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Abstract

Here we review the many interesting aspects and distinct phenomena associated to quantum dynamics on general
graph structures. For so, we discuss such class of systems under the energy domain Green’s function (G) framework.
Such approach is particularly interesting becauseG can be written as a sum over classical-like paths, where local
quantum effects are taking into account through the scattering matrix amplitudes (basically, transmission and reflection
coefficients) defined on each one of the graph vertices. So, theexact Ghas the functional form of a generalized
semiclassical formula, which through different calculation techniques (addressed in details here) always can be cast
into a closed analytic expression. This allows to solve exactly arbitrary large (although finite) graphs in a recursive
and fast way. Using the Green’s function method, we survey many properties for open and closed quantum graphs,
like scattering solutions for the former and eigenspectrumand eigenstates for the latter, also addressing quasi-bound
states. Concrete examples, like cube, binary trees and Sierpiński-like, topologies are considered. Along the work,
possible distinct applications using the Green’s functionmethods for quantum graphs are outlined.
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1. Introduction

A graph can be understood intuitively as a set of elements (the vertices), attached ones to the others through
connections (the edges). The topological arrangement of a graph is thus completely determined by the way the
vertices are joined by the edges. The more general concept ofa network – essentially a graph – has found applications
in many branches of science and engineering. Some representative examples include: the analysis of electrical circuits,
verification (in different contexts) of the shortest paths in grid structures, traffic planning, charge transport in complex
chemical compounds, ecological webs, cybernetics architectures, linguistic families, and social connection relations,
to cite just a few. In fact, given that as diverse as the streetsystem of a city, the web of neurons in the human brain,
and the organization of digital database in distinct storage devices, can all be described as ‘graphs’, we might be lead
to conclude that such idea is one of the most useful and broadly used abstract mathematical notion in our everyday
lives.

Less familiar is which we call quantum graphs1, or more precisely quantum metric graphs (by associating lengths
to the edges), basically comprising the study of the Helmholtz operator∇2 + k2 – when the external potentials for
the underlying Hamiltonian along the edges are null, see later – on these topological structures. Nevertheless, they
still attract a lot of attention in the physics and mathematics specialized literature because their rich behavior and
potential applications [1, 2], for instance, regarding wave propagation and diffusive properties (actually, this latter
aspect allowing a possible formal association between the Schrödinger and the diffusion equations [3]).

Historically, Linus Pauling seems to be the first to foresee the usefulness of considering quantum dynamics on
graph structures, e.g., to model free electrons in organic molecules [4–10]. Indeed, in a first approximation the

1 Depending on the particular aspect to be studied, quantum graphs are also named quantum networks or quantum wires.
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molecules can be viewed as a set of fixed atoms (vertices) connected by chemical bonds (edges), along which the
electrons obey a 1D Schrödinger equation with an effective potential. Moreover, quantum transport in multiplycon-
nected systems [11], like electron transport in organic molecules [12] as proteins and polymers, may be described by
one-dimensional pathways (trajectories through the edges), changing from one path to another due to scattering at the
vertices centers. More recently, quantum graphs have also been used to characterize molecular connectivity [13, 14].

In the realm of condensed matter physics, under certain conditions [15, 16] charge transport in solids is likewise
well described by one-dimensional dynamics in branched (sonetwork-like) structures, as in polymer films [17, 18].
Quantum graphs have also been applied in the analysis of disordered superconductors [19], Anderson transition in
disordered wires [20, 21], quantum Hall systems [22], superlattices [23], quantum wires [24], mesoscopic quantum
systems [25–28], and in connection with laser tomography technologies [29].

To understand fundamental aspects of quantum mechanics, graphs are idealized exactly soluble models to address,
e.g., band spectrum properties of lattices [30, 31], the relation between periodic-orbit theory and Andersonlocalization
[32], general scattering [33], chaotic and diffusive scattering [34–36], and quantum chaos [37]. In particular, quantum
graphs relevance in grasping distinct features of quantum chaotic dynamics have been demonstrated in two pioneer
papers [38, 39]. Through elucidating examples, such works show that the corresponding spectral statistics follow
very closely the predictions of the random-matrix theory [40]. They also present an alternative derivation of the
trace formula2, highlighting the similarities with the famous Gutzwiller’s expression for chaotic Hamiltonian systems
[41, 42]. Actually, a very welcome fact in the area is the possibility to obtain exact analytic results for quantum graphs
even when they present chaotic behavior [43–46]. Important advances and distinct approaches to spectrum statistics
analysis in quantum graphs, as well as the relation with quantum chaos, can be found in a nice review in [47].

As a final illustration of the vast applicability of graphs wemention the important fields of quantum information
and quantum computing [48]. For the metric case (the focus in this review), it has been proposed that the logic gates
necessary to process and operate qubits could be implemented by tailoring the scattering properties of the vertices
along a quantum graph [49, 50]. However, much more common in quantum information is to consider only the
topological features of the graphs [51], hence not ascribing lengths to the edges. Such structuresare usually referred as
discrete or combinatorial graphs (for a parallel between metric and combinatorial see, e.g., [52]). They are the basis to
construct the so called graph-states [53–57], in which the vertices are the states themselves (e.g., spins 1/2 constituting
the qubits) and the edges represent the pairwise interactions (for instance, an Ising-like coupling [58]) between two
vertices states [59]. Graph-states are very powerful tools to unveil different aspects of quantum computation. For
instance, to establish relations between different computational methods schemes [57, 60] and to demonstrate that
entanglement can help to outperform the Shannon limit capacity (of the classical case) in transmitting a message with
zero probability of error throughout a channel presenting noise [61, 62].

Extremely relevant in quantum information processing is the concept of quantum walks, loosely speaking, the
quantum version of classical random walks [63–65]. Quantum walks are quite useful either theoretically, as primitives
of universal quantum computers [66–68], or operationally, as building blocks to quantum algorithms [65, 69–71].
Thus, since there is a close connection between quantum walks and quantum graphs [72–75], this might open the
possibility of extending different techniques to treat quantum graphs to the study of quantum walks [76–79], therefore
helping in the development of quantum algorithms.

The physical construction of quantum graphs is obviously anessential issue. In such regard, an important result
is that in Ref. [80]. It shows that quantum graphs can be implemented through microwave networks due to the formal
equivalence between the Schrödinger equation (describing the former) and the telegraph equation (describing the
latter) [80]. Currently, these kind of systems are among the most preeminent experimental realizations of quantum
graphs – as demonstrated by the vast literature on the topic [81–101]. Nonetheless, microwave networks are not the
only possibility. In particular, optical lattices [102–104] and quasi-1D structures of large donor-acceptor molecules
(with quasi-linear optical responses) [105] might also constitute very appropriate setups for building quantum graphs.

The implementation of quantum graphs – of course, besides the concrete applications – can be quite helpful in
settling relevant theoretical questions. As an illustrative example, consider the famous query posed by Mark Kac
in 1966: ‘can one hear the shape of a drum?’ [106]. Its modified version in the present context is [107]: ‘can one

2For G(r ′′, r ′; E) the energy dependent Green’s function of a quantum system (Sec. 3), the trace ofG, or g(E) =
∫

dr G(r , r ; E), is important
because it leads to the problem density of statesρ(E) = −(1/π) limǫ→0 Im[g(E + iǫ)]. The Gutzwiller trace formula [41] is an elegant semiclassical
approximation forρ(E), in whichg(E) is given in terms of sums over classical periodic orbits.
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hear the shape of a graph?’. It has been proved that for simplegraphs (see next Sec.) whose all edges lengths are
incommensurable, the spectrum is uniquely determined [107]. In other words, in this case one should be able to
reconstruct the graph just from its eigenmodes. But if theseassumptions are not verified, then distinct graphs can be
isospectral [108, 109]. An interesting perspective to the problem arises by adding infinity leads to originally closed
graphs [110, 111]. So, we have scattering system which can be analyzed in terms of their scattering matricesS. Two
metric graphs,ΓA andΓB, are said isoscattering either ifSA andSB share the same set of poles or the phases of det[SA]
and det[SB] are equal [112]. Hence, the question is now: can the poles ofS and phases of det[S] aloneto define the
graph’s shape? The answer is again negative [88, 110], as nicely confirmed through microwave networks experiments
[88] (see also [82]). However, by analyzing in more details actual scatteringdata (e.g., in the time instead of frequency
domain [84]) it does become possible to distinguish isoscattering graphs which are topologically different.

Quantum graphs as a well posed general mathematical problemrequires the establishment of the underlying self-
adjoint operator, i.e., the proper definition of the wave equation with its correct boundary conditions. Probably, the
first important step along this direction was taken in 1953 inRef. [7]. There, graphs were thought of as idealized
web of wires or wave guides, but for the widths being much smaller than any other spatial scale. Assuming the lateral
size of the wire small enough, any propagating wave remains in a single transverse mode. Therefore, instead of the
corresponding partial differential Schrödinger equation, one can deal with ordinarydifferential operators. Also, if no
external field is applied or no potentialV for the wires is assumed, the one dimensional motion along the edges is
free and everywhere in the graph the wave number isk =

√

2µE/~2, with the energyE a constant. Concerning the
nodes, they either can be faced as scattering centers (thus,conceivably described by localSmatrices) or theloci where
consistent matching conditions for the partial wave functions (i.e., theψ’s in the distinct edges) must be imposed (Sec.
2).

In contrast, graphs with non-vanishing potentials – sometimes referred to as ‘dressed’ [44, 113] – lead to solutions
with spatially dependentk’s along the edges. An important subset of dressed are scaling quantum graphs3 [43, 44, 114–
117], whose mathematical foundations are discussed in [118]. They are particularly interesting because although their
classical limit is chaotic, the quantum spectrum is exactlyobtained through analytic periodic orbit expansions [43].
Another very relevant class of dressed quantum graphs is that described by magnetic Schrödinger operators [119]. In
this case one assumes arbitrary inhomogeneous magnetic fields in the network [120], such that for each edgee there
is a corresponding vector potentialAe. So, formally we have to make the traditional momentum operator substitution
in the Schrödinger equation:d/dxe→ d/dxe− iAe. Recently, quantum graphs with magnetic flux have attracteda lot
of attention due to the many distinct phenomena emerging in these systems [121–128].

Given the discussion so far, it is already clear that a quantum graph is, after all, just an usual quantum problem.
As such, its solution basically means to determine properties like wave packets propagation [129, 130], eigenstates
(either bound and scattering states) [131, 132], eigenenergies [133], etc. This can be accomplished from, say, a
suitable Schrödinger equation and appropriate boundary conditions for each specific graph topology, Sec.2. But
operationally there are many ways to deal with these systems, so different techniques can be employed. For instance,
we can cite self-adjoint extension approaches [134], and the previously mentioned scatteringS matrix methods [38]
and the trace formula based on classical periodic orbits expansions [39].

It is well known that the energy Green’s functionG is a very powerful tool in quantum mechanics [135, 136].
Its knowledge allows to determine essentially any relevantquantity for the problem (e.g., the time evolution can be
calculated from the time-dependent propagator, which is the Fourier transform ofG). So, it should be quite natural to
consider Green’s function approaches in the study of graph structures. In fact, one of the first works in this direction
[35] has employedG to describe transport in open graphs. Later, the many possibilities in utilizing Green’s functions
techniques for arbitrary quantum graphs have been discussed and exemplified in [137], with general and rigorous
results further obtained from such a method in [138, 139]. Recently, Green’s functions have been used to investigate
(always in the context of quantum graphs): searching algorithms for shortest paths [140], Casimir effects [141],
vacuum energy in quantum field theories [142], and resonances on unbounded star-shaped networks [143]. Finally,
but not the least important, the special topological features of networks make it possible (at least in the undressed
case4) to obtain the exactG in a closed analytic form for any finite (i.e., a large although limited number of nodes and

3Briefly, to each edgee of a scaling quantum graph one can associate a numerical constant γe. Then, alonge the wave number iske = γek0,
with k0 =

√

2µE/~2 a constant.
4The Green’s function for scaling quantum graphs can also be calculated exactly. This will be briefly discussed in Sec. 3.
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edges) arbitrary graph. Certainly, this contrasts with most problems in quantum mechanics, for which exact analytic
solutions are very hard to find [144, 145].

Therefore, the purpose in this review is twofold. As for the first, we start observing there is a huge literature
discussing general features and applications of classicalgraphs. To cite just one, more physics-oriented, we mention
communicability (so, signal transport) in classical networks [146]. In the quantum case comprehensive overviews are
not so abundant, notwithstanding particular relevant aspects can be found addressed in details in some very interesting
works [1, 39, 47, 52, 147, 148]. Also, for a formal and rigorous treatment, a good source is[149]. In this way,
our first goal is to survey graphs as ordinary quantum mechanics problems. However, highlighting that their special
characteristics can give rise to rich quantum phenomena.

The second is to do so by specifically considering one of the most powerful methods to treat quantum graphs,
namely, the Green’s function approach. For arbitrary graphs, we discuss in an unified manner how to obtain the exact
energy domainG as a general sum over paths ‘a la Feynman’ [ 150–152]. These paths must be weighted by the proper
quantum amplitudes, given by energy-dependent scatteringmatrices elements associated to the vertices. We examine
a schematic way to regroup the multi-scattering contributions (essentially a factorization method [134, 153–155]),
leading to a final closed analytic expression forG. This particular procedure to construct the exactG is very useful
to interpret many results concerning quantum graphs, like interference in transport processes [35, 156, 157]. With the
help of illustrative examples, we elaborate on how to extract from G the graphs quantum properties.

The work is organized as the following. In Section2 we define and discuss general quantum graphs. In Section3
we consider in great detail the Green’s function approach for such systems. In Section4 we present (with examples)
the factorization protocols which allow to castG as a closed analytic formula. Distinct applications are addressed
in the next three Sections. More specifically, the general determination of bound and scattering states, analysis of
representative graphs (cube, binary trees, and Sierpiński-like graphs), and quasi-bound states in open structures,are
considered, respectively, in Secs.5, 6, and7. Finally, we drawn our final remarks and conclusion in Section 8.

2. Quantum mechanics on graphs: general aspects

2.1. Graphs

A finite graph X(V,E) is a pair consisting of two sets, of vertices (or nodes)V(X) = {1, 2, . . . , n} and of edges
(or bonds)E(X) = {e1, e2, . . . , em} [158, 159]. Thus, the total number of vertices and edges is given, respectively, by
n = |V(X)| andm = |E(X)|. If the verticesi and j are linked by the edgees, thenes ≡ {i, j} (hereafteri, j = 1, . . . , n
andr, s = 1, . . . ,m). For an undirected graph, any edge{i, j} has the same properties [160] in both i → j and j → i
‘directions’: {i, j} ≡ { j, i}. For simple graphses , { j, j} ander = es only if r = s. Hence, in this case there are no loops
or pair of edges multiple-connected. Finally, for connected graphs the vertices cannot be divided into two non-empty
subsets such that there is no edge joining the two subsets.

The graph topology, i.e., the way the vertices and edges are associated, can be described in terms of the adjacency
matrix Ai j (X) of dimensionn× n. For simple undirected graphs,Ai j (X) reads

Ai j (X) =















1, if {i, j} ∈ E(X),

0, otherwise.
(1)

Two vertices are said neighbors whenever they are connectedby an edge. Thus, the set

Ei(X) = { j : {i, j} ∈ E(X)} (2)

is the neighborhood of the vertexi ∈ V(X) and the degree (or valence) ofi is

vi = |Ei(X)| =
n

∑

j=1

Ai j (X). (3)

Note that

|E(X)| = 1
2

n
∑

i=1

|Ei(X)|. (4)
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(a) (b)

(c)

1e1

e2

e3

e4

em−2

em−1
em

Figure 1: (Color online). Examples of (a) open and (b) closedquantum graphs. (c) A open star graph with a single vertexV(Γ) = {1} connected to
E(Γ) = {e1, . . . , em} leads.

