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CONTINUITY OF THE SOLUTION MAP OF THE EULER

EQUATIONS IN HÖLDER SPACES AND WEAK NORM

INFLATION IN BESOV SPACES

GERARD MISIO LEK AND TSUYOSHI YONEDA

Abstract. We construct an example showing that the solution map of the
Euler equations is not continuous in the Hölder space C1,α for any 0 < α < 1.
On the other hand we show that it is continuous when restricted to the little
Hölder subspace c1,α. We apply the latter to prove norm inflation for solutions
of the vorticity equations in Besov spaces near the critical space B1

2,1.

1. Introduction

We study the Cauchy problem for the Euler equations of an incompressible and
inviscid fluid

ut + u · ∇u = −∇p, t ≥ 0, x ∈ R
n

div u = 0(1.1)

u(0) = u0

where u = u(t, x) and p = p(t, x) denote the velocity field and the pressure function
of the fluid respectively. The first rigorous results for (1.1) were proved in the
framework of Hölder spaces by Gyunter [17], Lichtenstein [22] and Wolibner [30].
More refined results using a similar functional setting were obtained subsequently
by Kato [18], Swann [28], Bardos and Frisch [1], Ebin [14], Chemin [8], Constantin
[10] and Majda and Bertozzi [23] among others. The main focus in these papers was
on existence and uniqueness of C1,α solutions and the question of continuity with
respect to initial conditions was not explicitly addressed. Recall that, according to
the definition of Hadamard, a Cauchy problem is said to be locally well-posed in
a Banach space X if for any initial data in X there exists a unique solution which
persists for some T > 0 in the space C([0, T ), X) and which depends continuously
on the data. Otherwise the problem is said to be ill-posed.

Systematic studies of ill-posedness of the Cauchy problem (1.1) are of a more
recent date and concern a wide range of phenomena including gradual loss of regu-
larity of the solution map, energy dissipation and non-uniqueness of weak solutions,
see e.g. Yudovich [31], Koch [21], Morgulis, Shnirelman and Yudovich [26], Eyink
[16], Constantin, E and Titi [11] or Shnirelman [27]. Recently, Bardos and Titi [2]
found examples of solutions in Hölder spaces Cα and the Zygmund space B1

∞,∞

which exhibit an instantaneous loss of smoothness in the spatial variable for any
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1

http://arxiv.org/abs/1601.01024v1


2 GERARD MISIO LEK AND TSUYOSHI YONEDA

0 < α < 1. Similar examples in logarithmic Lipschitz spaces logLipα were con-
structed by the authors in [24]. Solutions that fail to be continuous with respect
to the time variable were described by Cheskidov and Shvydkoy [9]. More recently,
in a series of papers Bourgain and Li [5, 6] constructed smooth solutions which
exhibit norm inflation in borderline spaces such as Wn/p+1,p for any 1 ≤ p < ∞
and B

n/p+1
p,q for any 1 ≤ p < ∞ and 1 < q ≤ ∞ as well as in the standard spaces

Ck and Ck−1,1 for any integer k ≥ 1; see also Elgindi and Masmoudi [15] and [25].
As observed in [6] the cases Ck and Ck−1,1 are particularly intriguing in view of
the classical existence and uniqueness results mentioned above.

Our main goal in this paper is to clarify the picture of local well-posedness in the
sense of Hadamard for the Euler equations in Hölder spaces. We present a simple
example based on a DiPerna-Majda type shear flow which shows that in general the
data-to-solution map of (1.1) is not continuous in C1,α for any 0 < α < 1. On the
other hand, we show that continuity of this map is restored if the Cauchy problem
is restricted to the so called little Hölder space c1,α. The failure of continuity in our
example does not seem to be related to the norm inflation mechanism described
in [6] which essentially relies on unboundedness of the double Riesz transform in
L∞. Rather, it can be explained by the fact that smooth functions are not dense
in the standard C1,α spaces. We point out that continuity of the solution map for
the Euler equations in Sobolev spaces W s,p for p ≥ 2 and s > 2/p+ 2 is of course
well known (see e.g., Ebin and Marsden [13], Kato and Lai [19] or Kato and Ponce
[20], see also Remark 4.3). However, we could not find the corresponding result for
c1,α in the literature although it should be familiar to the experts in the field. Our
main results can be stated as follows.

Theorem 1.1. The solution map of the incompressible Euler equations (1.1) is not
continuous as a map from C1,α(R3) to C([0, T ), C1,α(R3)) for any 0 < α < 1.

Theorem 1.2. The incompressible Euler equations (1.1) are locally well-posed in

the sense of Hadamard in the little Hölder space c1,α(Rn) for any 0 < α < 1 and

n = 2 or 3.

As an application of Theorem 1.2 we prove a norm inflation result for the vorticity
equations that involves a family of Besov spaces. Although this result is weaker
than the norm inflation described by Bourgain and Li our methods can be applied
in the borderline end-point spaces such as B2

2,1(R
2) which lie just outside the range

of the spaces considered in [5]. Recall that existence and uniqueness results for (1.1)
in B2

2,1(R
2) are already known, cf. e.g. Vishik [29] or Chae [7]. The proof uses

continuity of the data-to-solution map in c1,α as well as several technical lemmas
proved in our earlier paper [25]. In this respect the present paper can be viewed as
a continuation of [25].

Theorem 1.3. Let Mj ր ∞ be an increasing sequence of positive numbers. There

exists a sequence of smooth rapidly decaying initial data {ũ0,j}∞j=1 and two sequences

of indices {rj}∞j=1 and {qj}∞j=1 with rj → 2 and qj → 1 such that

‖ũ0,j‖B2
rj,qj

. 1 and ‖ũj(t)‖B2
rj,qj

> Mj for some 0 < t < M−3
j .

