,
and then extract features from this trajectory, which are often
called the trajectory-based representation. For example, Wei
et al. [171] used a sequence of 3D human skeletal joints to
construct joint trajectories, and applied wavelet to encode
each temporal joint sequence into features, which is demon-
strated in Fig. 5. Gupta et al. [172] proposed a cross-view

human representation, which matches trajectory features of
videos to MoCap joint trajectories and uses these matches
to generate multiple motion projections as features. Junejo
et al. [212] used trajectory-based self-similarity matrices
(SSMs) to encode humans observed from different views.
This method showed great cross-view stability to represent
humans in 3D space using MoCap data.

Fig. 5. Trajectory-based representation based on wavelet features [171].

Similar to the application of deep learning techniques to
extract features from images where raw pixels are typically
used as input, skeleton-based human representations built
by deep learning methods generally rely on raw joint po-
sition information. For example, Du et al. [22] proposed an
end-to-end hierarchical recurrent neural network (RNN) for
the skeleton-based representation construction, in which the
raw positions of human joints are directly used as the input
to the RNN. Zhu et al. [188] used raw 3D joint coordinates as
the input to a RNN with Long Short-Term Memory (LSTM)
to automatically learn human representations.

3.4 Multi-View Representations

Since multiple information modalities are available, an in-
tuitive way to improve the description power of a human
representation is to integrate multiple information sources
and build a multi-view representation to encode humans in
3D space. For example, the spatial joint displacement and
orientation can be integrated together to build human rep-
resentations. Guerra-Filho and Aloimonos [211] proposed
a method that maps 3D skeletal joints to 2D points in the
projection plane of the camera and computes joint displace-
ments and orientations of the 2D joints in the projected
plane. Gowayyed et al. [207] developed the histogram of ori-
ented displacements (HOD) representation that computes
the orientation of temporal joint displacement vectors and
uses their magnitude as the weight to update the histogram
in order to make the representation speed-invariant.

Multi-view spatio-temporal human representations were
also actively studied, which is able to integrate both spatial
and temporal information and represent human motions in
3D space. Yu et al. [107] integrated three types of features to
construct a spatio-temporal representation, including pair-
wise joint distances, spatial joint coordinates, and temporal
variations of joint locations. Masood et al. [206] imple-
mented a similar representation by incorporating both pair-
wise joint distances and temporal joint location variations.
Zanfir et al. [197] introduced the so-called moving pose
feature that integrates raw 3D joint positions as well as first
and second derivatives of the joint trajectories, based on the
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TABLE 7
Summary of Representations Based on Multi-View Information.

Notation: In the feature encoding column: Concatenation-based encoding, Statistics-based encoding, Bag-of-words encoding. In the structure and
transition column: Low-level features, Body parts models, Manifolds; In the feature engineering column: Hand-crafted features, Dictionary

learning, Unsupervised feature learning, Deep learning. In the representation properties column: ‘T’ indicates that temporal information is used in
feature extraction; ‘VI’ stands for View-Invariant; ‘ScI’ stands for Scale-Invariant; ‘SpI’ stands for Speed-Invariant; ‘OL’ stands for OnLine; ‘RT’

stands for Real-Time.

Methods Approach Feature
Encoding

Structure
& Transition

Feature
Engineering T VI ScI SpI OL RT

Ganapathi et al. [25] Kinematic Chain Co Ll Hc X
Akhter and Black [69] Joint Position with Limits Co Bp Hc X

Ionescu et al. [92] MPJPE & MPJAE Co Ll Hc X X X X
Marinoiu et al. [93] Visual Fixation Pattern Co Ll Hc

Sigal et al. [96] Parametrization of the Skeleton Co Ll Hc X
Huang et al. [104] SMMED Co Ll Hc X X X
Bloom et al. [105] Pose Based Features Co Ll Hc X X X

Yu et al. [107] Orderlets Co Ll Hc X X X
Paiement et al. [108] Normalized Joints Co Mf Hc X X X X X

Koppula and Saxena [110] Node Feature Map Co Ll Hc X X X
Sadeghipour et al. [116] Spatial Positions & Directions Co Ll Hc X

Bloom et al. [119] Dynamic Features Co Ll Hc X X X
Tenorth et al. [125] Set of Nominal Features Co Ll Hc
Zanfir et al. [197] Moving Pose Ba Ll Di X X X

