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We have studied the dynamical polarization and collective excitations in an anisotropic two-
dimensional system undergoing a quantum phase transition with merging of two Dirac points. Ana-
lytical results for the one-loop polarization function are obtained at the finite momentum, frequency
and the chemical potential. The evolution of the plasmon dispersion across the phase transition is
then analyzed within the random phase approximation. We derive analytically the long-wavelength
dispersion of the undamped anisotropic collective mode and find that it evolves smoothly at the crit-
ical merging point. The effects of the Van Hove singularity on the plasmon excitations are explored
in detail.

I. INTRODUCTION

For more than a decade we have been witnessing the
rise of a plethora of ever new two-dimensional (2D) ma-
terials displaying their unique electronic properties that
has initiated major activities in those systems. Leading
the pack was, of course, monolayer and bilayer graphene
displaying the behavior of ‘Dirac fermions’ of the charge
carriers with ‘Dirac points’ where the two energy bands
meet [1, 2] with linear dispersions in the vicinity that
forms the characteristic ‘Dirac cones’ [3]. Their many
exotic physical properties, in particular, in a strong mag-
netic field have been well documented, that ranges from
the magnetic field effects in the extreme quantum limit [4]
to Hofstadter butterflies [5, 6]. These were then fol-
lowed by other graphene-like systems, such as silicene
and germanene [7–9], the 2D version of black phospho-
rus (BP) [10, 11], and most recently, the planar electron
systems in ZnO heterojunctions [12, 13]. Interestingly, an
anisotropic two-dimensional system can undergo a tran-
sition between an insulating state with gapped spectrum
and a semimetal state with two Dirac cones separated in
the momentum space. The possibility of such a quan-
tum phase transition has been considered theoretically
in application of the tight-binding model of graphene
with modified hopping parameters [14–18] and few-layer
black phosphorus where the band inversion can be in-
duced by an external perpendicular electric field [19–21]
or by doping [22]. The gapless spectrum at the phase
transition point may arise in the TiO2/VO2 nanostruc-
tures [23, 24]. Experimentally, merging or creation of
Dirac points has been observed in systems of ultracold
atoms [25], photonic crystals [26], microwave analogue of
graphene [27] and, more recently, in a potassium doped
few-layer BP [28].

Various properties of a system undergoing this phase
transition have been reported in the literature, that
includes the Landau levels and the Hofstadter spec-
trum [29], the Hall conductivity [30], effects of disor-
der [31], the non Fermi liquid behavior [32] and the
transport characteristics [33]. In this paper, we con-
sider the dynamical polarization and collective excita-
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FIG. 1: Evolution of the electron energy spectrum at the
phase transition.

tions utilizing the model introduced in Ref. [17] in which
the phase transition is governed by a single parameter
∆ that changes its sign across the critical point (Fig. 1).
This model provides a universal description for a two-
dimensional system in the vicinity of the phase transi-
tion with merging Dirac points. Previous results related
to our present study include the long-wavelength plas-
mon dispersion at the critical point (∆ = 0) obtained in
Ref. [34], spectrum of collective excitations in a single-
and few-layer BP [35, 36] (only the conduction band or
the valence band was taken into account due to the large
value of the gap), and the spectrum of plasmons across
the phase transition obtained numerically within a tight-
binding model for bilayer BP [37].

We calculate the one-loop dynamical polarization func-
tion at zero temperature for arbitrary values of the Fermi
energy and the gap. In general, we are able to perform
one momentum integration and derive an expression in
terms of a single integral valid for arbitrary complex
frequencies. This expression is used to study numeri-
cally the evolution of the plasmon dispersion across the
phase transition within the random phase approximation
(RPA). The imaginary part of the vacuum polarization
function and the long-wavelength spectrum of collective
excitations are evaluated analytically.

