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Tunneling Planar Hall Effect in Topological Insulators: Spin-Valves and Amplifiers
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We investigate tunneling across a single ferromagnetic barrier on the surface of a three-dimensional
topological insulator. In the presence of a magnetization component along the bias direction, a tun-
neling planar Hall conductance (TPHC), transverse to the applied bias, develops. Electrostatic
control of the barrier enables a giant Hall angle, with the TPHC exceeding the longitudinal tun-
neling conductance. By changing the in-plane magnetization direction it is possible to change the
sign of both the longitudinal and transverse differential conductance without opening a gap in the
topological surface state. The transport in a topological insulator/ferromagnet junction can thus
be drastically altered from a simple spin-valve to an amplifier.

PACS numbers: 73.43.Jn,85.75.-d,73.43.Qt,73.50.Jt

Exotic properties of three-dimensional topological in-
sulators (3D TIs) arise from their helical surface states
in which electrons are described as 2D Dirac fermions
with spin-momentum locking [1]. Unlike graphene, TIs
have large spin-orbit coupling (SOC) leading to striking
manifestations of the conservation of angular momentum
from a colossal Kerr rotation [2] and control of photocur-
rents [3] to robust magnetization switching [4].

The interplay between magnetism and SOC in fer-
romagnet(F)/TI junctions provides a versatile platform
to study fundamental effects and spintronic applica-
tions [1, 4]. Previous tunneling studies have largely fo-
cused on the longitudinal response [5–7]. Intuitively,
transport across the barrier should be dominated by the
normal incidence. Hence, a common expectation in tun-
nel junctions is that the transverse (Hall) response is neg-
ligible, especially for an in-plane magnetization.

In contrast to previous manifestations of the Hall ef-
fect, such as the anomalous [8, 9], tunneling anoma-
lous [10, 11], and planar Hall effects [12], we propose an
unexplored tunneling planar Hall effect (TPHE) mech-
anism emerging in F/TI junctions (see Fig. 1), quali-
tatively different from these manifestations in terms of
the relevant geometry and the magnetization configura-
tion. In particular, the proposed effect is maximized for a
planar magnetization parallel to the applied bias, where
these other Hall effects vanish [13].

Unlike in conventional tunneling, a thick barrier with
TIs can still lead to a large conductance due to Klein tun-
neling [13]. We show that an asymmetry in the tunneling
conductance due to the in-plane barrier magnetization
enables efficient transverse (Hall) spin-valves. Further-
more, with spin-momentum locking and a tunable res-
onant transmission, these spin-valves can also display a
transverse negative differential (ND) conductance even
in the limit of vanishing applied bias, suggesting a path
to amplifiers and other active spintronic devices [14].

This peculiar behavior arises from asymmetric tunnel-
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FIG. 1. (Color online) (a) Schematic setup. (b) Origin of
the planar Hall conductance and net Hall voltage, VH , due to
asymmetric tunneling. The circle sizes represent the asymme-
try in transmission probabilities arising from the interfacial
mismatch of spin directions (locked to the velocity). (c) Spin
mismatch: Fermi circles in the TI (upper Dirac cone) and
the barrier (lower Dirac cone, shifted by a proximity-induced
exchange splitting ∆x). In (b) and (c) violet (black) arrows
denote the electron spin orientation (direction of motion).

ing of electrons with opposite incident angles through
the barrier as shown in Fig. 1(b). The finite tunneling
planar Hall conductance (TPHC) can be understood as
the spin mismatch between TI and F selecting electrons
with positive transverse velocity [15] to be transmitted
more effectively [Fig. 1(b)]. The interfacial spin mis-
match results from spin-momentum locking and a shift of
the Dirac cone due to the exchange splitting [Fig. 1(c)].
Translational symmetry along the y-axis yields an effec-
tive Snell’s law [16] preserving the transverse momentum,
while the longitudinal momentum changes sign on the
lower Dirac cone (the group velocity points to its apex,
see Ref. 13).