In the next section we recall the basic set up and notation. In Section 3 we prove
Theorem 1.1 by constructing a shear flow counterexample in the C1,α space. Local
Hadamard well-posedness in c1,α is shown in Section 4. The proof of Theorem 1.3
is given in Section 5.
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2. The basic setup: function spaces and diffeomorphisms

Let ψ0 ∈ S (Rn) be any function of Schwartz class satisfying 0 ≤ ψ0 ≤ 1 and
suppψ0 ⊂ {ξ ∈ R

n : 1/2 ≤ |ξ| ≤ 2} and such that
∑

l∈Z

ψl(ξ) = 1, for any ξ 6= 0

where ψl(ξ) = ψ0(2
−lξ). For any s > 0 and 1 ≤ p, q ≤ ∞ let Bs

p,q(R
n) denote the

inhomogeneous Besov space equipped with the norm

(2.1) ‖f‖Bs
p,q

= ‖f‖Lp + ‖f‖Ḃs
p,q

where the homogeneous semi-norm is given by

(2.2) ‖f‖Ḃs
p,q

=





(∑

l∈Z

2slq‖ψ̂l ∗ f‖qLp

)1/q

if 1 ≤ q <∞

sup
l∈Z

2sl‖ψ̂l ∗ f‖Lp if q = ∞

for any f ∈ S
′(Rn). In particular, if s = k + α is not an integer then Bs

∞,∞ is the

Hölder space Ck,α(Rn) with the standard norm

‖ϕ‖k,α = ‖ϕ‖Ck + [Dkϕ]α

where

[Dkϕ]α =
∑

|β|=k

sup
x 6=y

|Dβϕ(x) −Dβϕ(y)|
|x− y|α , 0 < α < 1, k ∈ N.

Let ck,α(Rn) denote the closed subspace of Ck,α(Rn) consisting of those functions
whose derivatives satisfy the vanishing condition

lim
h→0

sup
0<|x−y|<h

|Dβϕ(x) −Dβϕ(y)|
|x− y|α = 0(2.3)

for any multi-index |β| = k. It is well known that ck,α(Rn) is an interpolation space
containing the smooth functions as a dense subspace, cf. e.g. [3].

In what follows we will use an alternative formulation of the fluid equations in
terms of particle trajectories and vorticity. Any sufficiently smooth velocity field
u solving (1.1) has a flow which traces out a curve t → η(t, x) of diffeomorphisms
starting at the identity configuration e(x) = x with initial velocity u0. Using the
incompressibility constraint detDη(t, x) = 1 and the Biot-Savart law the equations
satisfied by the flow can be written in the form

dη

dt
(t, x) =

∫

Rn

Kn

(
η(t, x) − η(t, y)

)
ω(t, η(t, y)) dy, t ≥ 0, x ∈ R

n(2.4)

η(0, x) = x

where ω = curlu is the vorticity1 and the kernel Kn is given by

K2(x) =
1

2π

(
− x2

|x|2 ,
x1

|x|2
)
, x ∈ R

2(2.5)

1If n = 2 we can identify the vorticity of u with the function ω = ∇⊥ · u and if n = 3 with the
vector field ω = ∇× u.
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and

K3(x)y =
1

4π

x× y

|x|3 , x, y ∈ R
3.(2.6)

For our purposes it will be sufficient to take as a configuration space of the fluid
the set of those diffeomorphisms of Rn which differ from the identity by a function
of class c1,α. Let

Uδ =
{
η : Rn → R

n : η = e+ ϕη, ϕη ∈ c1,α(Rn) and ‖ϕη‖1,α < δ
}

where δ > 0 is chosen small enough so that

(2.7) inf
x∈Rn

detDη(x) >
1

2
.

Clearly, Uδ can be identified with an open ball centered at the origin in c1,α(Rn).
The next two lemmas collect some elementary properties of compositions and in-
versions of diffeomorphisms in Uδ that will be used in Section 4.

Lemma 2.1. Let 0 < α < 1. Suppose that η and ξ are in Uδ and ψ ∈ c1,α(Rn).
Then ξ ◦ η and η−1 are also of class c1,α and we have

‖ψ ◦ η‖1,α . C‖ψ‖1,α and ‖ψ ◦ η−1‖1,α . C‖ψ‖1,α(2.8)

where C > 0 depends only on δ and α.

Proof. First, observe that ‖ψ ◦ η‖∞ = ‖ψ‖∞ and ‖D(ψ ◦ η)‖∞ = ‖Dψ‖∞‖Dη‖∞
and therefore the first of the inequalities in (2.8) follows at once from

[D(ψ ◦ η)]α ≤ [Dψ ◦ η]α‖Dη‖∞ + ‖Dψ ◦ η‖∞[Dη]α(2.9)

≤ [Dψ]α‖Dη‖1+α
∞ + ‖Dψ‖∞[Dη]α

and [Dη]α = [Dϕη]α where η = e + ϕη with ‖ϕη‖1,α < δ. Similarly, we have
‖ψ◦η−1‖∞ = ‖ψ‖∞ and from (2.7) and Dη−1 = (Dη)−1 ◦ η−1 we get

‖D(ψ ◦ η−1)‖∞ . ‖Dψ‖∞‖Dη‖∞
and

[(Dη)−1]α =
[
(detDη)−1adj(Dη)

]
α
. (1 + ‖Dη‖2

∞)[Dη]α(2.10)

which, in turn, with the help of (2.9) yields

[D(ψ ◦ η−1)]α ≤ [Dψ]α‖Dη‖1+α
∞ + ‖Dψ‖∞(1 + ‖Dη‖2

∞)[Dη]α.(2.11)

From these bounds we obtain the second of the inequalities in (2.8).
Finally, observe that if ξ ∈ Uδ with ξ = e + ϕξ then ξ ◦ η = e + ϕξ◦η where

ϕξ◦η = ϕη + ϕξ ◦ η. Therefore, using (2.8) we get

‖ϕξ◦η‖1,α . ‖ϕη‖1,α + ‖ϕξ‖1,α

and combining (2.8) with (2.9) and the vanishing condition (2.3) we conclude that
ϕξ◦η ∈ c1,α(Rn). Similarly, we also have η−1 = e+ ϕη−1 where ϕη−1 = −ϕη ◦ η−1.
Applying the second of the estimates in (2.8) together with (2.11) and (2.3) we find
again that ϕη−1 ∈ c1,α(Rn). �
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Lemma 2.2. Let 0 < α < 1. Suppose that η, ξ and ζ are in Uδ. Then

(2.12) ‖ξ ◦ η − ζ ◦ η‖1,α . C‖ϕξ − ϕζ‖1,α

and for any ψ ∈ c2,α(Rn) we have

(2.13) ‖ψ ◦ η − ψ ◦ ξ‖1,α . C‖ψ‖2,α‖ϕη − ϕξ‖1,α

where C > 0 depends only on δ and α. Furthermore, the functions ξ, η → ξ ◦ η and

η → η−1 are continuous in the Hölder norm topology.

