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COMPOSITE MODULI
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Abstract. Recent work has introduced the study of graphical properties of
cyclic supercharacters, functions Z/nZ → C whose values are exponential sums

with close connections to Gauss sums and Gaussian periods. Plots of these

functions exhibit striking features, some of which have been previously ex-
plained when the modulus n is a power of an odd prime. After reviewing this

material, we initiate the graphical study of images of cyclic supercharacters in

the case of composite n.

1. Introduction

For a positive integer n and a unit ω mod n of order d, the associated cyclic
supercharacter mod n is the function σω : Z/nZ→ C given by

σω(y) =

d∑
j=1

e

(
ωjy

n

)
,

where e(θ) := exp(2πiθ) for all real θ. Gauss studied the values of cyclic superchar-
acters mod primes p > 2, called Gaussian periods, as they relate to the problem of
drawing regular polygons with compass and straight-edge. These values are mod-
ernly called Gaussian periods and have appeared in many contexts, including the
construction of difference sets and the optimized AKS algorithm of Lenstra and
Pomerance [1, 15]. A more detailed account of the history of Gaussian periods with
references can be found in [13], although our notation differs from theirs.

(a) n = 478125, ω = 3124 (b) n = 551905, ω = 20719 (c) n = 455175, ω = 107218

Figure 1. Realized as complex plots, the images of cyclic super-
characters σω mod n reveal themselves in surprising ways.
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2 B. LUTZ

Kummer introduced analogous sums, values of cyclic supercharacters σω mod n,
for composite n. These sums have been studied in their own right and linked to
certain difference sets [8, 9, 14]. While individual values can be difficult to analyze,
recent work has revealed striking and accessible patterns in these sums when viewed
together as the image im(σω) of a cyclic supercharacter for a fixed modulus n and
generator ω. Figure 1 offers a small gallery of such images as complex plots.

For n a power of an odd prime, much of this graphical behavior has been de-
scribed previously in terms of certain Laurent polynomials on high-dimensional tori
[7, 13]. We review this material briefly in Section 2. Comparatively little, however,
has been done to study the analogous properties of cyclic supercharacters mod
non-prime-power n. With this note, we aim to explain concisely and systematically
many of the patterns yet observed in the images of these supercharacters.

For convenience, we will frequently consider cyclic supercharacters σω as periodic
functions on Z with period n, and treat integers tacitly as residues whenever it does
not affect the statement. The functions σω are supercharacters in the sense of [6],
but we do not adopt this perspective here. Ramanujan sums, Heilbronn sums,
and generalized Kloosterman sums can also be viewed as values of supercharacters
[3, 4, 12]. For cyclic supercharacters, the motivated reader can find the details of
this approach in [7].

2. Prime-power moduli

In this section, we consider cyclic supercharacters mod pa for an odd prime p
and positive integer a. There is a description, due to [7], of the images of such
supercharacters in terms of the images of certain Laurent polynomials, which we
record below. Throughout, we write ϕ for the totient function, T for the unit circle
in C, and Φd(x) for the dth cyclotomic polynomial in x. Recall that Φd(x) is monic
and has all integer coefficients.

Theorem 2.1. Fix a positive integer d. If p ≡ 1 (mod d) is an odd prime and ω
is a unit of order d mod pa for some positive integer a, then imσω is contained in
the image of the function gd : Tϕ(d) → C given by

gd(z1, . . . , zϕ(d)) =

d∑
k=1

ϕ(d)∏
j=1

z
cj,k
j ,

where the exponents cj,k are integers determined by the relations

xk ≡
ϕ(d)∑
j=1

cj,kx
j−1 (mod Φd(x)).

Moreover, every open disk in the image of gd contains points in the images of σω
for sufficiently large pa subject to p ≡ 1 (mod d).

For k = 1, 2, . . . let Ak ⊂ C. If there exists a set B ⊂ C such that Ak ⊂ B
for all k and, for each nonempty open set U ⊂ B, a positive integer kU for which
k > kU implies that U ∩ AkU is nonempty, then we say that the sets Ak fill out B
as k → ∞. In these terms, we can rephrase the last statement of Theorem 2.1 by
saying that the images im(σω) fill out im gd as pa →∞ subject to p ≡ 1 (mod d).

