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Abstract

The idea behind universal coating is to have a thin layer of a specific sub-
stance covering an object of any shape so that one can measure a certain
condition (like temperature or cracks) at any spot on the surface of the ob-
ject without requiring direct access to that spot. We study the universal
coating problem in the context of self-organizing programmable matter con-
sisting of simple computational elements, called particles, that can establish
and release bonds and can actively move in a self-organized way. Based on
that matter, we present a worst-case work-optimal universal coating algo-
rithm that uniformly coats any object of arbitrary shape and size that allows
a uniform coating. Our particles are anonymous, do not have any global
information, have constant-size memory, and utilize only local interactions.

Keywords: Programmable Matter, Self-Organizing Particle Systems,
Object Coating

1. Introduction

Today, engineers often need to visually inspect bridges, tunnels, wind
turbines and other large civil engineering structures for defects — a task that
is both time-consuming and costly. In the not so distant future, smart coating
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(a) (b) (c)
Figure 1: (a) shows a section of Geqt. Nodes of Geqt are shown as black circles.
(b) shows five particles on Geqt. The underlying graph Geqt is depicted as a gray
mesh. A particle occupying a single node is depicted as a black circle, and a particle
occupying two nodes is depicted as two black circles connected by an edge. (c)
depicts two particles occupying two non-adjacent positions on Geqt. The particles
have different offsets for their head port labelings.

technology could do the job faster and cheaper, and increase safety at the
same time. The idea behind smart coating (also coined smart paint) is to have
a thin layer of a specific substance covering the object so that one can measure
a certain condition (like temperature or cracks) at any spot on the surface
of the object without requiring direct access to that spot. Also in nature,
smart coating occurs in various situations. Prominent examples are proteins
closing wounds, antibodies surrounding bacteria, or ants surrounding food
in order to transport it to their nest. So one can envision a broad range
of coating applications for programmable matter in the future. We intend
to study coating problems in the context of self-organizing programmable
matter consisting of simple computational elements, called particles, that
can establish and release bonds and can actively move in a self-organized
way. As a basic model for these self-organizing particle systems, we will use
the geometric version of the amoebot model presented in [1, 2].

1.1. Amoebot model

We assume that any structure the particle system can form can be repre-
sented as a subgraph of an infinite graph G = (V,E) where V represents all
possible positions the particles can occupy relative to their structure, and E
represents all possible atomic transitions a particle can perform as well as all
places where neighboring particles can bond to each other. In the geometric
amoebot model, we assume that G = Geqt, where Geqt = (Veqt, Eeqt) is the
infinite regular triangular grid graph, see Figure 1(a).

We briefly recall the main properties of the geometric amoebot model.
Each particle occupies either a single node or a pair of adjacent nodes in
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Geqt, and every node can be occupied by at most one particle. Two particles
occupying adjacent nodes are connected by a bond, and we refer to such
particles as neighbors. The bonds do not just ensure that the particles form
a connected structure but they are also used for exchanging information as
explained below.

Particles move through expansions and contractions : If a particle occu-
pies one node (i.e., it is contracted), it can expand to an unoccupied adjacent
node to occupy two nodes. If a particle occupies two nodes (i.e., it is ex-
panded), it can contract to one of these nodes to occupy only a single node.
Figure 1(b) illustrates a set of particles (some contracted, some expanded)
on the underlying graph Geqt. For an expanded particle, we denote the node
the particle last expanded into as the head of the particle and call the other
occupied node its tail. A handover allows particles to stay connected as
they move. Two scenarios are possible here: (1) a contracted particle p can
“push” a neighboring expanded particle q and expand into the neighboring
node previously occupied by q, forcing q to contract, or (2) an expanded par-
ticle p can “pull” a neighboring contracted particle q to node v it occupies
thereby causing q to expand into v, which allows p to contract.

Particles are anonymous but each particle has a collection of ports, one
for each edge incident to the nodes occupied by it, that have unique labels.
Adjacent particles establish bonds through the ports facing each other. We
also assume that the particles have a common chirality, i.e., they all have
the same notion of clockwise (CW) direction, which allows each particle p
to order its head port labels in clockwise order. However, particles do not
have a common sense of orientation since they can have different offsets of
the labelings, see Figure 1(c). W.l.o.g.3, we assume that each particle labels
its head ports from 0 to 5 in clockwise order. Whenever a particle p is
connected to a particle q, we assume that p knows the label of q’s bond that
p is connected with.

Each particle has a constant-size shared local memory that can be read
and written to by any neighboring particle. This allows a particle to exchange
information with a neighboring particle by simply writing it into the other
particle’s memory.4 A particle always knows whether it is contracted or

3Without loss of generality.
4In [1, 2], the model was presented as having a shared memory for each port that is

visible only to the respective neighbor: The two variants of the model are equivalent, in
the sense that they can emulate each other trivially; we adopt the one here for convenience.
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expanded, and in the latter case it also knows along which head port label it
is expanded. W.l.o.g. we assume that this information is also available to the
neighboring particles (by publishing that label in its local shared memory).
Particles do not know the total number of particles, nor do they have any
estimate on this number.

We assume the standard asynchronous model from distributed comput-
ing, where the particle system progresses through a sequence of particle ac-
tivations, i.e., only one particle is active at a time. Whenever a particle is
activated, it can perform an arbitrary bounded amount of computation (in-
volving its local memory as well as the shared memories of its neighbors) and
at most one movement. A round is defined as the elapsed time until each
particle has been activated at least once.

We count time according to the number of particle activations that have
already happened since the start of the activation sequence. We assume the
activation sequence to be fair, i.e., at any point in time, every particle will
eventually be activated. The configuration C of the system at the beginning
of time t consists of the nodes in Geqt occupied by the object and the set of
particles; in addition, for every particle p, C contains the current state of p,
including whether the particle is expanded or contracted, its port labeling,
and the contents of its local memory. The work spent by the particles till
time t is measured by the number of movements they have done until that
point. (We ignore other state changes since their energy consumption should
be irrelevant compared to the energy for a movement.) For more details on
the model, please refer to [1].

1.2. Universal Coating Problem

For any two nodes v, w ∈ Veqt, the distance d(v, w) between v and w is
the length of the shortest path in Geqt from v to w. The distance d(v, U)
between a v ∈ Veqt and U ⊆ Veqt is defined as minw∈U d(v, w).