Proof. From the estimates of Lemma 2.1 we obtain as before

‖ξ ◦ η − ζ ◦ η‖1,α . ‖ϕξ − ϕζ‖∞ + ‖Dη‖∞‖D(ϕξ − ϕζ)‖∞
+ [Dη]α‖D(ϕξ − ϕζ)‖∞ + ‖Dη‖1+α

∞ [D(ϕξ − ϕζ)]α

.
(
1 + ‖Dη‖∞ + ‖Dη‖1+α

∞ + [Dη]α

)
‖ϕξ − ϕζ‖1,α

which implies the estimate in (2.12). On the other hand, using (2.8) and the algebra
property of Hölder functions we have

‖ψ ◦ η − ψ ◦ ξ‖1,α ≤
∫ 1

0

‖Dψ
(
rη + (1− r)ξ

)
(η − ξ)‖1,αdr . ‖Dψ‖1,α‖η − ξ‖1,α

which gives (2.13) since η − ξ = ϕη − ϕξ. From (2.12) and (2.13) we conclude that
composition of diffeomorphisms in Uδ is continuous with respect to ξ and η.

Finally, using the second of the inequalities in (2.8) we have

‖ξ−1 − η−1‖1,α . ‖ξ−1 ◦ η − e‖1,α.

By density, given any ε > 0 pick a smooth ζ : Rn → R
n such that ‖ζ − ξ−1‖1,α < ε

and estimate the above expression further by

‖ξ−1 ◦ η − ζ ◦ η‖1,α + ‖ζ ◦ η − ζ ◦ ξ‖1,α + ‖ζ ◦ ξ − ξ−1 ◦ ξ‖1,α.

The first and the third of these terms can be bounded using the first inequality in
(2.8) by Cε. For the middle term we use (2.13) to bound it by ‖ζ‖2,α‖η−ξ‖1,α. �

3. A 3D shear flow in C1,α

In this section we prove Theorem 1.1 by constructing a C1,α shear flow for which
the data-to-solution map of (1.1) fails to be continuous. Shear flow solutions were
introduced in [12]. They were used recently in [2] to exhibit instantaneous loss of
smoothness of the Euler equations in Cα for any 0 < α < 1.

Proof of Theorem 1.1. Let t ≥ 0 and consider

u(t, x) =
(
f(x2), 0, h(x1 − tf(x2))

)
and v(t, x) =

(
g(x2), 0, h(x1 − tg(x2))

)

where f , g and h are bounded real-valued functions of one variable of class C1,α

with any 0 < α < 1. It is not difficult to verify that both u and v satisfy the Euler
equations with initial conditions

u0(x) =
(
f(x2), 0, h(x1)

)
and v0(x) =

(
g(x2), 0, h(x1)

)
.

Given any ε > 0 we can arrange so that f and g satisfy

‖u0 − v0‖1,α = ‖f − g‖1,α < ε

and then choose h such that

h′(x1) = |x1|α for all − 2a ≤ x1 ≤ 2a
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where a = max
{
‖f‖∞, ‖g‖∞

}
.

Next, we estimate the norm of the difference of the corresponding solutions. For
any 0 < t ≤ 1 we have

‖u(t)− v(t)‖1,α = ‖f − g‖1,α +
∥∥h(· − tf(·))− h(· − tg(·))

∥∥
1,α

≥
∥∥∇
(
h(· − tf(·))− h(· − tg(·))

)∥∥
0,α

=
∥∥h′(· − tf(·))− h′(· − tg(·))

∥∥
0,α
.

Let b = min
{
‖f‖∞, ‖g‖∞

}
. It is clear that the norm on the right hand side can be

bounded below by

sup
x 6=y

x,y∈[−b,b]2

∣∣∣
(
|x1 − tf(x2)|α − |x1 − tg(x2)|α

)
−
(
|y1 − tf(y2)|α − |y1 − tg(y2)|α

)∣∣∣
|x− y|α

Evaluating this expression at x2 = y2 = c with −b ≤ c ≤ b we get a further estimate
from below by

sup
x1 6=y1

x,y∈[−b,b]2

|(|x1 − tf(c)|α − |x1 − tg(c)|α)− (|y1 − tf(c)|α − |y1 − tg(c)|α)|
|x1 − y1|α

and evaluating once again at the points x1 = tg(c) and y1 = tf(c) we obtain a final
lower bound

≥ tσ|g(c)− f(c)|α + tα|f(c)− g(c)|α
tα|f(c)− g(c)|α = 2

which proves Theorem 1.1. �

4. Local well-posedness in c1,α

We turn to the question of well-posedness of (1.1) in the sense of Hadamard.
As mentioned in the Introduction, local existence and uniqueness results in Hölder
spaces are well known and our contribution here concerns only the continuity prop-
erty of the solution map. To this end we will make some adjustments in the approach
based on the particle-trajectory method of [23]. We first state Theorem 1.2 more
precisely as follows.

Theorem 4.1. Let 0 < α < 1. For any divergence free vector field u0 ∈ c1,α(Rn)
with compactly support vorticity there exist T > 0 and a unique solution u of (1.1)
such that the map u0 → u is continuous from c1,α(Rn) to C([0, T ), c1,α(Rn)).

Proof of Theorem 4.1. We will concentrate on the two-dimensional case since the
arguments in the three-dimensional case are very similar (the necessary modifica-
tions will be described below). We begin by constructing the Lagrangian flow as a
unique solution of an ordinary differential equation in Uδ.