II. POLARIZATION FUNCTION

We use a universal low-energy two-band Hamilto-
nian [17] describing the merging transition

H = (∆ + ak2
x)σx + vkyσy, (1)
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where the Pauli matrices σx, σy act on the two-
component wave functions. The spin-orbit coupling is
neglected and the presence of two spin states is accounted
for by the degeneracy factor gs = 2. The energy eigen-
values are given by

Eλk = λ
√

(ak2
x + ∆)2 + v2k2

y, λ = ±. (2)

The Hamiltonian (1) can also be used to describe the
single layer BP (∆ ≈ 0.8 eV) [38] when the difference in
the effective masses of the positive and negative energy
bands is neglected. In the case when the chemical poten-
tial µ lies within the conductance band and the gap is
large (0 < µ−∆� ∆), we can neglect the contribution
from the negative energy band for energies close to the
Fermi level and, at small momenta, approximate Eq. (2)
by

E+
k − µ ≈

k2
x

2mx
+

k2
y

2my

− µ0 (3)

with mx = 1/(2a) and my = ∆/v2 being the effective
masses in the x and y directions, respectively, and the
chemical potential µ0 = µ−∆ measured from the bottom
of the positive energy band. At the critical point, ∆ = 0
[Fig. 1(b)], the spectrum is linear in the y direction while
quadratic in the x direction (with the same effective mass
mx). Such a system is often referred to in the literature
as the ‘semi-Dirac’ system.

In the case of ∆ < 0, the spectrum has two Dirac
cones [Fig. 1(c)] located at k = (±Kx, 0) with Kx =√
−∆/a. In the vicinity of these points, the linearized

Hamiltonian (1) reads

H ' ±vx(kx ∓Kx)σx + vkyσy, (4)

where the velocities vx = 2
√
−a∆ in the x direction and

v in the y direction are different in general. The spectrum
has saddle points E±k=0 = ±|∆| with divergent density of
states (the Van Hove singularity).

The one-loop polarization function at finite tempera-
ture T is given by

Π(iωm,q) = gsT

∞∑
n=−∞

∫
d2k

(2π)2
Tr
[
G(iΩn,k)

×G(iΩn + iωm,k + q)
]
, (5)

where ωm = 2πmT , Ωn = (2n+ 1)πT are the Matsubara
frequencies and the Green’s function is

G(iΩn,k) =
iΩn + µ+ (ak2

x + ∆)σx + vkyσy
(iΩn + µ)2 − (ak2

x + ∆)2 − v2k2
y

. (6)

Evaluating the trace and the sum over n yields

Π(iωm,q) = gs

∫
d2k

(2π)2

∑
λ,λ′=±

Fλ,λ
′

k,k+q

nF(Eλk)− nF(Eλ
′

k+q)

Eλk − Eλ
′

k+q + iωm
,

(7)
where nF(x) = [e(x−µ)/T + 1]−1 and

Fλ,λ
′

k,k′ =
1

2

[
1 +

(∆ + ak2
x)(∆ + ak′2x ) + v2kyk

′
y

EλkE
λ′
k′

]
(8)

is the wave function overlap factor. In the following we
consider only the case of T = 0, when nF(x)→ θ(µ− x)
and the polarization function can be written as the sum
of two terms

Π(iω,q) = Π0(iω,q) + Π1(iω,q), (9)

where Π0(iω,q) is the “vacuum” polarization at µ = 0
and Π1(iω,q) gives an additional contribution when µ >
∆ (we choose µ > 0, and the case µ < 0 is equivalent
because of the electron-hole symmetry). These two terms
are given by

Π0(iω,q) = −χ−∞(iω,q),

Π1(iω,q) = χ+
µ (iω,q) + χ−µ (iω,q), (10)

where

χ±µ (ω,q) = gs

∫
d2k

(2π)2

∑
σ=±

θ(µ− E+
k )F+,±

k,k+q

E+
k − E

±
k+q + σω

. (11)

The ky integration in the above equation can be per-
formed analytically for an arbitrary complex frequency
ω away from the real axis (see Appendix A). The result-
ing expressions are

Π0(ω,q) = − gs

2π2v(v2q2
y − ω2)2

∞∫
−∞

dkx

[
v2q2

y(v2q2
y − ω2) + ηξ(v2q2

y + ω2) Re
[
arctanh(ξ/η)

]
−
(
ξ2ω2

√
α− ω2√
β − ω2

+ v2q2
yη

2

√
β − ω2

√
α− ω2

)
arctanh

√
min(α, β)− ω2√
max(α, β)− ω2

]
,

(12)
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Π1(ω,q) =
gsθ(µ−∆)

