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GENERALIZED HUYGENS TYPES INEQUALITIES FOR BESSEL

AND MODIFIED BESSEL FUNCTIONS
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Abstract. In this paper, we present a generalization of the Huygens types in-
equalities involving Bessel and modified Bessel functions of the first kind.
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1. Introduction

This inequality

(1) 2
sin x

x
+

tan x

x
> 3

which holds for all x ∈ (0, π/2) is known in literature as Huygens’s inequality [5].
The hyperbolic counterpart of (1) was established in [8] as follows:

(2) 2
sinh x

x
+

tanh x

x
> 3, x > 0.

The inequalities (1) and (2) were respectively refined in [5] as

(3) 2
sin x

x
+

tanx

x
> 2

x

sin x
+

x

tanx
> 3

for 0 < x < π
2
and

(4) 2
sinh x

x
+

tanh x

x
> 2

x

sinh x
+

x

tanh x
> 3, x 6= 0.

In [12], Zhu give some new inequalities of the Huygens type for circular functions,
hyperbolic functions, and the reciprocals of circular and hyperbolic functions, as
follows:
Theorem A The following inequalities

(5) (1− p)
sin x

x
+ p

tan x

x
> 1 > (1− q)

sin x

x
+ q

tan x

x
1
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holds for all x ∈ (0, π/2) if and only if p ≥ 1/3 and q ≤ 0.
Theorem B The following inequalities

(6) (1− p)
sinh x

x
+ p

tanh x

x
> 1 > (1− q)

sinh x

x
+ q

tanhx

x

holds for all x ∈ (0,∞) if and only if p ≤ 1/3 and q ≥ 1.

Recently, the author of this paper extend and sharpen inequalities (5) and (6) for
the Bessel and modified Bessel functions to the following results in [7].
Theorem C Let −1 < ν ≤ 0 and let jν,1 the first positive zero of the Bessel function
Jν of the first kind. Then the Huygens type inequalities

(7) (1− p)Jν+1(x) + p
Jν+1(x)

Jν(x)
> 1 > (1− q)Jν+1(x) + q

Jν+1(x)

Jν(x)

holds for all (x ∈ (0, jν,1), if and only if, p ≥ ν+1
ν+2

and q ≤ 0.
Theorem D Let ν > −1, the following inequalities

(8) (1− p) Iν+1(x) + p
Iν+1(x)

Iν(x)
> 1 > (1− q) Iν+1(x) + q

Iν+1(x)

Iν(x)
,

holds for all x ∈ (0,∞) if and only if p ≤ ν+1
ν+2

and q ≥ 1.

For ν > −1 and consider the function Jν : R −→ (−∞, 1], defined by

Jν(x) = 2νΓ(ν + 1)x−νJν(x) =
∑

n≥

(

−1
4

)n

(ν + 1)nn!
x2n,

where Γ is the gamma function, (ν + 1)n = Γ(ν + n+ 1)/Γ(ν + 1) for each n ≥ 0, is
the well-known Pochhammer (or Appell) symbol, and Jν defined by

Jν(x) =
∑

n≥0

(−1)n(x/2)ν+2n

n!Γ(ν + n+ 1)
,

stands for the Bessel function of the first kind of order ν. It is worth mentioning
that in particular the function Jν reduces to some elementary functions, like sine and
cosine. More precisely, in particular we have:

(9) J−1/2(x) =
√

π/2.x1/2J−1/2(x) = cosx,

(10) J1/2(x) =
√

π/2.x−1/2J1/2(x) =
sin x

x
,

For ν > −1, let us consider the function Iν : R −→ [1,∞), defined by

Iν(x) = 2νΓ(ν + 1)x−νIν(x) =
∑

n≥

(

1
4

)n

(ν + 1)nn!
x2n,
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where Iν is the modified Bessel function of the first kind defined by

Iν(x) =
∑

n≥0

(x/2)ν+2n

n!Γ(ν + n + 1)
, for all x ∈ R.

It is worth mentioning that in particular we have

(11) I−1/2(x) =
√

π/2.x1/2I−1/2(x) = cosh x,

(12) I1/2(x) =
√

π/2.x1/2I−1/2(x) =
sinh x

x
.

(13) I3/2(x) = 3
√

π/2.x−3/2I3/2(x) = −3

(

sinh x

x3
− cosh x

x2

)

.

In this note, we present a generalization of the Huygens type inequalities (1) and
(2) for Bessel and modified Bessel functions.

2. Lemmas

In order to establish our main results, we need several lemmas, which we present
in this section.

Lemma 1. [10] Let an and bn (n = 0, 1, 2, ...) be real numbers, and let the power
series A(x) =

∑∞

n=0 anx
n and B(x) =

∑∞

n=0 bnx
n be convergent for |x| < R. If bn > 0

for n = 0, 1, .., and if an
bn

is strictly increasing (or decreasing) for n = 0, 1, 2..., then

the function A(x)
B(x)

is strictly increasing (or decreasing) on (0, R).

