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Abstract

Here we review the many interesting aspects and distinatq@hena associated to quantum dynamics on general
graph structures. For so, we discuss such class of systeues ine energy domain Green'’s functid@s) framework.
Such approach is particularly interesting beca@sean be written as a sum over classical-like paths, wherd loca
guantum éects are taking into account through the scattering matnpléudes (basically, transmission and reflection
codficients) defined on each one of the graph vertices. Soexhet Ghas the functional form of a generalized
semiclassical formula, which throughfi@irent calculation techniques (addressed in details hevaya can be cast
into a closed analytic expression. This allows to solve #xacbitrary large (although finite) graphs in a recursive
and fast way. Using the Green'’s function method, we surveyynmaoperties for open and closed quantum graphs,
like scattering solutions for the former and eigenspectameh eigenstates for the latter, also addressing quasieboun
states. Concrete examples, like cube, binary trees angisski-like, topologies are considered. Along the work,
possible distinct applications using the Green'’s functim@thods for quantum graphs are outlined.

Keywords: quantum graphs, Green’s function, scattering, boundsstgteasi-bound state

Contents
1 Introduction 2
2 Quantum mechanics on graphs: general aspects 5
2.1 Graphs . . . . e e 5
2.2 Thetime-independent Schrodinger equationongraphs. .. . . . .. . . ... ... ... ... 6
2.3 Thevertices as zero-range potentials . . . . . . . . .. .. L. 7
3 Energy domain Green'’s functions for quantum graphs 8
3.1 BasicresultsintheusuallD case . . . . . . . . . . e e 8
3.2 The exact Green’s function written as a generalizeddessical expression . . . . . . . ... .. .. 9
4 Obtaining the Green'’s function for quantum graphs: generd procedures 10
4.1 Constructing the Green’s function: asimpleexample ...... . . . .. .. ... ... ... .... 10
4.2 Simplification procedures: furtherdetails . . . . . . . . ... .o Lo 12
4.2.1 Regrouping the sp into families: a cross shaped grapdstudy . . . . . . .. ... ... .. 12
4.2.2 Treating a graph in terms of blocks: atree-likecasayst . . . . . . .. ... ... ..... 14
4.3 The Green'’s function solutions by eliminating, redeifinor regrouping scattering amplitudes . . . 15

Email addressest . andrade@ucl.ac.uk,fmandrade@uepg.br (Fabiano M. Andrade}luz@fisica.ufpr.br (Marcos G. E. da Luz)

Preprint submitted to arXiv January 7, 2016


http://arxiv.org/abs/1601.01018v1

5 Eigenstates and scattering states in quantum graphs 17

5.1 Eigenstates . . . . . . . e e 17
5.2 Scattering . . . . . o e 19

6 Representative quantum graphs 20
6.1 Cube . . . . . e e 21
6.1.1 Boundstates . . . . . . . .. e 23

6.1.2 Scattering . . . . . . . e e e 24

6.2 Binarytree . . . . . . e e 24
6.3 Sierpifiski-likegraphs . . . . . . . . 25

7 Quasi-bound states in quantum graphs 29
7.1 Recurrence formulas for the reflection and transmissiefiicients . . . . . . .. .. ... ... .. 33
7.2 Green’s function as a probability amplitude . . . . . .. ... oL L oL 34
7.3 Quasi-bound state inarbitrarygraphs . . . . . . . .. L 37

8 Conclusion 37
9 Acknowledgments 39
A The most general point interaction conserving probability flux as a quantum graph vertex 39
Al Theusualcase:theline . . . . . . . .. e 39

A.2  Apointinteraction in 1D for multiple directions: a sigraph topology . . . . . . . ... ... .. 41

A3 Ageneralgraph . . . . .. e e 41

B The exact Green'’s function for quantum graphs: the generaked semiclassical formula 42
B.1  Reviewing a simple case, the Green’s function for a poieraction on theline . . . . . ... .. 42

B.2 Green'sfunctionforastargraph . . . . .. . ... ... La 42

B.3  The Green’s function for an arbitrary graph . . . . . . . . .. .. oo oL 43

1. Introduction

A graph can be understood intuitively as a set of elements \(ditices), attached ones to the others through
connections (the edges). The topological arrangement ahphgis thus completely determined by the way the
vertices are joined by the edges. The more general concapietivork — essentially a graph — has found applications
in many branches of science and engineering. Some repagiser@xamples include: the analysis of electrical ciguit
verification (in diferent contexts) of the shortest paths in grid structuraidiplanning, charge transport in complex
chemical compounds, ecological webs, cybernetics aithites, linguistic families, and social connection relas,
to cite just a few. In fact, given that as diverse as the stgstem of a city, the web of neurons in the human brain,
and the organization of digital database in distinct sterdgyices, can all be described as ‘graphs’, we might be lead
to conclude that such idea is one of the most useful and bras#id abstract mathematical notion in our everyday
lives.

Less familiar is which we call quantum grapgher more precisely quantum metric graphs (by associatimggthes
to the edges), basically comprising the study of the Heltzhaperatorv? + k? — when the external potentials for
the underlying Hamiltonian along the edges are null, sex laion these topological structures. Nevertheless, they
still attract a lot of attention in the physics and mathenstipecialized literature because their rich behavior and
potential applicationsl] 2], for instance, regarding wave propagation andiudive properties (actually, this latter
aspect allowing a possible formal association between ¢hed@inger and the ffusion equations]).

Historically, Linus Pauling seems to be the first to foreseeusefulness of considering quantum dynamics on
graph structures, e.g., to model free electrons in orgamiecules §-10]. Indeed, in a first approximation the

1 Depending on the particular aspect to be studied, quantaphgrare also named quantum networks or quantum wires.

2



molecules can be viewed as a set of fixed atoms (vertices)ectenh by chemical bonds (edges), along which the
electrons obey a 1D Schrodinger equation with fiaative potential. Moreover, quantum transport in multipbn-
nected systemdL[l], like electron transport in organic moleculd®] as proteins and polymers, may be described by
one-dimensional pathways (trajectories through the §dgkanging from one path to another due to scattering at the
vertices centers. More recently, quantum graphs have also bsed to characterize molecular connectivigy 14].

In the realm of condensed matter physics, under certainittonsl [15, 16] charge transport in solids is likewise
well described by one-dimensional dynamics in branchedhétaork-like) structures, as in polymer films7, 18].
Quantum graphs have also been applied in the analysis afdgisa superconductorsq], Anderson transition in
disordered wiresd0, 21], quantum Hall system=p), superlatticesZ3], quantum wires 24], mesoscopic quantum
systems 25-28], and in connection with laser tomography technolog2s.|

To understand fundamental aspects of quantum mecharégt)gare idealized exactly soluble models to address,
e.g., band spectrum properties of latticé8 B1], the relation between periodic-orbit theory and Andetsealization
[32), general scatteringf], chaotic and diusive scatteringd4-36], and quantum chao87]. In particular, quantum
graphs relevance in grasping distinct features of quantwotic dynamics have been demonstrated in two pioneer
papers B8, 39. Through elucidating examples, such works show that threesponding spectral statistics follow
very closely the predictions of the random-matrix theodg][ They also present an alternative derivation of the
trace formuld, highlighting the similarities with the famous Gutzwilleexpression for chaotic Hamiltonian systems
[41, 42). Actually, a very welcome fact in the area is the possipliit obtain exact analytic results for guantum graphs
even when they present chaotic behavit846]. Important advances and distinct approaches to spectratistcs
analysis in quantum graphs, as well as the relation with gunaichaos, can be found in a nice review4]|

As a final illustration of the vast applicability of graphs weention the important fields of quantum information
and quantum computingtg]. For the metric case (the focus in this review), it has beeppsed that the logic gates
necessary to process and operate qubits could be impledgheynteiloring the scattering properties of the vertices
along a quantum grapt9, 50. However, much more common in quantum information is tosider only the
topological features of the grapHsl], hence not ascribing lengths to the edges. Such strucineassually referred as
discrete or combinatorial graphs (for a parallel betweetrimand combinatorial see, e.g57)). They are the basis to
construct the so called graph-stat&3{57], in which the vertices are the states themselves (e.qns (1 constituting
the qubits) and the edges represent the pairwise intenactior instance, an Ising-like couplingg]) between two
vertices states5P]. Graph-states are very powerful tools to unveifelient aspects of quantum computation. For
instance, to establish relations betweefiedent computational methods schem&g B0] and to demonstrate that
entanglement can help to outperform the Shannon limit dgp@x the classical case) in transmitting a message with
zero probability of error throughout a channel presentiniga [61, 62].

Extremely relevant in quantum information processing & ¢bncept of quantum walks, loosely speaking, the
guantum version of classical random walB8{65]. Quantum walks are quite useful either theoretically,@sijives
of universal quantum computer6g-68], or operationally, as building blocks to quantum algant[65, 69-71].
Thus, since there is a close connection between quantunswsakk quantum graphg2-79, this might open the
possibility of extending dferent techniques to treat quantum graphs to the study otgumanalks [76-79], therefore
helping in the development of quantum algorithms.

The physical construction of quantum graphs is obviouslgssential issue. In such regard, an important result
is that in Ref. BQ]. It shows that quantum graphs can be implemented throughromave networks due to the formal
equivalence between the Schrodinger equation (desgrithi@ former) and the telegraph equation (describing the
latter) [80]. Currently, these kind of systems are among the most presmhiexperimental realizations of quantum
graphs — as demonstrated by the vast literature on the t8pid 01]. Nonetheless, microwave networks are not the
only possibility. In particular, optical latticed02-104 and quasi-1D structures of large donor-acceptor molacule
(with quasi-linear optical response&0H might also constitute very appropriate setups for bugdjnantum graphs.

The implementation of quantum graphs — of course, besidesdhcrete applications — can be quite helpful in
settling relevant theoretical questions. As an illustettxample, consider the famous query posed by Mark Kac
in 1966: ‘can one hear the shape of a drumP0€. Its modified version in the present context 19[]: ‘can one

2ForG(r”,r’; E) the energy dependent Green’s function of a quantum syssem (3), the trace @&, or g(E) = fdr G(r,r; E), is important
because it leads to the problem density of stat€3 = —(1/x) lim._,o Im[g(E + i€)]. The Gutzwiller trace formula41] is an elegant semiclassical
approximation fop(E), in whichg(E) is given in terms of sums over classical periodic orbits.
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hear the shape of a graph?’. It has been proved that for sigrpfghs (see next Sec.) whose all edges lengths are
incommensurable, the spectrum is uniquely determid®d]] In other words, in this case one should be able to
reconstruct the graph just from its eigenmodes. But if tlesseimptions are not verified, then distinct graphs can be
isospectral 108 109. An interesting perspective to the problem arises by agldifinity leads to originally closed
graphs 110 111]. So, we have scattering system which can be analyzed irstefiteir scattering matrices. Two
metric graphsl’a andl'g, are said isoscattering eitheSh andSg share the same set of poles or the phases afdet|
and detSg] are equal 117. Hence, the question is now: can the polesSaind phases of def] aloneto define the
graph’s shape? The answer is again nega8@e]1(, as nicely confirmed through microwave networks experithen
[88] (see also82]). However, by analyzing in more details actual scattedata (e.g., in the time instead of frequency
domain B4]) it does become possible to distinguish isoscatteringlysavhich are topologically fferent.

Quantum graphs as a well posed general mathematical prabbanres the establishment of the underlying self-
adjoint operator, i.e., the proper definition of the waveagun with its correct boundary conditions. Probably, the
first important step along this direction was taken in 1958éf. [7]. There, graphs were thought of as idealized
web of wires or wave guides, but for the widths being much En#ian any other spatial scale. Assuming the lateral
size of the wire small enough, any propagating wave remaissingle transverse mode. Therefore, instead of the
corresponding partial @erential Schrodinger equation, one can deal with ordidéfgrential operators. Also, if no
external field is applied or no potentidlfor the wires is assumed, the one dimensional motion aloagtiges is
free and everywhere in the graph the wave numbeérss /2uE /A2, with the energyE a constant. Concerning the
nodes, they either can be faced as scattering centers¢tineeivably described by loc&lmatrices) or théoci where
consistent matching conditions for the partial wave fundi(i.e., they's in the distinct edges) must be imposed (Sec.
2).

In contrast, graphs with non-vanishing potentials — somesireferred to as ‘dressed4, 113 — lead to solutions
with spatially dependetts along the edges. Animportant subset of dressed are gaplantum grapRg43, 44, 114~
117, whose mathematical foundations are discussetlig|[ They are particularly interesting because althoughrthei
classical limit is chaotic, the quantum spectrum is exaahitained through analytic periodic orbit expansiof3] [
Another very relevant class of dressed quantum graphstisiéisaribed by magnetic Schrodinger operatafi€]. In
this case one assumes arbitrary inhomogeneous magnetiifishe network12(, such that for each edgethere
is a corresponding vector potentfsl. So, formally we have to make the traditional momentum adpesubstitution
in the Schrodinger equatiodydx — d/dx — iAe. Recently, quantum graphs with magnetic flux have attrazted
of attention due to the many distinct phenomena emerginggse systemd p1-12§.

Given the discussion so far, it is already clear that a quargtaph is, after all, just an usual quantum problem.
As such, its solution basically means to determine progeiike wave packets propagatidi?p, 13, eigenstates
(either bound and scattering state$B], 137, eigenenergiesl33, etc. This can be accomplished from, say, a
suitable Schrodinger equation and appropriate boundamglitions for each specific graph topology, Set. But
operationally there are many ways to deal with these systeoditerent techniques can be employed. For instance,
we can cite self-adjoint extension approacHe®], and the previously mentioned scatteriSgnatrix methods38|
and the trace formula based on classical periodic orbitamsipns 89].

