GENERALIZED HUYGENS TYPES INEQUALITIES FOR BESSEL AND MODIFIED BESSEL FUNCTIONS

KHALED MEHREZ

Abstract. In this paper, we present a generalization of the Huygens types inequalities involving Bessel and modified Bessel functions of the first kind.

Keywords: Bessel functions, Modified Bessel functions, Turán type inequalities, Huygens inequalities.

Mathematics Subject Classification (2010): 33C10, 26D07.

1. Introduction

This inequality

$$
(1) \qquad \qquad 2\frac{\sin x}{x} + \frac{\tan x}{x} > 3
$$

which holds for all $x \in (0, \pi/2)$ is known in literature as Huygens's inequality [\[5\]](#page-6-0). The hyperbolic counterpart of [\(1\)](#page-0-0) was established in [\[8\]](#page-6-1) as follows:

(2)
$$
2\frac{\sinh x}{x} + \frac{\tanh x}{x} > 3, \ x > 0.
$$

The inequalities [\(1\)](#page-0-0) and [\(2\)](#page-0-1) were respectively refined in [\[5\]](#page-6-0) as

(3)
$$
2\frac{\sin x}{x} + \frac{\tan x}{x} > 2\frac{x}{\sin x} + \frac{x}{\tan x} > 3
$$

for $0 < x < \frac{\pi}{2}$ and

(4)
$$
2\frac{\sinh x}{x} + \frac{\tanh x}{x} > 2\frac{x}{\sinh x} + \frac{x}{\tanh x} > 3, \ x \neq 0.
$$

In [\[12\]](#page-6-2), Zhu give some new inequalities of the Huygens type for circular functions, hyperbolic functions, and the reciprocals of circular and hyperbolic functions, as follows:

Theorem A The following inequalities

(5)
$$
(1-p)\frac{\sin x}{x} + p\frac{\tan x}{x} > 1 > (1-q)\frac{\sin x}{x} + q\frac{\tan x}{x}
$$

2 K. MEHREZ

holds for all $x \in (0, \pi/2)$ if and only if $p \geq 1/3$ and $q \leq 0$. Theorem B The following inequalities

(6)
$$
(1-p)\frac{\sinh x}{x} + p\frac{\tanh x}{x} > 1 > (1-q)\frac{\sinh x}{x} + q\frac{\tanh x}{x}
$$

holds for all $x \in (0, \infty)$ if and only if $p \leq 1/3$ and $q \geq 1$.

Recently, the author of this paper extend and sharpen inequalities [\(5\)](#page-0-2) and [\(6\)](#page-1-0) for the Bessel and modified Bessel functions to the following results in [\[7\]](#page-6-3).

Theorem C Let $-1 < \nu \leq 0$ and let $j_{\nu,1}$ the first positive zero of the Bessel function J_{ν} of the first kind. Then the Huygens type inequalities

(7)
$$
(1-p)\mathcal{J}_{\nu+1}(x) + p\frac{\mathcal{J}_{\nu+1}(x)}{\mathcal{J}_{\nu}(x)} > 1 > (1-q)\mathcal{J}_{\nu+1}(x) + q\frac{\mathcal{J}_{\nu+1}(x)}{\mathcal{J}_{\nu}(x)}
$$

holds for all $(x \in (0, j_{\nu,1}),$ if and only if, $p \geq \frac{\nu+1}{\nu+2}$ and $q \leq 0$. **Theorem D** Let $\nu > -1$, the following inequalities

(8)
$$
(1-p) \mathcal{I}_{\nu+1}(x) + p \frac{\mathcal{I}_{\nu+1}(x)}{\mathcal{I}_{\nu}(x)} > 1 > (1-q) \mathcal{I}_{\nu+1}(x) + q \frac{\mathcal{I}_{\nu+1}(x)}{\mathcal{I}_{\nu}(x)},
$$

holds for all $x \in (0, \infty)$ if and only if $p \leq \frac{\nu+1}{\nu+2}$ and $q \geq 1$.