Lehrmann et al. [198] Vector of Joints Co Ll Hc X X X
Bloom et al. [199] Dynamic Features Co Ll Hc X X X

Vemulapalli et al. [200] Lie Group Manifold Co Mf Hc X X X X
Zhang and Parker [201] BIPOD St Bp Hc X X X X X

Lv and Nevatia [202] HMM/Adaboost Co Ll Hc X X X
Pons-Moll et al. [203] Posebits Co Ll Hc

Herda et al. [204] Quaternions Co Bp Hc X X X X
Negin et al. [205] RDF Kinematic Features Co Ll Un X X X

Masood et al. [206] Pairwise Joint Displacement
& Temporal Location Variations Co Ll Hc X X X

Gowayyed et al. [207] HOD St Ll Hc X X X X
Meshry et al. [208] Angle & Moving Pose Ba Ll Un X X X X
Tao and Vidal [209] Moving Poselets Ba Bp Di X
Eweiwi et al. [210] Discriminative Action Features Co Ll Un X X X

Guerra-Filho
and Aloimonos [211] Visuo-motor Primitives Co Ll Hc X X X

assumption that the speed and acceleration of human joint
motions can be described accurately by quadratic functions.

3.5 Summary
Through computing the difference of skeletal joint positions
in 3D real-world space, displacement-based representations
are invariant to absolute locations and orientations of people
with respect to the camera, which can provide the benefit
of forming view-invariant spatio-temporal human represen-
tations. Similarly, orientation-based human representations
can provide the same view-invariance because they are also
based on the relative information between human joints. In
addition, since orientation-based representations do not rely
on the displacement magnitude, they are usually invariant
to human scale variations. Representations based directly on
raw joint positions are widely used due to the simple acqui-
sition from sensors. Although normalization procedures can
make human representations partially invariant to view and
scale variations, more sophisticated construction techniques
(e.g., deep learning) are typically needed to develop robust
human representations.

Representations without involving temporal information
are suitable to address the problems such as pose estimation
and gesture recognition. However, if we want the represen-
tations to be capable of encoding dynamic human motions,

temporal information needs to be integrated. Applications
such as activity recognition can benefit from spatio-temporal
representations that incorporate time and space information
simultaneously. Among space-time human representations,
approaches based on joint trajectories can be designed to be
insensitive to motion speed invariance.

4 REPRESENTATION ENCODING

Feature encoding is a necessary and important component
in representation construction [213], which aims at integrat-
ing all extracted features together into a final feature vector
that can be used as the input to classifiers or other reasoning
systems. In the scenario of 3D skeleton-based representation
construction, the encoding methods can be broadly grouped
into three classes: concatenation-based encoding, statistics-
based encoding, and bag-of-words encoding. The encoding
technique used by each reviewed human representation is
summarized in the Feature Encoding column in Table 4–7.

4.1 Concatenation-Based Approach

We loosely define feature concatenation as a representation
encoding approach, which is a popular method to integrate
multiple features into a single feature vector during human
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representation construction. Many methods directly use ex-
tracted skeleton-based features, such as displacements and
orientations of 3D human joints, and concatenate them into
a 1D feature vector to build a human representation [107],
[114], [117], [128], [129], [130], [131], [132], [154], [160], [166],
[167], [174], [175], [176], [202]. For example, Fothergill et al.
[128] encoded the feature vector by concatenating 35 skeletal
joint angles, 35 joint angle velocities, and 60 joint velocities
into a 130-dimensional vector at each frame. Then, feature
vectors from a sequence of frames are further concatenated
into a big final feature vector that is fed into a classifier for
reasoning. Similarly, Gong et al. [176] directly concatenated
3D joint positions into a 1D vector as a representation at each
frame to address the time series segmentation problem.

4.2 Statistics-Based Encoding
Statistics-based encoding is a common but effective method
to incorporate all features into a final feature vector, without
applying any feature quantization procedure. This encoding
methodology processes and organizes features through sim-
ple statistics. For example, the Cov3DJ representation [190],
as illustrated in Fig. 4, computes the covariance of a set of 3D
joint position vectors collected across a sequence of skeleton
frames. Since a covariance matrix is symmetric, only upper
triangle values are utilized to form the final feature in [190].
An advantage of this statistics-based encoding approach is
that the size of the final feature vector is independent of the
number of frames.