Since in two dimensions the vorticity is conserved by the flow2 we can rewrite
equations (2.4) in the form

dη

dt
(t, x) =

∫

R2

K2

(
η(t, x) − η(t, y)

)
ω0(y) dy =: Fu0

(ηt)(x),(4.1)

η(0, x) = x

2That is, ω(t, η(t, x)) = ω0(x).
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where ω0 = ∇⊥ · u0 and K2 is given by (2.5). In order to apply Picard’s method of
successive approximations it is sufficient to show that the right hand side of (4.1)
is locally Lipschitz continuous in Uδ. The first task is thus to establish that Fu0

maps into c1,α.
Changing variables in the integral we have

Fu0
(η)(x) = (K2 ∗ ω̃0) ◦ η(x)(4.2)

where ω̃0 = ω0 ◦ η−1 detDη−1 and η ∈ Uδ. Using (2.5) and (2.7) and estimating
directly we obtain

‖Fu0
(η)‖∞ = ‖K2 ∗ ω̃0‖∞ ≤ C‖ω0‖∞(4.3)

where C depends on the size of the support of ω0. Next, differentiating Fu0
in (4.2)

with respect to the x variable gives

DFu0
(η)(x) = D(K2 ∗ ω̃0) ◦ η(x)Dη(x)(4.4)

=
(
T ω̃0 −

1

2
ω̃0J

)
◦ η(x)Dη(x)

where J =
(

0 1

−1 0

)
is the standard 2 × 2 symplectic matrix and T is a singular

integral operator of the Calderon-Zygmund type with the matrix kernel DK2(x) =
Ω(x)/|x|2 where Ω is homogeneous of degree zero

Tf(x) =
1

2π
p.v.

∫

R2

Ω(x− y)

|x− y|2 f(y) dy, Ω(x) = |x|−2

(
2x1x2 x2

2 − x2
1

x2
2 − x2

1 −2x1x2

)
.

Standard estimates in Hölder spaces for such operators3 give

‖DFu0
(η)‖∞ ≤ C

(
‖T ω̃0 ◦ η‖∞ + ‖ω̃0 ◦ η‖∞

)
‖Dη‖∞ ≤ C

(
‖ω̃0‖∞ + [ω̃0]α

)
(4.5)

and

[DFu0
(η)]α ≤ ‖

(
T ω̃0 − 1/2ω̃0J

)
◦ η‖∞[Dη]α +

[(
T ω̃0 − 1/2ω̃0J

)
◦ η
]
α
‖Dη‖∞

≤ C
(
‖ω̃0‖∞ + [ω̃0]α

)
[Dϕη]α + C‖Dη‖1+α

∞

[
T ω̃0 − 1/2ω̃0J

]
α

(4.6)

≤ C
(
‖ω̃0‖∞ + [ω̃0]α

)
[Dϕη]α + C(1 + ‖Dϕη‖∞)1+α[ω̃0]α.

Furthermore, since from a direct computation using (2.7) we have

[ω̃0]α = [ω0 ◦ η−1 detDη−1]α . [Dϕη]α‖ω0‖∞ + [ω0]α(4.7)

combining these estimates with (4.3) and the fact that η ∈ Uδ we get

‖Fu0
(η)‖1,α . C

(
‖ω0‖∞ + [ω0]α

)
.(4.8)

To show that Fu0
maps Uδ into c1,α(R2) it suffices now to observe that (4.6)

together with (4.7) yield

lim
h→0

sup
0<|x−y|<h

|DFu0
(η)(x) −DFu0

(η)(y)|
|x− y|α = 0

since both ϕη and ω0 are in c1,α(R2) by assumption.

3See e.g., [23], Chap. 4.
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Finally, differentiating Fu0
in (4.1) with respect to η in the direction w ∈ c1,α(R2)

we obtain

δwFu0
(η)(x) =

d

dr
Fu0

(η + rw)(x)
∣∣∣
r=0

(4.9)

=

∫

R2

DK2

(
η(x) − η(y)

)
(w(x) − w(y))ω0(y)dy

which again can be bounded directly using standard Hölder estimates by

(4.10) ‖δwFu0
(η)‖1,α . C

(
‖ω0‖∞ + [ω0]α

)
‖w‖1,α.

In particular, it follows that Fu0
has a bounded Gateaux derivative in Uδ and hence

is locally Lipschitz by the mean value theorem.

We now turn to the question of dependence of the solutions of (1.1) on u0. Note
that since ω0 = ∇⊥ · u0 the initial velocity u0 appears as a parameter on the right
hand side of (4.1). Moreover, since the dependence is linear it follows that continuity
(and, in fact, differentiability) of the map u0 → Fu0

is an immediate consequence
of the estimate in (4.8). Applying the fundamental theorem of ordinary differential
equations (with parameters) for Banach spaces we find that there exist T > 0 and
a unique Lagrangian flow η ∈ C([0, T ),Uδ) which depends continuously (in fact,
differentiably) on u0. Using the equations in (4.1) we find that the same is true
of the time derivative η̇ ∈ C([0, T ), c1,α(R2)). It follows therefore that the vector
field u = η̇ ◦ η−1 belongs to C([0, T ), c1,α(R2)) ∩ C1([0, T ), cα(R2)) and a routine
calculation shows that it is divergence free.

Next, suppose that u0 and v0 are two divergence free vector fields in c1,α(R2)
and let η(t) and ξ(t) be the corresponding Lagrangian flows solving the Cauchy
problem (4.1) in Uδ with initial vorticities ∇⊥ · u0 and ∇⊥ · v0 respectively. Given
any ε > 0 and using the fact that smooth functions are dense in c1,α we can choose
φε in C∞([0, T )× R

2) such that

sup
0≤t≤T

‖φε(t)− η̇(t)‖1,α < ε.

Applying this together with (2.8) and (2.13) we estimate

‖u− v‖1,α = ‖η̇ ◦ η−1 − ξ̇ ◦ ξ−1‖1,α

≤ ‖η̇ ◦ η−1 − φε ◦ η−1‖1,α + ‖φε ◦ η−1 − φε ◦ ξ−1‖1,α + ‖φε ◦ ξ−1 − ξ̇ ◦ ξ−1‖1,α

. ‖η̇ − φε‖1,α + ‖φε‖2,α‖η−1 − ξ−1‖1,α + ‖φε − ξ̇‖1,α.