In the universal coating problem we are given an instance (P,O) where P
represents the particle system and O the fixed object to be coated. Let V (P )
be the set of nodes occupied by P and V (O) be the set of nodes occupied by
O (when clear from the context, we may omit the V (·) notation). We call
the set of nodes in Geqt neighboring O the surface (coating) layer. Let n be
the number of particles and B be the number of nodes in the surface layer.
An instance is called valid if the following properties hold:

1. The particles are all contracted and start in an idle state.
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Figure 2: An example of an object with a tunnel of width 1.

2. The subgraphs of Geqt induced by V (O) and V (P )∪V (O), respectively,
are connected, i.e., we are dealing with a single object and the particle
system is connected to the object.

3. The subgraph of Geqt induced by Veqt \ V (O) is connected, i.e., the
object O does not contain any holes.5

4. Veqt \ V (O) is 2(d n
B
e + 1)-connected. In other words, O cannot form

tunnels of width less than 2(d n
B
e+ 1).

Note that a width of at least 2d n
B
e is needed to guarantee that the object

can be evenly coated. See Figure 2 for an example of an object with a
tunnel of width 1. Since coating narrow tunnels requires specific technical
mechanisms that complicate the protocol and do not add much to the basic
idea of coating, we decided to ignore narrow tunnels completely in favor of a
clean presentation.

A configuration C is legal if and only if all particles are contracted and

min
v∈Veqt\(V (P )∪V (O))

d(v, V (O)) ≥ max
v∈V (P )

d(v, V (O))

i.e., the particles are as close to the object as possible, which means that
they coat O as evenly as possible.

An algorithm solves the universal coating problem if, starting from any
valid configuration, it reaches a stable legal configuration C in a finite number
of rounds. A configuration C is said to be stable if no particle in C ever
performs a state change or movement.

5If O does contain holes, we consider the subset of particles in each connected region
of Veqt \ V (O) separately.

5



1.3. Our Contributions

Our main contribution in this paper is a worst-case work-optimal algo-
rithm for the universal coating problem on self-organizing particle systems.
Our Universal Coating Algorithm seamlessly adapts to any valid object O,
uniformly coating the object by forming multiple coating layers if neces-
sary. As stated in Section 1.1, our particles are anonymous, do not have any
global information (including on the number of particles n), have constant-
size memory, and utilize only local interactions.

Our algorithm builds upon many primitives, some of which may be of
interest on their own: The spanning forest primitive organizes the particles
into a spanning forest which is used to guide the movement of particles while
preserving connectivity in the system; the complaint-based coating primitive
allows the first layer to form, only expanding the coating of the first layer
as long as there is still room and there are particles still not touching the
object; the general layering primitive allows the layer ` to form only after
layer ` − 1 has been completed, for ` ≥ 2; and a node-based leader election
primitive elects a position (in Geqt) to house a leader particle, which is used
to jumpstart the general layering process. One of the main contributions of
our work is to show how these primitives can be integrated in a seamless way,
with no underlying synchronization mechanisms.

1.4. Related work

Many approaches have already been proposed that can potentially be
used for smart coating. One can distinguish between active and passive sys-
tems. In passive systems the particles either do not have any intelligence
at all (but just move and bond based on their structural properties or due
to chemical interactions with the environment), or they have limited com-
putational capabilities but cannot control their movements. Examples of
research on passive systems are DNA self-assembly systems (see, e.g., the
surveys in [3, 4, 5]), population protocols [6], and slime molds [7, 8]. We will
not describe these models in detail since we are focusing on active systems.
In active systems, computational particles can control the way they act and
move in order to solve a specific task. Robotic swarms, and modular robotic
systems are some examples of active programmable matter systems.

Especially in the area of swarm robotics the problem of coating objects has
been studied extensively. In swarm robotics, it is usually assumed that there
is a collection of autonomous robots that have limited sensing, often includ-
ing vision, and communication ranges, and that can freely move in a given
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area. However, coating of objects is commonly not studied as a stand-alone
problem, but is part of collective transport (e.g., [9]) or collective perception
(see respective section of [10, 11] for a summary of results). In collective
transport a group of robots has to cooperate in order to transport an object.
In general, the object is heavy and cannot be moved by a single robot, mak-
ing cooperation necessary. In collective perception, a group of robots with a
local perception each (i.e., only a local knowledge of the environment), aims
at joining multiple instances of individual perceptions to one big global pic-
ture (e.g. to collectively construct a sort of map). Some research focuses on
coating objects as an independent task under the name of target surrounding
or boundary coverage. The techniques used in this context include stochastic
robot behaviors [12, 13], rule-based control mechanisms [14] and potential
field-based approaches [15]. Surveys of recent results in swarm robotics can
be found in [16, 17, 10, 11]; other samples of representative work can be
found in e.g., [18, 19, 20, 21, 22]. While the analytic techniques developed
in the area of swarm robotics and natural swarms are of some relevance for
this work, the individual units in those systems have more powerful commu-
nication and processing capabilities than the systems we consider, and they
can move freely.

In a recent paper [23], Michail and Spirakis propose a model for network
construction that is inspired by population protocols [6]. The population
protocol model relates to self-organizing particles systems, but is also in-
trinsically different: agents (which would correspond to our particles) freely
move in space and can establish connections to any other agent in the system
at any point in time, following the respective probabilistic distribution. In
the paper the authors focus on network construction for specific topologies
(e.g., spanning line, spanning star, etc.). However, in principle, it would be
possible to adapt their approach also for studying coating problems under
the population protocol model.

1.5. Structure of the paper

Section 2 describes our Universal Coating algorithm. Formal correctness
and worst-case work analyses of the algorithm follow in Section 3. We address
some applications of our universal coating algorithm in Section 4, and present
our concluding remarks in Section 5.
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2. Universal Coating Algorithm

In this section we present our Universal Coating algorithm: In Section 2.1,
we introduce some preliminary notions; Section 2.2 introduces the algorith-
mic primitives used for the coating algorithm; and lastly Section 2.3 focuses
on the leader election process that is needed in certain instances of the prob-
lem.

2.1. Preliminaries

We define the set of states that a particle can be in as idle, follower,
root, and retired. In addition to its state, a particle may maintain a constant
number of flags (constant size pieces of information to be read by neighboring
particles). While particles are anonymous, when a particle p sets a flag of
type x in its shared memory, we will denote it by p.x (e.g., p.parent, p.dir,
etc.), so that ownership of the respective flag becomes clear. In our proposed
algorithm, we assume that every time a particle contracts, it contracts out
of its tail. Therefore, a node occupied by the head of a particle p still is
occupied by p after a contraction.