For $\nu > -1$ and consider the function $\mathcal{J}_{\nu} : \mathbb{R} \longrightarrow (-\infty, 1]$, defined by

$$
\mathcal{J}_{\nu}(x) = 2^{\nu} \Gamma(\nu + 1) x^{-\nu} J_{\nu}(x) = \sum_{n \geq 0} \frac{\left(\frac{-1}{4}\right)^n}{(\nu + 1)_{n} n!} x^{2n},
$$

where Γ is the gamma function, $(\nu + 1)_n = \Gamma(\nu + n + 1)/\Gamma(\nu + 1)$ for each $n \geq 0$, is the well-known Pochhammer (or Appell) symbol, and J_{ν} defined by

$$
J_{\nu}(x) = \sum_{n\geq 0} \frac{(-1)^n (x/2)^{\nu+2n}}{n! \Gamma(\nu+n+1)},
$$

stands for the Bessel function of the first kind of order ν . It is worth mentioning that in particular the function J_{ν} reduces to some elementary functions, like sine and cosine. More precisely, in particular we have:

(9)
$$
\mathcal{J}_{-1/2}(x) = \sqrt{\pi/2}.x^{1/2} J_{-1/2}(x) = \cos x,
$$

(10)
$$
\mathcal{J}_{1/2}(x) = \sqrt{\pi/2}.x^{-1/2}J_{1/2}(x) = \frac{\sin x}{x},
$$

For $\nu > -1$, let us consider the function $\mathcal{I}_{\nu} : \mathbb{R} \longrightarrow [1, \infty)$, defined by

$$
\mathcal{I}_{\nu}(x) = 2^{\nu} \Gamma(\nu + 1) x^{-\nu} I_{\nu}(x) = \sum_{n \geq 0} \frac{\left(\frac{1}{4}\right)^n}{(\nu + 1)_{n} n!} x^{2n},
$$

where I_{ν} is the modified Bessel function of the first kind defined by

$$
I_{\nu}(x) = \sum_{n\geq 0} \frac{(x/2)^{\nu+2n}}{n!\Gamma(\nu+n+1)}, \text{ for all } x \in \mathbb{R}.
$$

It is worth mentioning that in particular we have

(11)
$$
\mathcal{I}_{-1/2}(x) = \sqrt{\pi/2}.x^{1/2}I_{-1/2}(x) = \cosh x,
$$

(12)
$$
\mathcal{I}_{1/2}(x) = \sqrt{\pi/2}.x^{1/2}I_{-1/2}(x) = \frac{\sinh x}{x}.
$$

(13)
$$
\mathcal{I}_{3/2}(x) = 3\sqrt{\pi/2}.x^{-3/2}I_{3/2}(x) = -3\left(\frac{\sinh x}{x^3} - \frac{\cosh x}{x^2}\right)
$$

In this note, we present a generalization of the Huygens type inequalities [\(1\)](#page-0-0) and [\(2\)](#page-0-1) for Bessel and modified Bessel functions.

.

2. Lemmas

In order to establish our main results, we need several lemmas, which we present in this section.

Lemma 1. [\[10\]](#page-6-4) Let a_n and b_n $(n = 0, 1, 2, ...)$ be real numbers, and let the power series $A(x) = \sum_{n=0}^{\infty} a_n x^n$ and $B(x) = \sum_{n=0}^{\infty} b_n x^n$ be convergent for $|x| < R$. If $b_n > 0$ for $n = 0, 1, \ldots$, and if $\frac{a_n}{b_n}$ is strictly increasing (or decreasing) for $n = 0, 1, 2...$, then the function $\frac{A(x)}{B(x)}$ is strictly increasing (or decreasing) on $(0, R)$.

Lemma 2. [\[6,](#page-6-5) [2,](#page-6-6) [9\]](#page-6-7) Let $f, g : [a, b] \longrightarrow \mathbb{R}$ be two continuous functions which are differentiable on (a, b) . Further, let $g' \neq 0$ on (a, b) . If $\frac{f'}{g'}$ $\frac{f'}{g'}$ is increasing (or decreasing) on (a, b) , then the functions $\frac{f(x)-f(a)}{g(x)-g(a)}$ and $\frac{f(x)-f(b)}{g(x)-g(b)}$ are also increasing (or decreasing) on (a, b) .

Lemma 3. (Turán type inequality for modified Bessel function) The following Turán type inequality

(14)
$$
\mathcal{I}_{\nu}(x)\mathcal{I}_{\nu+2}(x) < \frac{\nu+2}{\nu+1}\,\mathcal{I}_{\nu+1}^2(x),
$$

holds for all $\nu > -1$ and $x \in \mathbb{R}$. In particular, the following Turán type inequality

(15)
$$
\cosh(x) \left(\cosh(x) - x \sinh(x)\right) < \sinh^2(x)
$$

is valid for all $x \in \mathbb{R}$.