The clearest behavior occurs when, in the notation of Theorem 2.1, d is a positive
power of an odd prime. Recall that a hypocycloid is a planar curve obtained by
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(a) Tusi couple (b) Deltoid (c) Astroid (d) 5-hypocycloid

Figure 2. A circle of radius 1 traces out hypocycloids as it rolls
within circles of radii 2, 3, 4, and 5.

tracing a fixed point on a circle as it rolls within a larger circle. This construction,
illustrated in Figure 2, produces a simple closed curve if the smaller radius divides
the larger; the number of cusps is the ratio of the larger radius to the smaller.
For all integers k ≥ 2, let Hk ⊂ C denote the compact, simply-connected set whose
boundary is the k-cusped hypocycloid centered at 0 with a cusp at k. Let Pk denote
the convex hull of Hk, whose boundary is the regular k-gon centered at 0 with a
vertex at k.

(a) (1132, 129) (b) (433, 3623) (c) (12892, 341010)

Figure 3. For the given pairs (n, ω), the images of the cyclic
supercharacters σω mod n are on their way to filling out H7.

If ` is an odd prime, then ϕ(`) = `− 1 and Φ`(x) = 1 + x+ x2 + · · ·+ x`−1, so

g`(z1, . . . , z`−1) = z1 + z2 + · · ·+ z`−1 +
1

z1z2 · · · z`−1
.

The image of g` is seen to be Tr(SU`(C)), which is precisely H` [5, Theorem 3.2.3].
More is true, but we require additional notation to write it succinctly. In Figure 3,
several terms of a sequence filling out H7 are illustrated.

For nonempty subsets A and B of C, make the definitions

A⊕B = {a+ b : (a, b) ∈ A×B}
A⊗B = {ab : (a, b) ∈ A×B}.

(1)

The sets in (1) are sometimes called the Minkowski sum and Minkowski product,
respectively, of A and B, and the operations ⊕ and ⊗ are called Minkowski addition
and Minkowski multiplication. The corresponding n-ary operations are defined by
induction; for convenience, we write A⊕ · · · ⊕A as A⊕k, where k is the number of
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summands. While Minkowski addition and multiplication are both commutative
and have identity elements, neither distributes over the other or has a well-defined
inverse operation. Minkowski addition has been studied extensively over Rn and is
well understood, at least compared to Minkowski multiplication, which is an active
subject of research in pure and applied settings [10, 11, 16].

(a) ` = b = 3 (b) ` = 5, b = 2 (c) ` = 7, b = 2

Figure 4. The outer boundaries in the figures form the bound-

aries of the Minkowski sums H⊕`
b−1

` .

For the moment, we are concerned with Minkowski addition. If `b is a positive
power of an odd prime `, then it can be shown that

im(g`b) = H⊕`
b−1

` . (2)

Several of these sets are illustrated in Figure 4. The reader might notice that
as `b increases, the figures begin to resemble regular polygons. Indeed, it follows
from a corollary to the Shapley–Folkman theorem in [17] that as k →∞, the scaled

Minkowski sums 1
kH
⊕k
` fill out P`. To close the section, we record the corresponding

implication for cyclic supercharacters. The proof is an application of the preceding
discussion to Theorem 2.1.

Proposition 2.2. Fix an odd prime `. For k = 1, 2, . . . let bk be a positive integer,
pk > ` an odd prime with `bk |ϕ(pakk ), and ωk a unit mod pakk of order `bk . As

k →∞, if bk →∞, then the scaled images `1−bk im(σωk
) fill out P`.

3. Composite moduli

We turn our attention now to cyclic supercharacters whose moduli are not a
power of a prime. Let a and b be integers. For a unit ω mod a, we denote by ord(ω)
the (multiplicative) order of ω. Unless indicated otherwise, (a, b) will denote the
GCD of a and b. If b|a, then unless necessary, we will not distinguish between ω
and its image under the reduction map Z/aZ→ Z/bZ. When we wish to emphasize
the change in modulus, we shall write the residue of ω mod b as ωb.

3.1. General behavior. We recall some elementary geometric notions. A set
A ⊂ C is said to have k-fold dihedral symmetry if it is invariant under the action
on C of the dihedral group of order 2k by complex conjugation and rotation by
2π/k about the origin. The intersection of all supersets of A having k-fold dihedral
symmetry is called the k-fold dihedral closure of A. Equivalently, this is the union
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of the orbits of all points in A. If A is closed under complex conjugation, then its
k-fold dihedral closure is

{e(j/k) : j = 1, . . . , k} ⊗A. (3)

Proposition 3.1(a) below is an extension of [7, Proposition 3.1]. Proposition 3.1(b)
is a useful observation in the vein of Section 2.