We define a layer as the set of nodes v in Geqt that are equidistant to
the object O. More specifically a node v is in layer ` if d(v, V (O)) = `;
in particular the surface coating layer defined earlier corresponds to layer
1. Any root or retired particle p stores a flag p.layer indicating the layer
number of the node occupied by the head of p. We say a layer is filled or
complete if all nodes in that layer are occupied with retired particles. In
order to respect the particles’ constant-size memory constraints, we take all
layer numbers modulo 4. However, for ease of presentation, we will omit the
modulo 4 computations in the text, except for in the pseudocode description
of the algorithms.

Each root particle p has a flag storing a port label p.down pointing to
an occupied node adjacent to its head in layer p.layer − 1 or in the object
if p − layer = 1. Moreover, p has two additional flags, p.CW and p.CCW ,
which are also port labels. Intuitively, if p continuously moves by expanding
in direction p.CW (resp., p.CCW ) and then contracting, it moves along
a clockwise (resp. counter-clockwise) path around the connected structure
consisting of the object and retired particles. Formally, p.CW is the label
of the first port to a node v in counter-clockwise (CCW) order from p.down
such that either v is occupied by a particle q with q.layer = p.layer, or v is
unoccupied (in the latter, v may be a node on layer p.layer or p.layer−1). We
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layer 1

layer 2

layer 3

Figure 3: We illustrate the first three coating layers with respect to the given object
(represented by the nodes in Geqt shaded in black); we also illustrate the direction in
which these layers will be filled by our algorithm — CW for odd layers, and CCW for even
layers — as determined in Section 2.2.

define p.CCW analogously, following a clockwise (CW) order from p.down.
Figure 3 illustrates the different layers around an object, and also CW and
CCW traversals of those.

2.2. Coating Primitives

Our algorithm can be decomposed into a set of primitives, which are all
concurrently executed by the particles, as we briefly described in Section 1.3.
Namely the algorithm relies on the following key primitives: the spanning
forest primitive, the complaint-based coating primitive used to establish the
first layer of coating, the general layering primitive, and a node-based (rather
than particle-based) leader election primitive that works even as particles
move, and that is used to jumpstart the general layering primitive. One of
the main contributions of our work is to show how these primitives can be put
to work together in a seamless way and with no underlying synchronization
mechanisms.6

The spanning forest primitive (Algorithm 1) organizes the particles
in a spanning forest, in which the roots of the trees will be in state root
and will determine the direction of movement which is specified by a port
label p.dir; the remaining non-retired particles follow the root particles using

6A video illustrating a fully asynchronous execution of our universal coating algorithm
can be found in [24].

9



handovers. The main benefit of organizing the particles in a spanning forest
connected to the surface is that it provides a relatively easy mechanism for
particles to move, following the tree paths, while maintaining connectivity
in the system (see [1, 25] for more details). All particles are initially idle. A
particle p becomes a follower when it sets a flag p.parent corresponding to
the port leading to its parent in the spanning forest (any adjacent particle q
to p can then easily check if q is a child of p). As the root particles find final
positions according to the partial coating of the object, they stop moving and
become retired. Namely, a root particle p becomes retired when it encounters
another retired particle across the direction p.dir.

Recall that B denotes the number of nodes on the surface coating layer
(layer 1). We need to ensure that once min{n,B} particles are on layer 1, they
stop moving and the coating is complete, independent of how B compares to
n (i.e., whether n ≤ B or not); in addition, we would like to efficiently coat
one more surface scenario, namely that of coating just a bounded segment
of the surface, as we explain in Section 4. In order to be able to seamlessly
adapt to all possible coating configurations, we use our novel complaint-
based coating primitive for the first layer, which basically translates into
having the root particles (touching the object) open up one more position on
layer 1 only if there exists a follower particle that remains in the system. This
is accomplished by having each particle that becomes a follower generate a
complaint flag, which will be forwarded by particles in a pipeline fashion from
children to parents through the spanning forest and then from a root q to
another root at q.dir, until it arrives at a root particle p with an unoccupied
neighboring node at p.dir (we call such a particle p a super-root). Upon
receiving a complaint flag, a super-root p consumes the flag and expands into
the unoccupied node at p.dir. The expansion will eventually be followed by a
contraction of p, which will induce a series of expansions and contractions of
the particles on the path from p to a follower particle z, eventually freeing a
position on the surface coating layer to be taken by z. In order to ensure that
the consumption of a complaint flag will indeed result in one more follower
touching the object, one must give higher priority to a follower child particle
in a handover operation, as we do in Algorithm 2. The complaint-based
coating phase of the algorithm will terminate either once all complaint flags
are consumed or when layer 1 is filled with contracted particles. In either
case, the particles on layer 1 will move no further. Figure 4 illustrates the
complaint-based coating primitive.

Once layer 1 is complete and if there are still follower particles in the
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Algorithm 1 Spanning Forest Primitive

A particle p a acts depending on its state as described below:
idle: If p is connected to the object O, it becomes a root particle,

makes the current node it occupies a leader candidate position,
and starts running the leader election algorithm described in
Section 2.3. If p is connected to a retired particle, p also be-
comes a root particle. If an adjacent particle p′ is a root or
a follower, p sets the flag p.parent to the label of the port to
p′, puts a complaint flag in its local memory, and becomes a
follower. If none of the above applies, p remains idle.

follower: If p is contracted and connected to a retired particle or to
O, then p becomes a root particle. Otherwise, if p is ex-
panded, it considers the following two cases: (i) if p has a
contracted child particle q, then p initiates Handover(p);
(ii) if p has no children and no idle neighbor, then p con-
tracts. Finally, if p is contracted, it runs the function
ForwardComplaint(p, p.parent) described in Algorithm 3.

root: If particle p is on the surface coating layer, p participates in
the leader election process described in Section 2.3. If p is con-
tracted, it first executes MarkerRetiredConditions(p)
(Algorithm 6), and becomes retired, and possibly also a
marker, accordingly; if p does not become retired, it calls Lay-
erExtension (p) (Algorithm 4). If p is expanded, it considers
the following two cases: (i) if p has a contracted child, then p
initiates Handover(p); (ii) if p has no children and no idle
neighbor, then p contracts. Finally, if p is contracted, it runs
ForwardComplaint(p, p.dir) (Algorithm 3).

retired: p clears a potential complaint flag from its memory and per-
forms no further action.
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(a) (b)

(c) (d)

Figure 4: Complaint-based coating primitive: Particles are shown as grey circles. In
(a), a follower particle generates a complaint flag (depicted as a black dot within the
particle) that is then forwarded to a super-root (b) causing the super-root to expand into
an unoccupied node (c). After a series of handovers, the follower particle that generated
the complaint flag can move to a position on the surface (d).