The most widely used statistics-based encoding method-
ology is histogram encoding, which uses a 1D histogram
to estimate the distribution of extracted skeleton-based fea-
tures. For example, Xia et al. [124] partitioned the 3D space
into a number of bins using a modified spherical coordinate
system and counted the number of joints falling in each bin
to from a 1D histogram, which is called the Histogram of 3D
Joint Positions (HOJ3D). A large number of skeleton-based
human representations using similar histogram encoding
methods were also introduced, including Histogram of Joint
Position Differences (HJPD) [133], Histogram of Oriented
Velocity Vectors (HOVV) [161], and Histogram of Oriented
Displacements (HOD) [207], among others [178] [153] [195]
[168] [151] [201]. When multi-view skeleton-based features
are involved, concatenation-based encoding is usually em-
ployed to incorporate multiple histograms into a single final
feature vector [201].

4.3 Bag-of-Words Encoding
Unlike concatenation and statistics-based encoding method-
ologies, bag-of-words encoding applies a coding operator to
project each high-dimensional feature vector into a single
code (or word) using a learned codebook (or dictionary) that
contains all possible codes. This procedure is also referred to
as feature quantization. Given a new instance, this encoding
methodology uses the normalized frequency vector of code
occurrence as the final feature vector. Bag-of-words encod-
ing is widely employed by a large number of skeleton-based
human representations [100], [106], [118], [134], [135], [138],
[141], [143], [148], [152], [155], [157], [165], [170], [177], [179],
[180], [181], [183], [197], [208], [209]. According to how the
dictionary is learned, the encoding methods can be broadly

categorized into two groups, based on clustering or sparse
coding.

The k-means algorithm is a popular unsupervised learn-
ing method that is commonly used to construct a dictionary.
Wang et al. [170] grouped human joints into five body parts,
and used the k-means algorithm to cluster the training data.
The indices of the cluster centroids are utilized as codes to
form a dictionary. During testing, query body part poses are
quantized using the learned dictionary. Similarly, Kapsouras
and Nikolaidis [152] used the k-means clustering method on
skeleton-based features consisting of joint orientations and
orientation differences in multiple temporal scales, in order
to select representative patterns to build a dictionary.

Fig. 6. Dictionary learning based on sparse coding for skeleton-based
human representation construction [134].

Sparse coding is another common approach to construct
efficient representations of data as a (often linear) combina-
tion of a set of distinctive patterns (i.e., codes) learned from
the data itself. Zhao et al. [138] introduced a sparse coding
approach regularized by l2,1 norm to construct a dictionary
of templates from the so-called Structured Streaming Skele-
tons (SSS) features in a gesture recognition application. Luo
et al. [134] proposed another sparse coding method to learn
a dictionary based on pairwise joint displacement features.
This approach uses a combination of group sparsity and ge-
ometric constraints to select sparse and more representative
patterns as codes. An illustration of the dictionary learning
method to encode skeleton-based human representations is
presented in Fig. 6.

4.4 Summary

Due to its simplicity and high efficiency, the concatenation-
based feature vector construction method is widely applied
in real-time online applications to reduce processing latency.
The method is also used to integrate features from multiple
sources into a single vector for further encoding/processing.
By not requiring a feature quantization process, statistics-
based encoding, especially based on histograms, is efficient
and relatively robust to noise. However, the statistics-based
encoding method is incapable of identifying the representa-
tive patterns and modeling the structure of the data, thus
making it lacking in discriminative power. Bag-of-words
encoding can automatically find a good over-complete basis
and encode a feature vector using a sparse solution to min-
imize approximation error. Bag-of-words encoding is also
validated to be robust to data noise. However, dictionary
construction and feature quantization require additional
computation.
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5 STRUCTURE AND TRANSITION

While most of the skeleton-based human representations are
based on pure low-level features extracted from the skeleton
data in 3D Euclidean space, several works investigated mid-
level features or feature transition to other topological space.
This section categorizes the reviewed approaches from the
structure and transition perspective into three groups: repre-
sentations using low-level features in Euclidean space, rep-
resentations using mid-level features based on body parts,
and manifold-based representations. The major class of each
representation categorized from this perspective is listed in
the Structure and Transition column in Table 4–7.