Proposition 3.1. Let σω be a cyclic supercharacter mod n, and write k = (ω−1, n).

(a) The k-fold dihedral closure of im(σωn/k
) is im(σω).

(b) If k = 1 and ord(ω) > 1, then im(σω) ⊂ Hord(ω).

Proof. Since k = (ω − 1, n), we have ord(ωn/k) = ord(ω). For j = 1, . . . , ord(ω),

write ωj = 1 + rjk and notice that

σω (y + n/k) =

ord(ω)∑
j=1

e

(
(1 + rjk)(y + n/k)

n

)
= e(1/k)σωn/k

(y),

since ord(ω) = ord(ωn/k). Combine this with the fact that σω(−y) = σω(y) to

obtain Proposition 3.1(a). For 3.1(b), notice that ω + ω2 + · · ·+ ωord(ω) = 0, so

σω(y) = e

(
−(ω + · · ·+ ωord(ω)−1)y

n

)
+

ord(ω)−1∑
j=1

e

(
ωjy

n

)
.

In particular, im(σω) ⊂ Tr(SUord(ω)(C)). Appealing to [5, Theorem 3.2.3] com-
pletes the proof. �

3.2. A new perspective. Many patterns recognizable in the plots of cyclic super-
characters can be explained by the following overlooked mechanism. The remainder
of the article is dedicated to consequences of Theorem 3.2.

Theorem 3.2. Suppose that σω is a cyclic supercharacter mod mn for positive
integers m and n. If ord(ωn) = uv where (v, ord(ωm)) = 1, then

σω(sm+ tn) =

u∑
j=1

σωu
m

(ωjt)σωu
n
(ωjs),

for all integers of the form sm+ tn.

Proof. Let d be the order of ω. We have

σω(sm+ tn) =

d∑
j=1

e

(
ωj(sm+ tn)

mn

)

=

uv∑
j=1

d/(uv)∑
k=1

e

(
ωj+uvks

n

)
e

(
ωj+uvkt

m

)

=

uv∑
j=1

e

(
ωjs

n

) d/(uv)∑
k=1

e

(
ωjωuvkt

m

)

=

uv∑
j=1

e

(
ωjs

n

)
σωuv

m
(ωjt).
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Since (v, ord(ωm)) = 1, we have ωuvm = ωum. Moreover, it is not difficult to show
that σωu

m
(ωjt) depends only on the residue of of j mod u. Hence

σω(sm+ tn) =

u∑
j=1

σωu
m

(ωjt)

v∑
k=1

e

(
ωj+kus

n

)
=

u∑
j=1

σωu
m

(ωjt)σωu
n
(ωjs). �

Corollary. If u = 1 in the above notation, so (ord(ωm), ord(ωn)) = 1, then

σω(sm+ tn) = σωm
(t)σωn

(s).

In particular, im(σω) = im(σωm
)⊗ im(σωn

).

Induction on the corollary yields [7, Theorem 2.1], although the statement there
lacks a necessary hypothesis. Applying this fact to the discussion in Section 2
gives the following result, which connects images of cyclic supercharacters with
Minkowski products of hypocycloids and regular polygons.

Proposition 3.3. Fix a positive integer k and distinct odd primes `1, . . . , `k. For

each j = 1, . . . , k, let Aj be either P`j or H
⊕bj
`j

for some positive integer bj. There

is a sequence of cyclic supercharacters whose images, when scaled appropriately, fill
out A1 ⊗ · · · ⊗Ak. Moreover, scaling is only necessary if Aj = P`j for some j.

In Figure 5 we plot individual terms of sequences described in Proposition 3.3,
where k = 2 and A1 = H3. While the boundary of the Minkowski product H`1⊗H`2

ought to have `1`2 cusps, each of the plots in Figures 5(b) and 5(c) exhibits only 3.
This is because the values of σωn

are concentrated toward the origin and hence far
from the non-real cusps of H`2 . In order for the image of σω to resemble H3⊗H`2 ,
larger values of n are necessary. In Figure 5(a), the expected 15 cusps are more
evident.