4π2v(v2q2
y − ω2)2

√
(µ−∆)/a∫

−
√

(µ−∆)/a

dkxθ(µ+ ∆ + ak2
x)

[
ηξ(v2q2

y + ω2) arctanh
µ̃

µ

−
(
ξ2ω2

√
α− ω2√
β − ω2

+ v2q2
yη

2

√
β − ω2

√
α− ω2

)
arctanh

µ̃(ηξ + v2q2
y − ω2)− 2vqy(ak2

x + ∆)2

µ
√
α− ω2

√
β − ω2

− 2vqyηξω arctanh
ηξ + v2q2

y − ω2 + 2vqyµ̃

2µω
+ (qy → −qy)

]
,

(13)

where

ξ = aqx(qx + 2kx),

η = ξ + 2(ak2
x + ∆),

α = η2 + v2q2
y, (14)

β = ξ2 + v2q2
y,

µ̃ =
√
µ2 − (ak2

x + ∆)2,

and the retarded polarization on the real ω axis is ob-
tained using the prescription ω → ω + i0. We use
Eqs. (12) and (13) in our numerical calculations of the
collective excitation spectrum and also to obtain some
important limits analytically.

The imaginary part of the vacuum term can be cal-
culated analytically (see Appendix B). If ∆ < 0 and
qx < 2Kx, it has a logarithmic singularity at ω = ±ω̃,
where

ω̃ =
√
v2q2

y + a2(2K2
x − q2

x/2)2. (15)

In the vicinity of this singularity, Im Π0(ω,q) is given by
(including terms finite at ω = ±ω̃)

Im Π0(ω, qx, qy) ' ∓gs

64π
√
av

[
v2q2

y

a3/2q̃3
ln

512a2q̃6

ω̃|q2
x − q̃2||ω ∓ ω̃|

−
ω̃2(q2

x − 3q̃2) + v2q2
y(q2

x + q̃2)

a3/2q2
xq̃

3
(16)

+
ω̃2 − 8a2(q4

x + 2q2
xq̃

2 − q̃4)

a3/2q3
x

ln
|qx − q̃|
qx + q̃

]
,

where q̃ =
√
K2
x/2− q2

x/8. For qx = 0, this simplifies to

Im Π0(ω, 0, qy) '
∓gsvq

2
y

π
√
a(−8∆)3/2

(
ln

128∆2

ω̃0|ω ∓ ω̃0|
− 8

3

)
(17)

with ω̃0 =
√

4∆2 + v2q2
y. This logarithmic divergence

for ∆ < 0 is due to the Van Hove singularity which re-
sults in the saddle point in the interband single-particle
excitation (SPE) energy E+

k − E
−
k+q [the real frequency

corresponding to the pole of Eq. (7)] as a function of k for
a given external wave vector q. A similar divergence of
Im Π0(ω,q) due to the presence of the Van Hove singular-
ity appears in graphene [39, 40]. In contrast to the case

of graphene, in our model this singularity occurs only at
a single point in the momentum space between the two
Dirac cones. Because of this the divergent term is pro-
portional to qy and vanishes for the momentum directed
along the x axis.

III. PLASMONS

Plasmon dispersion ωp(q) in the RPA is obtained from
zeros of the dielectric function

ε(ω,q) = 1− V (q)Π(ω,q), (18)

where Π(ω,q) is the one-loop polarization function and
V (q) = 2πe2/(κq) is the Coulomb potential screened
only by the substrate with the corresponding background
dielectric constant κ.

We found numerically the real solutions ω = ωp(q)
of Eq. (18) in the regions where Im Π(ω,q) = 0,
i.e., the Landau damping is absent. For the SPE
regions where the imaginary part of the polarization
function is nonzero, we calculate the energy loss func-
tion − Im[1/ε(ω,q)], the peaks of which represent the
damped plasmons. Our approach assumes the strictly
two-dimensional system and does not take into account
the charge distribution in the perpendicular direction.
Nevertheless, our results will be valid if the characteristic
length of this distribution lz (e.g., the interlayer distance
in the case of bilayer BP) is much smaller then 1/|q| for
the considered wave vectors q.