5.1 Representations Based on Low-level Features

A simple, straightforward framework to construct skeleton-
based representations is to use low-level features computed
from 3D skeleton data in Euclidian space, without consid-
ering human body structures or applying feature transition.
Most of the existing representations fall in this category. The
representations can be constructed by single-layer methods,
or by approaches with multiple layers.

An example of the single-layer representation construc-
tion method is the EigenJoints approach introduced by
Yang and Tian [130], [131]. This approach extracts low-level
features from skeletal data, such as pairwise joint displace-
ments, and uses Principal Component Analysis (PCA) to
perform dimension reduction. Many other existing human
representations are also based on low-level skeleton-based
features [117], [118], [119], [123], [134], [139], [140], [141],
[154], [157], [158], [162], [199] without modeling the hierar-
chy of the data.

Fig. 7. Temporal pyramid techniques to incorporate multi-layer temporal
information for space-time human representation construction based on
a sequence of 3D skeleton frames [201].

Several multi-layer techniques were also implemented to
create skeleton-based human representations from low-level
features. In particular, deep learning approaches inherently
consist of multiple layers with the intermediate and output
layers encoding different levels of features [214]. The multi-
layer deep learning approaches have attracted an increasing
attention in recent several years to learn human represen-
tations directly from human joint positions [146], [188].
Inspired by the spatial pyramid method [215] to incorporate
multi-layer image information, temporal pyramid methods
were introduced and used by several skeleton-based human

representations to capture the multi-layer information in the
time dimension [121], [129], [190], [201], [207]. For example,
a temporal pyramid method was proposed by Zhang et al.
[201] to capture long-term independencies, as illustrated in
Fig. 7. In this example, a temporal sequence of eleven frames
is used to represent a tennis-serve motion, and the joint of
interest is the right wrist, as denoted by the red dots in Fig 7.
When three levels are used in the temporal pyramid, level 1
uses human skeleton data at all time points (t1, t2, . . . , t11);
level 2 selects the joints at odd time points (t1, t3, . . . , t11);
and level 3 continues this selection process and keeps half
of the temporal data points (t1, t5, t9) to compute long-term
orientation changes.

5.2 Representations based on Body Part Models

Mid-level features based on body part models are actively
studied to construct skeleton-based human representations.
Since these mid-level features partially take into account the
physical structure of human body, they can usually result in
improve discrimination power to represent humans [201],
[209].

Wang et al. [170] decomposed a kinematic human body
model into five parts, including the left/right arms/legs and
torso, each consisting of a set joints. Then, the authors used
a data mining technique to obtain a spatiotemporal human
representation, by capturing spatial configurations of body
parts in one frame (by spatial-part-sets) as well as body part
movements across a sequence of frames (by temporal-part-
sets), as illustrated in Fig. 8. With this human representation,
the approach was able to obtain a hierarchical data that
can simultaneously model the correlation and motion of
human joints and body parts. Nie et al. [143] implemented a
spatial-temporal And-Or graph model to represent humans
at three levels including poses, spatiotemporal-parts, and
parts. The hierarchical structure of this body model captures
the geometric and appearance variations of humans at each
frame. Du et al. [22] introduced a deep neural network to
create a body part model and investigate the correlation of
body parts.

Fig. 8. Spatiotemporal human representations based mid-level features
extracted from human body parts [170].

Bio-inspired body part methods were also introduced to
extract mid-level features for skeleton-based representation
construction, based on body kinematics or human anatomy.
Chaudhry et al. [155] implemented a bio-inspired mid-level
feature to represent people based on 3D skeleton informa-
tion through leveraging findings in the area of static shape
encoding in the neural pathway of primate cortex [216]. By
showing the primates various 3D shapes and measuring the
neural response when changing different parameters of the
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Fig. 9. Representations based on mid-level features extracted from bio-
inspired body part models, inspired by human anatomy research [201].

shapes, the primates’ internal shape representation can be
estimated, which was then applied to extract body parts to
construct skeleton-based representations. Zhang and Parker
[201] implemented a bio-inspired predictive orientation de-
composition (BIPOD) using mid-level features to construct
representations of people from 3D skeleton trajectories,
which is inspired by biological research in human anatomy.
This approach decomposes a human body model into five
body parts, and then projects 3D human skeleton trajectories
onto three anatomical planes (i.e., coronal, transverse and
sagittal planes), as illustrated in Fig. 9. By estimating future
skeleton trajectories, the BIPOD representation possesses the
ability to predict future human motions.