So far, the above definitions refer todiscreteor combinatorialgraphs. To discuss quantum graphs it is necessary
to equip the graphs with a metric. Therefore, ametric graphΓ(V,E) is a graphX(V,E) for which it is also assigned a
positive lengthℓes ∈ (0,+∞) to each edge. If all edges have finite length the metric graphis calledcompact, otherwise
it is non-compact. In this latter caseΓ has one ore more ‘leads’. A lead is a single ended edgeer , which leaves from a
vertex and extends to the semi-infinite (ℓes = +∞).

In the quantum description, for each edgees (with es either joining two verticesi and j or leaving from vertexj
to the infinite) we assume a coordinatexes, indicating the position along the edge. Fores = {i, j}, to choose at which
vertex (i or j) xes = 0 is just a matter of convention, and can be set according to the convenience in each specific
system. Of course, fores a lead attached toj, a natural choice isxes = 0 at j.

In the remaining of this review we will focus on simple connected graphs, the most studied situation in quantum
mechanics [73]. But we stress that the Green’s function discussed here is also valid for non-simple graphs, i.e.,
for many edges joining the same two vertices and for the existence of loops: one just need to consider the proper
reflections and transmissions quantum amplitudes (Sec. 3) for the propagation along these extra edges.

2.2. The time-independent Schrödinger equation on graphs
A quantum graphis a metric graph structureΓ(V,E), on which we can define a differential operatorH (usually

the Schrödinger Hamiltonian) together with proper vertices boundary conditions [39, 47]. In others words, a quantum
graph problem is a triple

{Γ(V,E), Hamiltonian operatorH on E(Γ), boundary conditions forV(Γ)}.

A quantum graph is calledclosedif the respective metric graph is compact, otherwise it is called open. A schematic
representation of quantum graphs [160] is depicted in Figure1.

The total wave functionΨ is a vector withm components, written as

Ψ =



































ψe1(xe1)
ψe2(xe2)
...

ψem(xem)



































. (5)
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1

5

4

3

2

ψe1

ψe2

ψe3

ψe4

Figure 2: (Color online). A quantum graphΓ(V,E), V(Γ) = {1, 2,3, 4, 5}, E(Γ) = {{1, 2}, {2, 3}, {3,4}, {3, 5}} and theΨ components in each one of its
edges. The wave functions must be matched through the boundary condition at each vertexi ∈ V(Γ). Specifically: ati = 1: ψe1 ; at i = 2: ψe1 , ψe2 ;
at i = 3: ψe2 , ψe3 , ψe4 ; at i = 4: ψe4 ; at i = 5: ψe3 .

The Hamiltonian operator onE(Γ) consists of the following unidimensional differential operators defined on each
edgees [19, 161] (the dressed case)

Hes(xes) = −
~

2

2µ
d2

dx2
es

+ Ves(xes). (6)

Here,Ves(xes) is the potential assumed to be non-negative and smooth in the interval 0< xes < ℓes. Different works
have addressed the above Hamiltonian for non-vanishing potentials (for instance, see [43, 44, 116, 137, 162–165]).
However, in the literature, even in papers discussing quantum chaos [37–39, 47, 166], it is usual to have for anyes that
Ves = 0 (the case we assume in this review). Then, the componentψes(xes) of the total wave functionΨ is the solution
of (k =

√

2µE/~)

− d2ψes

dx2
es

= k2ψes(xes) ⇒ ψes(xes) = c+,es exp[+i k xes] + c−,es exp[−i k xes], (7)

with thec’s constants. All these wave functions must satisfy appropriate boundary conditions at the vertices, ensuring
continuity, global probability current conservation, divergence freeψ’s and uniqueness. Technically, the match of the
boundary conditions in each vertex is the most cumbersome step in obtaining the final fullΨ (in Figure2 we illustrate
which components must be matched in which vertices for a particular example of a graph withV(Γ) = {1, 2, 3, 4, 5}
andE(Γ) = {{1, 2}, {2, 3}, {3, 4}, {3, 5}}).

Furthermore, the imposition of these boundary conditions [39, 47, 167] renders the Hamiltonian operator to be
self-adjoint5. In fact, the most general boundary conditions at a vertex ofa quantum graph (consistent with flux
conservation [30]) can be determined through self-adjoint extension techniques [168, 169]. Let us denote by [134, 153]
Ψ j = (ψej1

, ψej2
, . . . , ψejvj

)T andΨ′j = (ψ′ej1
, ψ′ej2

, . . . , ψ′ejvj
)T , respectively, the wave functions and their derivatives

associated to thev j edges attached to the vertexj. Then, the boundary conditions can be specified throughv j × v j

matricesA j andB j, withA jΨ j = B jΨ
′

j at j. One ensures self-adjointeness of the Hamiltonian operator by imposing

current conservationΨ†jΨ
′
j = Ψ

′†
jΨ j . As shown in [134, 153], the general solution for this problem implies that

A jB†j = B jA†j , resulting in a set ofv2
j independent real parameters to characterize the boundary conditions at j.

More on this is discussed in the AppendixA, but here we comment that in physical terms, the self-adjointness of the
Hamiltonian implies that the dynamics does not allow the vertices to behave as sinks or sources.

2.3. The vertices as zero-range potentials

From the previous discussion, in an undressed quantum graphthe edgeses can be viewed as free unidimensional
spatial directions of lengthℓes and the vertices as point structures (0D), whose action is toimpose the proper boundary
conditions on theψ’s. In the usual 1D quantum mechanics, arbitrary zero-rangepotentials, also known as point

5Consider a continuous linear (so bounded) operatorO of domainD(O) in a Hilbert spaceH . The adjointO† (also bounded) of the operatorO
is such that〈Oψ|φ〉 = 〈ψ|O†φ〉 for ψ ∈ D(O) andϕ ∈ H . O is self-adjoint if and only ifO = O† andD(O) = D(O†) [167].
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interactions, have exactly such effect [170, 171] (see AppendixA.1). A textbook example is the Dirac delta-function
potential that simply determines, at its location, a specific boundary conditions to the wave function [172].

Hence, to describe the quantum dynamics along a graph we can take thej’s as arbitrary zero-range interactions,
an approach fully consistent with the general boundary conditions treatment described in Sec.2.2, Appendix A.
Moreover, to assume the vertices as potentials brings up an important advantage: thej’s become point scatterers. As
such, they are completely characterized by their scattering features, given in terms of the reflections and transmission
amplitudes. For example, this is exactly the case for a delta-function, for whichψ can be obtained without consid-
ering any boundary conditions. Instead, a purely scattering treatment solves the problem (see, e.g., the pedagogical
discussion in [173]). General point interactions are very diverse in their scattering properties. For instance, the in-
triguing aspects of transmission and reflection from point interactions have been discussed in distinct contexts, such
as, time-dependent potentials [174], nonlinear Schrödinger equation [175] and shredding by sparse barriers [176].

Actually, for a point interaction on the line (say, atx0 = 0), as demonstrated in the AppendixA.1, to determine
which boundary conditions its impose to the wave function, at x = 0, is entirely equivalent to specify its scattering
S matrix elements. This holds true when the vertex, a zero-range potential, instead of being attached to two edges
(the ‘left’ (−∞ < x < 0) and ‘right’ (0 < x < +∞) semi-infinite leads for the 1D line case), hasv j 1D directions
or edges (see Figure1 (c)). From the AppendixA.2, we then can define for each vertexj a matrixS j , of elements
S(s,s)

j (k) = r (s)
j (k) andS(s,r)

j (k) = r (s,r)
j (k) (from now on, we will label edgesejs andejr simply assandr). Here

• t(s,r)j (k) is the quantum amplitude for a plane wave, of wave numberk, incoming from the edges towards the
vertex j to be transmitted to the edger outgoing fromj.

• r (s)
j (k) is the quantum amplitude for a plane wave, of wave numberk, incoming from the edges towards the

vertex j to be reflected to the edges outgoing fromj.

The required conditions for self-adjointeness (i.e., probability flux conservation) along the whole graph (Appendix
A.3), demands thatS(k)S†(k) = S†(k)S(k) = 1 andS(k) = S†(−k), so yielding

v j
∑

l=1

S(s,l)
j (k)S(r,l)

j

∗
(k) =

v j
∑

l=1

S(l,s)
j (k)S(l,r)

j

∗
(k) = δsr, S(s,r)

j (k) = S(r,s)
j

∗
(−k). (8)

Summarizing, for quantum graphs it is complete equivalent to set either the boundary conditions for theψ’s at each
vertex, as mentioned in Sec.2.2, or to specify the scattering properties of the different j’s through theS(r,s)

j matrices
obeying to Eq. (8). We also observe that eventually one could have bound states for a given point interaction potential
j depending on the particular BC imposed toψ at the vertex location. In the scattering description, the quantum
coefficientsRandT have poles at the upper-half of the complex planek, corresponding to the possible eigenenergies.
The eigenfunctions can then be obtained from an appropriateextension of the scattering states to thosek’s values
[177]. This will be exemplified in Section6.

3. Energy domain Green’s functions for quantum graphs

3.1. Basic results in the usual 1D case

The Green’s functionG(E) is an important tool in quantum mechanics [135]. In the usual 1D case, it is defined by
the inhomogeneous differential equation (H(x) = −(~2/(2µ)) d2/dx2 + V(x))

[E − H(xf )]G(xf , xi ; E) = δ(xf − xi), (9)

where alsoG(xf , xi ; E) is subjected to proper boundary conditions.
Suppose we have a complete set of normalized eigenstatesψs(x) (s= 0, 1, ..., discrete spectrum) andψσ(x) (σ > 0,

continuum spectrum), with

H ψs = Esψs, H ψσ =
~

2σ2

2µ
ψσ. (10)
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Then, the solution of Eq. (9) is formally

G(xf , xi ; E) =
∑

s

ψs(xf )ψs
∗(xi)

(E − Es)
+

∫ ∞

0
dσ

ψσ(xf )ψσ∗(xi)

(E − ~2σ2/(2µ))
. (11)

Thus, from Eq. (11) we can identify the poles of the Green’s function with the bound states eigenenergiesEs and the
residues at each pole with a tensorial product of the corresponding bound state eigenfunction. The continuous part of
the spectrum corresponds to a branch cut ofG(xf , xi ; E) [178, 179]. Given Eq. (11), the limit

lim
E→Es

(E − Es) G(xf , xi ; E) = ψs(xf )ψs
∗(xi) (12)

can be used to extract the discrete bound states fromG.

3.2. The exact Green’s function written as a generalized semiclassical expression

There are basically three methods for calculating the Green’s function [135]: solving the differential equation
in (9); summing up the spectral representation in (11); or performing the Feynman path integral expansion for the
propagator in the energy representation [180, 181]. In particular, for contexts similar to the present work (see next), the
latter approach has been used to study scattering by multiple potentials in 1D [150, 151], to calculate the eigenvalues
of multiple well potentials [152], to study scattering quantum walks [77, 78], and to construct exact Green’s function
for rectangular potentials [182, 183].

The exact Green’s function for an arbitrary finite array of potentials of compact support6 has been obtained in
[150], with an extension for more general cases presented in [151]. For the derivations in [150], it is necessary for the
r ’s andt’s of each localized potential to satisfy to certain conditions, which indeed are the ones in the AppendixA, Eq.
(A.14) (note that point interactions constitute a particular class of potentials of compact support [184]). Thus, based
on [150] we can calculate the Green’s function for general point interactions by using the corresponding reflection
and transmission coefficients, which are quantities with a very clear physical interpretation and conceivably, even
amenable to be determined through experiments [185, 186].

So, for these general array of potentials, according to Refs. [150–152] the exact(hence in contrast with usual
semiclassical approximations, see footnote 2) Green’s function for a particle of fixed energyE and end pointsxi and
xf is given by

G(xf , xi ; E) =
µ

i~2k

∑

sp

Wspexp [
i
~

Ssp(xf , xi ; k)]. (13)

The above sum is performed over all scattering paths (sp) starting in xi and ending inxf . A ‘scattering path’ represents
a trajectory in which the particle leaves fromxi , suffers multiple scattering, and finally arrives atxf . For each sp,Ssp

is the classical-like action, i.e.,Ssp = k Lsp, with Lsp the trajectory length. The termWsp is the sp quantum amplitude
(or weight), constructed as it follows: each time the particle hits a localized potentialVn, quantically it can be reflected
or transmitted by the potential. In the first case,Wsp gets a factorrn and in the second,Wsp gets a factortn. The total
Wsp is then the product of all quantum coefficientsrn’s andtn’s acquired along the sp.

The direct extension of Eq. (13) – often called generalized semiclassical Green’s function formula because its
functional form – to quantum graphs is natural. In fact, the two main ingredients necessary in the rigorous derivation
[150, 151] of Eq. (13), namely, unidimensionality and localized potentials, are by construction present in quantum
graphs. First, since the quantum evolution takes place along the graph edges, regardless theΓ topology, the dynamics
is essentially 1D. Second, the potentials (scatters) are the vertices, which as we have seen, can be treated as point
interactions, so a particular class of compact support potentials [184, 187].

In the Appendix B we outline the main steps necessary to prove that the exact Green’s function for arbitrary
quantum graphs has the very same form of Eq. (13). Moreover, as we are going to discuss in length in Sec. 4,
different techniques can be used to identify and sum up all the scattering paths. So, for general finite (i.e.,|V(Γ)|
and |E(Γ)| both finites) connected undirected simple metric quantum graphsΓ, in principle one always can obtain a

6If Vn(x) is said to have compact support in the intervalIn ≡ {x | an < x < bn}, thenVn(x) identically vanishes forx < In. An arbitrary array of
N potentials of compact support is given byV(x) =

∑N
n=1 Vn(x), for all In’s disjoint.
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closed analytical expression forG. Therefore, given that any information about a quantum system can be extracted
directly from the corresponding Green’s function, the results here constitute a very powerful tool in the analysis of
many distinct aspects of quantum graphs.

As a final observation, we recall that for scaling quantum graphs [118], for each edgees we havekes = γes k0 (see
footnote 3). This behavior for the wave number can result from constant potentialsVes along the distinctes’s. But
as discussed in [183], the correctG for these kind of piecewise constant potential systems can also be cast as above.
Therefore, the exact Green’s function for scaling quantum graphs are likewise given by Eq. (13).

4. Obtaining the Green’s function for quantum graphs: general procedures

The formula in Eq. (13) gives the correct Green’s function for arbitrary connected undirected simple quantum
graphs. However, it has no universal practical utility unless we are able to identify all the possible scattering paths and
to sum up the resulting infinite series – regardless the specific system. So, here we shall describe different protocols
to handle Eq. (13), allowing to write the exactG as a closed analytic expression. To keep the discussion as accessible
as possible, we start with few straightforward illustrative examples. In the sequence we extend the analysis to more
general situations.

We adopt the following notation:

• r (s)
j andt(s,r)j are the reflection and transmission amplitudes for the vertex j, as described in the end of Sec. 2.

• Pl represents the contribution from an entire infinite familyl of sp to Eq. (13), so thatG = µ/(i~2k)
∑

l Pl .