It is well known that the energy Green'’s functi@is a very powerful tool in quantum mechanid3p 136.

Its knowledge allows to determine essentially any relevamntity for the problem (e.g., the time evolution can be
calculated from the time-dependent propagator, whichag=turier transform o&). So, it should be quite natural to
consider Green's function approaches in the study of graphtsres. In fact, one of the first works in this direction
[35 has employeds to describe transport in open graphs. Later, the many pbsgin utilizing Green’s functions
techniques for arbitrary quantum graphs have been disdussa exemplified inJ37), with general and rigorous
results further obtained from such a method1B88 139. Recently, Green’s functions have been used to invesgtigat
(always in the context of quantum graphs): searching alyms for shortest pathd4(, Casimir dgfects [L41],
vacuum energy in quantum field theoridglf], and resonances on unbounded star-shaped netwbts [Finally,

but not the least important, the special topological fezgtwof networks make it possible (at least in the undressed
casé) to obtain the exad® in a closed analytic form for any finite (i.e., a large althblighited number of nodes and

3Briefly, to each edge of a scaling quantum graph one can associate a numericatooms. Then, alonge the wave number i& = yeko,

with kg = 4/2uE/h? a constant.

4The Green’s function for scaling quantum graphs can alsateilated exactly. This will be briefly discussed in Sec. 3.
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edges) arbitrary graph. Certainly, this contrasts with tposblems in quantum mechanics, for which exact analytic
solutions are very hard to find 44, 145.

Therefore, the purpose in this review is twofold. As for thstfiwe start observing there is a huge literature
discussing general features and applications of clasgieghs. To cite just one, more physics-oriented, we mention
communicability (so, signal transport) in classical netved14€. In the quantum case comprehensive overviews are
not so abundant, notwithstanding particular relevantespan be found addressed in details in some very integestin
works [1, 39, 47, 52, 147, 148. Also, for a formal and rigorous treatment, a good sourcgl&d. In this way,
our first goal is to survey graphs as ordinary quantum mecbkanoblems. However, highlighting that their special
characteristics can give rise to rich quantum phenomena.

The second is to do so by specifically considering one of thetpowerful methods to treat quantum graphs,
namely, the Green'’s function approach. For arbitrary gsaple discuss in an unified manner how to obtain the exact
energy domaii® as a general sum over pattasla Feynmah[ 150-152. These paths must be weighted by the proper
guantum amplitudes, given by energy-dependent scatteraigces elements associated to the vertices. We examine
a schematic way to regroup the multi-scattering contrangi(essentially a factorization methadtBf, 153-155),
leading to a final closed analytic expression@®r This particular procedure to construct the exads very useful
to interpret many results concerning quantum graphs, fiterfierence in transport processas, [156, 157]. With the
help of illustrative examples, we elaborate on how to exfiraen G the graphs quantum properties.

The work is organized as the following. In Sect®we define and discuss general quantum graphs. In Sextion
we consider in great detail the Green’s function approachktch systems. In Sectighwe present (with examples)
the factorization protocols which allow to cdStas a closed analytic formula. Distinct applications areresised
in the next three Sections. More specifically, the generdrd@nation of bound and scattering states, analysis of
representative graphs (cube, binary trees, and Sieiigikelkgraphs), and quasi-bound states in open structares,
considered, respectively, in Se& 6, and7. Finally, we drawn our final remarks and conclusion in Secfio

2. Quantum mechanics on graphs: general aspects

2.1. Graphs

A finite graph XV, E) is a pair consisting of two sets, of vertices (or nodé€X) = {1,2,...,n} and of edges
(or bonds)E(X) = {er, ey, ...,en} [158 159. Thus, the total number of vertices and edges is given gasgely, by
n = [V(X)| andm = |E(X)|. If the vertices and] are linked by the edges, thenes = {i, j} (hereaftei, j = 1,...,n
andr,s = 1,...,m). For an undirected graph, any edgg} has the same propertiesd( in bothi — jandj — i
‘directions’: {i, j} = {],i}. For simple graphss # {], j} ande; = esonly if r = s. Hence, in this case there are no loops
or pair of edges multiple-connected. Finally, for connd@eaphs the vertices cannot be divided into two non-empty
subsets such that there is no edge joining the two subsets.

The graph topology, i.e., the way the vertices and edgessacemted, can be described in terms of the adjacency
matrix A;j (X) of dimensiom x n. For simple undirected graphs; (X) reads

Ay (X) = {1, if {i, j} € E(X), O

0, otherwise
Two vertices are said neighbors whenever they are connbygtad edge. Thus, the set
Ei(X)={j:{i, ]} € E(X)} )

is the neighborhood of the vertéx V(X) and the degree (or valence)idé

vi = [E(X)] = )" Aj(X). (3)
j=1
Note that .
ECI= 5 D IE(X). @
i=1
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Figure 1: (Color online). Examples of () open and (b) clageantum graphs. (c) A open star graph with a single vevi@) = {1} connected to
E(T) = {e1,. .., em} leads.

So far, the above definitions refer déscreteor combinatorialgraphs. To discuss quantum graphs it is necessary
to equip the graphs with a metric. Thereforenatric graphl’(V, E) is a graphX(V, E) for which it is also assigned a
positive lengthe, € (0, +c0) to each edge. If all edges have finite length the metric gispalledcompactotherwise
it is non-compactln this latter cas€& has one ore more ‘leads’. A lead is a single ended edgehich leaves from a
vertex and extends to the semi-infinitg (= +c0).

In the quantum description, for each edgdwith e either joining two vertices and j or leaving from verte
to the infinite) we assume a coordinatg indicating the position along the edge. Bar= {i, j}, to choose at which
vertex { or j) Xe, = 0 is just a matter of convention, and can be set accordingeg@mvenience in each specific
system. Of course, fag a lead attached tp a natural choice ige, = O atj.

In the remaining of this review we will focus on simple contegtgraphs, the most studied situation in quantum
mechanics T3]. But we stress that the Green’s function discussed herésds\alid for non-simple graphs, i.e.,
for many edges joining the same two vertices and for the exést of loops: one just need to consider the proper
reflections and transmissions quantum amplitudes (Seor 8)é propagation along these extra edges.

2.2. The time-independent Schrodinger equation on graphs

A quantum graphs a metric graph structuigV, E), on which we can define aftierential operatoH (usually
the Schrodinger Hamiltonian) together with proper vediboundary condition89, 47]. In others words, a quantum
graph problemis a triple

{I'(V, E), Hamiltonian operatoH on E(T"), boundary conditions fov'(I')}.

A quantum graph is calledosedif the respective metric graph is compact, otherwise it lledaopen A schematic
representation of quantum grapi$(] is depicted in Figurd.
The total wave functiol’ is a vector withm components, written as

Ve, (Xe,)
Ye,(Xe)

(5)

;ﬁem(xem)
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Figure 2: (Color online). A quantum grapifV, E), V(') = {1, 2,3,4,5}, E(I') = {{1, 2},{2, 3}, {3, 4}, {3, 5}} and the¥ components in each one of its
edges. The wave functions must be matched through the boucaladition at each verteixe V(I'). Specifically: aii = 1: e, ; ati = 2: e, Ve,;
ati = 3: ey, Vey, ey ati = 4. Yg,; LI = 5: g,.

The Hamiltonian operator oB(I') consists of the following unidimensionalftérential operators defined on each

edgees [19, 167] (the dressed case)
2 2

5 E
Here, Ve (Xe,) is the potential assumed to be non-negative and smootteimtarval O< xe, < le.. Different works
have addressed the above Hamiltonian for non-vanishirgngiats (for instance, sed3, 44, 116 137, 162-165).

However, in the literature, even in papers discussing gqumaichaos37-39, 47, 166, it is usual to have for angs that
Ve, = 0 (the case we assume in this review). Then, the compangixt,) of the total wave functiol¥ is the solution

of (k= \/2uE/h)

He,(Xe,) = + Ve, (Xe,)- (6)

d*ye,

dx,
with thec’s constants. All these wave functions must satisfy appat@boundary conditions at the vertices, ensuring
continuity, global probability current conservation, eligence freg’s and uniqueness. Technically, the match of the
boundary conditions in each vertex is the most cumbersoepaisobtaining the final ful (in Figure2 we illustrate
which components must be matched in which vertices for aquédat example of a graph witkl(I') = {1, 2, 3,4, 5}
andE(I) = {{1, 2}, {2, 3},{3,4},{3,5}}).

Furthermore, the imposition of these boundary conditi®® 47, 167] renders the Hamiltonian operator to be
self-adjoint®. In fact, the most general boundary conditions at a vertex qiantum graph (consistent with flux
conservation3(]) can be determined through self-adjoint extension tempines L68 169. Let us denote byl34, 153
Vi = (Y, Ve, - - .,¢ejvj )T and v = (ngh,%jz, .. .,%jvj )T, respectively, the wave functions and their derivatives
associated to the; edges attached to the vertgx Then, the boundary conditions can be specified throyghyv;
matricesA; andBj, with A;¥; = B,—‘P'j at j. One ensures self-adjointeness of the Hamiltonian opelbgtomposing

current conservatioH’JT‘P} = ‘P’JT‘Pj. As shown in L34, 153, the general solution for this problem implies that

&7(,-8'}' = 8,—&7(}', resulting in a set of? independent real parameters to characterize the boundaditions atj.
More on this is discussed in the Append but here we comment that in physical terms, the self-atijess of the
Hamiltonian implies that the dynamics does not allow théiges to behave as sinks or sources.

= Ko, (X)) = Ve,(Xe,) = Cue, €XPlHIK Xe,] + C_ e, XPI-ik Xe,], (7)

2.3. The vertices as zero-range potentials

From the previous discussion, in an undressed quantum g¢napdge®s can be viewed as free unidimensional
spatial directions of lengtfy, and the vertices as point structures (0D), whose actioniisose the proper boundary
conditions on thes’s. In the usual 1D quantum mechanics, arbitrary zero-rgp@entials, also known as point

5Consider a continuous linear (so bounded) oper@tof domainD(0) in a Hilbert spaceH. The adjointO™ (also bounded) of the operator
is such thatOy/|¢) = (W|0"¢) for y € D(O0) andy € H. O is self-adjoint if and only i0 = O andD(0) = D(OT) [167].



interactions, have exactly suctiect [L70 171 (see AppendixA.1). A textbook example is the Dirac delta-function
potential that simply determines, at its location, a spetiiundary conditions to the wave functidtvp.
Hence, to describe the quantum dynamics along a graph wekarhej’s as arbitrary zero-range interactions,
an approach fully consistent with the general boundary itimmg treatment described in Se2.2, Appendix A.
Moreover, to assume the vertices as potentials brings umpartant advantage: thigs become point scatterers. As
such, they are completely characterized by their scagjdéeatures, given in terms of the reflections and transmmssio
amplitudes. For example, this is exactly the case for a deftation, for whichys can be obtained without consid-
ering any boundary conditions. Instead, a purely scatidreatment solves the problem (see, e.g., the pedagogical
discussion in173). General point interactions are very diverse in theittezang properties. For instance, the in-
triguing aspects of transmission and reflection from paoitgractions have been discussed in distinct contexts, such
as, time-dependent potentials’H], nonlinear Schrodinger equatiohqy and shredding by sparse barriet§§.
Actually, for a point interaction on the line (say,»xt = 0), as demonstrated in the Appendix 1, to determine
which boundary conditions its impose to the wave functidrg & 0, is entirely equivalent to specify its scattering
S matrix elements. This holds true when the vertex, a zergegotential, instead of being attached to two edges
(the ‘left’ (-0 < x < 0) and ‘right’ (0 < x < +c0) semi-infinite leads for the 1D line case), hgslD directions
or edges (see Figurk(c)). From the AppendixA.2, we then can define for each vertpa matrixS;, of elements
S(fs)(k) = rgs)(k) andS(jS’r)(k) = rgs*r)(k) (from now on, we will label edges;, ande;, simply assandr). Here

° tgsr)(k) is the quantum amplitude for a plane wave, of wave nunkb@rcoming from the edges towards the
vertex j to be transmitted to the edgeutgoing from].

° rgs)(k) is the quantum amplitude for a plane wave, of wave nunkb@coming from the edges towards the
vertexj to be reflected to the edgoutgoing fromj.

The required conditions for self-adjointeness (i.e., piality flux conservation) along the whole graph (Appendix
A.3), demands tha$(k)S'(k) = ST(K)S(K) = 1 andS(k) = ST(-k), so yielding

Vi Vi
>TSS = H SIS K) = 66, SEIK) = ST (k). (8)
1=1 I=1

Summarizing, for quantum graphs it is complete equivaleset either the boundary conditions for thie at each
vertex, as mentioned in Se2.2, or to specify the scattering properties of th&elientj's through theSﬁr’s) matrices
obeying to Eq. §). We also observe that eventually one could have boundsd@ta given point interaction potential
j depending on the particular BC imposedytaat the vertex location. In the scattering description, tharqum
codficientsRandT have poles at the upper-half of the complex pleneorresponding to the possible eigenenergies.
The eigenfunctions can then be obtained from an appropeidtnsion of the scattering states to th&'sevalues
[177]. This will be exemplified in SectioBb.