5.3 Manifold-based Representations
A number of methods in the literature transited the skeleton
data in 3D Euclidean space to another topological space (i.e.,
manifold) in order to process skeleton trajectories as curves
within the new space. This category of methods are typically
utilize the trajectory-based representation.

Vemulapalli et al. [200] introduced a skeletal representa-
tion that was created in the Lie group SE(3)× . . .×SE(3),
which is a curved manifold, based on the observation that
3D rigid body motions are members of the space. Using
this representation, joint trajectories can be modeled as
curves in the Lie group. This manifold-based representation
can model 3D geometric relationships between joints using
rotations and translations in 3D space. Since analyzing
curves in the Lie group is not easy, the approach maps
the curves from the Lie group to its Lie algebra, which
is a vector space. Gong and Medioni [181] introduced a
spatial-temporal manifold and a dynamic manifold warping
method, which is an adaptation of dynamic time warp-
ing methods for the manifold space. Spatial alignment is
also used to deal with variations of viewpoints and body
scales. Slama et al. [183] introduced a multi-stage method
based on a Grassmann manifold. Body joint trajectories are
represented as points on the manifold, and clustered to
find a ‘control tangent’ defined as the mean of a cluster.
Then a query human joint trajectory is projected against
the tangents to form a final representation. This manifold
was also applied by Azary and Savakis [194] to build sparse
human representations. Anirudh et al. [144] introduced the
transport square-root velocity function (TSRVF) to encode
humans in 3D space, which provides an elastic metric to
model joint trajectories on Riemannian manifolds. Amor et

al. [173] proposed to model the evolution of human skeleton
shapes as trajectories on Kendall’s shape manifolds, and
used a parameterization-invariant metric [217] for aligning,
comparing, and modeling skeleton joint trajectories, which
can deal with noise caused by large variability of execution
rates within and across humans. Devanne et al. [185] intro-
duced a human representation by comparing the similarity
between human skeletal joint trajectories in a Riemannian
manifold [218].

(a) Lie group [200] (b) Grassmann manifold [194]

Fig. 10. Examples of skeleton-based representations created by tran-
siting joint trajectories in 3D Euclidean space to a manifold.

5.4 Summary
Single or multi-layer human representations based on low-
level features directly extract features from 3D skeletal data
without considering the physical structure of human body.
The kinematic body structure is coarsely encoded by human
representations based on mid-level features extracted from
body part models, which can capture the relationship of not
only joints but also body parts. Manifold-based representa-
tions map motion joint trajectories into a new topological
space, in the hope of finding a more descriptive representa-
tion in the new space. Good performance of all these human
representations was reported in the literature.

6 FEATURE ENGINEERING

Feature engineering is one of the most fundamental research
problems in computer vision and machine learning research.
Early feature engineering techniques for human representa-
tion construction are manual; features are hand-crafted and
their importance are manually decided. In recent years, we
have been witnessing a clear transition from manual feature
engineering to automated feature learning and extraction. In
this section, we categorize and analyze the human represen-
tations based on 3D skeleton data from the perspective of
feature engineering. The feature engineering approach used
by each human representation is summarized in the Feature
Engineering column in Table 4–7.

6.1 Hand-crafted Features
Hand-crafted features are manually designed and con-
structed to capture certain geometric, statistical, morpholog-
ical, or other attributes of 3D human skeleton data, which
dominated the early skeleton-based feature extraction meth-
ods and are still intensively studied in modern research.

Lv and Nevatia [202] decomposed the high dimensional
3D joint space into a set of feature spaces where each of them
corresponds to the motion of a single joint or a combination
of related multiple joints. Ofli et al. [156] proposed a human
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representation called the Sequence of the Most Informative
Joints (SMIJ), by selecting a subset of skeletal joints to extract
category-dependent features. Zhao et al. [132] described a
method of representing humans using the similarity of cur-
rent and previously seen skeletons in a gesture recognition
application. Pons-Moll et al. [203] used qualitative attributes
of the 3D skeleton data, called posebits, to estimate human
poses, by manually defining features such as joints distance,
articulation angle, relative position, etc. Huang et al. [186]
proposed to utilize hand-crafted features including skeletal
joint positions to locate key frames and track humans from a
multi-camera video. In general, the majority of the existing
skeleton-based human representations employ hand-crafted
features, especially, the methodologies based on histograms
and manifolds, as presented by Tables 4–7.