Algorithm 2 Handover (p)

1: if p.layer = 1 and p has a follower child q then
2: if q is contracted then
3: p initiates a handover with particle q

4: else
5: if p has any contracted (follower or root) child q then
6: p initiates a handover with particle q

Algorithm 3 ForwardComplaint(p, i)

1: if p holds a complaint flag and p’s parent does not hold a complaint flag
then

2: p forwards the complaint flag to the particle given by p.parent

12



(a) (b)

(c) (d)

Figure 5: General layering primitive: Retired particles are shown as black circles, other
than (retired) marker particles which are shown in dark grey (the dark grey arrows rep-
resent the marker edges); a root particle is depicted in light grey. Black arrows show the
current direction of movement (given by the dir flag) for each particle (which becomes
irrelevant once a particle retires). (a) The root particle p is located on layer ` = 3; (b)
particle p moves in CW direction over retired particles on layer `− 1; (c) after a series of
expansions and contractions following p.dir, p arrives at an unoccupied neighboring node
on layer `− 1; (d) since p.dir leads to a retired particle, p retires too.

system, the general layering primitive steps in, which will build further
coating layers. We accomplish this by electing a leader marker particle on
layer 1 (via the leader election primitive proposed in Section 2.3). This
leader marker particle will be used to determine a “beginning” (and an “end”)
for layer 1 and allow the particles on that layer to start retiring according
to the retired condition given in Algorithm 6 (the leader marker particle
will be the first retired particle in the system). Once a layer ` becomes
completely filled with retired (contracted) particles, a new marker particle
will emerge on layer ` + 1, and start the process of building this layer (i.e.,
start the process of retiring particles on that layer) according to Algorithm 6.
A marker particle on layer `+ 1 only emerges if a root particle p connects to
the marker particle q on layer ` via its marker port and if q verified locally
that layer ` is completely filled (by checking whether q.CW and q.CCW are
both retired).

With the help of the marker particles — which can only be established
after layer 1 was completely filled (and hence, we must have B ≤ n) — we
can replace the complaint-based coating algorithm of layer 1 with a simpler

13



coating algorithm for the higher layers, where each root particle p just moves
in CW or CCW direction (depending on its layer number) until p encounters
a retired particle on the respective layer and retires itself. More precisely,
each contracted root particle p on layer ` tries to extend this layer by expand-
ing into an unoccupied position on layer `, or by moving into an unoccupied
position in layer ` − 1 (when p.layer will change to ` − 1 accordingly), fol-
lowing the direction of movement given by p.dir. Figure 5 illustrates this
process. The direction p.dir is set to p.CW (resp., p.CCW ) when p.layer is
odd (resp., even), as illustrated in Figure 3. Alternating between CCW and
CW movements for the particles in consecutive layers ensures that a layer
` is completely filled with retired particles before particles start retiring in
layer `+ 1, which is crucial for the correctness of our layering algorithm.

Algorithm 4 LayerExtension (p)

Calculating p.layer, p.down and p.dir
1: The layer number of any node occupied by the object is equal to 0.
2: Let q be any neighbor of p with smallest layer number (modulo 4).
3: p.down ← p’s label for port leading to q
4: p.layer = (q.layer + 1) mod 4
5: clockwise (p, p.down) . Computes CW & CCW directions
6: if p.layer is odd then
7: p.dir ← p.CW
8: else
9: p.dir ← p.CCW

Extending layer p.layer
10: if the position at p.dir is unoccupied, and either p is not on the first

layer, or p holds a complaint flag then
11: p expands in direction p.dir
12: p consumes its complaint flag, if it holds one

2.3. Leader Election Primitive

In this section, we describe the process used for electing a leader among
the particles that touch the object. Note that only particles in layer 1 will
ever participate in the leader election process. A leader will only emerge
if B ≤ n; otherwise the process will stop at some point without a leader
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Algorithm 5 Clockwise (p, i)

1: j ← i, k ← i
2: while edge j is connected to the object or to a retired particle with layer

number p.layer − 1 do
3: j ← (j − 1) mod 6

4: p.CW ← j
5: while edge k is connected to the object or to a retired particle with layer

number p.layer − 1 do
6: k ← (k + 1) mod 6

7: p.CCW ← k

Algorithm 6 MarkerRetiredConditions(p)

First marker condition:
1: if p is leader particle then
2: p becomes a retired particle
3: p sets the flag p.marker to be the label of a port leading to a node

guaranteed not to be on layer p.layer — e.g., by taking the average
direction of p’s two neighbors in layer 1 (by now complete)

Extending Layer Markers:
4: if p is connected to a marker q and the port q.marker points towards p

then
5: if both q.CW and q.CCW are retired then
6: p becomes a retired particle
7: p sets the flag p.marker to the label of the port opposite of the

port connecting p to q

Retired Condition:
8: if edge p.dir is occupied by a retired particle then
9: p becomes retired

15



being elected. As discussed earlier, a leader is elected on layer 1 to provide
a “checkpoint” (a marker particle) that the particles can use in order to
determine whether the layer has been completely filled (and a leader is only
elected after this happens).

The leader election algorithm we use in this paper is a slightly modified
version of the leader election algorithm presented in [1] that can tolerate par-
ticles moving around on the surface layer while the leader election process
is progressing (in [1], leader election runs on a system of static particles).
Hence, for the purpose of universal coating, we will abstract the leader elec-
tion algorithm to conceptually run on the nodes in layer 1, and not on the
particular particles that may occupy these nodes at different points in time.
The particles on layer 1 will simply provide the means for running the leader
election process on the respective positions, storing and transferring all the
flags (which can be used to implement the tokens described in [1]) that are
needed for the leader competition and verification. An expanded particle p
on layer 1, whose tail occupies node v in layer 1, that is about to perform a
handover with contracted particle q will pass all the information associated
with v to q using the particles’ local shared memories. If a particle p occu-
pying position v would like to forward some leader election information to a
node w adjacent to v that is currently unoccupied, it will wait until either p
itself expands into w, or another particle occupies node w. It is important
to note that according to the complaint-based coating algorithm that we run
on layer 1, if a node v in layer 1 is occupied at some time t, then v will never
be left unoccupied after time t.