Our system is described by the effective Hamiltonian

Ĥ0 = vF (σ × p̂) · ez + (V0 −∆ · σ)h(x) (1)
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with the barrier function h(x) = Θ(−x)Θ(x + d) for a
square (finite) barrier of width d and h(x) = dδ(x) for
the respective δ-barrier. Here, vF is the Fermi velocity
of the surface states (vF ≈ 6 × 105 m/s in Bi2Se3 [17]),
p̂ and σ denote vectors containing the momentum op-
erators and Pauli spin matrices [1], while ∆ and V0

describe the proximity-induced ferromagnetic exchange
splitting and an electrostatic potential barrier, respec-
tively. A planar exchange field ∆ shifts the apex of the
Dirac cones from the origin to (−∆y/~vF,∆x/~vF)

T in
the kxky-plane. Therefore, for ∆y = 0 the longitudinal
(transverse) transport is even (odd) in ∆x.
The conductance for a bias along the x-direction is

obtained from the eigenstates of Eq. (1) with energy E
and conserved momentum ~ky [see Fig. 1(c)], Ψky

(x, y) =

exp(ikyy)Φ(x)/
√
2S with the surface area S and

Φ(x) =







χ+e
ikxx + reχ−e

−ikxx, x < −d,

lχ̃+e
ik̃+x +mχ̃−e

ik̃−x, −d < x < 0,
teχ+e

ikxx, x > 0

(2)

for the finite barrier. For the δ-barrier, the states
Φ(x < 0) and Φ(x > 0) are given by the first and
third lines of Eq. (2), respectively. Defining the an-
gle −π/2 ≤ θ ≤ π/2 as ~vFkx = |E| cos θ and
~vFky = |E| sin θ, the momenta are given by ~vFk̃± =

−∆y ± ~vFk̃x and the spinors by χ± = (1, b±)
T

and χ̃± = (1, b̃±)
T with b± = ∓i sgn(E)e±iθ, b̃± =

[

(|E| sin θ −∆x)∓ i~vFk̃x

]

/ (E − V0 −∆z), and

~vFk̃x(E, θ) =

√

(E − V0)
2 − (∆x − |E| sin θ)2 −∆2

z.

(3)
Carefully invoking the boundary conditions [13, 18] to

determine re, te, l, m in Eq. (2) yields the transmission

T (E, θ) =
1

1 +
(V0 sgn(E) sin θ−∆x)

2+∆2
z
cos2 θ

(~vF/d)
2 cos2 θ

sin2 Zeff

Z2
eff

, (4)

where Zeff = k̃x(E, θ)d for a finite barrier and Zeff =
√

V 2
0 −∆2d/(~vF) for a δ-barrier with ∆ =

√

∆2
x +∆2

z.
Here, T (E, θ) is independent of ∆y and asymmetric with
respect to θ for finite ∆x.
We focus on the case ∆ = |∆x|, ∆z = 0, while the

effects of finite ∆z are discussed in Ref. 13. The trans-
mission from Eq. (4) displays two qualitatively different
regimes: (i) oscillatory, with real Zeff as a consequence of
Klein tunneling in Dirac systems like graphene [19], and
(ii) decaying, with complex Zeff and typical for massive
low-energy systems described by Schrödinger’s equation.
A remarkable property of our system is that by control-
ling the magnetization and/or the top gate potential (re-
call Zeff depends on V0 and ∆) it is possible to switch
between the two regimes and produce very large differ-
ences in T (E, θ).
Such a tunable transmission can lead to a large

anisotropy for some incident angles. In the oscillatory

0.6

0.7

0.8

0.9

1.0

0 50 100 150

-0.2

-0.1

0

0.1

0.2

(d)

−π/2

(a)

(b)
 

 

G
x

x
/G

0
x

(c)

0.5
0.3

−π/4 0 π/4 π/2
0

50

100

150

200

θ

d
 [

n
m

]

 

 

T(εF,θ)

0.0 0.2 0.4 0.6 0.8 1.0

εF=1 meV

vF=6×10
5
 m/s

V0=30 meV

∆=10 meV

 

 

G
y

x
/G

0
y

d [nm]

  finite barrier

  δ barrier

FIG. 2. (Color online) Dependence of the (a) longitudinal
and (b) transverse conductances on d for finite and δ-barriers.
(c) Fermi circles in the leads (inner circle) and barrier (outer
circle). The arrows denote the wave vectors of states with
positive x-component of the velocity and the vertical dashed
line indicates the first-order resonance condition. (d) Trans-
mission T (εF, θ) of a finite barrier as a function of d and θ.