Lemma 2. [6, 2, 9] Let f, g : [a, b] −→ R be two continuous functions which are

differentiable on (a, b). Further, let g
′ 6= 0 on (a, b). If f ′

g′
is increasing (or decreasing)

on (a, b), then the functions f(x)−f(a)
g(x)−g(a)

and f(x)−f(b)
g(x)−g(b)

are also increasing (or decreasing)

on (a, b).

Lemma 3. (Turán type inequality for modified Bessel function) The following Turán
type inequality

(14) Iν(x)Iν+2(x) <
ν + 2

ν + 1
I2
ν+1(x),

holds for all ν > −1 and x ∈ R. In particular, the following Turán type inequality

(15) cosh(x) (cosh(x)− x sinh(x)) < sinh2(x)

is valid for all x ∈ R.

Proof. By using the Cauchy product

(16) Iµ(x)Iν(x) =
∑

n≥0

Γ(ν + 1)Γ(µ+ 1)Γ(ν + µ+ 2n+ 1)x2n

22nΓ(n+ 1)Γ(ν + µ+ n+ 1)Γ(µ+ n+ 1)Γ(ν + n + 1)
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we have

ν + 2

ν + 1
I2
ν+1(x)−Iν+2(x)Iν(x) =

∑

n≥0

Γ(ν + 1)Γ(ν + 3)Γ(2ν + 2n+ 3)

22nΓ(n+ 1)Γ(2ν + n + 3)Γ(ν + n+ 2)Γ(ν + n+ 3)
x2n ≥ 0

for all x ∈ R and ν > −1. On the other hand, observe that using (9), (10), and (14)
in particular ν = −1/2, the Turán type inequality (14) becomes (15). �

3. Main results

We first obtain the further result concerning the generalized Huygens inequality
to the Bessel functions described as Theorem 1.

Theorem 1. Let −1 < ν ≤ 0 and let jν,1 the first positive zero of the Bessel function
Jν of the first kind. Then the Huygens types inequalities

(17) 1 >

(

1− ν + 2

ν + 1

)

Jν(x) +
ν + 2

ν + 1

Jν(x)

Jν+1(x)

holds for all x ∈ (0, jν,1)

Proof. Let ν > −1, we consider the function

Fν(x) =
1− Jν(x)

Jν(x)
Jν+1(x)

− Jν(x)
, 0 < x < jν,1.

For 0 < x < jν,1, let

fν,1(x) = 1− Jν(x) and fν,2(x) =
Jν(x)

Jν+1(x)
−Jν(x).

Now, by again using the differentiation formula

(18) J ′
ν(x) = − x

2(ν + 1)
Jν+1(x)

we get

f ′
ν,1(x) =

xJν+1(x)

2(ν + 1)
,

and

f ′
ν,2(x) =

xJν+1(x)

2(ν + 1)
+

x
2(ν+2)

Jν(x)Jν+2(x)− x
2(ν+1)

J 2
ν+1(x)

J 2
ν+1(x)

.

Thus

(19)
f ′
ν,1(x)

f ′
ν,2(x)

=
1

1 + 1
Jν+1(x)

(

(ν+1)Jν (x)Jν+2(x)
(ν+2)J 2

ν+1
(x)

− 1
) .

Let

hν(x) =
(ν + 1)Jν(x)Jν+2(x)

(ν + 2)J 2
ν+1(x)

− 1.
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From the Turán type inequality [3]

(20) J 2
ν+1(x)− Jν(x)Jν+2(x) > 0.

where ν > −1 and x ∈ (−jν,1, jν,1), we conclude that hν(x) ≤ 0 for all x ∈ (0, jν,1).
On the other hand, differentiation again and simplifying give
(21)

h′
ν(x) =

(ν + 1)x

(ν + 2)J 4
ν+1(x)

[

Jν+1(x)Jν+2(x)

(Jν(x)Jν+2(x)

ν + 2
− J 2

ν+1(x)

2(ν + 1)

)

− Jν(x)J 3
ν+1(x)Jν+3(x)

2(ν + 3)

]

.

By (20) and (21) we easily get

h′
ν(x) ≤

xνJν+1(x)Jν+2(x)

2(ν + 2)2
− xJν(x)Jν+2(x)Jν+3(x)

2(ν + 2)(ν + 3)Jν+1(x)
.

In fact, since the function ν 7→ Jν(x) is increasing ([3], Theorem 3) on (−1,∞)
for all fixed x ∈ (−jν,1, jν,1), and Jν(x) ∈ (0, 1], we conclude that, by (21), the
function h′

ν(x) is decreasing on (0, jν,1), for all ν ∈ (−1, 0]. Indeed, the function
x 7→ Jν(x) is decreasing on [0, jν,1) ([3], Theorem 3) and nonnegative, which implies

that the function x 7→ 1
Jν+1(x)

(

(ν+1)Jν(x)Jν+2(x)

(ν+2)J 2
ν+1

(x)
− 1

)

is decreasing on (0, jν,1), for all

ν ∈ (−1, 0], as a product of two functions one is increasing and nonnegative and

other is decreasing and negative. So, the function x 7→ f ′

ν,1(x)

f ′

ν,2
(x)

is increasing (0, jν,1),

for all ν ∈ (−1, 0], and consequently the function x 7→ Fν(x) is increasing (0, jν,1),
for all ν ∈ (−1, 0], by Lemma 2. Using L’Hospital rule and (19) yields

lim
x→0

Fν(x) =
ν + 2

ν + 1
.