The first term of the last line is clearly bounded by ε. The middle term converges to
zero by Lemma 2.2 (continuity of the inversion map) and the fact that η converges
to ξ in c1,α whenever u0 converges to v0 since the Lagrangian flows η and ξ depend
continuously on the initial velocities. To dispose of the last term we use (4.1) and
the triangle inequality

‖φε − ξ̇‖1,α ≤ ‖φε − η̇‖1,α + ‖η̇ − ξ̇‖1,α

≤ ε+ ‖Fu0
(η) − Fv0(η)‖1,α + ‖Fv0(η)− Fv0 (ξ)‖1,α.
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Applying (4.8) we obtain

‖Fu0
(η)− Fv0(η)‖1,α =

∥∥
∫

R2

K2

(
η(t, ·)− η(t, y)

)(
∇⊥ · u0(y)−∇⊥ · v0(y)

)
dy
∥∥

1,α

. ‖∇⊥ · (u0 − v0)‖∞ +
[
∇⊥ · (u0 − v0)

]
α

. ‖u0 − v0‖1,α

and using (4.10) we get

‖Fv0(η)− Fv0 (ξ)‖1,α =
∥∥
∫ 1

0

d

dr
Fv0

(
rη + (1− r)ξ

)
dr
∥∥

1,α

≤
∫ 1

0

‖δη−ξFv0

(
rη + (1 − r)ξ

)
‖1,αdr

. ‖v0‖1,α‖η − ξ‖1,α,

where the latter converges to zero by continuous dependence of the flows on u0 and
v0 as before. This completes the proof of Theorem 4.1 when n = 2.

In the three-dimensional case the flow equations (2.4) take only a slightly more
complicated form

dη

dt
(t, x) =

∫

R3

K3

(
η(t, x)− η(t, y)

)
Dη(t, y)ω0(y) dy =: Gu0

(ηt)(x)(4.11)

η(0, x) = x

where ω0 = ∇× u0, K3 is given by (2.6) and consequently the derivative δwGu0
in

the direction w ∈ c1,α(R3) has an extra term

δwGu0
(η)(x) =

∫

R3

DK3

(
η(x)− η(y)

)
(w(x) − w(y))Dη(y)ω0(y) dy(4.12)

+

∫

R3

K3

(
η(x) − η(y)

)
Dw(y)ω(y) dy.

As before, applying standard Hölderian estimates we obtain the analogues of (4.8)
and (4.10) and the proof proceeds as in the two dimensional case. �

Remark 4.2. Theorem 4.1 remains valid if the initial vorticity has noncompact
support and satisfies some suitable decay conditions at infinity. In Section 5 we
will apply it under the assumption ω0 ∈ L1(R2). In this case we only have to
replace the bound in (4.3) with

(4.3’) ‖Fu0
(η)‖∞ . ‖ω̃0‖∞ + ‖ω̃0‖L1

and those in (4.5), (4.6) with

‖DFu0
(η)‖∞ . ‖ω̃0‖0,α + ‖ω̃0‖L1(4.5’)

[DFu0
(η)]α .

(
‖ω̃0‖0,α + ‖ω̃0‖L1

)
[Dϕη]α +

(
1 + ‖Dϕη‖∞

)1+α
[ω̃0]α(4.6’)

and adjust the estimates (4.8) and (4.10) accordingly. The rest of the proof remains
unchanged.

Remark 4.3. We also mention in passing that an alternative proof of Theorem 4.1
could be given based on the following commutator inequalities

‖Ds(fg)− fDsg‖∞ . ‖f‖Ḃ1
∞,∞

‖g‖Ḃs−1
∞,∞

+ ‖f‖Ḃs
∞,∞

‖g‖Ḃ0
∞,∞
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and

‖Ds(v · ∇g)− (v · ∇)Dsg‖∞ . ‖v‖C1,s‖g‖C1,s.

where Ds = (−∆)s/2 is the fractional Laplacian with 0 < s < 1. Inequalities of
this type were recently obtained in [4]. However, using this approach we could
only establish local well-posedness of (1.1) in the space c2,α for 0 < α < 1, under
suitable decay conditions. Besides continuity of the double Riesz transforms and the
density property our proof required that the vorticity of u be at least of class C1,α

and hence that u belong to c2,α (in order to apply the second of the commutator
estimates above). A similar proof also works in W s,p for p ≥ 2 and s > 2/p+ 2.

5. Proof of Theorem 1.3: norm inflation near B2
p,1

Our aim in this section is to exhibit a norm inflation type mechanism which
involves a family of Besov spaces. On the one hand the result stated in Theorem
1.3 is weaker than the norm inflation results obtained by Bourgain and Li. On
the other hand, our method is applicable in the borderline function spaces that
were left out of the analysis in [5, 6]. The proof involves constructing a Lagrangian
flow with a large deformation gradient and a high-frequency perturbation of the
corresponding initial vorticity. It also relies on the continuity result for the solution
map in the little Hölder space of Section 4.

It will be convenient to work with the vorticity equations which in two dimensions
have the form

ωt + u·∇ω = 0, t ≥ 0, x ∈ R
2(5.1)

ω(0) = ω0

where u = ∇⊥∆−1ω and ω = ∂1u2 − ∂2u1. We first proceed to choose the initial
vorticity ω0 for the Cauchy problem (5.1). Given any smooth radial bump function
0 ≤ φ ≤ 1 with support in the ball B(0, 1/4) let

φ0(x1, x2) =
∑

ε1,ε2=±1

ε1ε2φ(x1−ε1, x2−ε2).(5.2)

Clearly, the function φ0 is odd with respect to both x1 and x2. Given any M ≫ 1,
r > 0 and q > 0 define

ω0(x) = ωM,N,r,q
0 (x) =M−2N− 1

q

∑

0≤k≤N

φk(x)(5.3)

where N = 1, 2 . . . and φk(x) = 2(−1+ 2
r

)kφ0(2
kx). Note that the supports of φk are

disjoint and compact with

(5.4) suppφk ⊂
⋃

ε1,ε2=±1

B
(
(ε12

−k, ε22
−k), 2−(k+2)

)
.