regime, in particular, we find from Eq. (4) that perfect
transmission is realized for

V0 sgn(E) sin θ = ∆ or Zeff(E, θ) = nπ, n = 1, 2, ... .
(5)

Here, the first equality describes perfect transmission at
each interface due to the absence of any spin mismatch
between TIs and F. The second equality is a resonance
condition for constructive interference when a multiple of
the longitudinal wavelength 2π/k̃x matches d [20].
Using Eq. (4), the tunneling conductance at zero tem-

perature, for a bias applied in the x-direction, reads as

Gxx/yx =
e2

h

|εF|Dx/y

2π~vF

π/2
∫

−π/2

dθ T (εF, θ)

{

cos θ
sgn(εF) sin θ

,

(6)
where Dx/y is the width perpendicular to the current
flow in the x/y-direction and -e is the electron charge.
We normalize Gxx/yx to the Sharvin conductance (trans-

parent barrier), G0x/y =
(

e2/h
)

|εF|Dx/y/ (π~vF) [21].
For a δ-barrier and |V0| ≫ ∆, Eq. (4) can be expanded

up to the lowest order in ∆/V0,

Gxx/G0x ≈ sec2 Z0 − tanh−1 |cosZ0| tan2 Z0/ |cosZ0| ,(7)
Gyx/G0y ≈ (π∆/2V0) |sinZ0| (1− |sinZ0|)2 / cos4 Z0, (8)

where Z0 = V0d/(~vF) [22]. These expressions capture
the oscillatory behavior of Gxx/yx and reveal that at the
resonance condition, Zeff ≈ Z0 = nπ, Gxx = G0x reaches
perfect transmission, whereas Gyx vanishes. Such a qual-
itative behavior is corroborated by the full δ-barrier de-
pendence of Gxx/yx on d, shown in Figs. 2(a) and (b).
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Even though the δ-barrier provides a good approxima-
tion for small d, it fails to describe intriguing effects,
such as the appearance of negative values of Gyx and the
increase of its amplitude with d. Hence, we will focus on
the finite barrier and employ the δ-model only to obtain
analytical approximations.

The main features observed in Figs. 2(a) and (b) can
be understood by analyzing the phase space available
for tunneling shown in Fig. 2(c) for V0 > εF > 0.
Here, the inner (outer) circle with radius |εF|/(~vF)
[|V0 − εF|/(~vF)] represents the k-space Fermi circle in
the leads (barrier) and the arrows indicate the Fermi
wave vectors of the scattering states available for trans-
port. As discussed in Fig. 1, the asymmetry between
the scattering states with ky > 0 (0 < θ < π/2) and
ky < 0 (−π/2 < θ < 0) due to ∆ causes a finite TPHC.
For illustration, we show in Fig. 2(d) the transmission,
T (εF, θ), of a finite barrier as a function of d and θ. The
asymmetry of T (εF, θ) with respect to θ = 0 due to the
first equality in Eq. (5) can clearly be seen, which results
in the appearance of a nonzero Gyx after the integration
in Eq. (6). On the other hand, the oscillatory behavior
with d in Fig. 2(d) is governed by sin2 Zeff in Eq. (4).

When |V0 − εF| > ∆ + |εF|, the Fermi circle of the
leads is inside that of the barrier as shown in Fig. 2(c).
Then, for each Fermi vector in the leads, there is one
available in the barrier and the system is purely in the
Klein tunneling regime. The deviations between the fi-
nite and δ-barrier models with increasing d originate from
the angular dependence of Zeff and the ensuing asymmet-
ric resonances in the case of a finite barrier, explained by
Fig. 2(c): With increasing d, the first-order resonance
[n = 1 in Eq. (5)] starts to move towards smaller kx-
values and, at d ≈ 46 nm, it starts to cross the Fermi cir-
cle of the barrier. The first states reaching the resonance
are those with ky > 0, causing an increase in Gyx com-
pared to the δ-barrier model. As d is further increased,
the resonance moves to states with ky < 0 producing
a fast decrease in Gyx, which, eventually, becomes neg-
ative. In thicker barriers, the trend repeats periodically
with d each time a new resonance becomes relevant. This
occurrence of multiple resonances (n = 1, 2, etc) results
in the increase of the amplitude of the TPHC for even
larger values of d (if |εF| ≪ |V0|) as shown in Fig. 2(b).