In the case of µ = 0 there are no real solutions
of Eq. (18) and the energy loss function is shown in
Fig. 2. For ∆ < 0 the logarithmic divergence due to
the Van Hove singularity manifests itself as a dip in
− Im[1/ε(ω,q)] for qy 6= 0 and ω = ω̃ followed by a peak
at a larger energy [Fig. 2(b)]. Analogous behavior has
been also reported in graphene [40].

The evolution of the plasmon spectrum across the
phase transition at nonzero chemical potential is shown in
Fig. 3. The momentum is chosen to be aligned with one
of the principal axes. In the case of qy = 0, the dielec-
tric function (18) expressed in terms of the dimension-

less momentum qx
√
a/µ and energy ω/µ depends only

on a single adjustable parameter κv. Similarly, ε(ω,q)
at qx = 0 can be represented as a function of the di-
mensionless momentum qyv/µ and energy ω/µ, which
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FIG. 2: Energy loss function − Im[1/ε(ω,q)] at µ = 0 for
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and Λ is an arbitrary energy scale. Right: qx = 0, 2κ

√
aµ =

10−3c, and κ2Λ = 4× 10−3e2/a. The boundaries of the SPE
regions are marked by dotted lines.

depends on a single parameter κ2aµ. In our numeri-
cal calculations, we choose the values of the parameters
κv = 10−3c ≈ 3× 105 m/s, aµ = v2/4. The latter choice
corresponds e.g. to mx = 1/(2a) = me and µ ≈ 0.26 eV,
where me is the bare electron mass.

In the regime
√
aqx, vqy � ω � µ, i.e., relevant for

the long-wavelength plasmons, the asymptotic behavior
of the polarization function is

Π(ω,q) =
gs
√
µ

4π2v
√
aω2

[
µaq2

xfx(∆/µ) + v2q2
yfy(∆/µ)

]
,

(19)
where the functions fx,y(δ) are defined as

fx(δ) = 8

∫ 1

t0

dt
t2
√
t− δ√

1− t2
,

fy(δ) = 2

∫ 1

t0

dt

√
1− t2√
t− δ

,

(20)

with t0 = max(δ,−1) and shown in Fig. 4. The analytical
expressions for fx,y(δ) in terms of the complete elliptic
integrals are given in Appendix C.

Using Eq. (19), we obtain the long-wavelength plasmon
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dispersion

ωp(q) '
√
gse

2µq

2πκ

[√
µa

v
fx(∆/µ) cos2 θ

+
v
√
µa
fy(∆/µ) sin2 θ

]1/2

, (21)

where cos θ = qx/q, sin θ = qy/q. It has the usual square
root dependence on the momentum just as expected for
a 2D system, with the anisotropy of the spectrum be-
ing fully determined by the dimensionless factor

√
µa/v

and the two functions fx,y(∆/µ). This undamped plas-
mon mode lies in the gap between the interband and the
intraband SPE regions (Fig. 3).

For −∆ � µ, i.e., for well separated Dirac cones
[Fig. 3(a),(b)], using the asymptotics

fx(δ) = 4π|δ|1/2 +O(|δ|−1/2),

fy(δ) = π|δ|−1/2 +O(|δ|−3/2), −δ � 1,
(22)

one can obtain the plasmon dispersion from Eq. (21) in
this limit

ωp(q) '
√
gse

2µq

κ

[
vx
v

cos2 θ +
v

vx
sin2 θ

]1/2

. (23)

This result corresponds to the linearized Hamiltonian (4)
and provides a generalization of the long-wavelength
plasmon spectrum in a single-layer graphene [41] to the
case of the different Fermi velocities in the x and y di-
rection.

When the Fermi level crosses the Van Hove singularity
at |µ| = −∆ [Fig. 3(c),(d)], the plasmon frequency in the
long wavelengths changes continuously as a function of
∆/µ but has a logarithmic singularity of its derivative as
seen in Fig. 4. The functions (20) in the vicinity of this
crossing are

fx(−1 + ε) = 2
√

2
(

56
15 + ε ln |ε|

)
+O(ε),

fy(−1 + ε) =
√

2
(

8
3 − ε ln |ε|

)
+O(ε).