• Gsr(xf , xi ; k) is the Green’s function for a particle with energyE = ~
2k2/2µ, whose initial pointxi lies in the

edgees and the final pointxf in the edgeer .

Also, whenever there is no room for doubt, for simplicity we represent edges bys (instead ofes) and vertices by
capital letters,A, B, etc.

4.1. Constructing the Green’s function: a simple example
Consider the open graph shown in Figure3(a). It has two vertices,A andB, one finite edge (of lengthℓ1), labeled

1, and two semi-infinite edges (leads), labeledi and f . By assuming−∞ < xi < 0 in i and 0< xf < +∞ in f , the
Green’s functionGi f (xf , xi ; k) essentially describes the transmission across the full graph structure, i.e., from the left
to the right leads. To obtainG we need to sum up all the possible sp for a quantum particle starting at xi , in i, going
through multiple reflections between the verticesA andB, and finally ending up atxf , in f . As we are going to show,
Eq. (13) yields a convergent geometric series, which therefore canbe calculated exactly [150–152, 188–193].

In Fig. 3 (b)–(d) it is depicted three examples of sp. Consider the scattering path in3 (b), representing the
‘direct’ propagation fromxi to xf . The particle starts by leavingxi towardsA. From this first stretch of the trajectory,
one gets a factor exp[−ikxi ] to G. Upon hitting the vertex, the particle is then transmitted throughA. This process
yields a factort(i,1)

A to G. Next, the particle goes to the vertexB location, leading to a factor exp[ikℓ1]. Once inB,

the particle is then transmitted throughB, thus resulting int(1, f )B . Finally, from the final trajectory stretch (B to xf ),

one gets exp[ikxf ]. Putting all this together, the sp of Fig.3 (b) contributes to Eq. (13) with Wsp = t(i,1)
A t(1, f )B and

Lsp = (xf − xi) + ℓ1 = |xf | + |xi | + ℓ1 (hence the length of this sp).
Following the same type of analysis, for the other two examples in Fig.3 we have:

(c) exp[−ikxi ] t(i,1)
A exp[ikℓ1] r (1)

B exp[ikℓ1] r (1)
A exp[ikℓ1] t(1, f )B exp[ikxf ] :

Wsp = r (1)
A r (1)

B t(i,1)
A t(1, f )B , Lsp = (xf − xi) + 3ℓ1;

(d) exp[−ikxi ] t(i,1)
A exp[ikℓ1] r (1)

B exp[ikℓ1] r (1)
A exp[ikℓ1] r (1)

B exp[ikℓ1]r (1)
A exp[ikℓ1] t(1, f )B exp[ikxf ] :

Wsp = (r (1)
A )2 (r (1)

B )2 t(i,1)
A t(1, f )B , Lsp = (xf − xi) + 5ℓ1.

Thus, the full Green’s function is written as a sum over all the existing terms of the above form, or

Gi f (xf , xi ; k) =
µ

i~2k
exp[−ikxi ] t(i,1)

A

(

∞
∑

n=0

[r (1)
A ]n [r (1)

B ]n exp[ik(2n+ 1)ℓ1]
)

t(1, f )B exp[ikxf ]. (14)
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(a)

f1

(b)

(d)(c)

A B A B

A B A B

i

Figure 3: (Color online). A simple graph with two vertices,A andB, a finite edge labeled 1 (of lengthℓ1), and left,i, and right, f , leads. (a) The
starting positions of two families,P1 andP2, of sp. (b)-(d) Schematic examples of individual sp.

Equation (14) is in fact a geometric series and since for the quantum amplitudes we have that|r (s)
j |2 ≤ 1 and|t(s,r)j |2 ≤ 1,

the sum in Eq. (14) always converges. So, the Green’s function reads

Gi f (xf , xi ; k) =
µ

i~2k
Ti f exp[ik(xf − xi + ℓ1)], (15)

with

Ti f =
t(i,1)
A t(1, f )B

1− r (1)
A r (1)

B exp [2ikℓ1]
. (16)

Note that Eq. (16) can be recognized as the transmission amplitude for the whole system [150]. This illustrates the
fact that by properly regrouping several vertices, they canbe treated as a ‘single’ vertex, effectively contributing with
overall reflection and transmission amplitudes toG. As we discuss in details in Sec.4.2, such an approach strongly
simplifies the calculation of the Green’s function for more complicated systems.

For the present example, to identify all the infinite possible sp is relatively direct. But when the number of
vertices and edges increases, this can become a very tediousand cumbersome enterprise. Fortunately, the task can be
accomplished by means of a simple diagrammatic classification scheme, separating the sp into families.

To exemplify it, consider againGi f for the graph of Fig.3. For any sp, necessarily at the beginning the particle
leavesxi , goes toA, and then is transmitted throughA. Once tunneling tox1 = 0+ (always with positive velocity),
there are infinite possibilities to follow (some displayed in Fig. 3 (b)–(d)). So, schematically we represent all the
trajectories headed to the right, departing fromx1 = 0+, as the familyP1, Fig. 3 (a). Now, a sp inP1 initiates traveling
from A to B. Then, inB it may either cross the vertexB, finally arriving at the final pointxf , or be reflected fromB,
reversing its movement direction (atx1 = ℓ

−
1 ). For this latter situation, all the subsequent trajectories fromx1 = ℓ

−
1 can

be represented as the familyP2, Fig. 3 (a). But exactly the same reasoning shows that for any sp inP2, the particle
leavesB towardsA, it is reflected fromA7, and then becomes one of the paths inP1.

Hence, the above prescription yields for the Green’s function

Gi f (xf , xi ; k) =
µ

ik~2
exp[−ikxi ] t(i,1)

A P1, (17)

where

P1 = exp[ikℓ1]

{

r (1)
B P2

t(1, f )B exp[ikxf ],
(18)

and
P2 = exp[ikℓ1] r (1)

A P1. (19)

7To be transmitted throughA would lead the particle to travel towardsxi → −∞, with no returning (there are no vertices forxi < 0). So,
obviously this sp cannot contribute toGi f .
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B

f

A

(b)(a)

(ii)

(i) (iii)

(iv)

i

P2

P1
O

2

1

Figure 4: (Color online). The cross shaped graph, with two leads, i and f (left and right), two finite edges, 1 and 2 (up and down), and three
vertices,A, O, B. (a) ThePs’s represent all the trajectories starting at vertexO along an edges and finally tunnelingO, to get to the leadf . (b)
Four schematic examples of possible sp.

In Eq. (18), ‘{’ represents the possible splitting for the sp in the familyP1. The algebraic equation equivalent to Eq.
(18) is

P1 = exp[ikℓ1]
(

r (1)
B P2 + t(1, f )B exp[ikxf ]

)

. (20)

Thus, solving Eqs. (19) and (20) for P1, one obtains

P1 =
t(1, f )B exp[ikℓ1] exp[ikxf ]

1− r (1)
A r (1)

B exp[2ikℓ1]
, (21)

which by direct substitution into Eq. (17), leads to the exactG in Eq. (15).
In this way, the identification and summation of an infinite number of sp is reduced to the solution of a simple

system of linear algebraic equations. Such strong recursive nature of the scattering paths in quantum graphs constitutes
a key procedure to solve more complicated problems.

4.2. Simplification procedures: further details

From the previous example, it is clear that two protocols which drastically simplify the calculations forG are: (a)
to regroup infinite many scattering paths into finite number of families of trajectories; and (b) to divide a large graph
into smaller blocks, to solve the individual blocks, and then to connect the pieces altogether.

Thus, given their importance, here we further elaborate on (a) and (b), unveiling certain technical aspects which
do not arise from a so simple graph as that in Sec.4.1. Hence, we explicit address two different systems below: a
cross shaped structure, useful to illustrate details about(a), and a tree-like quantum graph, a system whose solution is
considerably facilitated by the block separation technique (b).

4.2.1. Regrouping the sp into families: a cross shaped graphcase study
The cross-shaped graph is shown in Fig.4. It is composed by three vertices, two edges and two leads. Observe

that the vertexO is the origin (end) of the leadf (i). Let us first discuss the Green’s function for the particle leaving
−∞ < xi < 0, along the leadi, and getting to 0< xf < +∞, along the leadf . In the sum Eq. (13), the sp are all the
trajectories starting fromi, suffering multiple transmissions and reflections between the edges 1 and 2 (of lengthsℓ1

andℓ2), and arriving atf . In Fig. 4 (b) we show schematic examples of possible sp: (i) direct transmission fromi to f
through the central vertexO, so thatWsp = t(i, f )O andLsp = xf − xi ; (ii) transmission fromi to the edge 1, a reflection at

vertexA, and a final transmission from the central vertex to the leadf , thenWsp = t(i,1)
O r (1)

A t(1, f )O andLsp = xf −xi+2ℓ1;
(iii) transmission to edge 1, a reflection fromA, then a transmission to edge 2, a new reflection, this time from vertex
B, and finally atO a transmission to leadf , in this wayWsp = t(i,1)

O r (1)
A t(1,2)

O r (2)
B t(2, f )O andLsp = xf − xi + 2(ℓ1 + ℓ2);

(iv) transmission to edge 1, a double bouncing within edge 1,then transmission to edge 2, a reflection from vertexB,
a transmission to edge 1, a reflection from vertexA, another transmission to edge 2, a reflection from vertexB, and
finally a transmission to leadf from edge 2 (through vertexO), thusWsp = t(i,1)

O [r (1)
A ]3 r (1)

O [t(1,2)
O ]2 [r (2)

B ]2 t(2,1)
O t(2, f )O and

Lsp = xf − xi + 6ℓ1 + 4ℓ2.
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Such infinite large proliferation of paths can be factorizedin a simple way. Indeed, since for any sp we have
initially a propagation fromxi to O alongi and finally a propagation fromO to xf along f , we can write

Gi f (xf , xi ; k) =
µ

i~2k
Ti f exp[ik(xf − xi)]. (22)

HereTi f comprises all the contributions resulting from sp in the region A—O—B of the graph, or

Ti f =























t(i, f )O

t(i,1)
O P1

t(i,2)
O P2

. (23)

As before, the symbol ‘{’ represents the trajectories splitting, which reads

Ti f = t(i, f )O + t(i,1)
O P1 + t(i,2)

O P2. (24)

The first term is just the amplitude for the direct path, i.e.,a simple tunneling fromi to f throughO. The second (third)
term represents the tunneling from leadi to edge 1 (2) and all the subsequent possible trajectories that the particle can
follow until reaching leadf , represented byP1 andP2, Fig. 4 (a).

The reasoning to obtain the two families of infinite trajectories,P1 andP2, is quite simple. Take, for instance,P1:
all such paths start atx1 = 0+, travel along edge 1 towards vertexA, suffer a reflection atA, and then return to vertex
O. This part of the trajectories results in the termr (1)

A exp[2ikℓ1]. Once reaching back vertexO they can either, be
reflected from it, then going into the set of pathsP1 again, or to tunnel to edge 2, so going into the family of pathsP2,
or yet to tunnel to leadf , thus terminating theA—O—B part of the sp. The same type of analysis follows forP2, so























































P1 = r (1)
A exp[2ikℓ1]























r (1)
O P1

t(1,2)
O P2

t(1, f )O

P2 = r (2)
B exp[2ikℓ2]























r (2)
O P2

t(2,1)
O P1

t(2, f )O

, (25)

leading to the algebraic equations















P1 = r (1)
A exp[2ikℓ1]

(

r (1)
O P1 + t(1,2)

O P2 + t(1, f )O

)

P2 = r (2)
B exp[2ikℓ2]

(

r (2)
O P2 + t(2,1)

O P1 + t(2, f )O

)

,
(26)

whose solution reads

P1 =
1
g

{

r (1)
A t(1, f )O exp[2ikℓ1] + r (1)

A r (2)
B

(

t(1,2)
O t(2, f )O − r (2)

O t(1, f )O

)

exp[2ik(ℓ1 + ℓ2)]
}

P2 =
1
g

{

r (2)
B t(2, f )O exp[2ikℓ2] + r (1)

A r (2)
B

(

t(2,1)
O t(1, f )O − r (1)

O t(2, f )O

)

exp[2ik(ℓ1 + ℓ2)]
}

,

(27)

for
g =

(

1− r (1)
A r (1)

O exp[2ikℓ1]
)(

1− r (2)
B r (2)

O exp[2ikℓ2]
)

− r (1)
A r (2)

B t(1,2)
O t(2,1)

O exp[2ik(ℓ1 + ℓ2)]. (28)

Similarly, we can consider both the initial and end points atthe edgei (−∞ < xi , xf < 0 ∈ i), for whichGii is given
by

Gii (xf , xi ; k) =
µ

i~2k

{

exp[ik|xf − xi |] + Rii exp[−ik(xf + xi)]
}

. (29)

In this case, it is not difficult to see that
Rii = r (i)

O + t(i,1)
O P1 + t(i,2)

O P2. (30)
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Figure 5: (Color online). A tree-like quantum graph. (a) By regarding the whole regionC—O—B (including the leads) as an ‘unique’ effective
vertex D, the original graph is reduced as illustrated. (b) In the reduced graph,P1 represents the family of trajectories which suffer multiple
reflections betweenD andA, and finally tunnel the vertexA to the leadf . (c) The auxiliary graph (and the corresponding sp families) necessary to
calculater (1)

D andt(i,1)
D .

The expressions leading to the correctP’s are those in (27) where, however, we must make the obvious substitution
of t(s, f )O by t(s,i)O (s= 1, 2).

Finally, we consider the end pointxf in one of the edges, say edge 1. We assume that the origin of thethis edge is
at vertexO, so 0< xf < ℓ1. Then, we have that

Gi1(xf , xi ; k) =
µ

i~2k
exp[−ikxi ]

(

t(i,1)
O P1 + t(i,2)

O P2

)

. (31)

Of course here we should not take into account any sp for whichthe particle tunnels to the edgef (for a reason similar
to that explained in footnote 7). Thus, we have for theP’s:















P1 = exp[ikxf ] + r (1)
A exp[2ikℓ1]

(

exp[−ikxf ] + r (1)
O P1 + t(1,2)

O P2

)

P2 = r (2)
B exp[2ikℓ2]

(

r (2)
O P2 + t(2,1)

O P1

)

.
(32)

By solving the above system and substituting into the expression (31), we get

G1i(xf , xi ; k) =
µ

i~2kg

{

t(i,1)
O + r (2)

B

(

t(i,2)
O t(2,1)

O − r (2)
O t(i,1)

O

)

exp[2ikℓ2]
}

×
{

exp[ik(xf − xi)] + r (1)
A exp[ik(2ℓ1 − xf − xi)]

}

, (33)

with g given by Eq. (28).

4.2.2. Treating a graph in terms of blocks: a tree-like case study
Next we discuss how to shorten the calculations for a large quantum graph by decomposing it in blocks. For so,

we consider the example shown in Fig.5 (a), a relatively simple tree-like graph: a leadi is attached to a vertexO,
from which emerges three edges 1, 2 and 3, ending, respectively, at verticesA, B, andC. Each of these vertices, by
their turn, are connected to three leads.

Here we just analyze the Green’s function for the initial position −∞ < xi < 0 in leadi and the end position
0 < xf < +∞ in lead f , which is connected to vertexA, see Fig.5 (a). Observe that in this particular situation we do
not need to consider any sp that goes into another lead beforeto f . In such case the particle would leave the graph,
being impossible to come back tof .