6.2 Representation Learning
In many vision and reasoning tasks, good performance is all
about the right representation. Thus, automated learning of
skeleton-based features has become highly active in the task
of human representation construction based on 3D skeletal
data. These skeleton-based representation learning methods
can be broadly divided into three groups: dictionary learn-
ing, unsupervised feature learning, and deep learning.

6.2.1 Dictionary Learning
Dictionary learning aims at learning a basis set (dictionary)
to encode a feature vector as a sparse linear combination of
basis elements, as well as to adapt the dictionary to the data
in a specific task. Learning a dictionary is the foundation of
the bag-of-words encoding. In the literature of 3D skeleton-
based representation creation, the k-means algorithm [152],
[170] and sparse coding [134], [138] are the most commonly
used techniques for dictionary learning. A number of these
methods are reviewed in Section 4.3.

6.2.2 Unsupervised Feature Learning
The objective of unsupervised feature learning is to discover
low-dimensional features that capture the underlying struc-
ture of the input data in a higher dimension. For example,
the traditional PCA method is applied for dimension reduc-
tion to extract low-dimensional features from raw skeleton
features [130], [131], [208]. Negin et al. [205] designed a
feature selection method to build human representations
from 3D skeletal data. This approach describes humans via a
collection of feature time-series computed from the skeletal
data, and discriminatively optimizes a random decision for-
est model over this collection to identify the most effective
subset of features in time and space dimensions.

Very recently, several multi-view feature learning meth-
ods via sparsity-inducing norms were proposed to integrate
different types of features, such as color-depth and skeleton-
based features, to produce a compact, informative represen-
tation of people. Shahroudy et al. [196] recently developed a
multi-view feature learning method to fuse the RGB-D and
skeletal information into an integrated set of discriminative
features. This approach uses the group-l1 norm to force that
features from the same view can be activated or deactivated
together, and applies the l2,1 norm to allow a single feature
within a deactivated view can be activated. The authors also

Fig. 11. Hierarchical RNNs for human representation learning based on
skeletal joint locations [22].

introduced a multi-modal multi-part human representation
based on a hierarchical mixed norm [191], which regularizes
structured features of each joint subset and applies sparsity
between them. Another heterogenous feature learning al-
gorithm was introduced by Hu et al. [100]. The approach
casted joint feature learning as a least-square optimization
problem that applies the Frobenius matrix norm as the
regularization term to provide a closed-form solution.

6.2.3 Deep Learning

While unsupervised feature learning allows for assigning a
weight to each feature element, this methodology still relies
on manually crafted features as the initial set. Deep learning,
on the other hand, attempts to automatically learn a multi-
level representation directly from raw data, by exploring a
hierarchy of factors that may explain the data. Several such
approaches were developed to learn human representations
from 3D skeletal joint positions directly acquired by sensors
in recent several years. For example, Du et al. [22] proposed
an end-to-end hierarchical recurrent neural network (RNN)
to construct a skeleton-based human representation. In this
method, the whole skeleton is divided into five parts accord-
ing to human physical structure, and separately fed into five
bidirectional RNNs. As the number of layers increases, the
representations extracted by the subnets are hierarchically
fused to build a higher-level representation, as illustrated in
Fig. 11. Zhu et al. [188] introduced a method based on RNNs
with the Long Short-Term Memory (LSTM) to automatically
learn human representations and model long-term temporal
dependencies. In this method, joint positions are used as
the input at each time slot to the LST-RNNs that can model
the joint co-occurrences to characterize human motions. Wu
and Shao [146] proposed to utilize deep belief networks to
model the distribution of skeleton joint locations and extract
high-level features to represent humans at each frame in 3D
space. Salakhutdinov et al. [163] proposed a compositional
learning architecture that integrates deep learning models
with structured hierarchical Bayesian models. Specifically,
this approach learns a hierarchical Dirichlet process (HDP)
prior over top-level features in a deep Boltzmann machine
(DBM), which simultaneously learns low-level generic fea-
tures, high-level features that capture the correlation among
the low-level features, and a category hierarchy for sharing
priors over the high-level features.
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6.3 Summary