3. Energy domain Green’s functions for quantum graphs

3.1. Basic results in the usual 1D case

The Green'’s functios(E) is an important tool in quantum mechani¢S§. In the usual 1D case, it is defined by
the inhomogeneousfiiérential equationH (x) = —(#2/(2u)) d?/dx% + V(X))

[E = H(x)IG(xt, X;; E) = 6(x¢ — %), (9)

where alsd5(x, X;; E) is subjected to proper boundary conditions.
Suppose we have a complete set of normalized eigengtgtdgs = 0, 1, ..., discrete spectrum) ang, (x) (- > 0,
continuum spectrum), with
h20?
Hys = Esys, Hy, = T Vo (10)



Then, the solution of Eq.9] is formally

G(xr, X E) = )| — =2

S

Us(Xr) ¥s* (%) f 4o L0 Yo" (%) (11)

(E-Ey (E - 202/ (2u))’

Thus, from Eg. 11) we can identify the poles of the Green’s function with theihd states eigenenergiEsand the
residues at each pole with a tensorial product of the cooredipg bound state eigenfunction. The continuous part of
the spectrum corresponds to a branch cu®Ef;, x;; E) [178 179. Given Eq. (1), the limit

lim (E - Eq) G(xi, X; E) = ys(x1) 5" (%) (12)
can be used to extract the discrete bound states@om

3.2. The exact Green'’s function written as a generalizeddassical expression

There are basically three methods for calculating the Gsdanction [135: solving the diferential equation
in (9); summing up the spectral representationiit){ or performing the Feynman path integral expansion for the
propagator in the energy representatid®Q, 181]. In particular, for contexts similar to the present worgg€sext), the
latter approach has been used to study scattering by neufigikentials in 1D150, 151, to calculate the eigenvalues
of multiple well potentials 152, to study scattering quantum walké7, 78], and to construct exact Green'’s function
for rectangular potentiald B2 183.

The exact Green’s function for an arbitrary finite array ofguials of compact supp8rhas been obtained in
[15Q, with an extension for more general cases presentethfi.[ For the derivations in150, it is necessary for the
r's andt’s of each localized potential to satisfy to certain corudtiti, which indeed are the ones in the AppenflibpEq.
(A.14) (note that point interactions constitute a particulasslaf potentials of compact suppoiBf]). Thus, based
on [150 we can calculate the Green'’s function for general poirgrattions by using the corresponding reflection
and transmission cdigcients, which are quantities with a very clear physicalriptetation and conceivably, even
amenable to be determined through experimelf§[186.

So, for these general array of potentials, according to.R@fS0-157 the exact(hence in contrast with usual
semiclassical approximations, see footnote 2) Greenstimm for a particle of fixed energly and end points; and
Xt is given by

[
G(xr. %i E) = o > Wepexp [ Sepl. i K. (13)
sp

The above sum is performed over all scattering paths (sgirsjan x; and ending irx;. A ‘scattering path’ represents
a trajectory in which the particle leaves from sufers multiple scattering, and finally arrivesxat For each spSsp

is the classical-like action, i.eSsp = K Lsp, with Lsp the trajectory length. The teris, is the sp quantum amplitude
(or weight), constructed as it follows: each time the p&etigts a localized potential,, quantically it can be reflected
or transmitted by the potential. In the first ca¥ép gets a factor, and in the secondVsp gets a factot,. The total
Wi, is then the product of all quantum d@ieientsr,’s andt,’s acquired along the sp.

The direct extension of Eq.18) — often called generalized semiclassical Green’s fundiimmula because its
functional form — to quantum graphs is natural. In fact, the main ingredients necessary in the rigorous derivation
[150 157 of Eq. (13), namely, unidimensionality and localized potentialg ky construction present in quantum
graphs. First, since the quantum evolution takes placegalmmgraph edges, regardlessEn®pology, the dynamics
is essentially 1D. Second, the potentials (scatters) a&edhtices, which as we have seen, can be treated as point
interactions, so a particular class of compact supportyiets [184 187.

In the Appendix B we outline the main steps necessary to prove that the exagnGrfunction for arbitrary
guantum graphs has the very same form of E43).( Moreover, as we are going to discuss in length in Sec. 4,
different techniques can be used to identify and sum up all théesog paths. So, for general finite (i.¢v,(I')|
and|E(T")| both finites) connected undirected simple metric quantuaplgsl’, in principle one always can obtain a

61f V() is said to have compact support in the interfal= {x| a, < x < by}, thenV,(x) identically vanishes fox ¢ 7,,. An arbitrary array of
N potentials of compact support is given Ydyx) = Zr’:‘zl Vn(x), for all 7,’s disjoint.
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closed analytical expression fG&. Therefore, given that any information about a quantumesystan be extracted
directly from the corresponding Green'’s function, the hesshere constitute a very powerful tool in the analysis of
many distinct aspects of quantum graphs.

As a final observation, we recall that for scaling quantunphs11g, for each edges we haveke, = e, ko (Se€
footnote 3). This behavior for the wave number can resulhfomnstant potentialge, along the distinces’s. But
as discussed ifMB3, the corrects for these kind of piecewise constant potential systems ksante cast as above.
Therefore, the exact Green'’s function for scaling quantuaplgs are likewise given by EqL3).

4. Obtaining the Green’s function for quantum graphs: geneal procedures

The formula in Eq. 13) gives the correct Green’s function for arbitrary conndatedirected simple quantum
graphs. However, it has no universal practical utility $sleve are able to identify all the possible scattering patds a
to sum up the resulting infinite series — regardless the Bpagistem. So, here we shall describ&eatient protocols
to handle Eq. 13), allowing to write the exadb as a closed analytic expression. To keep the discussiorcassille
as possible, we start with few straightforward illustratexamples. In the sequence we extend the analysis to more
general situations.

We adopt the following notation:

° rgs) andtfr) are the reflection and transmission amplitudes for the xgrtas described in the end of Sec. 2.

e P, represents the contribution from an entire infinite farhibf sp to Eq. 13), so thatG = u/(ih%k) 3, P.

e Gg (X1, X;; K) is the Green’s function for a particle with enerBy= h?k?/2u, whose initial pointx; lies in the
edgees and the final poink; in the edges;,.

Also, whenever there is no room for doubt, for simplicity vepresent edges kg/(instead ofes) and vertices by
capital lettersA, B, etc.

4.1. Constructing the Green'’s function: a simple example

Consider the open graph shown in Fig3(a). It has two verticesh andB, one finite edge (of length), labeled
1, and two semi-infinite edges (leads), labeleohd f. By assuming-c < ¥ < 0ini and 0< X; < +ooin f, the
Green'’s functiorGis (x¢, Xi; K) essentially describes the transmission across the faitgstructure, i.e., from the left
to the right leads. To obtai@ we need to sum up all the possible sp for a quantum partiatgregaat x;, in i, going
through multiple reflections between the vertidgeandB, and finally ending up at;, in f. As we are going to show,
Eq. (13) yields a convergent geometric series, which thereforebeazalculated exactiyip0-152, 188-193.

In Fig. 3 (b)—(d) it is depicted three examples of sp. Consider thétestag path in3 (b), representing the
‘direct’ propagation fromx; to x;. The particle starts by leaving towardsA. From this first stretch of the trajectory,
one gets a factor exp[kxj] to G. Upon hitting the vertex, the particle is then transmittetighA. This process
yields a factortg’l) to G. Next, the particle goes to the vert&ocation, leading to a factor exgf1]. Once inB,
the particle is then transmitted throu@hthus resulting irt(Bl’f). Finally, from the final trajectory stretciB(to x;),
one gets exgkxs]. Putting all this together, the sp of Fi@ (b) contributes to Eq. 13) with Wsp, = tﬂ'l) tg'f) and
Lsp = (Xf — %) + €1 = |X¢| + [xi| + €1 (hence the length of this sp).

Following the same type of analysis, for the other two exaspi Fig.3 we have:

(c) expFikx] tg’l) explikfq] rg) expliklq] rfj) explikéq] t(Bl’f) explikx] :

Wsp = rgl) rg) tg’l) t(Bl'f), Lsp = (Xf — %) + 3(1;
(d) explikx] tg’l) explikéq] rg) explikéq] r(Al) explikéq] rg) expﬂkfl]r(Al) explik{q] t(Bl’f) explikx¢] :
Wep = (ri\l))z (fg))z tﬂ’l) tg’f)’ Lsp= (Xt = %) + 5(1.

Thus, the full Green’s function is written as a sum over al éxisting terms of the above form, or

Gir (xr. 1K) = 5 explikx] (9 D [rR1" [r§1" explik(2n + )¢l 57 expixs]. (14)
n=0

10
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Figure 3: (Color online). A simple graph with two verticésandB, a finite edge labeled 1 (of length), and left,i, and right,f, leads. (a) The
starting positions of two familie®?1 andP,, of sp. (b)-(d) Schematic examples of individual sp.

Equation (4) is in fact a geometric series and since for the quantum anajgls we have th:{it(js)l2 <1 and|t(js“r)|2 <1,
the sum in Eq. 14) always converges. So, the Green'’s function reads

Git (Xf, Xi; k) = Ti eXp[k(Xf =X + fl)] (15)

h ih2k
with )
t(l,l) t(lyf)

Tit = (16)

1-rOr® exp[2key]

Note that Eq. 16) can be recognized as the transmlssmn amplitude for théevdystem 150. This illustrates the
fact that by properly regrouping several vertices, theylmaireated as a ‘single’ vertexfectively contributing with
overall reflection and transmission amplitude$3toAs we discuss in details in Sed.2, such an approach strongly
simplifies the calculation of the Green’s function for mocenplicated systems.

For the present example, to identify all the infinite possip is relatively direct. But when the number of
vertices and edges increases, this can become a very tegidusimbersome enterprise. Fortunately, the task can be
accomplished by means of a simple diagrammatic classticattheme, separating the sp into families.

To exemplify it, consider agaiGi for the graph of Fig.3. For any sp, necessarily at the beginning the particle
leavesy;, goes toA, and then is transmitted through Once tunneling tog = 0* (always with positive velocity),
there are infinite possibilities to follow (some displayedrig. 3 (b)—(d)). So, schematically we represent all the
trajectories headed to the right, departing frem= 0%, as the familyP;, Fig. 3 (a). Now, a sp irP; initiates traveling
from Ato B. Then, inB it may either cross the verteX finally arriving at the final poink;, or be reflected fronB,
reversing its movement direction (at = £7). For this latter situation, all the subsequent trajee®fiomx; = £; can
be represented as the famMy, Fig. 3 (a). But exactly the same reasoning shows that for any $p,ithe particle
leavesB towardsA, it is reflected fromA’, and then becomes one of the path®in

Hence, the above prescription yields for the Green'’s famncti

Gir (xr. % K) = kﬁ? exp[-ikx ]t Py, 17)
where
rOp
P, = explikéy] { Ef) explkxl, (18)
and
P2 _ expﬁkfl] r,&l) Pl~ (19)

“To be transmitted througA would lead the particle to travel towards — —co, with no returning (there are no vertices far < 0). So,
obviously this sp cannot contribute & .
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Figure 4: (Color online). The cross shaped graph, with tveal$ei and f (left and right), two finite edges, 1 and 2 (up and down), amdeth
vertices,A, O, B. (a) ThePs's represent all the trajectories starting at ver@glong an edge and finally tunnelingO, to get to the lead. (b)
Four schematic examples of possible sp.

In Eq. (18), ‘{’ represents the possible splitting for the sp in the farfly The algebraic equation equivalent to Eqg.
(18)is
Py = explkés](ry) P2 + 15" explikx(]). (20)

Thus, solving Egs.19) and @0) for P;, one obtains

tg’f) explikl1] explikx]
PL=—"m,0 :
— Iy’ rg’ exp[akéy]

(21)

which by direct substitution into Eq17), leads to the exa& in Eq. (15).

In this way, the identification and summation of an infinitemer of sp is reduced to the solution of a simple
system of linear algebraic equations. Such strong reairsiture of the scattering paths in quantum graphs corestitut
a key procedure to solve more complicated problems.

4.2. Simplification procedures: further details

From the previous example, it is clear that two protocolsohldrastically simplify the calculations f@ are: (a)
to regroup infinite many scattering paths into finite numbidamilies of trajectories; and (b) to divide a large graph
into smaller blocks, to solve the individual blocks, andth@& connect the pieces altogether.

Thus, given their importance, here we further elaborateadmaid (b), unveiling certain technical aspects which
do not arise from a so simple graph as that in S&d&. Hence, we explicit address twofidirent systems below: a
cross shaped structure, useful to illustrate details afauand a tree-like quantum graph, a system whose solgion i
considerably facilitated by the block separation techaiff).

4.2.1. Regrouping the sp into families: a cross shaped gcase study

The cross-shaped graph is shown in Hg.lt is composed by three vertices, two edges and two leadsei®@é
that the vertexO is the origin (end) of the leadl (i). Let us first discuss the Green’s function for the partieleving
—o0 < X; < 0, along the lead, and getting to < x; < +o0, along the lead. In the sum Eq. 13), the sp are all the
trajectories starting from sufering multiple transmissions and reflections between tigeed and 2 (of lengthg
and¢(,), and arriving atf. In Fig. 4 (b) we show schematic examples of possible sp: (i) direnstrassion froni to f
through the central verte®, so thatWs, = tg’f) andLsp = Xr — X;; (i) transmission from to the edge 1, a reflection at
vertexA, and a final transmission from the central vertex to the lgatlenWs, = t&9 rO 8" andLg, = x¢ —x +2¢1;
(i) transmission to edge 1, a reflection frofnthen a transmission to edge 2, a new reflection, this timma frertex
B, and finally atO a transmission to lead, in this wayWs, = tg’l) rfj) t(ol'z) rg) t(oz’f) andLsp = Xf — X + 2({1 + £2);
(iv) transmission to edge 1, a double bouncing within edgldn transmission to edge 2, a reflection from veBex
a transmission to edge 1, a reflection from verexanother transmission to edge 2, a reflection from velBteand
finally a transmission to leafi from edge 2 (through verte®), thusWsp = t& [r{U]3rQ (15212 [r@12¢&D {20 gand
Lspz Xi — X + 601 + 4¢5.
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Such infinite large proliferation of paths can be factorizeé simple way. Indeed, since for any sp we have
initially a propagation fronx; to O alongi and finally a propagation froi® to x; alongf, we can write
Gir (X1, %; K) = mLZK Tir explk(x; — X)]. (22)

HereT;; comprises all the contributions resulting from sp in théargd—O—B of the graph, or
-1
Tit = t&) P . (23)
57 P2
As before, the symbol* represents the trajectories splitting, which reads
Tie =t00 440V p, + (12 p,, (24)

The first term is just the amplitude for the direct path, Besimple tunneling fromto f throughO. The second (third)
term represents the tunneling from léad edge 1 (2) and all the subsequent possible trajectora st particle can
follow until reaching lead, represented b, andP,, Fig. 4 (a).