Proof. By using the Cauchy product

(16)
$$
\mathcal{I}_{\mu}(x)\mathcal{I}_{\nu}(x) = \sum_{n\geq 0} \frac{\Gamma(\nu+1)\Gamma(\mu+1)\Gamma(\nu+\mu+2n+1)x^{2n}}{2^{2n}\Gamma(n+1)\Gamma(\nu+\mu+n+1)\Gamma(\mu+n+1)\Gamma(\nu+n+1)}
$$

we have

$$
\frac{\nu+2}{\nu+1}\mathcal{I}_{\nu+1}^2(x) - \mathcal{I}_{\nu+2}(x)\mathcal{I}_{\nu}(x) = \sum_{n\geq 0} \frac{\Gamma(\nu+1)\Gamma(\nu+3)\Gamma(2\nu+2n+3)}{2^{2n}\Gamma(n+1)\Gamma(2\nu+n+3)\Gamma(\nu+n+2)\Gamma(\nu+n+3)}x^{2n} \geq 0
$$

for all $x \in \mathbb{R}$ and $\nu > -1$. On the other hand, observe that using [\(9\)](#page-1-1), [\(10\)](#page-1-2), and [\(14\)](#page-2-0) in particular $\nu = -1/2$, the Turán type inequality (14) becomes (15). in particular $\nu = -1/2$, the Turán type inequality [\(14\)](#page-2-0) becomes [\(15\)](#page-2-1).

3. Main results

We first obtain the further result concerning the generalized Huygens inequality to the Bessel functions described as Theorem [1.](#page-3-0)

Theorem 1. Let $-1 < \nu \leq 0$ and let $j_{\nu,1}$ the first positive zero of the Bessel function J_{ν} of the first kind. Then the Huygens types inequalities

(17)
$$
1 > \left(1 - \frac{\nu + 2}{\nu + 1}\right) \mathcal{J}_{\nu}(x) + \frac{\nu + 2}{\nu + 1} \frac{\mathcal{J}_{\nu}(x)}{\mathcal{J}_{\nu+1}(x)}
$$

holds for all $x \in (0, j_{\nu,1})$

Proof. Let $\nu > -1$, we consider the function

$$
F_{\nu}(x) = \frac{1 - \mathcal{J}_{\nu}(x)}{\frac{\mathcal{J}_{\nu}(x)}{\mathcal{J}_{\nu+1}(x)} - \mathcal{J}_{\nu}(x)}, \ \ 0 < x < j_{\nu,1}.
$$

For $0 < x < j_{\nu,1}$, let

$$
f_{\nu,1}(x) = 1 - \mathcal{J}_{\nu}(x)
$$
 and $f_{\nu,2}(x) = \frac{\mathcal{J}_{\nu}(x)}{\mathcal{J}_{\nu+1}(x)} - \mathcal{J}_{\nu}(x)$.

Now, by again using the differentiation formula

(18)
$$
\mathcal{J}'_{\nu}(x) = -\frac{x}{2(\nu+1)} \mathcal{J}_{\nu+1}(x)
$$

we get

$$
f'_{\nu,1}(x) = \frac{x \mathcal{J}_{\nu+1}(x)}{2(\nu+1)},
$$

and

$$
f'_{\nu,2}(x) = \frac{x \mathcal{J}_{\nu+1}(x)}{2(\nu+1)} + \frac{\frac{x}{2(\nu+2)} \mathcal{J}_{\nu}(x) \mathcal{J}_{\nu+2}(x) - \frac{x}{2(\nu+1)} \mathcal{J}_{\nu+1}^2(x)}{\mathcal{J}_{\nu+1}^2(x)}.
$$

Thus

(19)
$$
\frac{f'_{\nu,1}(x)}{f'_{\nu,2}(x)} = \frac{1}{1 + \frac{1}{\mathcal{J}_{\nu+1}(x)} \left(\frac{(\nu+1)\mathcal{J}_{\nu}(x)\mathcal{J}_{\nu+2}(x)}{(\nu+2)\mathcal{J}_{\nu+1}^2(x)} - 1 \right)}.
$$

Let

$$
h_{\nu}(x) = \frac{(\nu + 1)\mathcal{J}_{\nu}(x)\mathcal{J}_{\nu+2}(x)}{(\nu + 2)\mathcal{J}_{\nu+1}^2(x)} - 1.
$$