(24)

For ∆ < 0 there also exists an additional damped plas-
mon mode in the x direction for momenta 0 < qx < 2Kx

with its maximum at qx ∼ Kx, which lies entirely in the
intraband SPE region [Fig. 3(a),(c),(e)].

At the crossing of the critical point ∆ = 0
[Fig. 3(g),(h)] the spectrum of the undamped plasmon
changes smoothly and we have

fx(0) = 3
√
π Γ(3/4)/Γ(9/4) ≈ 5.751,

fy(0) = 2
√
π Γ(5/4)/Γ(7/4) ≈ 3.496,

(25)

in agreement [42] with Ref. [34].
The effect of a small positive ∆/µ is similar to that

in the case of gapped graphene [43]: the plasmon mode
becomes extended to larger values of momenta due to
the opening of the gap between the interband and intra-
band SPE continua [Fig. 3(i),(j)]. In the regime ∆ → µ
[Fig. 3(k),(l)], electrons have approximately parabolic
anisotropic dispersion (3). Using the asymptotic be-
havior of (20) for δ → 1,

fx(1− ε) = 2
√

2πε+O(ε2),

fy(1− ε) =
√

2πε+O(ε2), 0 6 ε� 1,
(26)

and we recover from Eq. (21) in this limit

ωp(q) '
√
gse

2µ0q

κ

[√
my

mx

cos2 θ +

√
mx

my

sin2 θ

]1/2

,

(27)
as previously reported in Ref. [36] for the monolayer BP.

IV. CONCLUSIONS

We have evaluated the polarization function and the
spectrum of collective excitations in the two-dimensional
system undergoing a topological phase transition with
two merging Dirac points. A single integral represen-
tation for Π(ω,q) has been derived which is suitable
for calculations on both real and imaginary frequency
axes. An analytic expression was obtained for the imag-
inary part of the vacuum polarization and its asymp-
totic behavior near the logarithmic divergence due to the
Van Hove singularity. We found analytically the long-
wavelength plasmon dispersion and numerically studied
the spectrum of collective excitations for arbitrary mo-
menta for both zero and nonzero values of the chemical
potential. By evaluating the energy loss function, we
have found both undamped and damped plasmon ex-
citations at zero temperature and studied their evolu-
tion across the merging transition. The presence of the
Van Hove singularity in the electron spectrum leads to
the existence of the gapped damped plasmon mode at
zero chemical potential in the semimetal phase. At fi-
nite µ, there is one undamped anisotropic collective mode
with the square-root dispersion, which lies in the gap be-
tween the interband and intraband SPE regions. In the
gapped phase (∆ > 0), this undamped mode is gener-
ically extended to larger values of momenta due to the
enhanced separation between the two SPE continua. At
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the critical point (∆ = 0), the undamped plasmon dis-
persion changes smoothly while an additional damped
and strongly anisotropic mode emerges at ∆ < 0 in the
interband SPE continuum. The crossing of Van Hove sin-
gularity by the Fermi level manifests itself in a divergent
derivative of the long-wavelength plasmon frequency.
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Appendix A: Calculation of the polarization function

The integrand in Eq. (11) can be written as

∑
σ=±

F+,±
k,k+q

E+
k − E

±
k+q + σω

=
∂

∂ky
F±(ω,q,k), (A1)

where

F±(ω,q,k) =
1

2v(v2q2
y − ω2)2

[
−v2qyγ(v2q2

y − ω2)

+ ηξ(v2q2
y + ω2) arctanh

2ky − qy
γ

− 2vqyηξω arctanh
ηξ − ω2 + 2v2qyky

vγω

−
(
ξ2ω2

√
α− ω2√
β − ω2

+ v2q2
yη

2

√
β − ω2

√
α− ω2

)
× arctanh

(2ky − qy)(ηξ + v2q2
y − ω2)− qy(η − ξ)2

γ
√
α− ω2

√
β − ω2

∓
(
qy → −qy, ξ → −ξ

)]
, (A2)

variables η, ξ, α, β are defined in Eq. (14) and

γ =
√

(η − ξ)2/v2 + (2ky − qy)2. (A3)

The function F±(ω,q,k) does not have any singulari-
ties for Imω 6= 0 and the multivalued functions taken on
their principal branches. Therefore, the definite ky inte-
gral of (A1) is obtained straightforwardly by evaluating
F±(ω,q,k) in the integration limits, which, after some
algebra, yields Eqs. (12) and (13).