The reasoning to obtain the two families of infinite trajets, P, andP,, is quite simple. Take, for instance;:
all such paths start ag = 0*, travel along edge 1 towards vertdxsufter a reflection af, and then return to vertex
O. This part of the trajectories results in the terﬂri exp[Zk¢1]. Once reaching back verte they can either, be
reflected from it, then going into the set of pafisagain, or to tunnel to edge 2, so going into the family of p&ths
or yet to tunnel to lead, thus terminating th&—O—B part of the sp. The same type of analysis followsRey so

P, = rf) exp[2dkéq] t8'2)P2

2 2
@p, (25)
P, = ri@ exp[2kes] { VP,

leading to the algebraic equations

P, = r(Al) exp[2ik£1] (rg')P]_ + tg’z)Pz + tg’f)) (26)
P, = rg) exp[Zkfz](rg)Pz + tg’l)Pl + tg'f)),
whose solution reads
1
P, = 5 {rS " explakey] + rPr@(t526E D - rSS D) explak(e, + £2)])
1
P> =a {rg)tg’f) exp[2ksy] + rf)rg)(tg’l)tg’f) - rg)tg’f)) exp[ak({y + 52)]},
(27)
for
g= (1 - rf)r(ol) exp[2ik€1])(1 - rg)rg) exp[2ik€2]) - rg)rg)t(ol’z)tg’l) exp[ak(fy + £2)]. (28)

Similarly, we can consider both the initial and end pointthatedge (- < x;, X < 0 € i), for whichG; is given
by

Gi (1, i K) = —5-{ expliixs = x[] + Ry expl-ik(x: +x)]]. (29)
In this case, it is not diicult to see that ‘ ‘ '
Ri = rQ +14Vp; + t42p,. (30)
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Figure 5: (Color online). A tree-like quantum graph. (a) Bgarding the whole regioB—O—-B (including the leads) as an ‘uniqueffective
vertex D, the original graph is reduced as illustrated. (b) In theuced graphP; represents the family of trajectories whichffen multiple

reflections betwee® andA, and finally tunnel the verteA to the leadf. (c) The auxiliary graph (and the corresponding sp fanjilieessary to

calculater(Dl) andtg’l).

The expressions leading to the corrB& are those inZ7) where, however, we must make the obvious substitution
of t80 byt (s= 1,2).

Finally, we consider the end poirt in one of the edges, say edge 1. We assume that the origin tifithedge is
at vertexO, so 0< X; < ¢1. Then, we have that

4 ) = M ik 1 (10D (i.2)
Gia(x1,%; K) = oz expl-ikx] (5P +12Py). (31)
Of course here we should not take into account any sp for wthiglparticle tunnels to the edddfor a reason similar
to that explained in footnote 7). Thus, we have for e

P; = explikx¢] + 1) exp[2kéi] (exp[—ikxf] +19 Py +152 Pz) (32)
P, = rg) exp[2kés) (rg) P, + tg’l) Pl).
By solving the above system and substituting into the exgiwag31), we get
. H i1 2)(4(i,2)4(2,1 2).(i,1
G1i(Xs, X; K) = i2kg {tg ) 4 ré)(tg )t(o - r(o)tg )) exp[2ik£2]}
x{ explik(xs = x)] + ry expik(261 — x; = %)1}. (33)

with g given by Eq. 28).

4.2.2. Treating a graph in terms of blocks: a tree-like casely

Next we discuss how to shorten the calculations for a largatum graph by decomposing it in blocks. For so,
we consider the example shown in Fig.(a), a relatively simple tree-like graph: a leaid attached to a verte®,
from which emerges three edges 1, 2 and 3, ending, resplgcavererticesA, B, andC. Each of these vertices, by
their turn, are connected to three leads.

Here we just analyze the Green’s function for the initialipos — < X; < 0 in leadi and the end position
0 < X < +oinlead f, which is connected to vertek, see Fig.5 (a). Observe that in this particular situation we do
not need to consider any sp that goes into another lead biefdreln such case the particle would leave the graph,
being impossible to come back fo

The first step to simplify the problem is to face the whole klowicated in Fig.5 (a) as a single verteR. Any
information about the inner structure of such region willdoatained in the vertex quantum amplitud%@ andr(Dl).
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Figure 6: (Color online). Several graphs wh@se can be obtained from the solutions of other topologieslioyieating, redefining or regrouping
the vertices reflections and transmissions quantum ardpbtu (a) The cross shaped graph, Fig. 4, but with both therbatidge and vertex
removed. (b) The same as in (a), but with the simple veftexibstituted by a circle-like structure. (c) A circle-likeagh attached to two leads.
(d) Triangle (e) and rectangle graphs attached to semitiafieads.

Thus, we reduce the original graph to the simpler one degintig. 5 (b). From Fig.5 (b), we have that the Green’s
function can be written a6is (xr. x;K) = /(%K) Tis explik(x; — x)], with Tis = &% expkey] (rPPy + 15-7).
Then, based on our previous discussions, one quickly esatlzat the infinite family of trajectorig®; is given by
P =r) exp[Zkfl](rgl)Pl + tg’f)), or

rg)tg'f) exp[akéq]

P, = ) 34
! 1—r(Dl)r§j) exp[dkéq] (34)

It remains to determine the cﬁmientstg’l) andr(Dl). We can do so with the help of the auxiliary quantum graph
of Fig. 5 (c). We first recall thatg’l) (r(Dl)) represents the sp contribution for the particle to go freadi (edge
1) to edge 1 through the regid—O—C. Inspecting Fig.5 (c), we see thats? = {49 1 {09p; 4 {02p, and

rg) = rg) + tg’g)Pg + tg’z)Pz, where for theP’s

{ Ps = 1 exp[2kes)(r&Ps + t82P, + 15Y) (35)

P, = rg) exp[Zkfz](rg) P, + tg’3) Ps + tg'l)).

The solution of Eq. 35) is given by Eq. 27) with the appropriate labels substitutions 2V} A - C, 1 — 3 and
f— 1

4.3. The Green’s function solutions by eliminating, redejror regrouping scattering amplitudes

A great advantage in writing the Green'’s function in termshef general scattering amplitudes of each vertex is
that by setting appropriate values for or regrouping thesmtjties, we can obtai@ for some graphs based on the
solutions for other topologies.

Indeed, for a vertey attached to two edges;( ande;,), to setr%s) =0 andtg&') =1 (sr = 1,2)is equivalent

to remove the vertex from the graph. On the other hand, if for al| we settgs’r) = 0 for the two (one) vertice§
attached to the finite (semi-infinite) edgg, then we eliminate;, from the structure. For instance, consider the graph
in Fig. 6 (a). We obtain its exadsir, Gi andGis just by assuming? = t$? = 0 for the solutions of the cross
shaped graph of Figt.

As for regrouping, th&’s for the graph in Fig6 (b) — if x; andx; are not in the edges 2 and 3 — follow from the
exact Green’s functions for the graph of F&)(a) by just supposing the whole regidr—B—A as a single vertex, say
C, and making the substitutimjl) - rg). From the Fig6 (b) we see that(cl) is given byrg) = rgl) +t(Al’2)P2 +t21’3)P3,
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with the P’s obtained from

P = rg) exp[ZkZZ](r(Az)Pg + tf’g)Pg + t(Az’l))
+5%) explk(Lz + £)] (1P + 2P, + 10Y)

Ps = rs) exp[Zkﬁg](rS)Pg + tf’Z)Pz + tff’l))
+5? explk(Lz + ()] (rPP + tZVPs + t7Y).

(36)

Consider now the more involving example in Fi§.(c) andG;; for which both end points are in edge 1, i.e.,
0 < x;, Xt < £1. We defingd) (t") as the resulting quantum amplitude for the particle toltgt\ertexA from edge
1, to sufer all the multiple scattering in edges 2 and 3 and finally tmedack to edge 1 from the vertdx(B). We
likewise define; andt-" for the particle initially hitting the verteB. So, we have that (dropping the superscripts
(1) and (11) for simplicity)

Gua(Xs, Xi; K) = Nisz{ explikix; — ] + explik(tr = X)](roPus + toP1a) + explikx](rcPia + tcPig)},  (37)

where

{ P1a = explikx¢] + eXpﬂkfl](rD Pig+ 1o Pl,A) (38)

P]_’B = expﬂk(fl — Xf)] + expﬂkfl] (rc P]_’A + tCPLB)-
Solving the above system, the Green’s functi®n) feads

u
ih2kg
+ re rp explik(261 + X — X)] + re rpo explik(261 — X; + X)]
+ (1~ to expfk(a] ) explk(£y + X — x)]

+ (1 ~ 1o expﬂkfl]) exp[-ik(f1 — x; + Xa)]}, (39)

G1a(Xs, Xi; K) =

{gexplkix; — ] + rc explk(xs + )] + o explk(21 — X; + )]

with g = (1 —tc expﬂkfl])(l -1p expﬂkfl]) — rc rp exp[akéy].
Lastly (see Fig6 (c)), the coéficients are given byc = r + 2P, + :¥P3, with P, andP; obeying to

P = rg) exp[akes] (rf) P, + tf,s) Py + tf,l)

+tg,3) explik(¢s + £3)] (rf‘) P, + t5\3,2) P, + tf’l)
P3 = r(;) exp[akés] (ff') Ps+ t(As,z) P, + tf,l)

+t§»2) eXpI]k(fg + 53)] (rf) P2 + t'(f,S) P3 + tf'l))

(40)

By its turn,tc = tg'Z)PZ + tg's)Pg, where this timeéP, andP;3 satisfy to

P2 = r® exp[akez] (r@ P, + 2% Py)
+tg,3) explik(z + £3)] (Ff’) P, + t(Ae.,z) Pz) + explik 52],[(82,1)
Ps = 1Y exp[akes] (1) Ps + 15 P,
+82 explik(£z + €] (r? P2 + 129 P3) + explika]tSD

(41)

The amplitudesp andtp are obtained from the expression fgrandtc by just exchanging the indicés« B.
Finally, if for both graphs of Fig6 (d) and (e), thé&s initial and final points are, respectively, in the edgesd f
(so that-co < X < 0 and O< X; < +o0), the Green’s function is simply

Gri(xr. %: K) = 5 Tir explk(xs - X)]. (42)

The codficientT;; is then given byTi¢ = t49 Py + 142 p,.
16



For the case of Fig6 (d), P, andP; are obtained from the following

P1= rfj) exp[Zkﬁl](rg)Pl + tg'Z)Pz) + explikéi] (tg's)Pg + tg’f))
P, = 1) exp[2ke] (rEP, +15VPy)

+&9 explik(tz + £2)](rOPs + 137

+& MO explk(ly + 2 + )] (r§ Py +152P,) (43)
Ps = rs) exp[Zkﬁg](rf)Pg + tf’f))

+52) explk(tz + £2)](rEP, + 15VPy)

+r&CD explik(6r + 253)](r8) Py + tg’z) PZ),

with Pz an auxiliary family of infinite trajectories, introducedsjuto help in the recursive definitions Bf andP; (see

Fig. 6 (d)). The solution of the above system put into the expressioT;; yields the final exact Green'’s function.
For Gj; for the graph of Fig6 (e) we can use the above same set of equations if we treatdglma @omprising

verticesA andC of Fig. 6 (e) as a singleféective vertex, corresponding ®in Fig. 6 (d). Therefore, by using the

previous analysis, we find that we need only to make the fafigwubstitutions in the Green’s function expression
for the graph of Fig6 (d):

1)

( (1)
A

- Iy +tgl’4) rg‘) tff’l) exp[akéa] /g,
0 - (948D explikes] /g,
t(Al’e‘) = tf_\1’4) tg’g) explikéa] /0,

r® - 1@ 18983 explake /g,
(0 5 80 4 (@9 O explakey) /g,
3 (394D explikey] /g,

whereg=1- rff) rg‘) exp[2k{s).

5. Eigenstates and scattering states in quantum graphs

From the previous Sec. we have seen thiiedent techniques enable one to obfaiim a relatively straightforward
manner. On the other hand, we also have mentioned that thea@bn of the wave function in certain contexts may
be lengthy. Hence, the natural question is how easily onextaact fromG the system eigenvalues, eigenstates and
scattering states, allowing to bypass the more traditiapptoach of directly solving the Schrodinger equatiorthin
following we give some examples along this line. For defmitgs, we concentrate on the graph of Bi@).

5.1. Eigenstates

The explicit expression for the Green'’s function witho < x; < 0 in leadi and 0< X; < +oo in lead f is (Fig.