Here we outline the differences between the leader election process used
in this paper and that of [1]:

• Only the nodes on layer 1 that initially hold particles start as leader node
candidates. Other nodes in layer 1 will take part in the leader node election
process by forwarding any tokens between two consecutive leader node
candidates, as determined for the leader election process for a set of static
particles forming a cycle in [1]. Note that layer 1 is a cycle on Geqt.

• The leader election process will determine which leader node candidate in
layer 1 will emerge as the unique leader node. The leader particle is then
chosen as described below.

• If particle p is expanded, it will hold the flags and any other information
necessary for the leader election process corresponding to each node p oc-
cupies (head and tail nodes) independently. In other words, an expanded
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particle emulates the leader election process for two nodes on the surface
layer.

• A particle p occupying node v forwards a flag τ to the node w in CW
(or CCW) direction along the surface layer only if node w is occupied
by a particle q (note that q may be equal to p, if p is expanded) and q
has enough space in its (constant-size) memory associated with node w;
otherwise p continues to hold the flag τ in its shared memory associated
with node v.

• If p is expanded along an edge (v, w) and wants to contract into node w,
there must exist a particle q expanding into v (due to the complaint-based
mechanism), and hence p will transfer all of its flags currently associated
with node v to particle q.

After the solitude verification phase in the leader election algorithm of [1]
is complete, there will be just one leader node v left in the system. Once
v is elected a leader node, a contracted particle p occupying this position
will check if layer 1 is completely filled with contracted particles. To do so,
when a contracted particle p occupies node v it will generate a single CHK
flag which it will forward to its CCW neighbor q only if q is contracted.
Any particle q receiving a CHK flag will also only forward the flag to its
CCW neighbor z if and only if z is contracted. If the CHK flag at a particle
q ever encounters an expanded CCW neighbor, the flag is held back until
the neighbor contracts. Additionally, the particle at position v sends out
a CLR flag to its CW neighbor as soon as it expands. This flag is always
forwarded in CW direction. If a CLR and a CHK flag meet at some particle,
the flags cancel each other out. If at some point in time, a particle p at node
v receives a CHK flag from its CW neighbor in layer 1, it implies that layer
1 must be completely filled with contracted particles (and the complaint-
based algorithm for layer 1 has converged), and at that time this contracted
particle p elects itself the leader particle, setting the flag p.leader. Note
that the leader election process itself does not incur any additional particle
expansions or contractions on layer 1, only the complaint-based algorithm
does.

3. Analysis

In this section we show that our algorithm eventually solves the coating
problem, and we bound its worst-case work.
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We say a particle p′ is the parent of particle p if p′ occupies the node
in direction p.parent. Let an active particle be a particle in either follower
or root state. We call an active particle a boundary particle if it has the
object or at least one retired particle in its neighborhood, otherwise it is a
non-boundary particle. A boundary particle is either a root or a follower,
whereas non-boundary particles are always followers. Note that throughout
the analysis we ignore the modulo computation of layers done by the particles,
i.e., layer 1 is the unique layer of nodes with distance 1 to the object.

Given a configuration C, we define a directed graph A(C) over all nodes
in Geqt occupied by active particles in C. For every expanded active particle
in C, A(C) contains a directed edge from the tail to the head node of p.
For every non-boundary particle p, A(C) has a directed edge from the head
of p to p.parent, if p.parent is occupied by an active particle, and for every
boundary particle p, p has a directed edge from its head to the node in the
direction of p.dir as it would be calculated by Algorithm 4, if p.dir is occupied
by an active particle. The ancestors of a particle p are all nodes reachable
by a path from the head of p in A(C). For each particle p we denote the
ancestor that has no outgoing edge with p.superRoot, if it exists. Certainly,
since every node has at most one outgoing edge in A(C), the nodes of A(C)
can only form a collection of disjoint trees or a ring of trees. We define a ring
of trees to be a connected graph consisting of a single directed cycle with
trees rooted at it.

First, we prove several safety conditions, and then we prove various live-
ness conditions that together will allow us to prove that our algorithm solves
the coating problem.

3.1. Safety

Suppose that we start with a valid instance (P,O), i.e., all particles in P
are initially contracted and idle and V (P ) ∪ V (O) forms a single connected
component in Geqt, among other properties. Then the following properties
hold, leading to the fact that V (P ) ∪ V (O) stays connected at any time.

Lemma 1. At any time, the set of retired particles forms completely filled
layers except for possibly the current topmost layer `, which is consecutively
filled with retired particles in CCW direction (resp. CW direction) if ` is
odd (resp. even).

Proof. From our algorithm it follows that the first particle that retires is
the leader particle, setting its marker flag in a direction not adjacent to a

18



position in layer 1. The particles in layer 1 then retire starting from the
leader in CCW direction around the object. Once all particles in layer 1
are retired, the first particle to occupy the adjacent position to the leader
via its marker flag direction will retire and become a marker particle on
layer 2, extending its marker flag in the same direction as the flag set by
the marker (leader) on layer 1. Starting from the marker particle in layer 2,
other contracted boundary particles can retire in CW direction along layer
2. Once all particles in layer 2 are retired, the next layer will start forming.
This process continues inductively, proving the lemma.

The next lemma characterizes the structure of A(C).

Lemma 2. At any time, A(C) is a forest or a ring of trees. Any node that
is a super-root (i.e., the root of a tree in A(C)) or part of the cycle in the
ring of trees is connected to the object or to a retired particle.

Proof. An active particle can either be a follower or a root. First, we show
the following claim.

Claim 1. At any time, A(C) restricted to non-boundary particles forms a
forest.