Appendix B: Analytic expression for Im Π0(ω,q)

The nonzero imaginary part of the expressions (12),
(13) for the polarization function originates from the re-
gions where the argument of inverse hyperbolic tangent
is real and larger than unity,

Im
[
arctanh(x± i0)

]
= ±π

2
θ(x2 − 1). (B1)

0 1 2 3 4 5 6 7

-8

-6

-4

-2

0

2

4

AAA

A j AAA

A

Ψ

Im P0=0

Im P0=0

A

B
C

D

HaL

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

aqx
2HΩ2-Υ2qy

2L-1�2

D
HΩ

2 -
Υ

2 q
y2
L-

1�
2

Im P0=0

Im P0=0

A

B C

D

HbL

FIG. 5: Regions (B4) plotted for parameters φ and ψ (a)
or q, ω and ∆ (b). At the boundaries, Im Π0(ω,q) has a
logarithmic singularity (solid line), logarithmically divergent
derivative (dashed) or jump discontinuity of the derivative
(dotted).

The step function above determines the integration limits
which, for the non-vacuum term (13), involves the roots
of the higher-order polynomials that cannot be written
in a closed form in the general case (for nonzero qx, qy
and ∆). For the vacuum term, on the other hand, the
imaginary part can be evaluated in terms of the complete
elliptic integrals [44]:

Im Π0(ω, qx, qy) = −
gs

√
|ω| θ(1− τ)θ(2− ψ)θ(ν)

128π
√
av(1− τ)3/4

× sgn(ω)

{
4(2ψ + 3ϕ− τϕ+ 2τψ)hiE(ti)

+ (1− b)h−1
i

[
riK(ti) + si

(
(16− 4ψϕ)(1− τ)

− ϕ2(3− τ)
)
Π(π/2, ρi, ti)

]}
,

(B2)

where

d = 4∆(ω2 − v2q2
y)−1/2, τ = v2q2

y/ω
2,

ϕ = (ω2 − v2q2
y)1/2/(aq2

x), ψ = d+ 1/ϕ, (B3)

ν = (ψ + ϕ+ 2)/4, b = (2− ψ)/ϕ,

and the subscript i = A,B,C,D determines the region in
the (ϕ,ψ) space (see Fig. 5):

A : − 2 < ψ < 2, ϕ > 2− ψ,
B : ψ < −2, ϕ > 2− ψ,
C : ψ < −2, −2− ψ < ϕ < 2− ψ,
D : − 2 < ψ < 2, 0 < ϕ < 2− ψ,

(B4)

and
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ρA = ρ−1
D = b, ρC = ρ−1

B = ν,

tA = tC = t−1
B = t−1

D =
√
bν,

sC = sD = 1, sA = sB = −1,

hA = hC = 1, hB = hD =
√
bν,

rA = −ϕ
[
12 + 4ψ + 3ϕ− τ(4 + 4ψ + ϕ)

]
,

rB = 4ν
[
2ψ − 3ϕ+ τ(2ψ + ϕ)

]
,

rC = −4
[
4 + 3ϕ− τ(4 + ϕ)

]
,

rD = (ψ − 2)(8 + 2ψ + 3ϕ)

+ τ [ψ(4 + 2ψ − ϕ) + 2(8 + ϕ)].

(B5)

For qx = 0, only regions A and B survive and Eq. (B2)

simplifies to

Im Π0(ω, 0, qy) = −
gsτ
√
|ω|θ(1− τ)θ(2− d) sgn(ω)

12π
√
av(1− τ)3/4

×


(1− d)K(ũ) + 2dE(ũ), |d| < 2,

2 + d2

2ũ
K(1/ũ) +

d(2− d)

2ũ
E(1/ũ), d < −2,

(B6)

where ũ =
√

2− d/2.