6(a))

Gir (X1, % K) = ihiszif explk(x; — x)],
0 r 0D explaikes]
1- r(ol) rff) exp[akéq] '
For bothx; andx; (0 < X, X < €1, X¢ > ¥;) in the edge 1, we get
M !
in?k (1 - rg) rgl) exp[2ik£1])

X (exp[—ikxi] + rg) expﬁkxi])

Tir =40 + (44)

Gu1(xs, Xi; K) =

x (explikx¢] + r) exp[akes] exp[-ikx(]), (45)
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For open graphs, like that in Fig (a), depending on the characteristics of the vertices,tees may support
bound staté’s In these cases, the eigenstates are calculated from idaes®fG(xt, x;; k) at the polek = k, [135.
Furthermore, the problem eigenenergies are giveBday h2k2/(2u).

By inspecting the above Green'’s functions, we see that taeyliverge (consequently presenting po&) only
if gtk = k,) =0, with

9(K) = 1 - r& K rO(k) exp[akes]. (46)
As a concrete example, consider the vel@elieing a generalizedinteraction (here attached b = 3 edges, Figb
(a)) of strengthy [30]. Then, the reflection cdicients for the vertel are given by = u = 1)

i 2y - (N-2)k 2y-ik
(1) (i) (f) Y Y
r =r =r =10 = - = - s 47
©~0o~'o "0 Nik — 2y 3k — 2y (47)
and the transmission cfiients by
i0) _ (@) _ 00 () _ 2K 2ik
(0D = (0 = (0D - {00 = g (48)

T Nik—2y  3ik-2y

For the vertexA, we take the boundary conditioff (A) = Ay(A), which is equivalent to the following reflection
codlicient )
(- k=
ik + 2
It is a well-known fact that any pole of the scattering amyalés in the upper half of compldxplane along the
imaginary axis represents a bounded enel@4 For example, for the usual (1D) Diraefunction with intensity
v < 0 (attractives), the transmission céiécient ist; = ik/(ik — ). In this case, the unique negative energy of the
system readg; = k?/2 = —y?/2, wherek; = ily| is the only pole ofs(k) [195 196.
So, for our graph the eigenvalues are obtained from theviiolig transcendental equation (with Rg[= 0 and
Im[ka] > 0)

(49)

B 2y —ikn \ (4 —ikn B
o) = 1- (2750 ) (e erplzacil =0 (50)
Moreover, using the formulay((k,) = dg(k)/dKy, )
(E-En) 1. (K-K)_ ki
In s "2 el T ok G

the residues of Eq4#) are obtained from
U0 (%) = 5 Jim (46 = 1) Gir 1, x:
= {Mi(kn) explikax]} {Mi (kn) expl-iknxi] .
5 (ko)

Jig () (ko)

Ni(kn) = (52)

and of Eq. 45) from
U0 () = 3 Jim (€ = 1) Gualx, ;W
= {Nekn) (expl-iknxi] + r5)(kn) expliknxi])}
x {Ne(kn) ((expl-iknx] + r& (k) expliknx] )},

Ne(ke) = ——t . (53)

ig’ (kn) 15 (k)

8A trivial textbook example is the usuéifunction potential in 1D. If its strength is negative, it may allow bound states.
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@ (b)

Figure 7: (Color online). The bound eigenstates probahilistribution along the quantum graph of Fi§.(a), heref; = 1.0. The vertexO is
a ¢ interaction of strengtly = —3.0. The boundary condition at the vertéxis given byy’(A) = Ay(A), with A = 2.0. (&) ly1(X)|? for which
k1 = 0.463618 and (b[)//g(x)l2 for which ko = 2.022448.

Note that since for the polds, = ix,, with x, > 0, the wave functions in both leads have the general form
Un(X) = M expl-«n|X]], thus exponentially decaying away from the origin (at tleetex O), as it should be. The
N'’s also lead to the correct normalization for the eigenstakeactly the same results follow from the Schrodinger
equation solution.

As a numerical example, considg= —3.0,¢; = 1.0 andA = 2.0. Then, the system has two bound eigenstates,
n = 1,2. In Fig. 7 we show the resulting,(x)|*. The first eigenstate, witky = 0.463618, is mainly ‘created’ by the
attractives potential. The second, witty = 2.022448, by the boundary condition at the verexT his can verified in
Fig. 7: |y1/? (2/%) is more concentrated around the ver@gA).

5.2. Scattering

Consider again the Green functi@y, Eq. @4), for the open graph of Fig6 (a). As already discussed, the
quantity|T;¢|? in the expression fo;; can be interpreted as the total probability for a particlevafe numbek
incident from the leadto be transmitted to the lead Similarly, supposing; andx; in leadi, we have

Gii (Xr, X1 k) = mLZk{ explikix; — xi[] + R exp[-ik(x; + )]},
: t(i’l) I‘(l) t(l’i) exp[aké
R = rg) + 2 A0 plaksi] (54)

1- rg) rfj) exp[2kea]

Then,|R|? represents the total probability for a particle of wave nembincident from the lead to be reflected to
the leadi. By choosing diferent quantum amplitudes for the vertices, we naturallydiféérent scattering patterns
fromR andTi;.

Two very common boundary conditions are those resultingfitee (already mentioned) generalizeiditeraction
and the Neumann-Kirchifig2, 197. Regarding the former, it has a very interesting propéryyever barely explored
in the literature. Assume a vertgdinked to N edges as a generalizégotential. Now, let us set its intensifyto
zero. From Egs. 47) and @8) we have that; = 2/N — 1 andt; = 2/N. Although trivial whenN = 2 (yielding
ri = 0 andt; = 1, i.e., the two edges become simply merged without a ventétié middle), these expressions are
exactly the matrix elements of d > 2 dimensional Grover gat&¥, 198 199, an essential operator in quantum
computation. So, quantum graphs with generali@gddnctions of vanishing strengths at the vertices bear aeclos
relation with quantum walks driving by Grover ‘coin87]. As for the latter boundary condition, suppose that at a
vertexj (being the origin of all edges;, attached to it) we haVES%iS(O) = A Ys¥e, (0) (actually, this is the case
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Figure 8: (Color online). The transmissiéh |? (solid line) and reflectionR;|> (dashed) probabilities as function lofor the quantum graph of
Fig. 6 (a). In all case¢; = 1.0 anda = 0.0 (Neumann-Kirchhfi boundary condition a#). The values of atO are: (a) 0.0, (b) 1.0, and (c) -1.5.

assumed for verte& in the example of Fig7). The Neumann-Kirchhdtakes places fot = 0.0. One of its curious
consequences is that the corresponding reflection andiissisn coéficients are-independent.

To illustrate the graph distinct scattering behavior byuasiag vertices with dterent properties, we consider for
our graph (characterized by the parameters 0.0, so Neumann-Kirchhg for A andy for O) three situations: (a)
v = 0.0; and generalized of strengths (by = 1.0 and (c)y = —1.5. The resultingR|> and|T;¢ |2 as function ok are
shown in Fig.8, where distinctions in the scattering probabilities asadly observed. In all casés = 1.0.

6. Representative quantum graphs

So far we have discussed the general ideas of how to use ttgyetmmain Green’s function method for quantum
graphs through the explicit calculation of arbitrary exdesp But in the pertinent literature one can find specific
topologies which are of particular interest to studffetient quantum phenomena. For instance, the cases already
discussed in Sed, Fig. 6, are indeed proper structures to construct logic gatestfantym information processing

[66, 68]. The graph in Fig.6(b) can act as a phase shifter, whereas that in B{g) could functioning as a basis-
changing gate.

Other very important examples include:

e The widely analyzed (with the most distinct purposés RP00-203, like to investigate scattering features of
3D graphs 204]) hypercube;

e The binary tree205-207], e.g., useful to highlight dierences between classical and quantum walk§|[as
well as to test the speed up gain — which is actually expoakntin searching algorithms based on quantum
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Figure 9: (Color online). A cube quantum graph. (a) The tsttepresent the vertices indices and the integers the @uijess. (b) A cube graph

planar representation. (c)-(e) Regrouping procedurestfeemain text). (f) Auxiliary graphs to determine the t&Ra&ndT. (g) The inner structure
of vertex!|. ThePy’s indicate the sp families.

dynamics P09 (here we should observe that the graph of B@) is in fact an extension of a binary tree, being
a fragment of a large-scale ternary tree netw@i();

e Triangular Sierpinski-like structure11], a nice illustration of graphs which in the limit of infiniteertices
would be fractal. It has been considered in connection wittheoular assembling?flZ and with the mathe-
matics of logical games like the Hanoi tow@i[3 214.

Given the relevance of the above mentioned three graphmnsgsie the present section we shall address in details
how to calculate the exact Green’s function for each oneesdtproblems.

6.1. Cube

The Green’s function for closed quantum graphs can be dadddy a regrouping procedure discussed in the
previous sections. We will exemplify applying this proceelto get the Green'’s function to the cube quantum graph
in Fig. 9(a), with edges of length. In the Fig.9(b) we show a planar representation of cube graph. Congidarase
where the initial and final position are in the edge 1. Our §itsp to simplify the problem’s solution is to face the two
regions marked by dashed line in Fig(c) as two vertice$ andJ, see Fig.9(d). The following step is to represent
these two vertices as a single vertexwith oneRandT cosficients. All the information of internal structure of graph
will be contained in these cfiicients. Thus, we reduce the original graph in a simple carcgltaph. Considering
Fig. 9(e), withx andx; (> X;), the Green’s function can be written as,

Gua(x, Xi; k) = %(é{ explik(xs — )] + explikx](RP + T Px)
+explik(¢ — x)](RPx + T PlK)}, (55)
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with P1x andPyk given by

{ Pik = explikx¢] + exp[ik€](R Px + T Pik) (56)
Pok = explik(£ — x;)] + explik(](R Pik + T Px).
Solving the above system, the Green’s functidb) feads
Gusl1,%:K) = (1T explic]) expi(xs = )]
+ R{explk(xs = x)] + explk(2f - xi — x)])
+ (T + (R = T%) explike] ) explk(¢ - X + )]}, (57)

with g = (1 - T exp[ik(])? — R? exp[ak{].

We need to determine the dfieientsR andT. We do so with help of auxiliary quantum graph in FB(f). We
first recall that thel (R) represents the paths contribution for the particle to gmfedge 1 to edge 1 by transmission
(reflection). Inspecting figuré(f), we see that:

T =t explk(r¥Ps + t89Pg + t3Dpy; +(FY)
+ 19 explike](rPPg + t93P; + t10P; + 1PY)
+ 1 explk(r§P + (1P + (P + D), (58)
where theP’s are
P3 = r|(3) exp[2ik€] (I’Ss) P3 + t83,9) Pg + tgs'll)P]_l + tgs’l))
+ 199 explake] (19Ps +10VPs + 1020py; +10D
+ 181 explake] (189, + (129Py 4 (119, 1 111D)
Pg = r|(9) exp[2ik€] (I’Sg) Pg + t89,3) Ps3 + tgg’ll)Pll + tSQ,l))
+ €99 exp(akd] (FOPs + (9Py + $ 0Py, +109) (59)
+ 1010 explake] (FA0Py; + (19Py + 119, 1 (10
Pt = (™ exp[ake] (rI0Pyy + (19Py + (119, 1 (110)
+ 119 exp[2ke] (FPPs + t99Py + 310y, 1 D)
+ 119 exp[2ke] (rOPg + (99Py + {910y, 110D).

And forR,
R= rl(l) + tl(l’a) Ps + t|(1,9) Py + tl(l’ll)Pll, (60)

where theP’s are the same that b with the exchanges of indicés— J.

The final step is to determine the dheientsr,j andt,j in terms of fundamental vertex cieients. Because
the symmetry of cube thieandJ vertex codicients have the same solution, so we just discus$ Heetex solution.
Looking at equations in5Q) we can think there are many quantum fméents to calculated, but in the fact it is not
true. Because of the symmetry of inner structuré edrtex only three cdécients need to be calculater&,), tf1’3) and

t*1), see Fig9(g). From Fig.9(g), we can write? = r{) + 9P, + t9p5, where

Ps = r(DA) exp[2k¢] (rX‘)P4 + tff’s)Pg, + tff’l))
+59 exp[ake] (1 Ps + t 2P,

Ps = rg’) exp[2k¢] (rf’)Pg, + tf’4)P4 + tf’l))
+t(E5’12) exp[2k{] (rﬁz)Plz + tﬁzg) P8)

Pg = t99 exp[2k(] grgom +t0OPs + Y
+rg3) exp[2ak{] (r,f) Ps + t,‘f’lz)Plg

P12 = t£2% exp[2ke] (1 Ps + 15 YP, + 15Y)
+18? expl2ke] (ri?P1 + t5>OPg).
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And t|(1,3) = expﬁkf]{t(Al"‘)(rg‘) Py + t(g’s)Pg + tg"s)) + t(Al’S)(r(eS) Ps + tS’lz)Plz)}, with the saméP’s give by the equations
(61), with exchanges of indices < B,1 « 3 and 5¢ 8. Finally,t™ = tp, 1 t-*)pg, with again the same’s
give by equationsgl), with exchange of indice8 < H, 1 < 11, 4« 8 and 5 12.

6.1.1. Bound states

Let us examine the Green'’s function using as boundary condte already discussédnteraction in each vertex
in the cube graph. To simplify lets use the same intensftyr thed in all vertices. Thus, all reflection ctiients are
equal tor = (2y — (N - 2)ik)/(Nik — 2y) and the transmission cfiients are equal to= 2ik/(Nik — 2y), with N = 3,
the number of edges in each vertex. The bounded states gpeldseof Green’s function, i.e., the roots@k 0. In
the Tablel we show the eigenvalues of the cube quantum graph for twesalty (also foru = i = 1).