Proof. Let A′(C) be the induced subgraph of A(C) by the non-boundary
particles only. Certainly, at the very beginning, when all particles are still
idle, the claim is true. So suppose that the claim holds up to time t. We
will show that it then also holds at time t + 1. Suppose that at time t + 1
an idle particle p becomes active. If it is a non-boundary particle (i.e., a
follower), it sets p.parent to a node occupied by a particle q that is already
active, so it extends the tree of q by a new leaf, thereby maintaining a tree.
Edges can only change if followers move. However, followers only move by a
handover or a contraction, thus a handover can only cause a follower and its
incoming edges to disappear from A′(C) (if that follower becomes a boundary
particle), and an isolated contraction, can only cause a leaf and its outgoing
edge to disappear from A′(C), so a tree is maintained in A′(C) in each of
these cases.

Next we consider A(C) restricted to boundary particles.

Claim 2. At any time, A(C) restricted to boundary particles forms a forest
or a ring.
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Proof. The boundary particles always occupy the nodes adjacent to retired
particles or the object. Therefore, due to Lemma 1, the boundary particles
either all lie in a single layer or in two consecutive layers. Since the layer
numbers uniquely specify the movement direction of the particles, connected
boundary particles within a layer are all connected in the same orientation.
Therefore, if these particles all lie in a single layer, they can only form a
directed list or directed cycle in A(C), proving the claim. If they lie in two
consecutive layers, say, ` and `−1, then `−1 must contain at least one retired
particle, so the nodes occupied by the boundary particles in layer `− 1 can
only form a directed list. If there are at least two boundary particles in
layer ` − 1, this must also be true for the nodes occupied by the boundary
particles in layer ` because according to Lemma 1 there must be at least two
consecutive nodes in layer `−1 not occupied by retired particles. Moreover, it
follows from the algorithm that p.dir of a boundary particle can only point
to the same or the next lower layer of p, implying that in this case A(C)
restricted to the nodes occupied by all boundary particles forms a forest.

Since a boundary particle p never connects to a non-boundary particle
the way p.dir is defined, and a follower without an outgoing edge in A(C)
restricted to the non-boundary particles must have an outgoing edge to a
boundary particle (otherwise it is a boundary particle itself), A(C) is a forest
or a ring of trees. The second statement of the lemma follows from the fact
that every boundary particle must be connected to the object or a retired
particle.

Finally, we investigate the structure formed by the idle particles.

Lemma 3. At any time, every connected component of idle particles is con-
nected to at least one non-idle particle or the object.

Proof. Initially, the lemma holds by the definition of a valid instance. Sup-
pose that the lemma holds at time t and consider a connected component
of idle particles. If one of the idle particles in the component is activated,
it may either stay idle or change to an active particle, but in both cases the
lemma holds at time t + 1. If a retired particle that is connected to the
component is activated, it does not move. If a follower or root particle that
is connected to the component is activated, that particle cannot contract
outside of a handover with another follower or root particle, which implies
that no node occupied by it is given up by the active particles. So in any of
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these cases, the connected component of idle particle remains connected to
a non-idle particle. Therefore, the lemma holds at time t+ 1.

The following corollary is consequence of the previous three lemmas.

Corollary 1. At any time, V (P )∪V (O) forms a single connected component.

Lemma 4. At any time before the first particle retires, in every connected
component G of A(C), the number of expanded boundary particles in G plus
the number of complaint flags in G is equal to the number of non-boundary
particles in G.

Proof. Initially, the lemma holds trivially. Suppose the lemma holds at time t
and consider the next activation of a particle. We only discuss relevant cases.
If an idle particle becomes a non-boundary particle (i.e., it is not connected to
the object but joins a connected component), it also generates a complaint
flag. So both the number of non-boundary particles and the number of
complaint flags increases by one for the component the particle joins. If
a non-boundary particle expands as part of a handover with a boundary
particle, both the number of expanded boundary particles and the number
of non-boundary particles decrease by one for the component. If a boundary
particle expands as part of a handover, that handover must be with another
boundary particle, so the number of expanded boundary particles remains
unchanged for that component. Since by our assumption there is no retired
particle, all boundary particles are in layer 1. Hence, for a boundary particle
to expand outside of a handover, it has to consume a complaint flag. This
increases the number of expanded boundary particles by one and decreases
the number of complaint flags by one. Finally, an expansion of a boundary
particle outside of a handover can connect two components of A(C). Since the
equation given in the lemma holds for each of these components individually,
it also holds for the newly built component.

3.2. Liveness

We say that the particle system makes progress if (i) an idle particle
becomes active, or (ii) a movement (i.e., an expansion, handover, or con-
traction) is executed, or (iii) an active particle retires. In the following, we
always assume that we have a fair activation sequence for the particles.

Before we show under which circumstances our particle system eventu-
ally makes progress, we first establish some lemmas on how particles behave
during the execution of our algorithm.
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Lemma 5. Eventually, every idle particle becomes active.

Proof. As long as an idle particle exists, there is always an idle particle p
that is connected to a non-idle particle or the object according to Lemma 3.
The next time p is activated p becomes active according to Algorithm 1.
Therefore, eventually all particles become active.

The following statement shows that even though super-roots can be fol-
lowers, they will become a boundary particle the next time they are activated.

Lemma 6. In every tree of A(C), every boundary particle in the follower
state enters a root state the next time it is activated. In particular, every
super-root in A(C) will enter the root state the next time it is activated.

Proof. Let p be a follower boundary particle. By definition p must have a
retired particle or the object in its neighborhood. Therefore, p immediately
becomes a root particle once it is activated according to Algorithm 1.

Furthermore, the following lemma provides a relation between the move-
ment of super-roots and the availability of complaint flags.

Lemma 7. For every tree of A(C) with a contracted super-root p and at
least one complaint flag, p will eventually retire or expand to p.dir, thereby
consuming a complaint flag, and after the expansion p may cease to be a
super-root.

Proof. If p is not a root, it becomes one the next time it is activated according
to Lemma 6. Therefore, assume p is a root. If there is a retired particle
in p.dir, p retires and ceases to be a super-root. If the node in p.dir is
unoccupied, p can potentially expand. According to Algorithm 3, complaint
flags are forwarded along the tree of p towards p. Once the flag reaches p, it
will expand, thereby consuming the flag. If p expands, it might have an active
particle in its movement direction and thus ceases to be a super-root.

Next, we prove the statement that expanded particles will not starve, i.e.,
they will eventually contract.