Next, we have

Lemma 5.1. If 1 < q <∞ and 2 < r <∞ with q ≤ r. For any integer N > 0 we

have

‖ω0‖W 1,r + ‖ω0‖B1
r,q

.M−2.(5.5)
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Proof. We proceed to estimate the two terms on the left hand side of (5.5) sepa-
rately. Observe that the supports of φk in (5.4) are disjoint and therefore changing
variables we get

‖ω0‖rLr ≃M−2rN− r
q

N∑

k=0

2−kr

∫

R2

|φ0(x)|rdx .M−2r

and since q ≤ r we similarly have

‖∂lω0‖rLr ≃M−2rN− r
q

N∑

k=0

2−kr

∫

R2

|2k∂lφ0(x)|rdx .M−2r

for l = 1, 2, which gives the required bound for the W 1,r term.
The estimate of the B1

r,q term is slightly more cumbersome. It will be convenient

to work with the Fourier transform of ω0. In this case the supports of φ̂k are no

longer disjoint, nevertheless each φ̂k can be decomposed into a ”bump” part and
a decaying ”tail” part where the bump parts have disjoint supports. From (2.1)
and the calculations above we only need to estimate the homogeneous Besov norm
‖ω0‖Ḃ1

r,q
. We have

φ̂k(ξ) = 2(−3+ 2
r

)kφ̂0(2
−kξ)

and, since φ̂0 is a function of rapid decrease, given any α > 0 we can find K1 > 1
such that

|φ̂0(ξ)| ≤ C|ξ|−α for |ξ| ≥ K1.

Let α > 3− 2/r. In this case we have

|φ̂k(ξ)| ≤ 2(−3+ 2
r

)k|φ̂0(2
−kξ)| ≤ 2(−3+ 2

r
+α)k|ξ|−α for |ξ| ≥ 2kK1.

Using the Hausdorff-Young inequality we get

‖ω0‖qḂ1
r,q

≤
∑

ℓ

2ℓq‖ψℓ ω̂0‖qLr′

. M−2qN−1
∑

ℓ

∥∥∥ψℓ | · |
N∑

k=0

φ̂k

∥∥∥
q

Lr′

≃ M−2qN−1
∑

ℓ

(∫

R2

|ψℓ(ξ)|r
′ |ξ|r′

∣∣∣
N∑

k=0

φ̂k(ξ)
∣∣∣
r′

dξ

)q/r′

where 1/r + 1/r′ = 1. Given any integers k1, k2 and K (with k2 ≤ K) introduce
the functions

ΦK
k1,k2

(ξ) = χ[2k1 ,2k1+1](ξ) |ξ|
K∑

k=k2

|φ̂k(ξ)|.
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A direct calculation yields

Φ0
j−K,−∞(2−Kξ) = χ[2j−K ,2j−K+1](2

−Kξ)
∣∣2−Kξ

∣∣
0∑

k=−∞

∣∣φ̂k(2−Kξ)
∣∣

= 2−Kχ[2j ,2j+1](ξ) |ξ|
0∑

k=−∞

2(−3+ 2
r

)k
∣∣φ̂0(2

−(k+K)ξ)
∣∣

= 2−K2(3− 2
r

)Kχ[2j ,2j+1](ξ) |ξ|
K∑

k=−∞

2(−3+ 2
r

)k|φ̂0(2
−kξ)|

= 2
2K

r′ ΦK
j,−∞(ξ)

which leads to the following scaling identity

ΦK
j,−∞(ξ) = 2−

2K

r′ Φ0
j−K,−∞(2−Kξ)

for j > K and similarly we have

Φ∞
j,−∞(ξ) = 2−

2j

r′ Φ∞
0,−∞(2−jξ).

The above will be needed below in order to control the tail parts (for both high
and low frequencies).

Claim.
∑

j≥1

‖Φ0
j,−∞‖q

Lr′
<∞,

∑

j<1

‖Φ∞
j,0‖qLr′

<∞ and ‖Φ∞
0,−∞‖q

Lr′
. 1.

Proof of Claim. We have

|Φ∞
0,−∞(ξ)| = χ[1,2](ξ) |ξ|

∑

−∞≤k≤∞

|φ̂k(ξ)|

. χ[1,2](ξ)

(
∑

−∞≤k≤− log2 K1

+
∑

− log2 K1≤k≤1

+
∑

1≤k≤∞

)
|φ̂k(ξ)|

. χ[1,2](ξ)

(
∑

−∞≤k≤− log2 K1

2(−3+ 2
r

+α)k|ξ|−α + finite sum +
∑

1≤k≤∞

2(−3+ 2
r

)k

)

. χ[1,2](ξ)

so that ‖Φ∞
0,−∞‖q

Lr′
. 1.

Next, since 2kK1 < K1 for k ≤ 0, we have

|Φ0
j,−∞(ξ)| . χ[2j ,2j+1](ξ) |ξ|

0∑

k=−∞

2(−3+ 2
r

+α)k|ξ|−α . χ[2j ,2j+1](ξ) |ξ|−α+1

for |ξ| > K1 and using this estimate we get
∑

j>1 ‖Φ0
j,−∞‖q

Lr′
<∞.

Finally, we have

|Φ∞
j,0(ξ)| . χ[2j ,2j+1](ξ) |ξ|

∞∑

k=0

2(−3+ 2
r

)k . χ[2j ,2j+1](ξ) |ξ|

and so we obtain
∑

j<1 ‖Φ∞
j,0‖qLr′

<∞ as before. �
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We now return to the proof of Lemma 5.1. Using the fact that the supports are
disjoint we have

∣∣∣∣
N∑

k=0

|ξ|φ̂k(ξ)
∣∣∣∣
r′

≤
∑

j

∣∣∣∣
N∑

k=0

χ[2j ,2j+1](ξ) |ξ|φ̂k(ξ)
∣∣∣∣
r′

≤ |ΦN
1,0(ξ)|r

′

+ |ΦN
2,0(ξ)|r

′

+ · · ·+ |ΦN
N,0(ξ)|r

′

+
∑

j>N

|ΦN
j,0(ξ)|r

′

+
∑

j<1

|ΦN
j,0(ξ)|r

′

= I1(ξ) + I2(ξ) + I3(ξ)

and consequently (note that ψℓ are also essentially disjoint)

‖ω0‖qḂ1
r,q

.M−2qN−1
∑

ℓ

(∫

R2

|ψℓ(ξ)|r
′

I1(ξ)dξ

)q/r′

+M−2qN−1
∑

ℓ

(∫

R2

|ψℓ(ξ)|r
′(
I2(ξ) + I3(ξ)

)
dξ

)q/r′

.