From the Turán type inequality [\[3\]](#page-6-8)

(20)
$$
\mathcal{J}_{\nu+1}^2(x) - \mathcal{J}_{\nu}(x)\mathcal{J}_{\nu+2}(x) > 0.
$$

where $\nu > -1$ and $x \in (-j_{\nu,1}, j_{\nu,1})$, we conclude that $h_{\nu}(x) \leq 0$ for all $x \in (0, j_{\nu,1})$. On the other hand, differentiation again and simplifying give (21)

$$
h'_{\nu}(x) = \frac{(\nu+1)x}{(\nu+2)\mathcal{J}_{\nu+1}^4(x)} \left[\mathcal{J}_{\nu+1}(x)\mathcal{J}_{\nu+2}(x) \left(\frac{\mathcal{J}_{\nu}(x)\mathcal{J}_{\nu+2}(x)}{\nu+2} - \frac{\mathcal{J}_{\nu+1}^2(x)}{2(\nu+1)} \right) - \frac{\mathcal{J}_{\nu}(x)\mathcal{J}_{\nu+1}^3(x)\mathcal{J}_{\nu+3}(x)}{2(\nu+3)} \right].
$$

By [\(20\)](#page-4-0) and [\(21\)](#page-4-1) we easily get

$$
h'_{\nu}(x) \le \frac{x\nu \mathcal{J}_{\nu+1}(x)\mathcal{J}_{\nu+2}(x)}{2(\nu+2)^2} - \frac{x \mathcal{J}_{\nu}(x)\mathcal{J}_{\nu+2}(x)\mathcal{J}_{\nu+3}(x)}{2(\nu+2)(\nu+3)\mathcal{J}_{\nu+1}(x)}.
$$

Infact, since the function $\nu \mapsto \mathcal{J}_{\nu}(x)$ is increasing ([\[3\]](#page-6-8), Theorem 3) on $(-1,\infty)$ for all fixed $x \in (-j_{\nu,1}, j_{\nu,1})$, and $\mathcal{J}_{\nu}(x) \in (0,1]$, we conclude that, by [\(21\)](#page-4-1), the function $h'_{\nu}(x)$ is decreasing on $(0, j_{\nu,1})$, for all $\nu \in (-1, 0]$. Indeed, the function $x \mapsto \mathcal{J}_{\nu}(x)$ $x \mapsto \mathcal{J}_{\nu}(x)$ $x \mapsto \mathcal{J}_{\nu}(x)$ is decreasing on $[0, j_{\nu,1})$ ([\[3\]](#page-6-8), Theorem 3) and nonnegative, which implies that the function $x \mapsto \frac{1}{\mathcal{J}_{\nu+1}(x)}$ $\int (\nu+1)\mathcal{J}_{\nu}(x)\mathcal{J}_{\nu+2}(x)$ $\frac{\partial^{\mu+1} \mathcal{J}_{\nu}(x) \mathcal{J}_{\nu+2}(x)}{(\nu+2) \mathcal{J}_{\nu+1}^2(x)} - 1$ is decreasing on $(0, j_{\nu,1})$, for all $\nu \in (-1,0],$ as a product of two functions one is increasing and nonnegative and other is decreasing and negative. So, the function $x \mapsto \frac{f'_{\nu,1}(x)}{f'_{\nu,2}(x)}$ $\frac{f_{\nu,1}(x)}{f_{\nu,2}'(x)}$ is increasing $(0, j_{\nu,1}),$ for all $\nu \in (-1,0]$, and consequently the function $x \mapsto F_{\nu}(x)$ is increasing $(0, j_{\nu,1}),$ for all $\nu \in (-1, 0]$, by Lemma [2.](#page-2-2) Using L'Hospital rule and [\(19\)](#page-3-1) yields

$$
\lim_{x \to 0} F_{\nu}(x) = \frac{\nu + 2}{\nu + 1}.
$$

Finally, for each $\nu > -1$ and $x \in (0, j_{\nu,1})$ one has $0 \leq \mathcal{J}_{\nu}(x) \leq 1$, and with this the proof of inequality [\(17\)](#page-3-2) is complete.

Remark 1. Using the relation [\(9\)](#page-1-1), [\(10\)](#page-1-2) and $j_{-1/2,1} = \pi/2$ and from the extended Huygens type inequality [\(17\)](#page-3-2) for $\nu = -\frac{1}{2}$ $\frac{1}{2}$ we obtain the inequality [\(1\)](#page-0-0).