Y
State 0.0 1.0

1.230959 1.094322
1.919633 1.642395
3.141593 2.190764
4.372552 3.141593
5.052226 3.516328
6.283185 5.177393
7.514145 6.283185
8.193819 7.602957
9.424778 8.273085
10.65574 9.424778

Boow~vw~ouorwnerk

Table 1: The first ten numerically calculatég values (fromg = 0, see Eq. (57)) for the cube quantum graph. All the verticesaasumed
generalized interactions of strength = 0.0 (Neumann-Kirchhff) andy = 1.0.

In order to compare the eigenvalues found through the Gsdanttion, we solve the Schrodinger equation to
cube quantum graph. On each edgbe component of total wave functioh is the solution of one-dimensional
Schrodinger equation

- &0 = K (62)
dX2 lﬁl - lﬁl s
wherek = /2uE/h. The solutions have the form
%i(X) = A explikx] + B; exp[-ikx], (63)

withi = 1,...,12. The coéficientsA; andB; are determined by the boundary condition on vertices. Cenisig all
vertices with boundary condition tiieinteraction we haves(x,) = ¥j(Xa) = ¢¥n (X = X, is then vertex coordinate),
for all i, j meeting the verter, andy; ;(X.) = y¥n. S0, using this boundary condition in the cube quantum giraph
the Fig.9 and setting the origin of edges in the vertide€, F andH we obtain a system of 24 equations. Solving this
system we get the eigenfunctions and eigenvalues. Anaythim solutions we found four groups of eigenfunctions.
In the first group, with quantum numbers= (1 + 4m), m = 0, 1, 2, ...,the eigenfunctions are the same in all edges.
The second group, with quantum numbes (2 +4m), m=0,1,2, ..., havey: = s, 2 = Y12, Y3 = ¥, Ys = g and

W7 = Y11. The third group, with quantum numbers- (3+4m), m=0, 1,2, ..., have too); = s, Y2 = Y12, Y3 = Yg,

we = Yo andyi7 = Y1, but the eigenfunctions are much more localized in the e@gmsd 12. Finally, the fourth
group, with quantum numbers= (4 + 4m), m=0,1,2,... havey; = ¥3 = W5 = yg, Y2 = Y12, e = Y7 = Yg = Y11
and theB; = —A;, showing be sinusoidal eigenfunctions. The eigenvaluéamdd are in complete agreement those
obtained using the Green’s function approach.
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Figure 10: (Color online). The original closed cube quangnaph is attached to two leads (at the vertiéeandG), thus becoming an open
guantum graph structure.

6.1.2. Scattering
We can also calculate the transmission through cube quagrajph. In Fig.10we show one cube quantum graph

connected to two external leads. The Green’s function isrgiy
Gri(xr, %; K) = ih%(Tif explik(x + %)]. (64)

In the Fig.11we show the quantum probabilities for the cube quantum graph
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Figure 11: (Color online). The transmissitin;|? (solid line) and reflectioR; |2 (dashed) probabilities for the open cube quantum graphgf Fi
10. All the vertices are generalizetinteractions of strength (g)= 0.0 and (b)y = 1.0. Here alsqu = h = 1.

6.2. Binary tree

The fact we can write the Green'’s function in terms of the gaelreandt codficients allows one to use a recursive
procedure to obtain the solution to more complicated graphs binary tree quantum graph in Fig2(c) is a good
example of this. To show this let us first calculate the traasion and reflection cdkcients for the simple graph in
the Fig. 12(a). In fact, this was already done when calculaterfi’"?eandtfl'll) for the cube quantum graph. So, by
grouping the four verticea, B, C e D in a single vertex the reflection coicientR, is given by

R, = ¥ +t47P; + t42p, (65)
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where )
Py =1 exp[ake] (rPy + 2P, + 157)

+ t4¥ exp[2k(] (r(D3)p3 + tg’4)P4)
P, = rg) exp[2k{] (rf)pz " t(Az,l)Pl . tf’l)
+ t&% exp[2k(] (r(D4)|:>4 +t49p,

Ps = (3 exp[ak(] (0P, + 3P, + (19) (66)
+ rs) exp[2k{] (r(DB)Pg + t(D3'4)P4
Py = (49 exp[2ke] (fOP; + (2VPy + 127)
+ r(c4) exp[2k{] (rg)P4 + tg’3)P3).
And the transmission céigcient, T, is
T, = 4P + t02P,, (67)

The relations to determine thlg, codficient are the same equations those@f)(with the exchange of indices
1o 3,2o 4,A« Dandi & f. Solving the system6@) we get the expression &, andT,. Now, we insert into
verticesB andC another binary graph, like showed in the Fig(a), resulting in the graph in Fid.2(b). We use the
solution of system@6), but now in the place ofg andrc we putR, expression and for thig andtc we put theT,,
expression, obtaining the; and T, codficients. The final step is to insert again a binary graph intdreévertices,
generating the binary tree graph in Fig(c). Again we use the solution of equatiddtj, but this time withRs in the
place ofrg andrc andTy in the place otg andtc getting theR, andT,. Finally, we use the solution one more time,
with the expression foR, in place ofrg andrc and the expression fdr, in place oftg andtc, obtaining the th& and
T codficients for the binary tree quantum graph of Fig(d). This recursive process can be repeated until we obtain
the finalG, despite of graph topology.

As an example, consider all edges with the same lefigthl.0 and Diracs interaction with intensity = 1.0 as
boundary condition in the vertices. For the vertices witb edges we haves = y/(ik — y) andtg = ik/(ik — 2y) and
for vertices with three edgeg = (2y —ik)/(3ik — 2y) andta = 2ik/(3ik —2y). In the Fig.13we show the transmission
probabilitiesT,, Tg, T, andT. We notice that increasing the complexity of the tree grdph imcrease the complexity
of the transmission cdicients and in general the transmission probability deeréasa samé. This fact is natural
once that occur a pronounced increase in a length of path actiglp leave the leadand arrive the lead and occur
an increase in the number of vertices in the path, increaemgrobability of reflection of particle.

6.3. Sierpifnski-like graphs

One of the many reasons for the interest of physicists insgiflar lattices is that they can be used as models
backbones of dierent physical system&17. In the previous section we already study the tree like quargraph
and the use of recursive procedure to obtain the Green’siumcHere we will apply the same recursive procedure
to obtain the Green’s function to Sierpifhski graph. Ther@reski gasket was considered iB15 216, where it is
discussed the quantum scatteringficeents. However, the most general case of energy dependantum coéi-
cients are not discussed and is not presented a schematieglto regroup the contributions of multiple scattering to
calculate the Green'’s function. We fill this gap in the présection. The Sierpinski graph also was studied in terms
of its relation to small-worlds networks i217.

The Sierpifski graphs come from the Sierpifski gasket viigll-known fractal object introduced by Sierpinski
in 1915 P13, and they can be recursively constructed from a basic imgltlock. In the Fig.14 we show three
different stages Sierpifski graphs.

Because the Sierpinhski graph of stagpessesses three semi-infinite leads, the scattering ntforder 3, that

we write as
Rg(k) T‘“>(k> TJ‘(’;;(lo
SO(K) = (k) (k) (k>. (68)
(k) (k) (k)

Here we use a dtierent notations for the quantum amplltudes as follow. Udiregtriangle symmetry, we can write
RP(K) = RY fori = 1,2,3andT{"(k) = T fori, j = 1,2,3, withi # j. The Green’s function for the transmission
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Figure 12: (Color online). Binary tree quantum graphs ¢hital to leads and f) with different number of recursive compositions. By regrouping
the structure, we end up with a simple graph comprising agueéfective vertex linked to two leads. At each level the rescalstem has the
same global transmissiohy and reflectiorR: amplitudes than the corresponding original graph. Her $hiown, (a) the initial basic topology,
and (b) one, (c) two, and (d) three, insertions
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(Color online). The transmissiﬁmz (solid line) and reflectiomFQJ2 (dashed) probabilities for the binary trees of FIi. All the

vertices are generalizetlinteractions of strength (a)-(@)

Figure 13:

1. The

=h=

1.0. Here alsqu

1.0. All the edges have length

0.0 and (e)-(h)y

quantum probabilities for the graphs of FItR (a), (b), (c) and (d) are shown, respectively, in (a) and(@®)and (f), (c) and (g) and (d) and (h).
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Figure 14: (Color online). Sierpinski-like finite graphsthvdifferent number of recursive stages: (a) stag&Gy, (b) stage-2$G), and (c)
stage-3$ ).

case of the Sierpifski graph is given by

o

Gij(xr. % K) = ; thT,E”) explik(xt + X)], (69)
and
Gi(xe. x:K) = o explikixe — x] + R expli(x; + X)) (70)

for the reflection case. To simplify our analysis, we assuma¢ &ll the boundary condition at the vertices of graph
are the same. For this reason, reflection and transmissesiiatents arey andty (k denotes the energy dependency),
respectively, and the width of each edgé.i3 he quantum cd@cients for the stagel of Sierpihski graph are obtained
by the solution of the following system of equation,

Pag = explik{](rkPea + tkPgc)
Pac = expliké](rkPca + tkPcg + )
Psc = explikf](rkPce + tkPca + tk)

71
Pga = expliké](rkPag + tkPac) ' ™
Pca = explikf](rkPac + tcPag)
Pcg = expliké](rkPsc + tkPga)
with
Tél) = tx(Pag + Pac) and Rf(l) = Ik + tx(Pca + Pcp). (72)

Solving the system of equations inl), we get the transmission and reflection f@éents to the stage-1 of Sierpifski
graph, Fig.14(a),

2t2(ric + (2 — r2) exp [ik(]) exp [2k{]
(1= (rc + t) exp ike])(L + teexp ike] + (t2 - r2) exp [2ke])”

RO =y + (73)

d
o a t2(1 + (t — r) exp [ike]) exp ike]
K (1= (e + t) exp ka1 + teexp k€] + (2 — r2) exp[2ke])”
28
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Given its recursive structure, the scatteringfiogents to stager+1 are recursively obtained through the scattering
codficients of stager. We define

D = (1 - R™ + TM) exp k)L + T exp ike] + (T2 - [RM12) exp [2k4), (75)
SO
v _ g, 2Tl (Rl + (gl ~ Rl exp Ike/3) exp ake/3) 76
/3 D(n) ’
k/3

and (N2 (n) ()

ro _ [T+ (T, - ng)(n()expﬁkf/:s]) exp ﬁk{’/3]’ -
k/3

where we take a division by 3 of width of edge in each new st&é&esopinski graph. In this way, using the expressions
in (76) and (77), together withR"” and T{" in (73) and (74), we can get the scattering dbeients of Sierpifiski graph
of stagen with general point interaction in each vertex.

Using the width of edge to stage-1&s 1.0 and a delta type point interaction with intensjty: 0.0 andy = 1.0
at each vertex, in the Fig.5and Fig.16, respectively, we show the behavior of reflection and trassion codicient,
respectively, to the Sierpifski graph up to stage-5. Wenda that at each stage for the Sierpinski graph the streictu
of quantum cofficients became more selective to what enerdiesgn be transmitted. Also, this behavior iffeient
of that one observed in the tree graph, Fi8, where we have an increase of the reflection amplitude, lthowi so
much change in the original form. Here, at each new stageyuhatum cofficients have a change in its behavior as
function ofk in a very pronounced way.

7. Quasi-bound states in quantum graphs

As a last application for the Green’s function approachewed in the previous sections, we shall consider a
context not usually addressed for quantum graphs, namedgidpound states (but sek8[§). For a general treatment
for such problems usinG — however not discussing quantum graphs — we menfiaf [

A quasi-bound state occurs when a particle move inside asyfsir a considerable period of time, leaving it when
a fairly long time intervalr has elapsed?19, wherer is called lifetime of the quasi-bound state. The concept of
guasi-bound states is a fundamental one, and has beendipmieareas of physics. They have been used to calculate
tunneling ionization rate2P(, to understand the phenomenon offidiction in time P21], to describe the decay of
cold atoms in quasi-one-dimensional tra@2%], and are directly relevant to recent condensed-mattegraxgnts
[223.

Thus, let us begin our discussion considering the lineantyuna graph depicted in Fid.7. Suppose initially that
we have a boundary condition with zero transmission angtitin both vertice\ andB. For instance, consider a
Dirichlet boundary condition. This system is equivalenatoinfinite square well, so it is possible for a particle to be
trapped inside the graph in the edge between the vertieeglB, i.e., the system would have genuine bound states,
with well definite energy

nr?h?
B 2ulfg
They are genuine bound states in the sense that are eiganstalhe Hamiltonian with an infinite lifetime. From the
Heisenberg uncertainty principl&EAt ~ h, so, if the energy possesses null uncertainty, the stéfetirhe is infinity
[224.

In the situation of a arbitrary boundary condition with noero transmission amplitude in both vertices the particle
can be trapped, but it can not be trapped forever, as a coasegwf quantum tunneling. The energy spectrum in
this case will be quasi-discrete, and it consists of a sefiesoadened levels, whose width is representedl byh/r
[225, and the energy values are called quasi-energies. Thatisitubecome very interesting when we analyze the
scattering of particles when the incident energy is closbeajuasi-energy

(78)

E(ino) . E(ab) (79)
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Figure 18: (Color online). Typical profile of the transm@siprobability as function of energy for a potential disjtaytwo quasi-bound states at
energiesqub) and qub). The quasi-bound states widthg, andI'z, can usually be obtained from such a plot.

In this energy interval, the square module of transmissioplaude exhibits pronounced peaks, and this is called
resonant scatterin@p4]. This behavior was already observed in the previous sestiand in Fig.18it is depicted

the typical transmission probability as a function of theidlent energy for a scattering of a system which supports
guasi-bound states. The width of this quasi-bound sfatsslefined as half height width of peak of the transmission
codficient, as depicted in Fid.8.