The interplay between V0 and ∆ and the appearance
of a TPHC are illustrated by Fig. 3 for both (a) Gxx

and (b) Gyx as well as (c) their ratio for a finite barrier
with d = 50 nm and a fixed εF. Figures 3(a) and (b)
clearly show the transition from a region of oscillatory
Klein tunneling (|V0| > ∆ + 2εF ≈ ∆) to a region of
decaying tunneling (|V0| < ∆). Such a transition can
be understood by resorting to the analysis of the Fermi
circles. As discussed above, the scheme in Fig. 2(b) cor-
responds to the Klein tunneling regime, but increasing
∆ will shift up the Fermi circle of the barrier, which
at ∆ = V0 − 2εF starts to cross the Fermi circle of the
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FIG. 3. (Color online) Dependence of the (a) longitudinal
and (b) transverse conductances as well as (c) of their ratio
on V0 and ∆ for a finite barrier with d = 50 nm, εF = 1 meV,
and vF = 6.0×105 m/s. Green lines denote the boundaries of
regions with negative conductance. (d) Same as in Fig. 2(c),
but for larger ∆.

leads. Therefore, increasing ∆ above that value results
in the formation of an intermediate regime in which only
a part of the available states can undergo Klein tunnel-
ing, while the other experiences decaying tunneling. The
contrast between the two tunneling mechanisms becomes
extreme when ∆ = V0−εF. In such a situation, as shown
in Fig. 3(d), Klein tunneling occurs only for states with
ky > 0, while those with ky < 0 undergo decaying tunnel-
ing. This strong asymmetry in the tunneling favors the
transmission of states with larger ky values and results
in a remarkably large ratio between the TPHC and the
longitudinal conductance. As shown in Fig. 3(c), such
a ratio can even exceed 1, implying large Hall angles,
θH = arctan(Gyx/Gxx) ≈ 75◦ for the parameters chosen
here. Such giant values of the Hall angle are compara-
ble to those recently detected in a 3D magnetic TI [23].
Green lines in Figs. 3(b) and (c) indicate negative values
of the TPHC, whose origin is the same as in Fig. 2(c).

The δ-barrier model enables us to obtain an analytical
expression for the giant Hall angle. Indeed, for |V0| ≈ ∆,

Gxx/G0x =
[

(2ln|Z0| − 1)Z2
0 + 1

]

/
(

Z2
0 − 1

)2
, (9)

Gyx/G0y = π|Z0|/
[

2 (|Z0|+ 1)
2
]

. (10)

Assuming Dx = Dy, we obtain

tan θH =
Gyx

Gxx
=

π|Z0| (|Z0| − 1)
2

2 [(2ln|Z0| − 1)Z2
0 + 1]

, (11)

which increases with |Z0|, even though Gxx and Gyx in-
dividually decrease.

We next examine the current-voltage (I-V ) character-
istics and reveal the appearance of a negative differential
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FIG. 4. (Color online) Bias dependence of the (a) longitudinal
and (b) transverse currents for a finite barrier and different V0.
Assuming Dx = Dy = 10 µm, both currents are given in units
of I0 = 12 µA. (c) Same as in Fig. 2(c), but with thickened
Fermi circles accounting for a finite energy window around εF.
(d) Transmission T (E, θ) for V0 = 105 meV. The inset in (a)
shows the appearance of a ND longitudinal conductance for
V0 = 105 meV at high bias voltages.

(ND) conductance. A ND longitudinal conductance ob-
served in single barrier graphene transistors [24] appears
also in our system as shown in the inset of Fig. 4(a).
This occurs when the Fermi level in one lead is aligned
with the Dirac point of the other lead. The size of the
ND longitudinal conductance can be enlarged by scatter-
ers in the tunneling barrier region [24]. Surprisingly, the
transverse current, Iy, also shows a change of sign in its
slope [segment from A to B in Fig. 4(b)], the signature
of a ND Hall conductance (NDHC) [25], but within an
operational range in which the differential longitudinal
conductance remains positive [see Fig. 4(a)].