Lemma 8. Eventually, every expanded particle contracts.
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Proof. Consider an expanded particle p in a configuration C. By Lemma 5
we can assume w.l.o.g. that all particles in C are active or retired. If there is
no particle q with either q.parent = p or p occupying the node in q.dir, then
p can contract once it is activated. If such a q exists and it is contracted, p
contracts in a handover (see Algorithm 2). If q exists and is expanded, we
consider the tree of A(C) that p is part of. Consider a subpath in this tree
that starts in p, i.e., (v1, v2, . . . , vk) such that v1, v2 are occupied by p and vk
is a node that does not have an incoming edge in A(C). Let vi be the first
node of this path that is occupied by a contracted particle. If all particles
are expanded, then clearly the last particle occupying vk−1, vk eventually
contracts and we can set vi to vk−1. Since vi is contracted it eventually
performs a handover with the particle occupying vi−2, vi−1. Now we can
move backwards along (v1, v2, . . . , vi−1) and it is guaranteed that a contracted
particle eventually performs a handover with the expanded particle occupying
the two nodes before it on the path. So eventually q is contracted, eventually
performs a handover with p and the statement holds.

In the following two lemmas we will specifically consider the case that
B ≤ n, i.e., the particles can coat at least one layer around the object.

Lemma 9. If B ≤ n, layer 1 is completely filled with contracted particles
eventually.

Proof. Consider a configuration C such that layer 1 is not completely filled
by contracted particles. Note that in this case the leader election cannot have
succeeded yet, which means that a leader cannot be elected, and therefore
no particle can be retired in configuration C. So by Lemma 5 we can assume
w.l.o.g. that all particles in configuration C are active.

Since layer 1 is not completely filled by contracted particles, there is
either at least one unoccupied node v on layer 1 or all nodes are occupied,
but there is at least one expanded particle on layer 1. We show that in
both cases a follower will move to layer 1, thereby filling up the layer until
all particles are contracted. In the first case, let p be the super-root of a
tree in A(C) that still has non-boundary particles, let (p0 = p, p1, . . . , pk)
be the boundary particles of the tree such that pi−1 occupies the node in
pi.dir and let q be the non-boundary particle in the tree that is adjacent to
some pjin(p0, . . . , pk) such that j is minimal. If a particle pi in (p0, . . . , pj =
q.parent) is expanded, it eventually contracts (Lemma 8) by a handover with
pi+1, and by consecutive handovers all particles in (pi+1, . . . , pj) eventually
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expand and contract until the particle pj = q.parent expands. According
to Algorithm 2, pj performs a handover with q. Therefore, the number
of particles on layer 1 has increased. If all particles in (p0, . . . , q.parent)
are contracted, then by Lemma 4 a complaint flag still exists in the tree.
Eventually, p expands by Lemma 7. Consequently, we are back in the former
case that a particle in (p0, . . . , q.parent) is expanded.

In the second case, let p′ be an expanded boundary particle and let q′

be the non-boundary particle with the shortest path in A(C) to p′. By a
similar argument as for the first case, particles on layer 1 perform handovers
(starting with p′) until eventually the node in q′.parent is occupied by a tail.
Again, q′ eventually performs a handover and the number of particles on
layer 1 has increased.

As a direct consequence, we can show the following.

Lemma 10. If B ≤ n, a leader is elected in layer 1 eventually.

Proof. According to Lemma 9 layer 1 is eventually filled with contracted
particles. Leader Election successfully elects a leader node according to [1].
The contracted particle p occupying the leader node forwards the CHK flag
and eventually receives it back, since all particles are contracted. Therefore,
p becomes a leader.

Now we are ready to prove the two major statements of this subsection
that define two conditions for system progress.

Lemma 11. If all particles are non-retired and there is either a complaint
flag or an expanded particle, the system eventually makes progress.

Proof. If there is an idle particle, progress is ensured by Lemma 5. If an
active particle is expanded Lemma 8 guarantees progress. Finally, in the
last case all particles are active, none of them is expanded and there is a
complaint flag. If layer 1 is completely filled, a leader is elected according
to Lemma 10 and as a direct consequence the active particles on layer 1
eventually retire, guaranteeing progress. If layer 1 is not completely filled,
there exists at least one tree of A(C) with a contracted super-root p that
has an unoccupied node in p.dir and at least one complaint flag. Therefore,
progress is ensured by Lemma 7.

Lemma 12. If there is at least one retired particle and one active particle,
the system eventually makes progress.
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Proof. Again, if there is an idle particle, progress is ensured by Lemma 5.
Moreover, note that since there is at least one retired particle, we can con-
clude that leader election has been successful (since the first particle that
retires is a leader particle) and therefore layer 1 has to be completely filled
with contracted particles. If there is still a non-retired particle on layer 1, it
eventually retires according to the Algorithm, guaranteeing progress.

So suppose that all particles in layer 1 are retired. We distinguish be-
tween the following cases: (i) there exists at least one super-root, (ii) no
super-root exists, but there is an expanded particle, and (iii) no super-root
exists and all particles are contracted. In case (i), Lemma 6 guarantees that
a super-root will eventually enter root state, and therefore it will eventually
either expand (if p.dir is unoccupied) or retire (since p.dir is occupied by a
retired particle). In case (ii), the particle contracts according to Lemma 8.
In case (iii) A(C) forms a ring of trees, which can only happen if all bound-
ary particles completely occupy a single layer, so there is an active particle
that occupies the node adjacent to the marker edge. Since it is contracted
by assumption, it retires upon activation. Therefore, in all three cases the
system eventually makes progress.

3.3. Termination

Finally, we show that the algorithm eventually terminates in a legal con-
figuration, i.e., a configuration in which the coating problem is solved. For
the termination we need the following two lemmas.

Lemma 13. The number of times an idle particle is transformed into an
active one and an active particle is transformed into a retired one is bounded
by O(n).

Proof. From our algorithm it immediately follows that every idle particle can
only be transformed once into an active particle, and every active particle
can only be transformed once into a retired particle. Moreover, a non-idle
particle can never become idle again, and a retired particle can never become
non-retired again, which proves the lemma.

Lemma 14. The overall number of expansions, handovers, and contractions
is bounded by O(n2).

Proof. We will need the following fact, which immediately follows from our
algorithm.
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Fact 1. Only a super-root of A(C) can expand to a non-occupied node, and
every such expansion triggers a sequence of handovers, followed by a contrac-
tion, in which every particle participates at most twice.