Now, let us consider an intermediate situation where theex& has a boundary condition with zero transmission
amplitude and an arbitrary boundary condition with a norezeansmission amplitude in the vert@x In this situa-
tion, the system can also has quasi-bound states, due thelingpnthrough the verte&. The scattering solution for a
particle incident from the left is given by

w(X) ~ \/iz_ﬂ {explikx] + R exp-ika},  x— —co. (80)

+)

WhereRgB is the reflection amplitude for the whole graph

rg)t(A’) tg) exp [ikag]
1- r(A‘)rg’) exp [2kéag] '

(+) _ ()
Rig=Ta +

A (81)

By analogy with the previous case, we can try to extract tfi@ination about quasi-bound states from the square

modules of reflection amplitud&f{éf. Unfortunately, because the boundary condition in theexe |R§jé|2 =1

for all range of energies. So, we can not obtain informatiooug quasi-bound states for this situation by the above
method. So, we propose a Green’s function approach to ¢xtifacmation about quasi-bound states for this kind of
situation, as we explain below.

Consider the open quantum graph in Fi. As we explain below, here we use a slightlyfeient notation for
the quantum cd@cients. Using the simplification procedures of S&2we can get the Green’s function straightfor-
wardly. In this manner, the Green’s function for the casenele< y; is in the semi-infinity lead andx; is in the
edgej between the verticeg andyj.1 is given by

T, exp ik(Xs — X +Y; — y1)]
Gij (X1 %; K) = o — 1) ' (82)

2K 1= R R explk(yia -yl

(+)
WhereT(L )

is the reflection cacient to the right £) of block (1, j) comprising all the vertices betwegpandy; andRE
the reflection cogicient to the left ) of block (1, j) comprising all the vertices at right §f.1.

32

is the transmission cdicient to the left ¢) of block (1, j) comprising all vertices betwesn andy;, Rg)j)
) .
fhin 18
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Figure 19: (Color online). A semi-infinite lead attached teaies ofN simply connected vertices. This structure allows quasiAdostates.

7.1. Recurrence formulas for the reflection and transmissimgficients

The global reflection and transmission fit@ents are obtained recursively in terms of reflection aadgmission
codficients of each individual vertex. To understand this carasiton consider the graph composed only with two
vertices aty; andy;, 1, and that both, X; <y < yi11, with X; andx; in the same semi-infinity leaid Fig. 20(a).

@) () block
. . LI+ 1)
)él _ @ x*l 0 o o
IXy, Vist FX Vsl Vi2

Figure 20: (Color online). (a) Two and (b) three simply cocted vertices attached to two semi-infinite leads. In (byiexemplified the
construction process of block structures.

Performing the sum over all scattering paths, the Greenstfon to the graph in Figz0(a) is given by
Gii(x1, %K) = hzk{expmxf = xl] + 1" expl-ik(xs + % — 2y)]

(83)

r.‘iit“)t( Y exp [2K(yir1 — yi)] exp [-ik(xt + X — 2y))] }
1 - exp[2k(yier — )]

In the above expression a global reflectionfGoent to the right of blockl(l + 1), R(| l+1)! comprising of two vertices
yi andyi.1 as

“ I(:)lt(+)t( ) exp[2K(yis1 — )]

= rI +

" 1O exp 2k -yl
In an analogous Way, calculating tefor X, X; >y > Yyj41 We can associate a global reflection fimgent at the left
of block (, I + 1), R . itsis given by

(+)
Li+1) =

(84)

(,1+1)?
O _ 0, 1At expkiia -yl (85)
W =TT T C i) exp[2k(yies — y1)]
Now, considering the case whexe< y < yi+1 < Xt, the Green’s function is given by
{1 explik(yis1 — )]
Girea (X, X K) = 1+1 explik(xt — X — (Yix1 — Y1))1, (86)
ﬁzk 1-r© )r|(+)1 exp [2k(Yi+1 — Wi)]
and again we can associate a global transmissiofficieat at the left of blocklI(l + 1), T(|+|)+1)’
o ) exp k(yie1 — Y1)l
Tar = rOrC) 57
’ 1-rOr®) exp[2k(yi - i)l

And calculating thes for x; > yi,1 > yi > X¢ We get the transmission cieient at right of block (| + 1), T (. |+1), and
is given by

1O 1) exp ik(yiaa — yi)]
(L+1) = =) (+)
1-rOr) exp[2k(yiis — W)l
33
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To get recurrence formulas for the reflection and transimissodticients, consider a third vertex, in the position

Yi+2, like the one shown in Fi2Q(b). Let the reflection and transmission @odents, whereg, Xi <V < Vi1 < Yi+2,
be Rgﬁ)ﬂ) andT((,ﬁ)Jrl) the reflection and transmission dheients of block [, + 1), respectively. Again, using the
simplification procedures of sectigh2 and by inspection of Eq.84) we can infer the reflection céi&cient for the

block (, ! + 2) formed by the verticeg, yi.1 andy;,, R§:|)+2), as

) 76 )
T G Taen T2 €XPIAK (Y2 = Vi41)]

(1,1+2) (1,1+1) 1- R(—) r(+)

: (89)
sy 12 €XPAK(Y2 — Yie1)]

Based in the above two cases, we can generalize for a Hldekn) with n+ 1 vertices. Here we write the final results.
So, the reflection cdBcient at right of block|; | + n) is given by

T((|j)J,n_1)T((|T|)4.n_1)r|(:r)1 exp[ZK(yHn - yl+n—1)]

RY —R® 4 (90)
L Litn-1 =
(1,1+n) (I,1+n-1) 1-— REI,I)+n—1)rI(:r)1 eXp[Zk(y|+n _ yl+n—l)]
and the reflection cdicient at left of block [, | + n), R§[|)+l), is given by
) pE)
= = tn tn R(| I+n-1) exp[Zk(lern - yl+n—l)]
R§|,|)+n) =ri)+ — (91)

1- R0 yre) explak(yn — yn-1)]

In an analogous way the transmissionfticgéent at Ieft,T((,jﬂn), and at right,‘l'((,]{rn), of block (, | + n) can be obtained,

and are given by

T T((I:)Jrnfl)tl(;:?] explik(Yi+n = Yi+n-1)] 2
(I,1+n) 1- RE[|)+n_1)rI(:T)1 exp[Zk(yHn - yl+n—1)]
and =) )
- T I_I+ tl:—l expﬂk(lern - Y|+n71)]
T((|,|)+n) - — (93)

1- ([I)+n—1)rl(:r)1 exp[2K(Yien — Yien-1)]

7.2. Green’s function as a probability amplitude

Once obtained the recurrence formulas for the quanturfiicismnts, consider again the Green'’s function82)(
The Green'’s function for a quantum system could be integgras the probability amplitude for a particle initially in
the pointx; arrive the poinix; with fixed energye [181]]. So, in Eq. 82), the amplitude

(+)
Tl, i

1-RORY, | expk(yja - y))]

A= (94)

can be interpreted as a probability amplitude for a parted@ing the point; in the semi-infinity lead and arriving

at the pointx; in the edge with energyE. If the graph support at least one quasi-bound state, ati@ntivave with
energyE close to the quasi-bound state energy have a great praiabitunnel, entering in the confinement region.
In this way, plotting#; j|? againstE, we have peaks at each time that the enégyas close t& @), like in Fig. 18.

With this we can extract information about the energy vabfeguasi-bound states and its respective widths. Here a
little technical detail. The amplitudeft; j|? is not normalized, but it is not a problem, because we aressted in the
energy and width of each quasi-bound state.

An interesting characteristic of the Green’s function ageh to study quasi-bound states on graphs is the possi-
bility to calculate directly, localized quasi-bound state a specific edge. Besides, it is also possible to analyze th
influence of diferent point interactions — implemented through boundand@®mns — on the width and the energy
of a quasi-bound state. As an example, consider a graph xitledices like that in the Fig21. Letu = A = 1 and
the lengths of edges all equalsdc= 1.0. In each vertex we use delta type interaction withbut in the vertexs,
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Figure 21: (Color online). The example of F20with N = 6. In the vertexys we consider both Dirichlet and Neumann boundary conditions
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Figure 24: (Color online). Example of an open quantum gragigse a slight modified version has been studied 87][to transmit information
using quantum protocols.

where we use either Dirichlets = —1.0 or Neumanntg = 1.0, boundary condition. In the Fig82 and23 we show
A;.j for the Dirichlet and Neumann boundary conditions, respelst

The analysis of figures make it clear the presence of quasidbstate as a function of energy. Also, it is evident
the influence of the boundary condition utilized on the veytein the quasi-energies and in the width of quasi-bound
state. The quasi-energies of quasi-bound state in the Neuoase have lower energies and widths when compared
with the quasi-energies of Dirichlet one. Another obseoveis the increase in the number of quasi-bound states when
the final pointx; is near of verteys. In this later case, escaping the graph become matieudi because of multiple
reflections and interference along its edges. In fact, tiseaanarrowing the half height widtlir, and consequently an
increase in the lifetime of quasi-state.

7.3. Quasi-bound state in arbitrary graphs

Observing the form afA; j in Eq. @4), we can note that the amplitucfg j is giving by the quotient of transmission
codficient from the initial point; to final pointx; in the numerator and a term what is 1 minus the product of the
reflections cofficients at left and at right of edge and of complex exponenfil@ngth of edge where is situated the
final pointx; in denominator. This term in the denominator are associatédthe energy eigenvalue$2 226,
given by the sum of possible periodic orbits in the edge wietke final point 137. In general, the amplitude to
localized quasi-bound state between two verticasdJ of arbitrary graph is given by

_ Tis
1-Rj Ry exp[2ké ]’

A (95)
with T, ; is the global transmission cfirient for the particle be transmitted to the edge betweenehticesl andJ,
R s is the global reflection cdicient at the vertex andR;; is the global reflection cdicient at the vertex.

As an example of arbitrary graph and the use of E3p),(consider the graph in Fige4. We can use dierent
boundary conditions in each version and lengths of eachssdgé here we use delta type point interactions in each
vertex with intensityy = 1.0, but in vertexE we use Dirichlet or Neumann boundary condition. All the edgave the
same lengtlf = 1.0. So, with all edges with the same length, due the symmethave three dierent edges where
we can calculate the quasi-bound state between the veAEeAB andBC. In the Fig.25we show the behavior for
the three above cases using the Dirichlet and Neumann aomdiespectively. Again, we note the strong influence
of boundary condition in vertek in the widths and quasi-energies. Also, the influence oftmrsof quasi-state is
observed. This influence also was observed in this same @pafte transmission cdigcient in [L37]. As expected,
because complexity of graph, in this case the profile is mongaticated than those o linear graph shown in the shown
previously.

8. Conclusion

The quantum graphs are very interesting because they caalimpdvaves in a large variety of systems, having
applications going from nanotechnology to medicine. Threywary simple system, nonetheless, it is not easy to obtain
the Green’s function for general quantum graphs by meantaafiard procedures, being necessary for instance to
modify the Krein’s resolvent formula B8 or by doing some complicated calculatiod8f. In this contribution, we
have shown a physically motivated construction for the e&een’s function for arbitrary quantum graphs of any
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topology, avoiding those complicated calculations. Thecexreen’s function is given by a sum over classical paths,
taking into account local quantunffects through the quantum amplitudes defined through thedaoyrtonditions

on each vertex of the graph. This result is very importanabse it allows one to solve problems in a recursive way,
a key factor in the solution of quantum graphs of arbitrapologies.

In order to construct the exact Green'’s function we develdp® simplification procedures: the regrouping of
infinity paths in finite classes of paths and the separati@lafge graph into small ones. Using this two simplification
procedures, the exact Green’s function for open and clogadtgm graphs was obtained. Several concrete examples
was considered, like cube, binary tree and Sierpifskidjiantum graphs. From the poles and residues of the Green’s
functions the bound state eigenenergies and eigenfuisciiene obtained with the correct normalization constant.
| worth to comment that the wave function normalization ¢ans often involves a dicult integral in the other
methods. The method outlined here can also be applied fesedequantum graphs if the potentials along the edges
decay at least exponentially, and very good analytical@gpration for the Green'’s function can be obtained. But in
this case it is necessary to include the quantum amplitutide@otentials and calculate the classical action of the
guantum particle under the action of the potential. Finallyery interesting application of Green’s function apptoa
was done to extract information about quasi-bound statepém quantum graphs. The method allows us to extract
information of localized quasi-bound state and the infl@emicdifferent boundary conditions in the energy and width
of quasi-bound state.

Our analysis generalizes the quantum version of the Kirfifghules discussed in Ref184], because we con-
struct the scattering matrix in a systematic and very gemexg, and also generalizes the results of R86][where
was studied only open quantum graphs and was not showed hdaskify and sum up all the classical trajectories.
We illustrate our method by some concrete examples likerpitmae, cube and Sierpifiski-like quantum graphs, ob-
taining the transmission (as well the reflection) amplitide functions of wave number of incident plane waves, by
usingk-dependent boundary conditions.

The approach developed here can be also applied to studysa i@tated class of systems, namely, scattering
guantum walks as addressed #¥,[78]. The advantage of the present approach to study scattgaagtum walks
lies in the easily to obtain the Green'’s function for generadntum graphs and in the possibility to explore specific
paths and obtain the contribution of each path to the imtemige phenomena responsible for the superdifusivity of
guantum walks.