The first step to simplify the problem is to face the whole block indicated in Fig.5 (a) as a single vertexD. Any
information about the inner structure of such region will becontained in the vertex quantum amplitudest(i,1)

D andr (1)
D .
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Figure 6: (Color online). Several graphs whoseG’s can be obtained from the solutions of other topologies by eliminating, redefining or regrouping
the vertices reflections and transmissions quantum amplitudes. (a) The cross shaped graph, Fig. 4, but with both the bottom edge and vertex
removed. (b) The same as in (a), but with the simple vertexA substituted by a circle-like structure. (c) A circle-like graph attached to two leads.
(d) Triangle (e) and rectangle graphs attached to semi-infinite leads.

Thus, we reduce the original graph to the simpler one depicted in Fig. 5 (b). From Fig.5 (b), we have that the Green’s
function can be written asGi f (xf , xi ; k) = µ/(i~2k) Ti f exp[ik(xf − xi)], with Ti f = t(i,1)

D exp[ikℓ1]
(

r (1)
A P1 + t(1, f )A

)

.
Then, based on our previous discussions, one quickly realizes that the infinite family of trajectoriesP1 is given by
P1 = r (1)

D exp[2ikℓ1]
(

r (1)
A P1 + t(1, f )A

)

, or

P1 =
r (1)

D t(1, f )A exp[2ikℓ1]

1− r (1)
D r (1)

A exp[2ikℓ1]
. (34)

It remains to determine the coefficientst(i,1)
D andr (1)

D . We can do so with the help of the auxiliary quantum graph
of Fig. 5 (c). We first recall thatt(i,1)

D (r (1)
D ) represents the sp contribution for the particle to go from leadi (edge

1) to edge 1 through the regionB—O—C. Inspecting Fig.5 (c), we see thatt(i,1)
D = t(i,1)

O + t(i,3)
O P3 + t(i,2)

O P2 and
r (1)

D = r (1)
O + t(1,3)

O P3 + t(1,2)
O P2, where for theP’s















P3 = r (3)
C exp[2ikℓ3]

(

r (3)
O P3 + t(3,2)

O P2 + t(3,1)
O

)

P2 = r (2)
B exp[2ikℓ2]

(

r (2)
O P2 + t(2,3)

O P3 + t(2,1)
O

)

.
(35)

The solution of Eq. (35) is given by Eq. (27) with the appropriate labels substitutions in (27): A → C, 1 → 3 and
f → 1.

4.3. The Green’s function solutions by eliminating, redefining or regrouping scattering amplitudes

A great advantage in writing the Green’s function in terms ofthe general scattering amplitudes of each vertex is
that by setting appropriate values for or regrouping these quantities, we can obtainG for some graphs based on the
solutions for other topologies.

Indeed, for a vertexj attached to two edges (ej1 andej2), to setr (s)
j = 0 andt(s,r)j = 1 (s, r = 1, 2) is equivalent

to remove the vertexj from the graph. On the other hand, if for allejs we sett(s,r)j = 0 for the two (one) verticesj
attached to the finite (semi-infinite) edgeejr , then we eliminateejr from the structure. For instance, consider the graph
in Fig. 6 (a). We obtain its exactGi f , Gii andGi1 just by assumingt(i,2)

O = t(1,2)
O = 0 for the solutions of the cross

shaped graph of Fig.4.
As for regrouping, theG’s for the graph in Fig.6 (b) – if xi andxf are not in the edges 2 and 3 – follow from the

exact Green’s functions for the graph of Fig.6 (a) by just supposing the whole regionA—B—A as a single vertex, say
C, and making the substitutionr (1)

A → r (1)
C . From the Fig.6 (b) we see thatr (1)

C is given byr (1)
C = r (1)

A + t(1,2)
A P2+ t(1,3)

A P3,
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with theP’s obtained from






































P2 = r (2)
B exp[2ikℓ2]

(

r (2)
A P2 + t(2,3)

A P3 + t(2,1)
A

)

+t(2,3)
B exp[ik(ℓ2 + ℓ3)]

(

r (3)
A P3 + t(3,2)

A P2 + t(3,1)
A

)

P3 = r (3)
B exp[2ikℓ3]

(

r (3)
A P3 + t(3,2)

A P2 + t(3,1)
A

)

+t(3,2)
B exp[ik(ℓ2 + ℓ3)]

(

r (2)
A P2 + t(2,3)

A P3 + t(2,1)
A

)

.

(36)

Consider now the more involving example in Fig.6 (c) andG11 for which both end points are in edge 1, i.e.,
0 < xi , xf < ℓ1. We definer (1)

C (t(1,1)
C ) as the resulting quantum amplitude for the particle to hit the vertexA from edge

1, to suffer all the multiple scattering in edges 2 and 3 and finally to come back to edge 1 from the vertexA (B). We
likewise definer (1)

D andt(1,1)
D for the particle initially hitting the vertexB. So, we have that (dropping the superscripts

(1) and (1, 1) for simplicity)

G11(xf , xi ; k) =
µ

i~2k

{

exp[ik|xf − xi |] + exp[ik(ℓ1 − xi)]
(

rDP1,B + tDP1,A

)

+ exp[ikxi ]
(

rCP1,A + tCP1,B

)}

, (37)

where














P1,A = exp[ikxf ] + exp[ikℓ1]
(

rDP1,B + tDP1,A

)

P1,B = exp[ik(ℓ1 − xf )] + exp[ikℓ1]
(

rCP1,A + tCP1,B

)

.
(38)

Solving the above system, the Green’s function (37) reads

G11(xf , xi ; k) =
µ

i~2kg

{

gexp[ik|xf − xi |] + rC exp[ik(xf + xi)] + rD exp[ik(2ℓ1 − xf + xi)]

+ rC rD exp[ik(2ℓ1 + xf − xi)] + rC rD exp[ik(2ℓ1 − xf + xi)]

+
(

1− tC exp[ikℓ1]
)

exp[ik(ℓ1 + xf − xi)]

+
(

1− tD exp[ikℓ1]
)

exp[−ik(ℓ1 − xf + xi)]
}

, (39)

with g =
(

1− tC exp[ikℓ1]
)(

1− tD exp[ikℓ1]
)

− rC rD exp[2ikℓ1].

Lastly (see Fig.6 (c)), the coefficients are given byrC = r (1)
A + t(1,2)

A P2 + t(1,3)
A P3, with P2 andP3 obeying to







































P2 = r (2)
B exp[2ikℓ2]

(

r (2)
A P2 + t(2,3)

A P3 + t(2,1)
A

)

+t(2,3)
B exp[ik(ℓ2 + ℓ3)]

(

r (3)
A P3 + t(3,2)

A P2 + t(3,1)
A

)

P3 = r (3)
B exp[2ikℓ3]

(

r (3)
A P3 + t(3,2)

A P2 + t(3,1)
A

)

+t(3,2)
B exp[ik(ℓ2 + ℓ3)]

(

r (2)
A P2 + t(2,3)

A P3 + t(2,1)
A

)

. (40)

By its turn,tC = t(1,2)
A P2 + t(1,3)

A P3, where this timeP2 andP3 satisfy to







































P2 = r (2)
B exp[2ikℓ2]

(

r (2)
A P2 + t(2,3)

A P3

)

+t(2,3)
B exp[ik(ℓ2 + ℓ3)]

(

r (3)
A P3 + t(3,2)

A P2

)

+ exp[ikℓ2]t
(2,1)
B

P3 = r (3)
B exp[2ikℓ3]

(

r (3)
A P3 + t(3,2)

A P2

)

+t(3,2)
B exp[ik(ℓ2 + ℓ3)]

(

r (2)
A P2 + t(2,3)

A P3

)

+ exp[ikℓ3]t
(3,1)
B

. (41)

The amplitudesrD andtD are obtained from the expression forrC andtC by just exchanging the indicesA↔ B.
Finally, if for both graphs of Fig.6 (d) and (e), theG initial and final points are, respectively, in the edgesi and f

(so that−∞ < xi < 0 and 0< xf < +∞), the Green’s function is simply

G f i(xf , xi ; k) =
µ

i~2k
Ti f exp[ik(xf − xi)]. (42)

The coefficientTi f is then given byTi f = t(i,1)
O P1 + t(i,2)

O P2.
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For the case of Fig.6 (d), P1 andP2 are obtained from the following














































































P1 = r (1)
A exp[2ikℓ1]

(

r (1)
O P1 + t(1,2)

O P2

)

+ exp[ikℓ1]
(

t(1,3)
A P3 + t(1, f )A

)

P2 = r (2)
B exp[2ikℓ2]

(

r (2)
O P2 + t(2,1)

O P1

)

+t(2,3)
B exp[ik(ℓ2 + ℓ3)]

(

r (3)
A P3 + t(3, f )A

)

+t(2,3)
B t(3,1)

A exp[ik(ℓ1 + ℓ2 + ℓ3)]
(

r (1)
O P1 + t(1,2)

O P2

)

P3 = r (3)
B exp[2ikℓ3]

(

r (3)
A P3 + t(3, f )A

)

+t(3,2)
B exp[ik(ℓ2 + ℓ3)]

(

r (2)
O P2 + t(2,1)

O P1

)

+r (3)
B t(3,1)

A exp[ik(ℓ1 + 2ℓ3)]
(

r (1)
O P1 + t(1,2)

O P2

)

,

(43)

with P3 an auxiliary family of infinite trajectories, introduced just to help in the recursive definitions ofP1 andP2 (see
Fig. 6 (d)). The solution of the above system put into the expression for Ti f yields the final exact Green’s function.

For Gi f for the graph of Fig.6 (e) we can use the above same set of equations if we treat the region comprising
verticesA andC of Fig. 6 (e) as a single effective vertex, corresponding toA in Fig. 6 (d). Therefore, by using the
previous analysis, we find that we need only to make the following substitutions in the Green’s function expression
for the graph of Fig.6 (d):

r (1)
A → r (1)

A + t(1,4)
A r (4)

C t(4,1)
A exp[2ikℓ4]/g,

t(1, f )A → t(1,4)
A t(4, f )C exp[ikℓ4]/g,

t(1,3)
A → t(1,4)

A t(4,3)
C exp[ikℓ4]/g,

r (3)
A → r (3)

C + t(3,4)
C r (4)

A t(4,3)
C exp[2ikℓ4]/g,

t(3, f )A → t(3, f )C + t(3,4)
C r (4)

A t(4, f )C exp[2ikℓ4]/g,

t(3,1)
A → t(3,4)

C t(4,1)
A exp[ikℓ4]/g,

whereg = 1− r (4)
A r (4)

C exp[2ikℓ4].

5. Eigenstates and scattering states in quantum graphs

From the previous Sec. we have seen that different techniques enable one to obtainG in a relatively straightforward
manner. On the other hand, we also have mentioned that the calculation of the wave function in certain contexts may
be lengthy. Hence, the natural question is how easily one canextract fromG the system eigenvalues, eigenstates and
scattering states, allowing to bypass the more traditionalapproach of directly solving the Schrödinger equation. Inthe
following we give some examples along this line. For definiteness, we concentrate on the graph of Fig.6(a).

5.1. Eigenstates
The explicit expression for the Green’s function with−∞ < xi < 0 in leadi and 0< xf < +∞ in lead f is (Fig.

6(a))

Gi f (xf , xi; k) =
µ

i~2k
Ti f exp[ik(xf − xi)],

Ti f = t(i, f )O +
t(i,1)
O r (1)

A t(1, f )O exp[2ikℓ1]

1− r (1)
O r (1)

A exp[2ikℓ1]
. (44)

For bothxi andxf (0 < xi , xf < ℓ1, xf > xi) in the edge 1, we get

G11(xf , xi ; k) =
µ

i~2k
1

(

1− r (1)
O r (1)

A exp[2ikℓ1]
)

×
(

exp[−ikxi ] + r (1)
O exp[ikxi ]

)

×
(

exp[ikxf ] + r (1)
A exp[2ikℓ1] exp[−ikxf ]

)

, (45)
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For open graphs, like that in Fig.6 (a), depending on the characteristics of the vertices, the system may support
bound states8. In these cases, the eigenstates are calculated from the residues ofG(xf , xi ; k) at the polesk = kn [135].
Furthermore, the problem eigenenergies are given byEn = ~

2k2
n/(2µ).

By inspecting the above Green’s functions, we see that they can diverge (consequently presenting poles [30]) only
if g(k = kn) = 0, with

g(k) = 1− r (1)
O (k) r (1)

A (k) exp[2ikℓ1]. (46)

As a concrete example, consider the vertexO being a generalizedδ interaction (here attached toN = 3 edges, Fig.6
(a)) of strengthγ [30]. Then, the reflection coefficients for the vertexO are given by (~ = µ = 1)

r (1)
O = r (i)

O = r ( f )
O = rO =

2γ − (N − 2)ik
Nik− 2γ

=
2γ − ik
3ik − 2γ

, (47)

and the transmission coefficients by

t(i,1)
O = t(1,i)O = t(i, f )O = t( f ,i)

O = tO =
2ik

Nik− 2γ
=

2ik
3ik − 2γ

. (48)

For the vertexA, we take the boundary conditionψ′(A) = λψ(A), which is equivalent to the following reflection
coefficient

r (1)
A =

ik − λ
ik + λ

. (49)

It is a well-known fact that any pole of the scattering amplitudes in the upper half of complexk plane along the
imaginary axis represents a bounded energy [194]. For example, for the usual (1D) Diracδ-function with intensity
γ < 0 (attractiveδ), the transmission coefficient is tδ = ik/(ik − γ). In this case, the unique negative energy of the
system readsE1 = k2

1/2 = −γ2/2, wherek1 = i|γ| is the only pole oftδ(k) [195, 196].
So, for our graph the eigenvalues are obtained from the following transcendental equation (with Re[kn] = 0 and

Im[kn] > 0)

g(kn) = 1−
(

2γ − ikn

2γ − 3ikn

) (

λ − ikn

λ + ikn

)

exp[i2knℓ1] = 0. (50)

Moreover, using the formula (g′(kn) = dg(k)/dk|k=kn
)

lim
E→En

(E − En)
g(k)

=
1
2

lim
k→kn

(k2 − k2
n)

g(k)
=

kn

g′(kn)
, (51)

the residues of Eq. (44) are obtained from

ψ
( f )
n (xf )ψ(i)∗

n (xi) =
1
2

lim
k→kn

(k2 − k2
n) Gi f (xf , xi ; k)

=
{

Nl(kn) exp[iknxf ]
} {

Nl(kn) exp[−iknxi ]
}

,

Nl(kn) =
t(1)
O (kn)

√

ig′(kn) r (1)
O (kn)

, (52)

and of Eq. (45) from

ψ(1)
n (xf )ψ(1)∗

n (xi) =
1
2

lim
k→kn

(k2 − k2
n) G11(xf , xi ; k)

=
{

Ne(kn)
(

exp[−iknxf ] + r (1)
O (kn) exp[iknxf ]

)}

×
{

Ne(kn)
(

exp[−iknxi ] + r (1)
O (kn) exp[iknxi ]

)}

,

Ne(kn) =
1

√

ig′(kn) r (1)
O (kn)

. (53)

8A trivial textbook example is the usualδ-function potential in 1D. If its strengthγ is negative, it may allow bound states.
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Figure 7: (Color online). The bound eigenstates probability distribution along the quantum graph of Fig.6 (a), hereℓ1 = 1.0. The vertexO is
a δ interaction of strengthγ = −3.0. The boundary condition at the vertexA is given byψ′(A) = λψ(A), with λ = 2.0. (a) |ψ1(x)|2 for which
κ1 = 0.463618 and (b)|ψ2(x)|2 for which κ2 = 2.022448.