(a) (1033, 1031, 219191) (b) (1153, 1163, 120562) (c) (1399, 1409, 240237)

Figure 5. For the given triples (m,n, ω), the values of the cyclic
supercharacters σω mod mn belong to H3 ⊗H`2 where, from left
to right, r2 = 5, 7 and 11.

There is no obvious characterization of Ha ⊗ Hb, such as a parametrization of
its boundary, even in terms of parametrizations of the boundaries of Ha and Hb.
We can, however, give a concrete description of the boundary of the Minkowski
product of two polygons that does not appear to have been recorded previously.
We defer the proof, an application of [16, Theorem 2.4], to the Appendix.
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Proposition 3.4. For odd primes k < `, the boundary of Pk ⊗ P` is contained in
the k`-fold dihedral closure of the union of line segments connecting k`e( 1

k −
1
` ) to

k`e( 1
k + 1

` ) and k` cos(πk )/ cos(π` ).

3.3. Gauss sums. Henceforth, p will denote an odd prime number. Recall that a
character mod p is a group map χ : (Z/pZ)× → T. For each integer k, let χk be
the character x 7→ χ(x)k, and recall that the order of χ is the smallest positive k
for which χk is identically 1. For each p, the unique character mod p of order 2 is
the familiar Legendre symbol.

There are two types of exponential sum bearing the name Gauss sum mod p of
order k, which we distinguish by their notation. The first, defined for any positive
divisor k of ϕ(p), is the function gk : (Z/pZ)× → C given by

gk(t) =

p∑
j=1

e

(
tjk

p

)
.

This object differs from the functions gd appearing in Theorem 2.1; the conflict of
notation is an unfortunate coincidence. From now on, we will use gk to refer to
Gauss sums. For all t coprime to p, notice that

g1(t) =

p−1∑
j=0

e(t/p)j =
1− e(t/p)p

1− e(t/p)
= 0. (4)

The second type of Gauss sum mod p of order k, defined in terms of a character
χ mod p of order k, is also a function G(·, χ) : (Z/pZ)× → C, this time given by

G(t, χ) =

p−1∑
j=1

χ(j)e

(
tj

p

)
.

We write G(χ) = G(1, χ) and make tacit use of the following identities:

G(t, χ) = χ(t)G(χ) = χ(−1)G(t, χ).

The two types of Gauss sum are related by

gk(t) =

k−1∑
j=1

G(t, χj). (5)

In addition to proofs of the last few facts, the reader can find in [2] explicit
evaluations of gk for small k up to certain sign ambiguities, some of which persist
to this day. Gauss resolved the issue for g2 in terms of the Legendre symbol χ by
showing that

χ(t)g2(t) =

{√
p, if p ≡ 1 (mod 4)

i
√
p, if p ≡ 3 (mod 4).

(6)

The next two lemmas are of technical import only; the casual reader is invited to
skim their proofs, although they are used in what follows. We denote the real part
of a complex number z by <(z) and the imaginary part by =(z).

Lemma 3.5. If, in addition to the hypotheses of Theorem 3.2, m = p is an odd
prime, ωp is a primitive root mod p, and t a unit mod p, then

σω(sm+ tn) =
1

(u, ϕ(p))

u∑
j=1

(g(u,ϕ(p))(ω
jt)− 1)σωu

n
(ωjs). (7)
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Proof. To Theorem 3.2, apply the observation that

gk(r)− 1 = k

ϕ(p)/k∑
j=1

e

(
rωjk

p

)
= kσωk(r). �

Lemma 3.6. If k is a positive even integer and p ≡ 1 (mod 2k) is an odd prime,
then gk is real valued.

Proof. Let χ be a character mod p of order k. We have

gk(t) =

k−1∑
j=1

G(t, χj)

= G(t, χk/2) +

k/2−1∑
j=1

G(t, χj) +

k/2−1∑
j=1

G(t, χj)

= g2(t) +

k/2−1∑
j=1

G(t, χj) +

k/2−1∑
j=1

χj(−1)G(t, χj)

= g2(t) +

k/2−1∑
j=1

G(t, χj) +

k/2−1∑
j=1

(−1)jϕ(p)/uG(t, χj)

= g2(t) + 2

k/2−1∑
j=1

<(G(t, χj)),

where g2(t) is real by (6). �

3.4. Main results. For the rest of the article, it will suit us to treat C as an
R-algebra with basis (1, i), so that if z = α+ iβ for real α and β, then(

a b
c d

)
z =

(
a b
c d

)(
α
β

)
=

(
aα+ bβ
cα+ dβ

)
= (aα+ bβ) + i(cα+ dβ).