Consider any particle p. Note that only an active particle performs a
movement. Let C be the first configuration in which p becomes active. If
it is a non-boundary particle (i.e., a follower), then consider the directed
path in A(C) from the head of p to the super-root r of its tree or the first
particle r belonging to the ring in the ring of trees. Such a path must exist
due to Lemma 2. Let P = (v0, v1, . . . , vm) be a node sequence covered by
this path where v0 is the head of p in C and vm is the first node along that
path with the object or a retired particle in its neighborhood. Note that by
Lemma 2 such a node sequence is well-defined since vm must at latest be a
node occupied by r. According to Algorithm 1, p attempts to follow P by
sequentially expanding into the nodes v0, v1, . . . , vm. At latest, p will become
a boundary particle once it reaches vm. Up to this point, p has traveled
along a path of length at most 2n, and therefore, the number of movements
p executes as a follower is O(n).

Now suppose p is a boundary particle. Let C be the configuration in
which p becomes a boundary particle and let ` = p.layer. Suppose that
` = 1. From our algorithm we know that at most n complaint flags are
generated by the particles, and therefore by Lemma 7, there are at most
n expansions in level 1 (the rest are handovers or contractions). Hence, it
follows from Fact 1 that p can only move O(n) times as a boundary particle.

Next consider the case that ` > 1. Here we will need the following well-
known fact.

Fact 2. Let Bi be the length of layer i. For every i and every valid instance
(P,O) allowing O to be coated by i layers it holds that Bi = B0 + 6i.

If ` = 2, there must be a retired particle in layer 1, and since the leader is
the first retired particle, Lemmas 9 and 10 imply that level `−1 is completely
filled with contracted particles. So p can only move along nodes of layer `.
Since B`−1 ≤ n, it follows from Fact 2 that B` ≤ n + 6. As long as not all
particles in level `− 1 are retired, p cannot move beyond the marker node in
level `. So p either becomes retired before reaching the marker node, or if it
reaches the marker node, it has to wait there till all particles in level `−1 are
retired, which causes the retirement of p. Therefore, p moves along at most
n+ 6 nodes. If ` > 2, we know from Lemma 1 that level `− 2 is completely
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filled with contracted particles. Since B`−2 ≤ n and B` = B`−2+12, it follows
that B` ≤ n + 12. Hence, p will move along at most n + 12 nodes in level `
before becoming retired or moving to level ` − 1, and p will move along at
most n+ 6 further nodes in level `− 1 before retiring.

Thus, in any case, p performs at most O(n) movements as a boundary
particle. Therefore, the number of movements any particle in the system
performs is O(n), which concludes the lemma.

Lemmas 13 and 14 imply that the system can only make progress O(n2)
many times. Hence, eventually our system reaches a configuration in which
it no longer makes progress, so the system terminates. It remains to show
that when the algorithm terminates, it is in a legal configuration, i.e., the
algorithm solves the coating problem.

Theorem 1. Our coating algorithm terminates in a legal configuration.

Proof. From the conditions of Lemmas 11 and 12 we know that the following
facts must both be true when the algorithm terminates:

1. At least one particle is retired or there is neither a complaint flag nor
an expanded particle in the system (Lemma 11).

2. Either all particles are retired or all particles are active (Lemma 12).

First suppose that all particle are retired. Then it follows from Lemma 1
that the configuration is legal. Next, suppose that all particles are active
and neither a complaint flag nor an expanded particle is left in the system.
Then Lemma 4 implies that there cannot be any non-boundary any more,
so all active particles must be boundary particles. If there is at least one
boundary particle in layer ` > 1, then there must be at least one retired
particle, contradicting our assumption. So all boundary particles must be
in layer 1, and since there are no more complaint flags and all boundary
particles are contracted, also in this case our algorithm has reached a legal
configuration, which proves our theorem.

Recall that the work performed by an algorithm is defined as the number
of movements (expansions, handovers, and contractions) of the particles till
it terminates. Lemma 14 implies that the work performed by our algorithm
is O(n2). Interestingly, this is also the best bound one can achieve in the
worst-case for the coating problem.
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Figure 6: A worst-case configuration concerning work. The object is solid black and the
non-object particles are black dots . Here, all n particles lie on a straight line.

Lemma 15. The worst-case work required by any algorithm to solve the
Universal Object Coating problem is Ω(n2).

Proof. Consider the configuration depicted in Figure 6. A particle with dis-
tance i ≥ 1 to the object needs at least 2(i − 1 −

⌈
i−1
B

⌉
) movements to

become contracted on its final layer. Therefore, any algorithm requires at
least 2

∑n−1
i=1 (i − 1 −

⌈
i−1
B

⌉
) ≥

∑n−1
i=1 (i − 1 − ( i

B
)) = Ω(n2) work assuming

B ≥ 2.

Hence, we get:

Theorem 2. Our algorithm requires worst-case optimal work Θ(n2).

4. Applications

In this section, we present other coating scenarios and applications of
our universal coating algorithm. Our algorithm can be easily extended to
also handle the case when one would like to cover only a certain portion of
the object surface. More concretely, assume that one would like to cover
the portion of the object surface delimited by two endpoint nodes. Basically
in that case, the algorithm can be modified slightly so that the particles
that eventually reach one of the endpoints of the surface segment retire and
become endpoint markers. The position of endpoint marker particles will be
propagated to higher layers, as necessary, such that the delimited portion of
the object is evenly coated.

Once the first layer is formed and a leader is elected (implying that
B ≤ n), one can trivially determine (i) whether the number of particles
in the system is greater than or equal to the size of the object boundary,
or (ii) whether the object O is convex; one could also potentially address
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other applications that involve aggregating some (constant-size) collective
data over the boundary of the object O. Once all particles in layer 1 retire, a
leader will emerge and that leader can initiate the respective application. For
the first application, all particles may initially assume that B > n. Once a
leader is elected, it informs all other particles that B ≤ n. For the convexity
testing, the leader particle can generate a token that traverses the boundary
in CW direction: If the token ever makes a left turn (i.e., it traverses two
consecutive edges on the boundary at an outer angle of less than 180◦), then
the object is not convex; otherwise the object is convex.

5. Conclusion

This paper presented a universal coating algorithm for programmable
matter using worst-case optimal work. It would be interesting to also bound
the parallel runtime of our algorithm in terms of number of asynchronous
rounds, and to investigate its competitiveness — i.e., how does its work or
runtime compare to the best possible work or runtime for any given instance.
Moreover, it would be interesting to implement the algorithm and evaluate
its performance either via simulations or hopefully at some point even via
experiments with real programmable matter.
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