Note that I1 is a finite sum of bump parts while I2 and I3 correspond to the two
decaying tails. Using the Claim and the scaling identity together with the formula
for ΦK

k1,k2
we can estimate the first of the integrals on the right hand side of the

expression above by

N∑

ℓ=1

(∫

R2

|ψℓ(ξ)|r
′

I1(ξ)dξ

)q/r′

≤
N∑

ℓ=1

(∫
|ψℓ(ξ)|r

′

(
|Φ∞

1,−∞(ξ)|r′ + |Φ∞
2,−∞(ξ)|r′ + · · ·+ |Φ∞

N,−∞(ξ)|r′
)
dξ

)q/r′

.

N∑

ℓ=1

(∫
|Φ∞

ℓ,−∞(ξ)|r′dξ
)q/r′

. N

and similarly

∑

ℓ<1,N<ℓ

(∫

R2

|ψℓ(ξ)|r
′(
I2(ξ) + I3(ξ)

)
dξ

)q/r′

≤
∑

ℓ<1,N<ℓ

(∫
|ψℓ(ξ)|r

′

(∑

j>N

|ΦN
j,−∞(ξ)|r′ +

∑

j<1

|Φ∞
j,0(ξ)|r

′

)
dξ

)q/r′

.
∑

ℓ<1

(∫
|Φ∞

ℓ,0(ξ)|r
′

dξ

)q/r′

+
∑

N<ℓ

(∫
|ΦN

ℓ,−∞(ξ)|r′dξ
)q/r′

. C,

where C > 0 is independent of N . Combining the above estimates we get

‖ω0‖Ḃ1
r,q

.M−2

which together with the Lr bound of ω0 gives the desired bound. �
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In particular, since r > 2 it follows from Lemma 5.1 that the associated velocity
field u = ∇⊥∆−1ω ∈ W 2,r has a C1 smooth Lagrangian flow η(t) obtained by
solving the flow equations

(5.6)
dη

dt
(t, x) = u(t, η(t, x)), η(0, x) = x.

Furthermore, it is not difficult to verify that η(t) is hyperbolic with a stagnation
point at the origin and preserves both x1 and x2 axes as well as the odd symmetries
of ω0.

Proposition 5.2. Given M ≫ 1 and 1 < q <∞ we have

sup
0≤t≤M−3

‖Dη(t)‖∞ > M

for any sufficiently large integer N > 0 in (5.3) and any 2 < r < ∞ sufficiently

close to 2.

Proof. The proof is a repetition (with obvious adjustments) of that given in [25];
Prop. 6, for the special case q = r > 2 and will be omitted. �

We will also need the following simple consequence of Gronwall’s inequality (see
[5]; Lemma 4.1 for example)

Lemma 5.3. If u and ũ are smooth divergence free vector fields on R
2 and η(t)

and η̃(t) are the corresponding solutions of (5.6) then

sup
0≤t≤1

‖η(t)− η̃(t)‖C1 ≤ C sup
0≤t≤1

‖u(t)− ũ(t)‖C1

where C > 0 depends only on the L∞ norm of u and ũ and its derivatives. �

Proof of Theorem 1.3. LetMj ր ∞. Choose any N ≫ 1 and any sequences rj ց 2
and qj ց 1 such that the estimate of Proposition 5.2 holds for the flow ηj(t) of
uj = ∇⊥∆−1ωj where ωj solves the vorticity equation (5.1) with initial condition

ω0,j = ω
Mj ,N,rj,qj
0 given by (5.3). For each j ≥ 1 we will introduce a high-frequency

perturbation of ωn
0,j such that for any sufficiently large n we have

(5.7) ‖ωn
0,j‖B1

rj,qj
. 1 and ‖ωn

j (t
∗)‖B1

rj,qj
&M

1/3
j for some 0 < t∗ ≤M−3

j .

To this end observe that we may assume

(5.8) ‖ωj(t)‖B1
rj,qj

≤M
1/3
j for all 0 ≤ t ≤M−3

j

or else there is nothing to prove. Using Proposition 5.2 we can pick 0 ≤ t∗ ≤M−3
j

and a point x∗ = (x∗1, x
∗
2) for which the absolute value of one of the entries in

Dηj(t0, x
∗) is at least as large as Mj and by continuity (since rj > 2) deduce that

in a sufficiently small δ-neighbourhood of x∗ we have
∣∣∣∣∣
∂η2

j

∂x2
(t0, x)

∣∣∣∣∣ ≥Mj for all |x− x∗| < δ.(5.9)

To construct a sequence of perturbations of ω0,j in B1
rj ,qj pick a smooth function

χ̂ ∈ C∞
c (R2) with support in the unit ball such that 0 ≤ χ̂ ≤ 1 and

∫
R2 χ̂(ξ) dξ = 1

and set

(5.10) ρ̂(ξ) = χ̂(ξ − ξ0) + χ̂(ξ + ξ0), where ξ ∈ R
2 and ξ0 = (2, 0).
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Observe that sup ρ̂ ⊂ B(−ξ0, 1) ∪B(ξ0, 1) and

(5.11) ρ(0) =

∫

R2

ρ̂(ξ) dξ = 2.

For any k ∈ Z+ and λ > 0 define

(5.12) βk,λ
j (x) =

λ
−1+ 2

rj

√
k

∑

ε1,ε2=±1

ε1ε2ρ(λ(x − x∗ǫ )) sin kx1

where x∗ǫ = (ε1x
∗
1, ε2x

∗
2).