Finally, for each ν > −1 and x ∈ (0, jν,1) one has 0 ≤ Jν(x) ≤ 1, and with this the
proof of inequality (17) is complete. �

Remark 1. Using the relation (9), (10) and j−1/2,1 = π/2 and from the extended
Huygens type inequality (17) for ν = −1

2
we obtain the inequality (1).

In the next Theorem, we establish the analogue of inequality (17) involving the
modified Bessel functions.

Theorem 2. Let ν > −1. Then the Huygens types inequality

(22) 1 >

(

1− ν + 2

ν + 1

)

Iν(x) +
ν + 2

ν + 1

Iν(x)

Iν+1(x)

holds for all x ∈ (0,∞).

Proof. Let ν > −1, we define the function Gν on (0,∞) by

Gν(x) =
1− Iν(x)

Iν(x)
Iν+1(x)

− Iν(x)
=

gν,1(x)

gν,2(x)
,
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where gν,1(x) = 1− Iν(x) and gν,2(x) =
Iν(x)

Iν+1(x)
− Iν(x). By using the differentiation

formula [[11], p. 79]

(23) I ′
ν(x) =

x

2(ν + 1)
Iν+1(x)

can easily show that

(24)
f ′
ν,1(x)

f ′
ν,2(x)

=
1

1 + 1
Iν+1(x)

(

(ν+1)Iν(x)Iν+2(x)

(ν+2)I2
ν+1

(x)
− 1

) .

Now, for ν > −1, we define the function kν by:

kν(x) =
(ν + 1)Iν(x)Iν+2(x)

(ν + 2)I2
ν+1(x)

− 1.

From the Turán type inequality (14) (see Lemma 3), we conclude that kν(x) ≤ 0 for
all x ∈ R. On the other hand, using the Cauchy product 16, we get

(ν + 1)Iν(x)Iν+2(x)

(ν + 2)I2
ν+1(x)

=

∑∞

n=0 anx
2n

∑∞

n=0 bnx
2n
,

where an(ν) = Γ2(ν+2)Γ(2ν+2n+3)
22nΓ(n+1)Γ(ν+n+1)Γ(ν+n+3)

and bn(ν) = Γ2(ν+2)Γ(2ν+2n+3)
22nΓ(n+1)Γ2(ν+n+2)

for all n =

0, 1, ... So, for all n = 0, 1, ..., we have

cn(ν) =
an(ν)

bn(ν)
=

Γ2(ν + n + 2)

Γ(ν + n + 1)Γ(ν + n+ 3)
=

ν + n+ 1

ν + n+ 2
,

we conclude that cn(ν) is increasing for n = 0, 1, ..., and the function x 7→ kν(x)
is increasing on (0,∞), by Lemma 1. Since the function x 7→ 1

Iν+1(x)
is decreasing

and nonnegative on (0,∞) and the function x 7→ kν(x) is increasing and negative

on (0,∞), we conclude that x 7→ g′
ν,1

(x)

g′
ν,2

(x)
is decreasing on (0,∞), and consequently

the function x 7→ Gν(x) is decreasing on (0,∞), by Lemma 1. Therefore, from the
L’Hospital rule and (24) yields

lim
x→0

Gν(x) =
ν + 2

ν + 1
.

Moreover, using the fact I(x) ≥ 1, we get the Huygens type inequality (22). So, the
proof of Theorem 2 is complete. �

Remark 2. 1. From the relations (11) and (12) we find that the inequality (22) is
the generalization of inequality (2).
2. Since the function x 7→ Gν(x) is decreasing on (0,∞), and using the asymptotic
formula [[1], p. 377]

Iν(x) =
ex√
2πx

[

1− 4ν2 − 1

1!(8x)
+

(4ν2 − 1)(4ν2 − 9)

2!(8x)2
− ...

]
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which holds for large values of x and for fixed ν > −1, we obtain

lim
x−→∞

Gν(x) = 1.

Then, the following inequality [3]

Iν+1(x) ≤ Iν(x),

holds for all x ∈ R and ν > −1.
3. Using the relation (12) and (13) from the extended Huygens type inequality (22)
for ν = 1/2, we obtain the following inequality

9 >
sinh x

x

(

−6 +
5x3

x cosh x− sinh x

)

,

which holds for all x ∈ R.
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Khaled Mehrez. Département de Mathématiques ISSAT Kasserine, Tunisia.

E-mail address : k.mehrez@yahoo.fr

http://arxiv.org/abs/1512.05798

	1. Introduction
	2. Lemmas
	3. Main results
	References