Note that since for the poleskn = iκn, with κn > 0, the wave functions in both leads have the general form
ψn(x) = Nl exp[−κn|x|], thus exponentially decaying away from the origin (at the vertexO), as it should be. The
N ’s also lead to the correct normalization for the eigenstates. Exactly the same results follow from the Schrödinger
equation solution.

As a numerical example, considerγ = −3.0, ℓ1 = 1.0 andλ = 2.0. Then, the system has two bound eigenstates,
n = 1, 2. In Fig. 7 we show the resulting|ψn(x)|2. The first eigenstate, withκ1 = 0.463618, is mainly ‘created’ by the
attractiveδ potential. The second, withκ2 = 2.022448, by the boundary condition at the vertexA. This can verified in
Fig. 7: |ψ1|2 (|ψ2|2) is more concentrated around the vertexO (A).

5.2. Scattering

Consider again the Green functionGi f , Eq. (44), for the open graph of Fig.6 (a). As already discussed, the
quantity |Ti f |2 in the expression forGi f can be interpreted as the total probability for a particle ofwave numberk
incident from the leadi to be transmitted to the leadf . Similarly, supposingxi andxf in leadi, we have

Gii (xf , xi ; k) =
µ

i~2k

{

exp[ik|xf − xi |] + Ri exp[−ik(xf + xi)]
}

,

Ri = r (i)
O +

t(i,1)
O r (1)

A t(1,i)O exp[2ikℓ1]

1− r (1)
O r (1)

A exp[2ikℓ1]
. (54)

Then,|Ri |2 represents the total probability for a particle of wave number k incident from the leadi to be reflected to
the leadi. By choosing different quantum amplitudes for the vertices, we naturally getdifferent scattering patterns
from Ri andTi f .

Two very common boundary conditions are those resulting from the (already mentioned) generalizedδ interaction
and the Neumann-Kirchhoff [2, 197]. Regarding the former, it has a very interesting property,however barely explored
in the literature. Assume a vertexj linked to N edges as a generalizedδ potential. Now, let us set its intensityγ to
zero. From Eqs. (47) and (48) we have thatr j = 2/N − 1 andt j = 2/N. Although trivial whenN = 2 (yielding
r j = 0 andt j = 1, i.e., the two edges become simply merged without a vertex in the middle), these expressions are
exactly the matrix elements of aN ≥ 2 dimensional Grover gate [67, 198, 199], an essential operator in quantum
computation. So, quantum graphs with generalizedδ functions of vanishing strengths at the vertices bear a close
relation with quantum walks driving by Grover ‘coins’ [67]. As for the latter boundary condition, suppose that at a
vertex j (being the origin of all edgesejs attached to it) we have

∑

sψ
′
ej s

(0) = λ
∑

sψej s
(0) (actually, this is the case
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Figure 8: (Color online). The transmission|Ti f |2 (solid line) and reflection|Ri |2 (dashed) probabilities as function ofk for the quantum graph of
Fig. 6 (a). In all casesℓ1 = 1.0 andλ = 0.0 (Neumann-Kirchhoff boundary condition atA). The values ofγ atO are: (a) 0.0, (b) 1.0, and (c) -1.5.

assumed for vertexA in the example of Fig.7). The Neumann-Kirchhoff takes places forλ = 0.0. One of its curious
consequences is that the corresponding reflection and transmission coefficients arek-independent.

To illustrate the graph distinct scattering behavior by assuming vertices with different properties, we consider for
our graph (characterized by the parametersλ = 0.0, so Neumann-Kirchhoff, for A andγ for O) three situations: (a)
γ = 0.0; and generalizedδ of strengths (b)γ = 1.0 and (c)γ = −1.5. The resulting|Ri |2 and|Ti f |2 as function ofk are
shown in Fig.8, where distinctions in the scattering probabilities are clearly observed. In all casesℓ1 = 1.0.

6. Representative quantum graphs

So far we have discussed the general ideas of how to use the energy domain Green’s function method for quantum
graphs through the explicit calculation of arbitrary examples. But in the pertinent literature one can find specific
topologies which are of particular interest to study different quantum phenomena. For instance, the cases already
discussed in Sec.4, Fig. 6, are indeed proper structures to construct logic gates for quantum information processing
[66, 68]. The graph in Fig.6(b) can act as a phase shifter, whereas that in Fig.6(e) could functioning as a basis-
changing gate.

Other very important examples include:

• The widely analyzed (with the most distinct purposes [71, 200–203], like to investigate scattering features of
3D graphs [204]) hypercube;

• The binary tree [205–207], e.g., useful to highlight differences between classical and quantum walks [208] as
well as to test the speed up gain – which is actually exponential – in searching algorithms based on quantum
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Figure 9: (Color online). A cube quantum graph. (a) The letters represent the vertices indices and the integers the edgesindices. (b) A cube graph
planar representation. (c)-(e) Regrouping procedures (see the main text). (f) Auxiliary graphs to determine the totalRandT. (g) The inner structure
of vertexI . ThePl ’s indicate the sp families.

dynamics [209] (here we should observe that the graph of Fig.5(a) is in fact an extension of a binary tree, being
a fragment of a large-scale ternary tree network [210]);

• Triangular Sierpiński-like structures [211], a nice illustration of graphs which in the limit of infinitevertices
would be fractal. It has been considered in connection with molecular assembling [212] and with the mathe-
matics of logical games like the Hanoi tower [213, 214].

Given the relevance of the above mentioned three graph systems, in the present section we shall address in details
how to calculate the exact Green’s function for each one of these problems.

6.1. Cube

The Green’s function for closed quantum graphs can be obtained by a regrouping procedure discussed in the
previous sections. We will exemplify applying this procedure to get the Green’s function to the cube quantum graph
in Fig. 9(a), with edges of lengthℓ. In the Fig.9(b) we show a planar representation of cube graph. Consider the case
where the initial and final position are in the edge 1. Our firststep to simplify the problem´s solution is to face the two
regions marked by dashed line in Fig.9(c) as two verticesI andJ, see Fig.9(d). The following step is to represent
these two vertices as a single vertexK, with oneRandT coefficients. All the information of internal structure of graph
will be contained in these coefficients. Thus, we reduce the original graph in a simple circular graph. Considering
Fig. 9(e), with xi andxf (> xi), the Green’s function can be written as,

G11(xf , xi ; k) =
µ

i~2k

1
g

{

exp[ik(xf − xi)] + exp[ikxi ](RP1K + T P2K)

+ exp[ik(ℓ − xi)](RP2K + T P1K)
}

, (55)
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with P1K andP2K given by
{

P1K = exp[ikxf ] + exp[ikℓ](R P2K + T P1K)
P2K = exp[ik(ℓ − xf )] + exp[ikℓ](R P1K + T P2K).

(56)

Solving the above system, the Green’s function (55) reads

G11(xf , xi ; k) =
µ

i~2k
1
g

{(

1− T exp[ikℓ]
)

exp[ik(xf − xi)]

+ R
(

exp[ik(xf − xi)] + exp[ik(2ℓ − xf − xi)]
)

+
(

T + (R2 − T2) exp[ikℓ]
)

exp[ik(ℓ − xf + xi)]
}

, (57)

with g = (1− T exp[ikℓ])2 − R2 exp[2ikℓ].
We need to determine the coefficientsR andT. We do so with help of auxiliary quantum graph in Fig.9(f). We

first recall that theT(R) represents the paths contribution for the particle to go from edge 1 to edge 1 by transmission
(reflection). Inspecting figure9(f), we see that:

T = t(1,3)
I exp[ikℓ](r (3)

J P3 + t(3,9)
J P9 + t(3,11)

J P11 + t(3,1)
J )

+ t(1,9)
I exp[ikℓ](r (9)

J P9 + t(9,3)
J P3 + t(9,11)

J P11 + t(9,1)
J )

+ t(1,11)
I exp[ikℓ](r (11)

J P11+ t(11,3)
J P3 + t(11,3)

J P11 + t(11,1)
J ), (58)

where theP’s are






































































































P3 = r (3)
I exp[2ikℓ]

(

r (3)
J P3 + t(3,9)

J P9 + t(3,11)
J P11 + t(3,1)

J

)

+ t(3,9)
I exp[2ikℓ]

(

r (9)
J P9 + t(9,3)

J P3 + t(9,11)
J P11+ t(9,1)

J

)

+ t(3,11)
I exp[2ikℓ]

(

r (11)
J P11 + t(11,3)

J P3 + t(11,9)
J P9 + t(11,1)

J

)

P9 = r (9)
I exp[2ikℓ]

(

r (9)
J P9 + t(9,3)

J P3 + t(9,11)
J P11+ t(9,1)

J

)

+ t(9,3)
I exp[2ikℓ]

(

r (3)
J P3 + t(3,9)

J P9 + t(3,11)
J P11+ t(3,1)

J

)

+ t(9,11)
I exp[2ikℓ]

(

r (11)
J P11 + t(11,3)

J P3 + t(11,9)
J P9 + t(11,1)

J

)

P11 = r (11)
I exp[2ikℓ]

(

r (11)
J P11 + t(11,3)

J P3 + t(11,9)
J P9 + t(11,1)

J

)

+ t(11,3)
I exp[2ikℓ]

(

r (3)
J P3 + t(3,9)

J P9 + t(3,11)
J P11 + t(3,1)

J

)

+ t(11,9)
I exp[2ikℓ]

(

r (9)
J P9 + t(9,3)

J P3 + t(9,11)
J P11 + t(9,1)

J

)

.

(59)

And for R,
R= r (1)

I + t(1,3)
I P3 + t(1,9)

I P9 + t(1,11)
I P11, (60)

where theP’s are the same that toT with the exchanges of indicesI ↔ J.
The final step is to determine the coefficientsr I (J) andtI (J) in terms of fundamental vertex coefficients. Because

the symmetry of cube theI andJ vertex coefficients have the same solution, so we just discuss theI vertex solution.
Looking at equations in (59) we can think there are many quantum coefficients to calculated, but in the fact it is not
true. Because of the symmetry of inner structure ofI vertex only three coefficients need to be calculated,r (1)

I , t(1,3)
I and

t(1,11)
I , see Fig.9(g). From Fig.9(g), we can writer (1)

I = r (1)
A + t(1,4)

A P4 + t(1,5)
A P5, where























































































P4 = r (4)
D exp[2ikℓ]

(

r (4)
A P4 + t(4,5)

A P5 + t(4,1)
A

)

+t(4,8)
D exp[2ikℓ]

(

r (8)
H P8 + t(8,12)

H P12

)

P5 = r (5)
E exp[2ikℓ]

(

r (5)
A P5 + t(5,4)

A P4 + t(5,1)
A

)

+t(5,12)
E exp[2ikℓ]

(

r (12)
H P12+ t(12,8)

H P8

)

P8 = t(8,4)
D exp[2ikℓ]

(

r (4)
A P4 + t(4,5)

A P5 + t(4,1)
A

)

+r (8)
D exp[2ikℓ]

(

r (8)
H P8 + t(8,12)

H P12

)

P12 = t(12,5)
E exp[2ikℓ]

(

r (5)
A P5 + t(5,4)

A P4 + t(5,1)
A

)

+r (12)
E exp[2ikℓ]

(

r (12)
H P12+ t(12,8)

H P8

)

.

(61)
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And t(1,3)
I = exp[ikℓ]{t(1,4)

A (r (4)
D P4 + t(4,8)

D P8 + t(4,3)
D ) + t(1,5)

A (r (5)
e P5 + t(5,12)

E P12)}, with the sameP’s give by the equations
(61), with exchanges of indicesA↔ B,1↔ 3 and 5↔ 8. Finally, t(1,11)

I = t(1,4)
A P4 + t(1,5)

A P5, with again the sameP’s
give by equations (61), with exchange of indicesA↔ H, 1↔ 11, 4↔ 8 and 5↔ 12.

6.1.1. Bound states
Let us examine the Green’s function using as boundary condition the already discussedδ interaction in each vertex

in the cube graph. To simplify lets use the same intensityγ for theδ in all vertices. Thus, all reflection coefficients are
equal tor = (2γ− (N− 2)ik)/(Nik− 2γ) and the transmission coefficients are equal tot = 2ik/(Nik− 2γ), with N = 3,
the number of edges in each vertex. The bounded states are thepoles of Green’s function, i.e., the roots ofg = 0. In
the Table1 we show the eigenvalues of the cube quantum graph for two values ofγ (also forµ = ~ = 1).

γ

State 0.0 1.0

1 1.230959 1.094322
2 1.919633 1.642395
3 3.141593 2.190764
4 4.372552 3.141593
5 5.052226 3.516328
6 6.283185 5.177393
7 7.514145 6.283185
8 8.193819 7.602957
9 9.424778 8.273085
10 10.65574 9.424778

Table 1: The first ten numerically calculatedkn values (fromg = 0, see Eq. (57)) for the cube quantum graph. All the vertices are assumed
generalizedδ interactions of strengthγ = 0.0 (Neumann-Kirchhoff) andγ = 1.0.

In order to compare the eigenvalues found through the Green’s function, we solve the Schrödinger equation to
cube quantum graph. On each edgei the component of total wave functionΨ is the solution of one-dimensional
Schrödinger equation

− d2

dx2
ψi(x) = k2ψi(x), (62)

wherek =
√

2µE/~. The solutions have the form

ψi(x) = Ai exp[ikx] + Bi exp[−ikx], (63)

with i = 1, ..., 12. The coefficientsAi andBi are determined by the boundary condition on vertices. Considering all
vertices with boundary condition theδ interaction we haveψi(xn) = ψ j(xn) = ψn (x = xn is then vertex coordinate),
for all i, j meeting the vertexn, and

∑

i ψ
′

i (xn) = γψn. So, using this boundary condition in the cube quantum graphin
the Fig.9 and setting the origin of edges in the verticesA, C, F andH we obtain a system of 24 equations. Solving this
system we get the eigenfunctions and eigenvalues. Analyzing the solutions we found four groups of eigenfunctions.
In the first group, with quantum numbersν = (1+ 4m), m = 0, 1, 2, ...,the eigenfunctions are the same in all edges.
The second group, with quantum numberν = (2+ 4m), m= 0, 1, 2, ..., haveψ1 = ψ5, ψ2 = ψ12, ψ3 = ψ8, ψ6 = ψ9 and
ψ7 = ψ11. The third group, with quantum numbersν = (3+ 4m), m= 0, 1, 2, ..., have tooψ1 = ψ5, ψ2 = ψ12, ψ3 = ψ8,
ψ6 = ψ9 andψ7 = ψ11, but the eigenfunctions are much more localized in the edges2 and 12. Finally, the fourth
group, with quantum numbersν = (4+ 4m), m = 0, 1, 2, ... haveψ1 = ψ3 = ψ5 = ψ8, ψ2 = ψ12, ψ6 = ψ7 = ψ8 = ψ11

and theBi = −Ai , showing be sinusoidal eigenfunctions. The eigenvalues obtained are in complete agreement those
obtained using the Green’s function approach.

23



F

1

3
6

C

B

2
D

9
12

7

H

E

4

5

10

11 G

A

8

f

i

Figure 10: (Color online). The original closed cube quantumgraph is attached to two leads (at the verticesA andG), thus becoming an open
quantum graph structure.