Lemma 5.4. Let 1 < qj < 2 < rj <∞, 2 ≤ p ≤ ∞ and σ > 0. For any sufficiently

large k ∈ Z
+ and λ > 0 we have

1. ‖βk,λ
j ‖W 1,rj . ‖βk,λ

j ‖B1
rj,qj

. k−
1
2λ−1

2. ‖∆ 1+σ
2 ∂l∆

−1βk,λ
j ‖Lp . k−

1
2λ

−1+ 2
rj

− 2
p (λσ + kσ)

3. ‖∂l∆−1βk,λ
j ‖Lp . k−

1
2 λ

−2+ 2
rj

− 2
p

where l = 1, 2.

Proof of Lemma 5.4. The proof of the first two inequalities is similar to that of
Lemma 5.1. To prove the second and third estimates it will be convenient to use
the Fourier transform

β̂k,λ
j (ξ) =

1

2i
k−

1
2λ

−3+ 2
rj

∑

ε1,ε2=±1

2∑

m=1

(−1)j+1ε1ε2ρ̂
(
λ−1ξkm

)
e−2πi〈x∗

ε ,ξ
k
m〉(5.13)

where ξkm =
(
ξ1 +

(−1)m

2π k, ξ2
)
. Applying the Hausdorff-Young inequality we obtain

∥∥∆ 1+σ
2 ∂l∆

−1βk,λ
j

∥∥
Lp . k−

1
2λ

−1+ 2
rj

2∑

m=1

(∫

R2

λ−2p′ |ξ|σp′ ∣∣ρ̂(λ−1ξkm)
∣∣p′

dξ

)1/p′

where 1/p+ 1/p′ = 1. Changing the variables we further estimate by

. k−
1
2λ

−1+ 2
rj

−2(1− 1

p′
)

2∑

m=1



∫

R2

((
ξ1 −

(−1)m

2π
k
)2

+ ξ2
2

)σp′

2 ∣∣ρ̂(λ−1ξ)
∣∣p′ dξ

λ2




1/p′

. k−
1
2λ

−1+ 2
rj

− 2
p

2∑

m=1



∫

R2

((
λξ1 −

(−1)m

2π
k
)2

+ (λξ2)
2

)σp′

2 ∣∣ρ̂(ξ)
∣∣p′

dξ




1/p′

. k−
1
2λ

−1+ 2
rj

− 2
p
(
λσ + kσ

)
.

Similarly, we also obtain
∥∥∂l∆−1βk,λ

j

∥∥
Lp . k−

1
2λ

−2+2( 1
rj

− 1
p

)

for any sufficiently large k and λ. �

Next, set βn
j = βk,λ

j where k = λ2, λ = 3n and n ≫ 1. Using (5.9) and (5.11)
we now have

Lemma 5.5. Let Mj, N , rj , qj, n and t∗ be as above. Then

1. ‖∂2β
n
j ∂1η

2
j (t

∗)‖Lrj . Cn−1
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2. ‖∂1β
n
j ∂2η

2
j (t

∗)‖Lrj &Mj

(
1 +O(n− 1

2 )
)
− Cn−1

where C depends on ‖ρ̂‖
L

r′
j
and sup0≤t≤1 ‖uj(t)‖C1 and 1/r′j + 1/rj = 1.

Proof. The proof is analogous to that in [25]; Lem. 11. �

For each j ≥ 1 define a perturbation sequence of initial vorticities

ωn
0,j(x) = ω0,j(x) + βn

j (x), n≫ 1.

By Lemma 5.1 and Lemma 5.4 (part 1) it is in B1
rj ,qj which shows the first of the

inequalities in (5.7).
Let ωn

j ∈ C([0, 1], B1
rj ,qj (R

2)) be the solution of the vorticity equations with

initial data ωn
0,j . Choosing 0 < σ < 1

2 in Lemma 5.4 (parts 2 and 3) we have

that ‖∇⊥∆−1(ωn
0,j − ω0,j)‖W 1+σ,p → 0 as n → ∞. Further, if p > 2/σ and 0 <

α < σ − 2/p then we have the embeddings W 1+σ,p(R2) ⊂ C1,σ− 2
p (R2) ⊂ c1,α(R2).

Therefore, using continuity of the solution map in the little Hölder spaces of The-
orem 1.2 we find4

(5.14)

sup
0≤t≤1

‖∇⊥∆−1(ωn
j (t)− ωj(t))‖C1 . sup

0≤t≤1
‖∇⊥∆−1(ωn

j (t)− ωj(t))‖1,α −→ 0

as n→ ∞ and from Lemma 5.3 we get

θn = sup
0≤t≤1

‖ηnj (t)− ηj(t)‖C1 −→ 0 as n→ ∞(5.15)

where ηnj (t) is the flow of the velocity field ∇⊥∆−1ωn
j .

Using (5.15), conservation of vorticity and the fact that the flows are volume-
preserving we have

‖ωn
j (t

∗)‖B1
rj,qj

& ‖∇ωn
0,j · ∇⊥ηn,2j (t∗)‖Lrj & ‖∇ωn

0,j · ∇⊥η2
j (t

∗)‖Lrj − θn‖∇ωn
0,j‖Lrj

& ‖∇βn
j · ∇⊥η2

j (t
∗)‖Lrj − ‖∇ω0,j · ∇⊥η2

j (t
∗)‖Lrj − θn‖∇ωn

0,j‖Lrj(5.16)

for any j ≥ 1. Finally, observe that by (5.8) and the embedding Ḃ1
rj,qj ⊂ Ḃ1

rj ,2 ⊂
Ẇ 1,rj , we have

‖∇ω0,j · ∇⊥η2
j (t

∗)‖Lrj . ‖ωj(t
∗)‖B1

rj,qj
.M

1/3
j

and by Lemma 5.5 for any sufficiently large n≫ 1 we also have

‖∇βn
j · ∇⊥η2

j (t
∗)‖Lrj & ‖∂1β

n
j ∂2η

2
j (t

∗)‖Lrj − ‖∂2β
n
j ∂1η

2
j (t

∗)‖Lrj &Mj.

This establishes the second of the inequalities in (5.7). The desired sequence of
velocities ũj can now be obtained by selecting for each j ≥ 1 a suitably large integer
nj and setting ũj = ∇⊥∆−1ω

nj

j . The proof of Theorem 1.3 is completed. �
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4Note that by construction βn
j ∈ S (R2) has noncompact support, cf. Remark 4.2.
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