Appendix C: Expressions for fx,y(∆/µ)

The functions (20) determining the long-wavelength plasmon frequency can be written in terms of the complete
elliptic integrals as

fx(δ) =
8
√

2

15

{
2(9− 2δ2)E(u)− (1 + δ)(9− 2δ)K(u), |δ| < 1,

2u
[
(9− 2δ2)E(1/u) + 2δ(1 + δ)K(1/u)

]
, δ < −1,

(C1)

fy(δ) =
4
√

2

3

{
(1 + δ)K(u)− 2δE(u), |δ| < 1,

2u
[
(1 + δ)K(1/u)− δE(1/u)

]
, δ < −1,

(C2)

where u =
√

(1− δ)/2. According to the notations used in Ref. [33],

fx(δ) = 4 I3(0, δ), fy(δ) = I2(0, δ). (C3)
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[29] P. Dietl, F. Piéchon, and G. Montambaux, Phys. Rev.
Lett. 100, 236405 (2008); P. Delplace and G. Montam-
baux, Phys. Rev. B 82, 035438 (2010).

[30] S. Yuan, M.I. Katsnelson, and R. Roldán,
arXiv:1512.06345.

[31] D. Carpentier, A.A. Fedorenko, and E. Orignac, Euro-
phys. Lett. 102, 67010 (2013).

[32] H. Isobe, B.-J. Yang, A. Chubukov, J. Schmalian, and N.
Nagaosa, arXiv:1508.03781.

[33] P. Adroguer, D. Carpentier, G. Montambaux, and E.
Orignac, arXiv:1511.00036.

[34] S. Banerjee and W.E. Pickett, Phys. Rev. B 86, 075124
(2012).

[35] T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L.M.
Moreno, and F. Guinea, Phys. Rev. Lett. 113, 106802
(2014).

[36] A.S. Rodin and A.H. Castro Neto, Phys. Rev. B 91,
075422 (2015).

[37] F. Jin, R. Roldán, M.I. Katsnelson, and S. Yuan, Phys.
Rev. B 92, 115440 (2015).

[38] A. N. Rudenko and M.I. Katsnelson, Phys. Rev. B 89,
201408 (2014).

[39] T. Stauber, J. Schliemann, and N.M.R. Peres, Phys. Rev.
B 81, 085409 (2010).

[40] S. Yuan, R. Roldán, and M.I. Katsnelson, Phys. Rev. B
84, 035439 (2011).

[41] K.W.-K. Shung, Phys. Rev. B 34, 979 (1986); E.H.
Hwang and S. Das Sarma, Phys. Rev. B 75, 205418
(2007); B. Wunsch, T. Stauber, F. Sols, and F. Guinea,
New J. Phys. 8, 318 (2006).

[42] According to the notations of Ref. [34], fx(0) = 16I3,
fy(0) = 4I2.

[43] X.-F. Wang and T. Chakraborty, Phys. Rev. B 75,
033408 (2007); 75, 041404 (2007); 81, 081402 (2010);
P.K. Pyatkovskiy, J. Phys.: Condens. Matter 21, 025506
(2009).

[44] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series,
and products, 7th ed. (Academic Press, New York, 2007).