6.1.2. Scattering
We can also calculate the transmission through cube quantumgraph. In Fig.10we show one cube quantum graph

connected to two external leads. The Green’s function is given by

G f i(xf , xi ; k) =
µ

i~2k
Ti f exp[ik(xf + xi)]. (64)

In the Fig.11we show the quantum probabilities for the cube quantum graph.

Figure 11: (Color online). The transmission|Ti f |2 (solid line) and reflection|Ri |2 (dashed) probabilities for the open cube quantum graph of Fig.
10. All the vertices are generalizedδ interactions of strength (a)γ = 0.0 and (b)γ = 1.0. Here alsoµ = ~ = 1.

6.2. Binary tree

The fact we can write the Green’s function in terms of the general r andt coefficients allows one to use a recursive
procedure to obtain the solution to more complicated graphs. The binary tree quantum graph in Fig.12(c) is a good
example of this. To show this let us first calculate the transmission and reflection coefficients for the simple graph in
the Fig. 12(a). In fact, this was already done when calculate ther (1)

I andt(1,11)
I for the cube quantum graph. So, by

grouping the four verticesA, B, C e D in a single vertexα the reflection coefficientRα is given by

Rα = r (i)
A + t(i,1)

A P1 + t(i,2)
A P2 (65)
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where






















































































P1 = r (1)
B exp[2ikℓ]

(

r (1)
A P1 + t(1,2)

A P2 + t(1,i)A

)

+ t(1,3)
B exp[2ikℓ]

(

r (3)
D P3 + t(3,4)

D P4

)

P2 = r (2)
C exp[2ikℓ]

(

r (2)
A P2 + t(2,1)

A P1 + t(2,i)A

)

+ t(2,4)
C exp[2ikℓ]

(

r (4)
D P4 + t(4,3)

D P3

)

P3 = t(3,1)
B exp[2ikℓ]

(

r (1)
A P1 + t(1,2)

A P2 + t(1,i)A

)

+ r (3)
B exp[2ikℓ]

(

r (3)
D P3 + t(3,4)

D P4

)

P4 = t(4,2)
C exp[2ikℓ]

(

r (2)
A P2 + t(2,1)

A P1 + t(2,i)A

)

+ r (4)
C exp[2ikℓ]

(

r (4)
D P4 + t(4,3)

D P3

)

.

(66)

And the transmission coefficient,Tα, is
Tα = t(i,1)

A P1 + t(i,2)
A P2. (67)

The relations to determine theTα coefficient are the same equations those in (66), with the exchange of indices
1↔ 3, 2↔ 4, A↔ D andi ↔ f . Solving the system (66) we get the expression toRα andTα. Now, we insert into
verticesB andC another binary graph, like showed in the Fig.12(a), resulting in the graph in Fig.12(b). We use the
solution of system (66), but now in the place ofrB andrC we putRα expression and for thetB andtC we put theTα
expression, obtaining theRβ andTβ coefficients. The final step is to insert again a binary graph into central vertices,
generating the binary tree graph in Fig.12(c). Again we use the solution of equation (66), but this time withRβ in the
place ofrB andrC andTβ in the place oftB andtC getting theRγ andTγ. Finally, we use the solution one more time,
with the expression forRγ in place ofrB andrC and the expression forTγ in place oftB andtC, obtaining the theRand
T coefficients for the binary tree quantum graph of Fig.12(d). This recursive process can be repeated until we obtain
the finalG, despite of graph topology.

As an example, consider all edges with the same lengthℓ = 1.0 and Diracδ interaction with intensityγ = 1.0 as
boundary condition in the vertices. For the vertices with two edges we haverB = γ/(ik − γ) andtB = ik/(ik − 2γ) and
for vertices with three edgesrA = (2γ− ik)/(3ik−2γ) andtA = 2ik/(3ik−2γ). In the Fig.13we show the transmission
probabilitiesTα, Tβ, Tγ andT. We notice that increasing the complexity of the tree graph also increase the complexity
of the transmission coefficients and in general the transmission probability decrease for a samek. This fact is natural
once that occur a pronounced increase in a length of path to a particle leave the leadi and arrive the leadf and occur
an increase in the number of vertices in the path, increasingthe probability of reflection of particle.

6.3. Sierpiński-like graphs

One of the many reasons for the interest of physicists in self-similar lattices is that they can be used as models
backbones of different physical systems [212]. In the previous section we already study the tree like quantum graph
and the use of recursive procedure to obtain the Green’s function. Here we will apply the same recursive procedure
to obtain the Green’s function to Sierpiński graph. The Sierpiński gasket was considered in [215, 216], where it is
discussed the quantum scattering coefficients. However, the most general case of energy dependent quantum coeffi-
cients are not discussed and is not presented a schematically way to regroup the contributions of multiple scattering to
calculate the Green’s function. We fill this gap in the present section. The Sierpiński graph also was studied in terms
of its relation to small-worlds networks in [217].

The Sierpiński graphs come from the Sierpiński gasket, the well-known fractal object introduced by Sierpiński
in 1915 [213], and they can be recursively constructed from a basic building block. In the Fig.14 we show three
different stages Sierpiński graphs.

Because the Sierpiński graph of stage-n possesses three semi-infinite leads, the scattering matrixis of order 3, that
we write as

S(n)(k) =























R(n)
11(k) T(n)

12 (k) T(n)
13 (k)

T(n)
21 (k) R(n)

22(k) T(n)
23 (k)

T(n)
31 (k) T(n)

32 (k) R(n)
33(k)























. (68)

Here we use a different notations for the quantum amplitudes as follow. Usingthe triangle symmetry, we can write
R(n)

ii (k) = R(n)
k for i = 1, 2, 3 andT(n)

i j (k) = T(n)
k for i, j = 1, 2, 3, with i , j. The Green’s function for the transmission
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Figure 12: (Color online). Binary tree quantum graphs (attached to leadsi and f ) with different number of recursive compositions. By regrouping
the structure, we end up with a simple graph comprising an unique effective vertex linked to two leads. At each level the rescaledsystem has the
same global transmissionTξ and reflectionRξ amplitudes than the corresponding original graph. Here it is shown, (a) the initial basic topology,
and (b) one, (c) two, and (d) three, insertions

.
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Figure 13: (Color online). The transmission|Tξ |2 (solid line) and reflection|Rξ |2 (dashed) probabilities for the binary trees of Fig.12. All the
vertices are generalizedδ interactions of strength (a)-(d)γ = 0.0 and (e)-(h)γ = 1.0. All the edges have lengthℓ = 1.0. Here alsoµ = ~ = 1. The
quantum probabilities for the graphs of Fig.12 (a), (b), (c) and (d) are shown, respectively, in (a) and (e),(b) and (f), (c) and (g) and (d) and (h).
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Figure 14: (Color online). Sierpiński-like finite graphs with different number of recursive stages: (a) stage-1 (SG1), (b) stage-2 (SG2), and (c)
stage-3 (SG3).

case of the Sierpiński graph is given by

Gi j (xf , xi ; k) =
µ

i~2k
T(n)

k exp[ik(xf + xi)], (69)

and
Gii (xf , xi ; k) =

µ

i~2k

(

exp[ik|xf − xi |] + R(n)
k exp[ik(xf + xi)]

)

, (70)

for the reflection case. To simplify our analysis, we assume that all the boundary condition at the vertices of graph
are the same. For this reason, reflection and transmission coefficients arerk andtk (k denotes the energy dependency),
respectively, and the width of each edge isℓ. The quantum coefficients for the stage−1 of Sierpiński graph are obtained
by the solution of the following system of equation,



















































PAB = exp[ikℓ](rkPBA+ tkPBC)
PAC = exp[ikℓ](rkPCA + tkPCB + tk)
PBC = exp[ikℓ](rkPCB + tkPCA + tk)
PBA = exp[ikℓ](rkPAB+ tkPAC)
PCA = exp[ikℓ](rkPAC + tkPAB)
PCB = exp[ikℓ](rkPBC + tkPBA)

, (71)

with
T(1)

k = tk(PAB+ PAC) and R(1)
k = rk + tk(PCA + PCB). (72)

Solving the system of equations in (71), we get the transmission and reflection coefficients to the stage-1 of Sierpiński
graph, Fig.14(a),

R(1)
k = rk +

2t2k
(

rk + (t2k − r2
k) exp [ikℓ]

)

exp [2ikℓ]
(

1− (rk + tk) exp [ikℓ]
)(

1+ tk exp [ikℓ] + (t2k − r2
k) exp [2ikℓ]

)
, (73)

and

T(1)
k =

t2k
(

1+ (tk − rk) exp [ikℓ]
)

exp [ikℓ]
(

1− (rk + tk) exp [ikℓ]
)(

1+ tk exp [ikℓ] + (t2k − r2
k) exp [2ikℓ]

)
. (74)
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Given its recursive structure, the scattering coefficients to stage-n+1 are recursively obtained through the scattering
coefficients of stage-n. We define

D(n)
k =

(

1− (R(n)
k + T(n)

k ) exp [ikℓ]
)(

1+ T(n)
k exp [ikℓ] + ([T(n)

k ]2 − [R(n)
k ]2) exp [2ikℓ]

)

, (75)

so

R(n+1)
k = R(n)

k/3 +
2[T(n)

k/3]
2(R(n)

k/3 + ([T(n)
k/3]

2 − [R(n)
k/3]

2) exp [ikℓ/3]
)

exp [2ikℓ/3]

D(n)
k/3

, (76)

and

T(n+1)
k =

[T(n)
k/3]

2(1+ (T(n)
k/3 − R(n)

k/3) exp [ikℓ/3]
)

exp [ikℓ/3]

D(n)
k/3

, (77)

where we take a division by 3 of width of edge in each new stage of Sierpiński graph. In this way, using the expressions
in (76) and (77), together withR(1)

k andT(1)
k in (73) and (74), we can get the scattering coefficients of Sierpiński graph

of stage-n with general point interaction in each vertex.
Using the width of edge to stage-1 asℓ = 1.0 and a delta type point interaction with intensityγ = 0.0 andγ = 1.0

at each vertex, in the Fig.15and Fig.16, respectively, we show the behavior of reflection and transmission coefficient,
respectively, to the Sierpiński graph up to stage-5. We cannote that at each stage for the Sierpiński graph the structure
of quantum coefficients became more selective to what energies (k) can be transmitted. Also, this behavior is different
of that one observed in the tree graph, Fig.13, where we have an increase of the reflection amplitude, but without so
much change in the original form. Here, at each new stage, thequantum coefficients have a change in its behavior as
function ofk in a very pronounced way.

7. Quasi-bound states in quantum graphs

As a last application for the Green’s function approach reviewed in the previous sections, we shall consider a
context not usually addressed for quantum graphs, namely, quasi-bound states (but see [183]). For a general treatment
for such problems usingG – however not discussing quantum graphs – we mention [218].

A quasi-bound state occurs when a particle move inside a system for a considerable period of time, leaving it when
a fairly long time intervalτ has elapsed [219], whereτ is called lifetime of the quasi-bound state. The concept of
quasi-bound states is a fundamental one, and has been applied in all areas of physics. They have been used to calculate
tunneling ionization rates [220], to understand the phenomenon of diffraction in time [221], to describe the decay of
cold atoms in quasi-one-dimensional traps [222], and are directly relevant to recent condensed-matter experiments
[223].

Thus, let us begin our discussion considering the linear quantum graph depicted in Fig.17. Suppose initially that
we have a boundary condition with zero transmission amplitude in both verticesA andB. For instance, consider a
Dirichlet boundary condition. This system is equivalent toan infinite square well, so it is possible for a particle to be
trapped inside the graph in the edge between the verticesA andB, i.e., the system would have genuine bound states,
with well definite energy

E =
n2π2

~
2

2µℓ2
AB

. (78)

They are genuine bound states in the sense that are eigenstates of the Hamiltonian with an infinite lifetime. From the
Heisenberg uncertainty principle,∆E∆t ≈ ~, so, if the energy possesses null uncertainty, the state’s life time is infinity
[224].

In the situation of a arbitrary boundary condition with non-zero transmission amplitude in both vertices the particle
can be trapped, but it can not be trapped forever, as a consequence of quantum tunneling. The energy spectrum in
this case will be quasi-discrete, and it consists of a seriesof broadened levels, whose width is represented byΓ = ~/τ

[225], and the energy values are called quasi-energies. The situation become very interesting when we analyze the
scattering of particles when the incident energy is close tothe quasi-energy

E(inc) ≈ E(qb). (79)
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Figure 15: (Color online). The transmission|Tn|2 (solid line) and reflection|Rn|2 (dashed) probabilities for the stage-n of the Sierpiński graph, Fig.
14. All the edges haveℓ = 1.0 andµ = ~ = 1. At any edge we have aδ interaction of strengthγ = 0.0. The casesn = 1, n = 2, n = 3, n = 4, and
n = 5, are displayed, respectively, in (a), (b), (c), (d) and (e).
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Figure 16: (Color online). The same as in Fig.15, but for the vertices beingδ interaction of strengthγ = 1.0.

A B

Figure 17: (Color online). An open quantum graph with two vertices, one edge and two leads (similar to that studied in Sec.4.1).
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Figure 18: (Color online). Typical profile of the transmission probability as function of energy for a potential displaying two quasi-bound states at
energiesE(qb)

1 andE(qb)
2 . The quasi-bound states widths,Γ1 andΓ2, can usually be obtained from such a plot.

In this energy interval, the square module of transmission amplitude exhibits pronounced peaks, and this is called
resonant scattering [224]. This behavior was already observed in the previous sections, and in Fig.18 it is depicted
the typical transmission probability as a function of the incident energy for a scattering of a system which supports
quasi-bound states. The width of this quasi-bound statesΓ is defined as half height width of peak of the transmission
coefficient, as depicted in Fig.18.

Now, let us consider an intermediate situation where the vertexB has a boundary condition with zero transmission
amplitude and an arbitrary boundary condition with a non-zero transmission amplitude in the vertexA. In this situa-
tion, the system can also has quasi-bound states, due the tunneling through the vertexA. The scattering solution for a
particle incident from the left is given by

ψ(x) ≈ 1
√

2π

{

exp [ikx] + R(+)
AB exp [−ikx]

}

, x→ −∞. (80)

whereR(+)
AB is the reflection amplitude for the whole graph

R(+)
AB = r (+)

A +
r (−)

B t(−)
A t(+)

A exp [ikℓAB]

1− r (−)
A r (+)

B exp [2ikℓAB]
. (81)

By analogy with the previous case, we can try to extract the information about quasi-bound states from the square

modules of reflection amplitude
∣

∣

∣R(+)
AB

∣

∣

∣

2
. Unfortunately, because the boundary condition in the vertex B,

∣

∣

∣R(+)
AB

∣

∣

∣

2
= 1

for all range of energies. So, we can not obtain information about quasi-bound states for this situation by the above
method. So, we propose a Green’s function approach to extract information about quasi-bound states for this kind of
situation, as we explain below.