In the next Theorem, we establish the analogue of inequality [\(17\)](#page-3-2) involving the modified Bessel functions.

Theorem 2. Let $\nu > -1$. Then the Huygens types inequality

(22)
$$
1 > \left(1 - \frac{\nu + 2}{\nu + 1}\right) \mathcal{I}_{\nu}(x) + \frac{\nu + 2}{\nu + 1} \frac{\mathcal{I}_{\nu}(x)}{\mathcal{I}_{\nu+1}(x)}
$$

holds for all $x \in (0, \infty)$.

Proof. Let $\nu > -1$, we define the function G_{ν} on $(0, \infty)$ by

$$
G_{\nu}(x) = \frac{1 - \mathcal{I}_{\nu}(x)}{\frac{\mathcal{I}_{\nu}(x)}{\mathcal{I}_{\nu+1}(x)} - \mathcal{I}_{\nu}(x)} = \frac{g_{\nu,1}(x)}{g_{\nu,2}(x)},
$$

6 K. MEHREZ

where $g_{\nu,1}(x) = 1 - \mathcal{I}_{\nu}(x)$ and $g_{\nu,2}(x) = \frac{\mathcal{I}_{\nu}(x)}{\mathcal{I}_{\nu+1}(x)} - \mathcal{I}_{\nu}(x)$. By using the differentiation formula[[\[11\]](#page-6-9), p. 79]

(23)
$$
\mathcal{I}'_{\nu}(x) = \frac{x}{2(\nu+1)} \mathcal{I}_{\nu+1}(x)
$$

can easily show that

(24)
$$
\frac{f'_{\nu,1}(x)}{f'_{\nu,2}(x)} = \frac{1}{1 + \frac{1}{\mathcal{I}_{\nu+1}(x)} \left(\frac{(\nu+1)\mathcal{I}_{\nu}(x)\mathcal{I}_{\nu+2}(x)}{(\nu+2)\mathcal{I}_{\nu+1}^2(x)} - 1 \right)}.
$$

Now, for $\nu > -1$, we define the function k_{ν} by:

$$
k_{\nu}(x) = \frac{(\nu + 1)\mathcal{I}_{\nu}(x)\mathcal{I}_{\nu+2}(x)}{(\nu + 2)\mathcal{I}_{\nu+1}^2(x)} - 1.
$$

From the Turán type inequality [\(14\)](#page-2-0) (see Lemma 3), we conclude that $k_{\nu}(x) \leq 0$ for all $x \in \mathbb{R}$. On the other hand, using the Cauchy product [16,](#page-2-3) we get

$$
\frac{(\nu+1)\mathcal{I}_{\nu}(x)\mathcal{I}_{\nu+2}(x)}{(\nu+2)\mathcal{I}_{\nu+1}^2(x)} = \frac{\sum_{n=0}^{\infty} a_n x^{2n}}{\sum_{n=0}^{\infty} b_n x^{2n}},
$$

where $a_n(\nu) = \frac{\Gamma^2(\nu+2)\Gamma(2\nu+2n+3)}{2^{2n}\Gamma(n+1)\Gamma(\nu+n+1)\Gamma(\nu+n+1)}$ $\frac{\Gamma^2(\nu+2)\Gamma(2\nu+2n+3)}{2^{2n}\Gamma(n+1)\Gamma(\nu+n+1)\Gamma(\nu+n+3)}$ and $b_n(\nu) = \frac{\Gamma^2(\nu+2)\Gamma(2\nu+2n+3)}{2^{2n}\Gamma(n+1)\Gamma^2(\nu+n+2)}$ $\frac{1-(\nu+2) \Gamma(2\nu+2n+3)}{2^{2n} \Gamma(n+1) \Gamma^2(\nu+n+2)}$ for all $n=$ $0, 1, ...$ So, for all $n = 0, 1, ...$, we have

$$
c_n(\nu) = \frac{a_n(\nu)}{b_n(\nu)} = \frac{\Gamma^2(\nu+n+2)}{\Gamma(\nu+n+1)\Gamma(\nu+n+3)} = \frac{\nu+n+1}{\nu+n+2},
$$