The appearance of a NDHC is exemplified for V0 = 105
meV in Fig. 4(b) with the corresponding transmission
coefficient T (E, θ) displayed in Fig. 4(d). Here, the key
observation is that in the Klein tunneling regime, the
asymmetry of the resonances with respect to θ = 0 de-
pends on the energy. Indeed, as depicted in Fig. 4(d),
for different energies the resonances appear in the region
ky < 0, or ky > 0, or in both. This behavior is explained
in Fig. 4(c), where the Fermi circles of the leads and
barrier have been thickened in order to account for the
energy window from EA (solid circles) to EB (dashed cir-
cles) around the Fermi energy, εF = 40 meV. The vertical
lines marked by n = 1 and n = 2 indicate the resonance
condition Zeff(kx, ky) = nπ as in Eq. (5). Open and full
(yellow) dots represent the resonances seen in Fig. 4(d)
at EA and EB, while crossed dots represent resonances
forbidden by the conservation of ky. The nonmonotonic
behavior of the Iy-V characteristic in Fig. 4(b) follows
from the positions of the resonances: The local maxi-

mum A emerges as the relevant energy window between
εF and εF + eV starts to cross the resonance at EA for
a ky < 0 [Figs. 4(c) and (d)] resulting in a reduced Iy
with increasing V . This resonance is compensated for
as another resonance favoring ky > 0 is reached at EB

[Figs. 4(c) and (d)], giving rise to the local minimum B
and subsequent increase of Iy in Fig. 4(b).
As shown in Fig. 4(b), the NDHC present for V0 = 100

meV and V0 = 105 meV is suppressed at V0 = 50 meV,
suggesting the possibility of controlling the NDHC by
gate-tuning the barrier. Moreover, the Iy-V characteris-
tic for V0 = 105 meV resembles that of a typical active
ND resistor, which is unusual for tunneling systems [26].
Despite the simplicity of a single ferromagnetic region,

our system exhibits a variety of functionalities expected
to require more complex spintronic devices [27, 28]. In
addition to a spin-valve operation for magnetic sensing
and storing information, shown in Figs. 4(a) and (b), pos-
itive, negative, and ND conductances can be tuned by
properly adjusting the barrier potential, suitable for pro-
cessing information. Such different resistive behaviors in
the same system are attractive for potential applications
in reconfigurable devices operating as feedback oscilla-
tors, active filters, modulators, and amplifiers [29]. These
functionalities can be alternated both by the barrier po-
tential and in a nonvolatile way using the magnetization
orientation.
Our findings, expressed using Bi2Se3 parameters, could

also be detected in other 3D topological insulators [1].
The appearance of a giant transverse response would
support the expected topological character among an in-
creasingly large class of materials [30]. To realize mag-
netic proximity effects for the in-plane transport, fer-
romagnetic insulators are desirable. This would pre-
clude current flow in the more resistive ferromagnetic re-
gion [see Fig. 1(a)] and minimize hybridization with the
topological insulator to enable a gate-tunable proximity-
induced exchange splitting in the 2D surface states.
In addition to Eu-based materials [31], ferromag-

net/topological insulator junctions could attain a higher
temperature range by using Fe-enhanced magnetic prox-
imity effects in (Bi,Mn)Te [32]. Employing yttrium iron
garnet/(Bi,Sb)2Te3 junctions for an independent tun-
ing of electronic properties and proximity-induced mag-
netism in topological insulators, observed up to 150
K [33], is a promising path to implement our proposal.
A future work on the effects proposed here could involve
studying the role of phonons, especially surface phonons,
which have been shown to profoundly affect transport in
topological insulators such as Bi2Se3 [34].
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[14] I. Žutić, J. Fabian, and S. Das Sarma,

Rev. Mod. Phys. 76, 323 (2004); J. Fabian, A. Matos-
Abiague, C. Ertler, P. Stano, and I. Žutić, Acta Phys.
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