We hope that all these technical aspects developed in thisaam contribute to a better understanding of quantum
graphs.
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A. The most general point interaction conserving probabilty flux as a quantum graph vertex

A.1. The usual case: the line
The probability density flux in the usual 1D quantum mechanéads

j() = %[W‘(X)W(X) =¥y (X)]. (A.1)
Thus, if we definey’(X) = dy(x)/dx)
o(x) = ( j((’;)) ) (A2)
and
Jz( o é) (A.3)
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j(x) can be written in a complex sympletic-like form as
i) = —<D (%) JD(x). (A.4)

Now, suppose a free particle of energy= k?/2 on the line {co < X < +o0), obeying to—d%y(x)/dX = k2y(X)
for x # 0. At x = 0 we assume a point interaction. Since, by definition, thgeaf action of such kind of potential is
zero, its only #ect is to set a specific BC for the wave functigfx) at x = 0. Thus, the most general point potential
corresponds to the most general linear boundary conditapmesented by

D(0%) = T O(0"), (A.5)
with
F:w(? 3) (A.6)

For example, for the common delta function potentia(x) (of strengthy), the parametersaee=d=w =1,b =0,
andc=vy
Using the Egs.A.4) and A.5), we have

j(0") = cb (0)TTIT (0. (A7)

If we imposej(0*) = j(07), it follows thatl' JT = J, yielding
ad-bc=1, a b, c,dreal numbers and)| = 1. (A.8)

Therefore, the most general point interaction consistétht flux conservation is characterized by E4\..§), with T’
given by Egs. A.6) and A.8).

Next, to consider & matrix formalism [L94], suppose typical plane wave scattering solutions charaetd byk.
The incoming and outgoing parts of the state are then coaddgt

(OUt)(O ) (m)(o )
[ Yongor ) =500 4oter) ) )
Probability conservation at the origin,
WO + (O = O + i (07)P, (A.10)

inserted into Eq. 4.9) leads toS(k)S™(K) = ST(K)S(K) = 1, i.e., S is unitary. Furthermore, making in EgA.Q) the

substitutiork — —k, we can write ( ) ( .
n (O ) B ou (0 )
( w(l#%(o+) ) - ST(_k)( lﬁ(OUt)(OJr) ) (All)

But k — —k inverts the flux direction, physically implying in™ « y©%. So, given such in-out exchange in Eq.
(A.11) and once the relation between incoming and outgoing wanetiitn components is always set in the form of
Eg. (A.9), we must haveS(k) = ST(-k).

For any arbitrary point interaction, we can write the scratgasolutlona//(+)(x) assuming a plane wave, of wave
numberk, incident either from the left«) or right (), so that N = 1/ V27)

(+) () =

{ exp[£ikx] + RE(K) exp[Fikx], x<0 (A.12)

TE(K) exp [+ikx], x = 0.

Observing that expdikx] are the incoming and the terms involvifgand T are the outgoing parts of the above
full scattering states, one gets that arbitrary linear doatipns of(//(” andw(‘) results, from Eq.4.9), in

RO TO® ) (A.13)

St0=( T roe
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Now, imposingS S™ = 8 S = 1 andS(k) = ST(-k) to Eqg. (A.13), ones finds that
IRZ+TP=1 ~ RYTW TR =,
RE'(K) = RH(=k),  TW'(K) = TO(-k). (A.14)

These are the basic conditions to assure proper featurtigefgrattering solutions in quantum mechani®, e.g.,
orthonormalization, flux conservation, and the existerfdb@® scattering inverse problem. If, furthermore, one also
requires time-reverse invariance — what we are not impdaittgjs work — therir ) = TC),

Finally, to establish a full correspondence between theapmroaches, the boundary condition treatment and the
S matrix formalism, let us assume Ed.b) for the states in Eq.A.12). Thus [L92

¢+ ik(d — a) + bk 2ikw*t

—c+ ik(d + a) + bk2’ —c+ ik(d + a) + bk2"
It is easy to verify that the quantum amplitudes in E4.16) satisfiesall the fundamental requirements in E&..14)
[197. Hence, up to a global phase the problem is likewise specified from the paramegels c andd or from the
codficientsR®) andT®). Thus, the two approaches are completely equivalent aritlaagbpoint interactions can be
defined entirely in terms of the matrix (for a more detailed analysis, see, e.§87).

RH(K) = TEK) =

(A.15)

A.2. A pointinteraction in 1D for multiple directions: a stgraph topology

The above prescription for the line is directly extendablehte more general case. To see how, first note that
in the 1D case, a zero-range potential at the origin divitlesriterval-co < X < +oo into two semi-infinite lines.
Thus, from the identification; = —x andx, = +X, the left (co < x < 0) and right (O< x < +o0) regions could be
represented by 8 x; < +o0 and 0< x; < +00. Hence, in a quantum graph framework, the system topolotiaisof
a single vertex joining two leads. Also, the original nomatae 0 (07) now becomes, = 0 (x; = 0), indicating
that we are considering the vertex but from the right (lgttgsi.e., at the beginning of lead 2 (1).

A zero-range potential located at 0 and attached te E semi-infinite lines constitutes a star graph-like topology
depicted in Figurel(c). Along each lead (with n = 1,2,..., N) the spatial coordinate, ranges from 0 teo and
(//E”)(xn) andwf("”l)(xn) denote, respectively, incoming and outgokiglane wave states. In this case, the equivalent of
Egs. @.9) and A.11) read

¥(0) = SK) ¥{"(0) and ¥(0) = S'(-K) ¥(0). (A.16)

with ¥ aN-components column vector (naturally extending the 2-comepts for the line) an8(k) aNx N scattering
matrix, whose elemer, (k) yield the quantum transition amplitude to go from leatb leadl| for a state of wave
numberk. Probability conservation and moment inversion reciggociamely,

wOU(0) wE(0) = w(0) WM (0) andk o —k = PO s W), (A.17)

demandS(K) to be unitary andS(k) = S(-K), exactly as in SecA.1. Therefore, an\N x N matrix satisfying these
two conditions will represent a proper zero-range intéoactresulting in a well-behaved quantum dynamics dv a
star graph. Furthermore, the scattering states follow faadirect generalization of EqA(12), where the amplitudes
are given by the corresponding matrix elementS@) (cf., Sec. 2).

Finally, the BC approach in134 153 can be put in a direct relation with the abo$eformalism through an
one-to-one correspondence betweenNRéndependent real parameters defining the BC at the vertex3se. 2.1)
and the matrix elements o, likewise parameterizable By? independent real constan22[7].

A.3. Ageneral graph

To conclude the analysis, we note that in an arbitrary usgictgraph, the region around each vertéxbasically
a star structure. The flierence is that instead of going from 04g some (or all) edges can be finite, ending up in
another vertexn. Due to the superposition principle — which holds true foy Bimear wave-like diferential equation
(here Helmholtz) — the global state for an spatially extehgl®blem can be construct in terms of a multiple scattering
process22§. In other words, a proper sum of the locally scattered wgeasirely determined by (k)) results in
the full exact solution. This is the case even if the systeoiosed (the graph has no leatls)

9 A trivial example is that of an infinite square well (a graphthwiwo vertices and one edge), whose typical boungga) o sink,x] (with
kn = nz/L) is given as the linear combination of the plane waves seattef by each wall (vertex), at = 0 andx = L.
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In this way, a legitimate and univocal quantum dynamics foy apen or closed graph is utterly obtained by
associating to each vertexa corresponding scattering mat” (k) (for S (k) as described in SecA.2). Then, it
also directly follows that the BC prescription and thescheme are totally equivalent regardless the graph topolog

B. The exact Green'’s function for quantum graphs: the generbized semiclassical formula

Here we shall just outline the main steps necessary to damnadmshat the exact Green'’s function for quantum
graphs can be written in the same functional form of H),(i.e., as generalized semiclassical formula.

B.1. Reviewing a simple case, the Green'’s function for atpofaraction on the line

Suppose the usual infinite line and an arbitrary point irttoa at the origin X = 0), for which the reflection and
transmission ca@icients areR®) andT®) (see AppendixA.1). It is worth recalling that this example corresponds to
a quantum graph with one vertex and two leads. Frb&fJf we can readily write down its exact Green'’s function.
DefiningG,_ for x > 0> x;, G_, for x; > 0> X¢, G, for x¢, X > 0 andG__ for x;, X < 0, one finds

Gur (X1 %; K) = o/ T explkixs - xi).

Guxr. 1K) = L [explikixs = X1+ R expli(xi| + 1) (8.1)
which have the structure of Eql3). In fact, for+ ¥ there is only one sp leaving, crossing the origin, and finally
arriving atx;. In this case, the classical-like action re@lg = pLsp/h = KXt — Xi|, whereas the quantum weight is
given byWs, = T® (just the amplitude gained in this scattering process, restrassion). Fok +, both end points
are at the same side of the zero range potential. Thereferbawe (i) a direct sp, going straight frogto X, so with
Wsp = 1 andSsp = Kixs — x|, and (i) an indirect sp, along which there is a single reftec{atx = 0), thusWsp = R®)
andSsp = K(Ix¢| + [x).

B.2. Green’s function for a star graph

Similarly to what has been done in the Appendi?2, to see whyG for quantum graphs can be written in the
general form of Eq. 3), we can start considering the basic (building block) steape depicted in Figuric). The
vertexV (assumed to be at the origin of all leads, in a totalNo£ E) is interpreted as an arbitrary scattering center,
S0 a general point interaction.

Supposd¥®, ¥()(K)} to represent the complete full set of solutions for the 8dmger equation for this graph,
where¥@(K) = (7 (x; K), . .., v (xn; K) T and¥® = (¥ (x0), ...,y (x))T are, respectively, the scattering and
bound states with enerdy = 12k?/2u andE,. We also observe that for each wave numkere have a scattering
stateo, labeling through which initial lead- the plane wave is incident to the vertex. This is equivalerthe 1D
problem where one has two leads and so two solutions &), one incoming from the left and other from the right
of the origin [L50-152 (cf, Eq. (A.12) in Appendix A.1).

From the Green'’s function spectral decomposition propamycan write 135 (for x; andx; in the edge$andn,
respectively)

Gin(xf, X; E) = Go%xy, %; E) + G *Ax¢, x;; E), (B.2)
® (% (.
GO x ) = ) A0 () (®.3)
0 N (o) . (0)* .
(s.s. . _ |
GEXxt, x;; E) _fo dk; E eI (B.4)

The scattering solution for a plane wave of enegy 12k?/2u, incoming from leadr towards the vertex, is given
by (with xin |, forl =1,...,N)

- 1 .
1706k = =61 expl-ikod + S () explik]), (B.5)
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By inserting B.5) into (B.4), then € = h24?/(2u))

w1 (7 _dk

h22n Jo A2-Kk2

x {6 expl-ik(xs — x)] + Sni(K) explik(xs + X)]
+ Sin"(K) exp[-ik(xs + x)]

Gin(xt, %i; ) = GPAxs, %; E) +

N
+ 2 Se1(K) Sun” () explik(xs — x)1}. (B-6)
o=1

Using the relations in Eq8]f, the above equation can be written as

Gin(xt, %i; ) = GPAxs, %; E) + %2—1 fo 42—_kk2{‘5“' expl-ik(x; — )]
+ Su(K) expik(x; +x)]}- (B.7)

Above, the integral involving explik(xs — X;)] leads to the free particle Green’s function. For the othexgral,
we consider a contour integration along the real axis cléwea infinite semicircle in the upper half of the complex
plane. The pole contributions are due the denominterk? and possible singularities &, (k). If the vertexV (a
zero range potential) does not allow bounded sta#s;) = 0 andS, (k) does not have poles. On the other hand,
for a very large number of situations the terms in the integnaesulting from the bound energy poles exactly cancel
out with GP-$)[196 229 230. This is precisely what takes place for general point itéipns [L87]. Putting all this
together, the remaining steps in evaluating Bgy) are straightforward. Thus, reverting to the notatidor the wave
number variable, we finally get

Gin(xr. 1K) = L {5ns explkix = X1+ Sn(k) explk(xs + x)]}. (B.8)

Now, notice that Eq.B.8 would readily follow from the sum over scattering paths prggion. In fact, for a
particle with x; in leadn, arriving atx; in leadl, we have two possibilities. (i) The leadisand| are the same,
so there are two scattering paths: straight propagatian fato x;, corresponding to exp{x; — x|] andW = 1;
and propagation from; to the vertexV, reflection (gaining a factd®,n(k)) and then propagation e, in this case
yielding expik(xs + %)] and an amplitudé&S,,(K) (i.e., the reflection cd&cient fromn to n). These contributions
result inGEE™ 9™ ¢, x: K) = (1/ (ih2K)){ exp[=iKIxs — X[] + Snn(K) explik(X; + %)]}. (ii) The leads are distinct, thus
there is only one scattering path: propagation fegrto the vertex, a transmission through it (gaining a fagq(k)),
and finally propagation tay. So,GE™ %\, x;K) = (u/(ih2K)){Sn(K) explik(xs + x)]}. These two possibilities
are exactly summarized by EdB.Q).

B.3. The Green'’s function for an arbitrary graph

Lastly, for an arbitrary case the reasoning resembles thittei Appendix A.3. For the star graph, the exast
is written in terms of a (finite) sum of scattering paths. Exfieg for any topology (as considered in this work), the
local scattering — around each vertex, so in a star-like gardition — can be associated to a stretch of a much larger
sp, leaving fromx;, running across the totality or segments of the whole grapd finally arriving atx;. This is just
the usual multiple scattering process, valid to descrilyeveave propagation in the linear context. Along the way,
the Ws,, are built from the quantum amplitudes gained through theessive scattering at the vertices. On its turn
Ssp = KLsp, for Lsp the sp total classical distance traveled between the emtsp@f course, generally the number of
sp can be infinite (thus demanding the techniques of Sec. dxfaicit calculations). But the main point is that Eq.
(13) represents the exact construction for the Green’s funaf@ny quantum graph.
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