Consider the open quantum graph in Fig.19. As we explain below, here we use a slightly different notation for
the quantum coefficients. Using the simplification procedures of Sec.4.2we can get the Green’s function straightfor-
wardly. In this manner, the Green’s function for the case where xi < y1 is in the semi-infinity leadi andxf is in the
edgej between the verticesy j andy j+1 is given by

Gi j (xf , xi ; k) =
µ

i~2k

T(+)
(1, j) exp [ik(xf − xi + y j − y1)]

1− R(−)
(1, j)R

(+)
( j+1,N) exp [ik(y j+1 − y j)]

, (82)

whereT(+)
(1, j) is the transmission coefficient to the left (+) of block (1, j) comprising all vertices betweeny1 andy j, R(−)

(1, j)

is the reflection coefficient to the right (−) of block (1, j) comprising all the vertices betweeny j andy1 andR(+)
( j+1,N) is

the reflection coefficient to the left (+) of block (1, j) comprising all the vertices at right ofy j+1.
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Figure 19: (Color online). A semi-infinite lead attached to aseries ofN simply connected vertices. This structure allows quasi-bound states.

7.1. Recurrence formulas for the reflection and transmission coefficients

The global reflection and transmission coefficients are obtained recursively in terms of reflection and transmission
coefficients of each individual vertex. To understand this construction consider the graph composed only with two
vertices atyl andyl+1, and that bothxi , xf < yl < yl+1, with xi andxf in the same semi-infinity leadi, Fig. 20(a).

(a) (b)

i i

xixi x fx f

(l, l + 1)

ylyl yl+1yl+1 yl+2

block

Figure 20: (Color online). (a) Two and (b) three simply connected vertices attached to two semi-infinite leads. In (b) it is exemplified the
construction process of block structures.

Performing the sum over all scattering paths, the Green’s function to the graph in Fig.20(a) is given by

Gii (xf , xi ; k) =
µ

i~2k

{

exp[ik|xf − xi |] + r (+)
l exp[−ik(xf + xi − 2yl)]

+
r (+)
l+1t(+)

l t(−)
l exp [2ik(yl+1 − yl)] exp [−ik(xf + xi − 2yl)]

1− r (−)
l r (+)

l+1 exp[2ik(yl+1 − yl)]

}

. (83)

In the above expression a global reflection coefficient to the right of block (l, l + 1),R(−)
(l,l+1), comprising of two vertices

yl andyl+1 as

R(+)
(l,l+1) = r (+)

l +
r (+)
l+1t(+)

l t(−)
l exp[2ik(yl+1 − yl)]

1− r (−)
l r (+)

l+1 exp [2ik(yl+1 − yl)]
. (84)

In an analogous way, calculating theG for xi , xf > yl > yl+1 we can associate a global reflection coefficient at the left
of block (l, l + 1), R(−)

(l,l+1), its is given by

R(−)
(l,l+1) = r (−)

l+1 +
r (−)
l t(−)

l+1t(+)
l+n exp[2ik(yl+1 − yl)]

1− r (−)
l r (+)

l+1 exp [2ik(yl+1 − yl)]
. (85)

Now, considering the case wherexi < yl < yl+1 < xf , the Green’s function is given by

Gi l+1(xf , xi ; k) =
µ

i~2k

t(+)
l t(+)

l+1 exp[ik(yl+1 − yl)]

1− r (−)
l r (+)

l+1 exp [2ik(yl+1 − yl)]
exp[ik(xf − xi − (yl+1 − yl))], (86)

and again we can associate a global transmission coefficient at the left of block (l, l + 1), T(+)
(l,l+1), as

T(+)
(l,l+1) =

t(+)
l t(+)

l+1 exp [ik(yl+1 − yl)]

1− r (−)
l r (+)

l+1 exp [2ik(yl+1 − yl)]
. (87)

And calculating theG for xi > yl+1 > yl > xf we get the transmission coefficient at right of block (l, l + 1), T(−)
(l,l+1), and

is given by

T(−)
(l,l+1) =

t(−)
l t(−)

l+1 exp [ik(yl+1 − yl)]

1− r (−)
l r (+)

l+1 exp [2ik(yl+1 − yl)]
. (88)
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To get recurrence formulas for the reflection and transmission coefficients, consider a third vertex, in the position
yl+2, like the one shown in Fig.20(b). Let the reflection and transmission coefficients, wherexi , xf < yl < yl+1 < yl+2,
be R(±)

(l,l+1) andT(±)
(l,l+1) the reflection and transmission coefficients of block (l, l + 1), respectively. Again, using the

simplification procedures of section4.2 and by inspection of Eq. (84) we can infer the reflection coefficient for the
block (l, l + 2) formed by the verticesyl , yl+1 andyl+2, R(+)

(l,l+2), as

R(+)
(l,l+2) = R(+)

(l,l+1) +
T(+)

(l,l+1)T
(−)
(l,l+1)r

(+)
l+2 exp[2ik(yl+2 − yl+1)]

1− R(−)
(l,l+1)r

(+)
l+2 exp[2ik(yl+2 − yl+1)]

. (89)

Based in the above two cases, we can generalize for a block (l, l+n) with n+1 vertices. Here we write the final results.
So, the reflection coefficient at right of block (l, l + n) is given by

R(+)
(l,l+n) = R(+)

(l,l+n−1) +
T(+)

(l,l+n−1)T
(−)
(l,l+n−1)r

(+)
l+n exp[2ik(yl+n − yl+n−1)]

1− R(−)
(l,l+n−1)r

(+)
l+n exp[2ik(yl+n − yl+n−1)]

. (90)

and the reflection coefficient at left of block (l, l + n), R(−)
(l,l+1), is given by

R(−)
(l,l+n) = r (−)

n +
t(+)
n t(−)

n R(−)
(l,l+n−1) exp[2ik(yl+n − yl+n−1)]

1− R(−)
(l,l+n−1)r

(+)
l+n exp[2ik(yn − yn−1)]

. (91)

In an analogous way the transmission coefficient at left,T(+)
(l,l+n), and at right,T(−)

(l,l+n), of block (l, l + n) can be obtained,
and are given by

T(+)
(l,l+n) =

T(+)
(l,l+n−1)t

(+)
l+n exp[ik(yl+n − yl+n−1)]

1− R(−)
(l,l+n−1)r

(+)
l+n exp[2ik(yl+n − yl+n−1)]

(92)

and

T(−)
(l,l+n) =

T(−)
(l,l+n)t

(−)
l+1 exp[ik(yl+n − yl+n−1)]

1− R(−)
(l,l+n−1)r

(+)
l+n exp[2ik(yl+n − yl+n−1)]

. (93)

7.2. Green’s function as a probability amplitude

Once obtained the recurrence formulas for the quantum coefficients, consider again the Green’s function in (82).
The Green’s function for a quantum system could be interpreted as the probability amplitude for a particle initially in
the pointxi arrive the pointxf with fixed energyE [181]. So, in Eq. (82), the amplitude

Ai, j =
T(+)

1, j

1− R(−)
1, j R

(+)
j+1,N exp [ik(y j+1 − y j)]

, (94)

can be interpreted as a probability amplitude for a particleleaving the pointxi in the semi-infinity leadi and arriving
at the pointxf in the edgej with energyE. If the graph support at least one quasi-bound state, an incident wave with
energyE close to the quasi-bound state energy have a great probability to tunnel, entering in the confinement region.
In this way, plotting|Ai, j |2 againstE, we have peaks at each time that the energyE was close toE(qb), like in Fig. 18.
With this we can extract information about the energy valuesof quasi-bound states and its respective widths. Here a
little technical detail. The amplitude|Ai, j |2 is not normalized, but it is not a problem, because we are interested in the
energy and width of each quasi-bound state.

An interesting characteristic of the Green’s function approach to study quasi-bound states on graphs is the possi-
bility to calculate directly, localized quasi-bound states in a specific edge. Besides, it is also possible to analyze the
influence of different point interactions — implemented through boundary conditions — on the width and the energy
of a quasi-bound state. As an example, consider a graph with six vertices like that in the Fig.21. Let µ = ~ = 1 and
the lengths of edges all equals toℓ = 1.0. In each vertex we use delta type interaction withγ, but in the vertexy6,
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Figure 21: (Color online). The example of Fig.20 with N = 6. In the vertexy6 we consider both Dirichlet and Neumann boundary conditions.

Figure 22: (Color online). Behavior ofAi, j as a function of energy using Dirichlet boundary condition (r6 = −1) at the vertexy6 of Fig. 21. The
amplitudes for the quasi-bound states localized in the edgebetween the vertices: (a) 1 and 2, (b) 2 and 3, (c) 3 and 4, (d) 4 and 5 and (e) 5 and 6.
The solid line is forγ = 1.0 and the dashed line is forγ = 2.0.
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Figure 23: (Color online). Behavior ofAi, j as a function of energy using Neumann boundary condition (r6 = 1) in the vertexy6 of Fig. 21. The
amplitudes for the quasi-bound states localized in the edgebetween the vertices: (a) 1 and 2, (b) 2 and 3, (c) 3 and 4, (d) 4 and 5 and (e) 5 and 6.
The solid line is forγ = 1.0 and the dashed line is forγ = 2.0.
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Figure 24: (Color online). Example of an open quantum graph,whose a slight modified version has been studied in [137] to transmit information
using quantum protocols.

where we use either Dirichlet,r6 = −1.0 or Neumann,r6 = 1.0, boundary condition. In the Figs.22and23we show
Ai, j for the Dirichlet and Neumann boundary conditions, respectively.

The analysis of figures make it clear the presence of quasi-bound state as a function of energy. Also, it is evident
the influence of the boundary condition utilized on the vertex y6 in the quasi-energies and in the width of quasi-bound
state. The quasi-energies of quasi-bound state in the Neumann case have lower energies and widths when compared
with the quasi-energies of Dirichlet one. Another observation is the increase in the number of quasi-bound states when
the final pointxf is near of vertexy6. In this later case, escaping the graph become mode difficult because of multiple
reflections and interference along its edges. In fact, thereis a narrowing the half height width,Γ, and consequently an
increase in the lifetime of quasi-state.

7.3. Quasi-bound state in arbitrary graphs

Observing the form ofAi, j in Eq. (94), we can note that the amplitudeAi, j is giving by the quotient of transmission
coefficient from the initial pointxi to final pointxf in the numerator and a term what is 1 minus the product of the
reflections coefficients at left and at right of edge and of complex exponentialof length of edge where is situated the
final point xf in denominator. This term in the denominator are associatedwith the energy eigenvalues [152, 226],
given by the sum of possible periodic orbits in the edge whereis the final point [137]. In general, the amplitude to
localized quasi-bound state between two verticesI andJ of arbitrary graph is given by

AI ,J =
TI ,J

1− RI ,J RJ,I exp[2ikℓI ,J]
, (95)

with TI ,J is the global transmission coefficient for the particle be transmitted to the edge between theverticesI andJ,
RI ,J is the global reflection coefficient at the vertexI andRJ,I is the global reflection coefficient at the vertexJ.

As an example of arbitrary graph and the use of Eq. (95), consider the graph in Fig.24. We can use different
boundary conditions in each version and lengths of each edges, but here we use delta type point interactions in each
vertex with intensityγ = 1.0, but in vertexE we use Dirichlet or Neumann boundary condition. All the edges have the
same lengthℓ = 1.0. So, with all edges with the same length, due the symmetry, we have three different edges where
we can calculate the quasi-bound state between the verticesAE, ABandBC. In the Fig.25we show the behavior for
the three above cases using the Dirichlet and Neumann condition, respectively. Again, we note the strong influence
of boundary condition in vertexE in the widths and quasi-energies. Also, the influence of position of quasi-state is
observed. This influence also was observed in this same graphfor the transmission coefficient in [137]. As expected,
because complexity of graph, in this case the profile is more complicated than those o linear graph shown in the shown
previously.

8. Conclusion

The quantum graphs are very interesting because they can modeling waves in a large variety of systems, having
applications going from nanotechnology to medicine. They are very simple system, nonetheless, it is not easy to obtain
the Green’s function for general quantum graphs by means of standard procedures, being necessary for instance to
modify the Krein’s resolvent formula [138] or by doing some complicated calculations [139]. In this contribution, we
have shown a physically motivated construction for the exact Green’s function for arbitrary quantum graphs of any
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Figure 25: (Color online). Behavior of amplitudeAI ,J as function of energy using the Dirichlet (rE = −1) or Neumann (rE = 1) boundary
condition on vertexE of graph in the Fig.23. The figures in (a)-(c) are using Dirichlet boundary condition and in (d)-(f) are using Neumann
boundary condition, for quasi-bound state localized in theedges between vertices (a) and (d)A andE, (b) and (e)A andB and (c) and (f)B andC.
The solid line is forγ = 0.0 and the dashed line is forγ = 1.0.
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topology, avoiding those complicated calculations. The exact Green’s function is given by a sum over classical paths,
taking into account local quantum effects through the quantum amplitudes defined through the boundary conditions
on each vertex of the graph. This result is very important because it allows one to solve problems in a recursive way,
a key factor in the solution of quantum graphs of arbitrary topologies.

In order to construct the exact Green’s function we developed two simplification procedures: the regrouping of
infinity paths in finite classes of paths and the separation ofa large graph into small ones. Using this two simplification
procedures, the exact Green’s function for open and closed quantum graphs was obtained. Several concrete examples
was considered, like cube, binary tree and Sierpiński-like quantum graphs. From the poles and residues of the Green’s
functions the bound state eigenenergies and eigenfunctions were obtained with the correct normalization constant.
I worth to comment that the wave function normalization constant often involves a difficult integral in the other
methods. The method outlined here can also be applied for dressed quantum graphs if the potentials along the edges
decay at least exponentially, and very good analytical approximation for the Green’s function can be obtained. But in
this case it is necessary to include the quantum amplitudes of the potentials and calculate the classical action of the
quantum particle under the action of the potential. Finally, a very interesting application of Green’s function approach
was done to extract information about quasi-bound states inopen quantum graphs. The method allows us to extract
information of localized quasi-bound state and the influence of different boundary conditions in the energy and width
of quasi-bound state.

Our analysis generalizes the quantum version of the Kirchhoff’s rules discussed in Ref. [134], because we con-
struct the scattering matrix in a systematic and very general way, and also generalizes the results of Ref. [35], where
was studied only open quantum graphs and was not showed how toclassify and sum up all the classical trajectories.
We illustrate our method by some concrete examples like binary tree, cube and Sierpiński-like quantum graphs, ob-
taining the transmission (as well the reflection) amplitudes as functions of wave number of incident plane waves, by
usingk-dependent boundary conditions.

The approach developed here can be also applied to study a close related class of systems, namely, scattering
quantum walks as addressed in [77, 78]. The advantage of the present approach to study scatteringquantum walks
lies in the easily to obtain the Green’s function for generalquantum graphs and in the possibility to explore specific
paths and obtain the contribution of each path to the interference phenomena responsible for the superdifusivity of
quantum walks.

We hope that all these technical aspects developed in this work can contribute to a better understanding of quantum
graphs.
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A. The most general point interaction conserving probability flux as a quantum graph vertex

A.1. The usual case: the line

The probability density flux in the usual 1D quantum mechanics reads

j(x) =
1
2i

[ψ∗(x)ψ′(x) − ψ(x)ψ′∗(x)]. (A.1)

Thus, if we define (ψ′(x) ≡ dψ(x)/dx)

Φ(x) =

(

ψ(x)
ψ′(x)

)

, (A.2)

and

J =

(

0 1
−1 0

)

, (A.3)
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j(x) can be written in a complex sympletic-like form as

j(x) =
1
2i
Φ†(x) JΦ(x). (A.4)

Now, suppose a free particle of energyE = k2/2 on the line (−∞ < x < +∞), obeying to−d2ψ(x)/dx2 = k2ψ(x)
for x , 0. At x = 0 we assume a point interaction. Since, by definition, the range of action of such kind of potential is
zero, its only effect is to set a specific BC for the wave functionψ(x) at x = 0. Thus, the most general point potential
corresponds to the most general linear boundary condition,represented by

Φ(0+) = ΓΦ(0−), (A.5)

with

Γ = ω

(

a b
c d

)

. (A.6)

For example, for the common delta function potentialγ δ(x) (of strengthγ), the parameters area = d = ω = 1, b = 0,
andc = γ.