Hand-crafted features still dominate human representations
based on 3D skeletal data in the literature. Although several
approaches showed great performance various applications,
hand-crafting these manual features typically requires sig-
nificant domain knowledge and careful parameter tuning.
Unsupervised dictionary and feature learning approaches
can automatically determine which types of skeleton-based
features or templates are more representative, although they
typically use hand-craft features as the input. Deep learning,
on the other hand, can directly work with the raw skeleton
information, and automatically discover and create features.
However, the complicated deep learning methods are typi-
cally computationally expensive, which currently might not
be suitable for online, real-time applications.

7 FUTURE RESEARCH DIRECTIONS

Human representations based on skeleton data can possess
several desirable attributes, including the ability to incorpo-
rate spatio-temporal information, invariance to variations of
viewpoint, human body scale, and motion speed, and real-
time, online performance. The characteristics of each review
representation are presented in Table 4–7. While significant
progress has been achieved on human representations based
on 3D skeletal data, there are still numerous research oppor-
tunities. Here we briefly summarize some of the prevalent
problems and provide possible future research directions.

• Fusing skeleton data with RGB-D images. Although 3D
skeleton data can be applied to construct descriptive
representations of humans, it is incapable to encode
texture information, thus cannot effectively represent
human-object interaction. Fusing RGB-D information
with skeleton data to build a multisensory represen-
tation has the potential to address this problem [107],
[126], [191] and improve the descriptive power of the
existing space-time human representations.

• General representation construction via cross-training. A
variety of devices can provide skeleton data but with
different kinematic models. It is desirable to develop
cross-training methods that can utilize skeleton data
from different devices to build a general representa-
tion that works with different skeleton models [201].
A method of unifying skeleton data to the same for-
mat is also useful to integrate available benchmarks
dataset and provide sufficient data to modern data-
driven, large-scale representation learning methods
such as deep learning.

• Representation of multiple individuals. Most of existing
skeleton-based methods focus on representing a sin-
gle person, and only a few approaches addressed the
representation of a pair of humans [123]. Although
multiple sensors including Kinect v2 and MoCap can
acquire human skeleton data of multiple individuals
simultaneously, no datasets or methods are available
to address the essential problem of multi-individual
skeleton-based human representations,

• Protocol for representation evaluation. There is a strong
need of a protocol to benchmark skeleton-based hu-
man representations, which must be independent of

learning and application-level evaluations. Although
the representations have been qualitatively assessed
based on their characteristics (e.g., scale-invariance,
etc.), a beneficial future direction is to design quanti-
tative evaluation metrics to facilitate evaluating and
comparing the human representations.

• Automated skeleton-based representation learning. Deep
learning and multi-view feature learning have shown
very compiling performance in a variety of computer
vision and machine learning tasks, but are not well
investigated in skeleton-based representation learn-
ing and can be a promising future research direction.
Moreover, as human skeletal data contains kinematic
structures, an interesting problem is how to integrate
this structure as a priori in representation learning.

• Real-time, anywhere skeleton estimation of arbitrary
poses. Skeleton-based human representations heavily
rely on the quality of 3D skeleton tracking. A possible
future direction is to extract skeleton information of
unconventional human poses (e.g., beyond gaming
related poses using a Kinect sensor). Another future
direction is to reliably extract skeleton information in
an outdoor environment using depth data acquired
from other sensors such as stereo vision and LiDAR.
Although recent works based on deep learning [66],
[67], [70] showed promising skeleton tracking results,
real-time processing must be ensured for real-word
online applications.

8 CONCLUSION

This paper presents a unique and comprehensive survey of
the state-of-the-art space-time human representations based
3D skeleton data that is now widely available. We provide a
categorization of the representations from four key perspec-
tives, and compare the pros and cons of the methods in each
perspective. A brief overview of 3D skeleton acquisition and
construction methods is also included in this paper. Poten-
tial future topics are discussed with the hope to facilitate the
ongoing research on skeleton-based human representations
that keep attracting an increasing attention.
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