http://dx.doi.org/10.1088/1367-2630/16/9/095004
http://dx.doi.org/10.1088/1367-2630/16/9/095002
http://dx.doi.org/10.1088/1367-2630/16/9/095002
http://dx.doi.org/10.1103/PhysRevB.90.245108
http://dx.doi.org/10.1103/PhysRevB.90.245108
http://dx.doi.org/10.1103/PhysRevB.91.235447
http://dx.doi.org/10.1103/PhysRevB.92.155123
http://dx.doi.org/10.1103/PhysRevB.92.155123
http://dx.doi.org/10.1073/pnas.1416581112
http://dx.doi.org/10.1039/C4CS00257A
http://dx.doi.org/10.1103/PhysRevB.92.165409
http://dx.doi.org/10.1103/PhysRevB.92.165409
http://dx.doi.org/10.1126/science.1137430
http://dx.doi.org/10.1038/nmat2874
http://dx.doi.org/10.1038/nmat2874
http://dx.doi.org/10.1038/nphys3259
http://arxiv.org/abs/1512.05815
http://dx.doi.org/10.1103/PhysRevB.74.033413
http://dx.doi.org/10.1103/PhysRevLett.98.260402
http://dx.doi.org/10.1103/PhysRevLett.98.260402
http://dx.doi.org/10.1088/1367-2630/10/10/103027
http://dx.doi.org/10.1088/1367-2630/10/10/103027
http://dx.doi.org/10.1103/PhysRevB.80.153412
http://dx.doi.org/10.1140/epjb/e2009-00383-0
http://dx.doi.org/10.1140/epjb/e2009-00383-0
http://dx.doi.org/10.1103/PhysRevB.80.045401
http://dx.doi.org/10.1021/nl5043769
http://dx.doi.org/10.1038/srep11699
http://dx.doi.org/10.1103/PhysRevB.92.075437
http://dx.doi.org/10.1103/PhysRevB.92.075437
http://dx.doi.org/10.1103/PhysRevB.92.085419
http://dx.doi.org/10.1021/acs.nanolett.5b04106
http://dx.doi.org/10.1021/acs.nanolett.5b04106
http://dx.doi.org/10.1103/PhysRevLett.102.166803
http://dx.doi.org/10.1103/PhysRevLett.102.166803
http://dx.doi.org/10.1103/PhysRevB.81.035111
http://dx.doi.org/10.1103/PhysRevLett.103.016402
http://dx.doi.org/10.1103/PhysRevLett.103.016402
http://dx.doi.org/10.1103/PhysRevB.92.161115
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1103/PhysRevLett.108.175303
http://dx.doi.org/10.1103/PhysRevLett.108.175303
http://dx.doi.org/10.1103/PhysRevLett.111.103901
http://dx.doi.org/10.1103/PhysRevLett.111.103901
http://dx.doi.org/10.1103/PhysRevLett.110.033902
http://dx.doi.org/10.1126/science.aaa6486
http://dx.doi.org/10.1103/PhysRevLett.100.236405
http://dx.doi.org/10.1103/PhysRevLett.100.236405
http://dx.doi.org/10.1103/PhysRevB.82.035438
http://arxiv.org/abs/1512.06345
http://dx.doi.org/10.1209/0295-5075/102/67010
http://dx.doi.org/10.1209/0295-5075/102/67010
http://arxiv.org/abs/1508.03781
http://arxiv.org/abs/1511.00036
http://dx.doi.org/10.1103/PhysRevB.86.075124
http://dx.doi.org/10.1103/PhysRevB.86.075124
http://dx.doi.org/10.1103/PhysRevLett.113.106802
http://dx.doi.org/10.1103/PhysRevLett.113.106802
http://dx.doi.org/10.1103/PhysRevB.91.075422
http://dx.doi.org/10.1103/PhysRevB.91.075422
http://dx.doi.org/10.1103/PhysRevB.92.115440
http://dx.doi.org/10.1103/PhysRevB.92.115440
http://dx.doi.org/10.1103/PhysRevB.89.201408
http://dx.doi.org/10.1103/PhysRevB.89.201408
http://dx.doi.org/10.1103/PhysRevB.81.085409
http://dx.doi.org/10.1103/PhysRevB.81.085409
http://dx.doi.org/10.1103/PhysRevB.84.035439
http://dx.doi.org/10.1103/PhysRevB.84.035439
http://dx.doi.org/10.1103/PhysRevB.34.979
http://dx.doi.org/10.1103/physrevb.75.205418
http://dx.doi.org/10.1103/physrevb.75.205418
http://dx.doi.org/10.1088/1367-2630/8/12/318
http://dx.doi.org/10.1103/PhysRevB.75.033408
http://dx.doi.org/10.1103/PhysRevB.75.033408
http://dx.doi.org/10.1103/PhysRevB.75.041404
http://dx.doi.org/10.1103/PhysRevB.81.081402
http://dx.doi.org/10.1088/0953-8984/21/2/025506
http://dx.doi.org/10.1088/0953-8984/21/2/025506