Using the Eqs. (A.4) and (A.5), we have

j(0+) =
1
2i
Φ†(0−) Γ† JΓΦ(0−). (A.7)

If we imposej(0+) = j(0−), it follows thatΓ† JΓ = J, yielding

ad− bc= 1, a, b, c, d real numbers and|ω| = 1. (A.8)

Therefore, the most general point interaction consistent with flux conservation is characterized by Eq. (A.5), with Γ
given by Eqs. (A.6) and (A.8).

Next, to consider aSmatrix formalism [194], suppose typical plane wave scattering solutions characterized byk.
The incoming and outgoing parts of the state are then connected by

(

ψ
(out)
k (0−)
ψ

(out)
k (0+)

)

= S(k)

(

ψ
(in)
k (0−)
ψ

(in)
k (0+)

)

. (A.9)

Probability conservation at the origin,

|ψ(in)
k (0−)|2 + |ψ(in)

k (0+)|2 = |ψ(out)
k (0−)|2 + |ψ(out)

k (0+)|2, (A.10)

inserted into Eq. (A.9) leads toS(k)S†(k) = S†(k)S(k) = 1, i.e.,S is unitary. Furthermore, making in Eq. (A.9) the
substitutionk→ −k, we can write

(

ψ
(in)
−k (0−)
ψ

(in)
−k (0+)

)

= S†(−k)

(

ψ
(out)
−k (0−)
ψ

(out)
−k (0+)

)

. (A.11)

But k → −k inverts the flux direction, physically implying inψ(in) ↔ ψ(out). So, given such in-out exchange in Eq.
(A.11) and once the relation between incoming and outgoing wave function components is always set in the form of
Eq. (A.9), we must haveS(k) = S†(−k).

For any arbitrary point interaction, we can write the scattering solutionsψ(±)
k (x) assuming a plane wave, of wave

numberk, incident either from the left (+) or right (−), so that (Nk = 1/
√

2π)

ψ
(±)
k (x) = Nk ×

{

exp [±ikx] + R(±)(k) exp [∓ikx], x ≶ 0
T(±)(k) exp [±ikx], x ≷ 0.

(A.12)

Observing that exp [±ikx] are the incoming and the terms involvingR andT are the outgoing parts of the above
full scattering states, one gets that arbitrary linear combinations ofψ(+)

k andψ(−)
k results, from Eq. (A.9), in

S(k) =

(

R(+)(k) T(−)(k)
T(+)(k) R(−)(k)

)

. (A.13)
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Now, imposingSS† = S† S = 1 andS(k) = S†(−k) to Eq. (A.13), ones finds that

|R|2 + |T |2 = 1, R(+)∗T(±) + T(∓)∗R(−) = 0,

R(±)∗(k) = R(±)(−k), T(±)∗(k) = T(∓)(−k). (A.14)

These are the basic conditions to assure proper features forthe scattering solutions in quantum mechanics [194], e.g.,
orthonormalization, flux conservation, and the existence of the scattering inverse problem. If, furthermore, one also
requires time-reverse invariance – what we are not imposingin this work – thenT(+) = T(−).

Finally, to establish a full correspondence between the twoapproaches, the boundary condition treatment and the
Smatrix formalism, let us assume Eq. (A.5) for the states in Eq. (A.12). Thus [192]

R(±)(k) =
c± ik(d− a) + bk2

−c+ ik(d+ a) + bk2
, T(±)(k) =

2ikω±1

−c+ ik(d+ a) + bk2
. (A.15)

It is easy to verify that the quantum amplitudes in Eq. (A.15) satisfiesall the fundamental requirements in Eq. (A.14)
[192]. Hence, up to a global phaseω, the problem is likewise specified from the parametersa, b, c andd or from the
coefficientsR(±) andT(±). Thus, the two approaches are completely equivalent and arbitrary point interactions can be
defined entirely in terms of theirSmatrix (for a more detailed analysis, see, e.g., [187]).

A.2. A point interaction in 1D for multiple directions: a star graph topology
The above prescription for the line is directly extendable to the more general case. To see how, first note that

in the 1D case, a zero-range potential at the origin divides the interval−∞ < x < +∞ into two semi-infinite lines.
Thus, from the identificationx1 = −x andx2 = +x, the left (−∞ < x < 0) and right (0< x < +∞) regions could be
represented by 0≤ x1 ≤ +∞ and 0≤ x2 ≤ +∞. Hence, in a quantum graph framework, the system topology isthat of
a single vertex joining two leads. Also, the original nomenclature 0+ (0−) now becomesx2 = 0 (x1 = 0), indicating
that we are considering the vertex but from the right (left) side, i.e., at the beginning of lead 2 (1).

A zero-range potential located at 0 and attached toN = E semi-infinite lines constitutes a star graph-like topology,
depicted in Figure1(c). Along each leadn (with n = 1, 2, . . . ,N) the spatial coordinatexn ranges from 0 to∞ and
ψ

(in)
k (xn) andψ(out)

k (xn) denote, respectively, incoming and outgoingk plane wave states. In this case, the equivalent of
Eqs. (A.9) and (A.11) read

Ψ
(out)
k (0) = S(k)Ψ(in)

k (0) andΨ(in)
−k (0) = S†(−k)Ψ(out)

−k (0), (A.16)

withΨ aN-components column vector (naturally extending the 2-components for the line) andS(k) aN×N scattering
matrix, whose elementSnl(k) yield the quantum transition amplitude to go from leadn to leadl for a state of wave
numberk. Probability conservation and moment inversion reciprocity, namely,

Ψ
(out)
k (0)

†
Ψ

(out)
k (0) = Ψ(in)

k (0)
†
Ψ

(in)
k (0) andk↔ −k⇐⇒ Ψ(out)↔ Ψ(in), (A.17)

demandS(k) to be unitary andS(k) = S†(−k), exactly as in Sec.A.1. Therefore, anyN × N matrix satisfying these
two conditions will represent a proper zero-range interaction, resulting in a well-behaved quantum dynamics on aN
star graph. Furthermore, the scattering states follow froma direct generalization of Eq. (A.12), where the amplitudes
are given by the corresponding matrix elements ofS(k) (cf., Sec. 2).

Finally, the BC approach in [134, 153] can be put in a direct relation with the aboveS formalism through an
one-to-one correspondence between theN2 independent real parameters defining the BC at the vertex (see Sec. 2.1)
and the matrix elements ofS, likewise parameterizable byN2 independent real constants [227].

A.3. A general graph
To conclude the analysis, we note that in an arbitrary undressed graph, the region around each vertexn is basically

a star structure. The difference is that instead of going from 0 to∞, some (or all) edges can be finite, ending up in
another vertexm. Due to the superposition principle – which holds true for any linear wave-like differential equation
(here Helmholtz) – the global state for an spatially extended problem can be construct in terms of a multiple scattering
process [228]. In other words, a proper sum of the locally scattered waves(entirely determined byS(n)(k)) results in
the full exact solution. This is the case even if the system isclosed (the graph has no leads)9.

9 A trivial example is that of an infinite square well (a graph with two vertices and one edge), whose typical boundedψn(x) ∝ sin[knx] (with
kn = nπ/L) is given as the linear combination of the plane waves scattered off by each wall (vertex), atx = 0 andx = L.
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In this way, a legitimate and univocal quantum dynamics for any open or closed graph is utterly obtained by
associating to each vertexn a corresponding scattering matrixS(n)(k) (for S(n)(k) as described in Sec.A.2). Then, it
also directly follows that the BC prescription and theS scheme are totally equivalent regardless the graph topology.

B. The exact Green’s function for quantum graphs: the generalized semiclassical formula

Here we shall just outline the main steps necessary to demonstrate that the exact Green’s function for quantum
graphs can be written in the same functional form of Eq. (13), i.e., as generalized semiclassical formula.

B.1. Reviewing a simple case, the Green’s function for a point interaction on the line

Suppose the usual infinite line and an arbitrary point interaction at the origin (x = 0), for which the reflection and
transmission coefficients areR(±) andT(±) (see AppendixA.1). It is worth recalling that this example corresponds to
a quantum graph with one vertex and two leads. From [150], we can readily write down its exact Green’s function.
DefiningG+− for xf > 0 > xi , G−+ for xi > 0 > xf , G++ for xf , xi > 0 andG−− for xf , xi < 0, one finds

G±∓(xf , xi ; k) =
µ

i~2k
T(±) exp[ik|xf − xi |],

G±±(xf , xi ; k) =
µ

i~2k

[

exp[ik|xf − xi |] + R(±) exp[ik(|xf | + |xi |)]
]

, (B.1)

which have the structure of Eq. (13). In fact, for±∓ there is only one sp leavingxi , crossing the origin, and finally
arriving atxf . In this case, the classical-like action readsSsp = pLsp/~ = k|xf − xi |, whereas the quantum weight is
given byWsp = T(±) (just the amplitude gained in this scattering process, a transmission). For±±, both end points
are at the same side of the zero range potential. Therefore, we have (i) a direct sp, going straight fromxi to xf , so with
Wsp = 1 andSsp = k|xf − xi |, and (ii) an indirect sp, along which there is a single reflection (atx = 0), thusWsp = R(±)

andSsp = k(|xf | + |xi |).

B.2. Green’s function for a star graph

Similarly to what has been done in the AppendixA.2, to see whyG for quantum graphs can be written in the
general form of Eq. (13), we can start considering the basic (building block) star shape depicted in Figure1(c). The
vertexV (assumed to be at the origin of all leads, in a total ofN = E) is interpreted as an arbitrary scattering center,
so a general point interaction.

Suppose{Ψ(κ),Ψ(σ)(k)} to represent the complete full set of solutions for the Schr¨odinger equation for this graph,
whereΨ(σ)(k) = (ψ(σ)

1 (x1; k), . . . , ψ(σ)
N (xN; k))T andΨ(κ) = (ψ(κ)

1 (x1), . . . , ψ(κ)
N (xN))T are, respectively, the scattering and

bound states with energyE = ~
2k2/2µ andEκ. We also observe that for each wave numberk, we have a scattering

stateσ, labeling through which initial leadσ the plane wave is incident to the vertex. This is equivalent to the 1D
problem where one has two leads and so two solutions (σ = ±), one incoming from the left and other from the right
of the origin [150–152] (cf, Eq. (A.12) in Appendix A.1).

From the Green’s function spectral decomposition property, we can write [135] (for xf andxi in the edgesl andn,
respectively)

Gln(xf , xi ; E) = G(b.s.)
ln (xf , xi ; E) +G(s.s.)

ln (xf , xi ; E), (B.2)

G(b.s.)
ln (xf , xi ; E) =

∑

κ

ψ
(κ)
l (xf )ψ

(κ)
n
∗
(xi)

E − Eκ

, (B.3)

G(s.s.)
ln (xf , xi ; E) =

∫ ∞

0
dk

N
∑

σ=1

ψ
(σ)
l (xf ; k)ψ(σ)

n
∗
(xi ; k)

E − ~2k2/(2µ)
. (B.4)

The scattering solution for a plane wave of energyE = ~
2k2/2µ, incoming from leadσ towards the vertex, is given

by (with x in l, for l = 1, . . . ,N)

ψ
(σ)
l (x; k) =

1
√

2π

(

δlσ exp[−ikx] + Sσl(k) exp[ikx]
)

, (B.5)
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By inserting (B.5) into (B.4), then (E = ~
2λ2/(2µ))

Gln(xf , xi; λ) = G(b.s.)
ln (xf , xi ; E) +

2µ
~2

1
2π

∫ ∞

0

dk
λ2 − k2

×
{

δnl exp[−ik(xf − xi)] + Snl(k) exp[ik(xf + xi)]

+ Sln
∗(k) exp[−ik(xf + xi)]

+

N
∑

σ=1

Sσl(k) Sσn
∗(k) exp[ik(xf − xi)]

}

. (B.6)

Using the relations in Eq. (8), the above equation can be written as

Gln(xf , xi ; λ) = G(b.s.)
ln (xf , xi ; E) +

2µ
~2

1
2π

∫ ∞

−∞

dk
λ2 − k2

{

δnl exp[−ik(xf − xi)]

+ Snl(k) exp[ik(xf + xi)]
}

. (B.7)

Above, the integral involving exp[−ik(xf − xi)] leads to the free particle Green’s function. For the otherintegral,
we consider a contour integration along the real axis closedby a infinite semicircle in the upper half of the complex
plane. The pole contributions are due the denominatorλ2 − k2 and possible singularities ofSnl(k). If the vertexV (a
zero range potential) does not allow bounded states,G(b.s.) = 0 andSnl(k) does not have poles. On the other hand,
for a very large number of situations the terms in the integration resulting from the bound energy poles exactly cancel
out withG(b.s.) [196, 229, 230]. This is precisely what takes place for general point interactions [187]. Putting all this
together, the remaining steps in evaluating Eq (B.7) are straightforward. Thus, reverting to the notationk for the wave
number variable, we finally get

Gln(xf , xi ; k) =
µ

i~2k

{

δnl exp[ik|xf − xi |] + Snl(k) exp[ik(xf + xi)]
}

. (B.8)

Now, notice that Eq.B.8 would readily follow from the sum over scattering paths prescription. In fact, for a
particle with xi in lead n, arriving at xf in lead l, we have two possibilities. (i) The leadsn and l are the same,
so there are two scattering paths: straight propagation from xi to xf , corresponding to exp[ik|xf − xi |] and W = 1;
and propagation fromxi to the vertexV, reflection (gaining a factorSnn(k)) and then propagation toxf , in this case
yielding exp[ik(xf + xi)] and an amplitudeSnn(k) (i.e., the reflection coefficient fromn to n). These contributions
result inG(semicl gen)

nn (xf , xi ; k) = (µ/(i~2k))
{

exp[−ik|xf − xi |] + Snn(k) exp[ik(xf + xi)]
}

. (ii) The leads are distinct, thus
there is only one scattering path: propagation fromxi to the vertex, a transmission through it (gaining a factorSnl(k)),
and finally propagation toxf . So,G(semicl gen)

ln (xf , xi; k) = (µ/(i~2k))
{

Snl(k) exp[ik(xf + xi)]
}

. These two possibilities
are exactly summarized by Eq. (B.8).

B.3. The Green’s function for an arbitrary graph
Lastly, for an arbitrary case the reasoning resembles that in the Appendix A.3. For the star graph, the exactG

is written in terms of a (finite) sum of scattering paths. Extending for any topology (as considered in this work), the
local scattering – around each vertex, so in a star-like configuration – can be associated to a stretch of a much larger
sp, leaving fromxi , running across the totality or segments of the whole graph,and finally arriving atxf . This is just
the usual multiple scattering process, valid to describe any wave propagation in the linear context. Along the way,
theWsp are built from the quantum amplitudes gained through the successive scattering at the vertices. On its turn
Ssp = kLsp, for Lsp the sp total classical distance traveled between the end points. Of course, generally the number of
sp can be infinite (thus demanding the techniques of Sec. 4 forexplicit calculations). But the main point is that Eq.
(13) represents the exact construction for the Green’s function of any quantum graph.
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