we conclude that $c_n(\nu)$ is increasing for $n = 0, 1, \dots$, and the function $x \mapsto k_{\nu}(x)$ is increasing on $(0, \infty)$, by Lemma [1.](#page-2-4) Since the function $x \mapsto \frac{1}{\mathcal{I}_{\nu+1}(x)}$ is decreasing and nonnegative on $(0, \infty)$ and the function $x \mapsto k_{\nu}(x)$ is increasing and negative on $(0, \infty)$, we conclude that $x \mapsto \frac{g'_{\nu,1}(x)}{g'_{\nu,2}(x)}$ $\frac{g_{\nu,1}(\omega)}{g_{\nu,2}'(x)}$ is decreasing on $(0,\infty)$, and consequently the function $x \mapsto G_{\nu}(x)$ is decreasing on $(0, \infty)$, by Lemma [1.](#page-2-4) Therefore, from the L'Hospital rule and [\(24\)](#page-5-0) yields

$$
\lim_{x \to 0} G_{\nu}(x) = \frac{\nu + 2}{\nu + 1}.
$$

Moreover, using the fact $\mathcal{I}(x) \geq 1$, we get the Huygens type inequality [\(22\)](#page-4-2). So, the proof of Theorem [2](#page-4-3) is complete.

Remark 2. 1. From the relations [\(11\)](#page-2-5) and [\(12\)](#page-2-6) we find that the inequality [\(22\)](#page-4-2) is the generalization of inequality [\(2\)](#page-0-1).

2. Since the function $x \mapsto G_{\nu}(x)$ is decreasing on $(0, \infty)$, and using the asymptotic formula $[1]$, p. 377

$$
I_{\nu}(x) = \frac{e^x}{\sqrt{2\pi x}} \left[1 - \frac{4\nu^2 - 1}{1!(8x)} + \frac{(4\nu^2 - 1)(4\nu^2 - 9)}{2!(8x)^2} - \ldots \right]
$$

which holds for large values of x and for fixed $\nu > -1$, we obtain

$$
\lim_{x \to \infty} G_{\nu}(x) = 1.
$$

Then, the following inequality [\[3\]](#page-6-8)

$$
\mathcal{I}_{\nu+1}(x) \leq \mathcal{I}_{\nu}(x),
$$

holds for all $x \in \mathbb{R}$ and $\nu > -1$.

3. Using the relation [\(12\)](#page-2-6) and [\(13\)](#page-2-7) from the extended Huygens type inequality [\(22\)](#page-4-2) for $\nu = 1/2$, we obtain the following inequality

$$
9 > \frac{\sinh x}{x} \left(-6 + \frac{5x^3}{x \cosh x - \sinh x} \right),
$$

which holds for all $x \in \mathbb{R}$.

REFERENCES

- [1] M. Abramowitz and I. A. Stegun (eds), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover Publications, New York, 1965).
- [2] G.D. Anderson, S.-L. Qiu, M.K. Vamanamurthy, M. Vuorinen, Generalized elliptic integral and modular equations, Pacific J. Math. 192 (2000) 137.
- [3] A. Baricz, Functional inequalities involving Bessel and modified Bessel functions of the first kind, Expo. Math., 26 (2008),
- [4] F. Qi, D.-W. Niu, and B.-N. Guo, Refinements, generalizations, and applications of Jordan's inequality and related problems, J. Inequal. Appl. 2009 (2009), Article ID 271923, 52 pages.
- [5] C. Huygens, Oeuvres completes, publiees par la Societe hollandaise des science, Haga, 18881940 (20 volumes).
- [6] K. Mehrez, Redheffer type Inequalities for modified Bessel functions, Arab. Jou. of Math. Sci. 2015.
- [7] K. Mehrez, Extension of Huygens type inequalities for Bessel and modified Bessel Functions, [arXiv:1512.05798v](http://arxiv.org/abs/1512.05798)1.
- [8] E. Neuman and J. Sandor, On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities, Math. Inequal. Appl. 13 (2010), no. 4, 715-723.
- [9] I. Pinelis, Non-strict lHospital-type rules for monotonicity: intervals of constancy, J. Inequal. Pure Appl. Math. 8 (1) (2007). article 14, 8 pp.,(electronic).
- [10] S. Ponnusamy, M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika 44 (1997) 278301.
- [11] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1922.
- [12] L. Zhu, Some new inequalities of the Huygens type, Comp. and Math. with App. 58 (2009) 11801182

KHALED MEHREZ. DÉPARTEMENT DE MATHÉMATIQUES ISSAT KASSERINE, TUNISIA. E-mail address: k.mehrez@yahoo.fr