The following results are typical consequences of Lemma 3.5. By exploiting the
additional requirement that ωn be a root of −1, we are able to write σω in terms of
σωu

n
subject to certain R-linear transformations. When the corresponding matrix

representations have at most 2 nonzero entries, we obtain explanations of various
graphical features, including some depicted in [7] and [12], which is our goal. El-
lipses, rhombi, astroids, and other plane figures lurk in the images of the cyclic
supercharacters described by Theorem 3.7. We present several examples in the
next section.

Theorem 3.7. In the notation of Theorem 3.2, suppose that u is even, v odd,
and m = p an odd prime. Let r be a positive integer, and suppose further that

ω
uv/2
n = −1, ord(ωp) = 1

rϕ(p) and (t, p) = 1.

(a) If p ≡ 1 (mod 2ru), then

σω(sp+ tn) =
2

ru

u/2∑
j=1

(
gru/2(ωjt)− 1 0

0 gru(ωjt)− gru/2(ωjt)

)
σωu

n
(ωjs).
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(b) If 4|u and p ≡ 1 + ru
2 (mod ru), then

σω(sp+ tn) =
4

ru

u/2∑
j=1

(
<(gru/2(ωjt))− 1 0
=(gru/2(ωjt)) 0

)
σωu

n
(ωjs).

Proof. We show (a) in detail and describe an analogous proof of (b). In either

setting, since v is odd, the set of residues of the form ω
u/2
n ωujn for j = 1, . . . , v is

equal to the set of residues of the form ω
uv/2
n ωujn = −ωujn . Hence

σωu
n
(ωu/2s) =

v∑
j=1

e

(
ωu/2ωuj

n

)
=

v∑
j=1

e

(
−ωuj

n

)
= σωu

n
(s) (8)

for all s. Suppose now that p ≡ 1 (mod 2ru), as in (i). Lemma 3.5 says that

σω(sp+ tn) =
1

ru

uv∑
j=1

(gru(ωjt)− 1)σωu
n
(ωjs),

where, by (8) and Lemma 3.6, we have

(gru(ωjt)− 1)σωu
n
(ωjs) + (gru(ωj+u/2t)− 1)σωu

n
(ωj+u/2s)

=

(
gru(ωjt) + gru(ωj+u/2t)− 2 0

0 gru(ωjt)− gru(ωj+u/2t)

)
σωu

n
(ωjs), (9)

for j = 1, . . . , u2 . Let χ be the character mod p of order ru with χ(ω) = e( 1
u ), and

notice that

gru(ωu/2t) =

ru−1∑
j=1

G(ωu/2t, χj) =

ru−1∑
j=1

χj(ω−u/2)G(t, χj) =

ru−1∑
j=1

(−1)jG(t, χj).

It follows that

gru(t) + gru(ωu/2t) =

ru−1∑
j=1

G(t, χj) + (−1)jG(t, χj) = 2gru/2(t), (10)

which gives

gru(t)− gru(ωu/2t) = 2(gru(t)− gru/2(t)).

Combining this with (9) and (10) completes the proof of (a). The argument for
(b) is similar in spirit to the one just given, with the main differences being that
σωu

p
= gru/2 and gru/2(ωu/2t) = gru/2(t) for all t. �

Certain families of real-valued cyclic supercharacters, while less interesting from a
visual standpoint, can also be described by Theorem 3.2. The following proposition
describes two. We omit the proof, which resembles the previous one.

Proposition 3.8. Suppose, in addition to the hypotheses of Lemma 3.5, that v is

odd and ω
uv/2
n = −1.

(a) If u = 2 and p ≡ 3 (mod 4), then

σω(sp+ tn) =

(
−1 −χ(t)

√
p

0 0

)
σω2

n
(s).
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(b) Suppose that p ≡ 5 (mod 8), and let χ be the unique character mod p with
χ(ω) = i. If u = 4, then

σ(sp+ tn) =

(
1
2 (g2(t)− 1) <(G(t, χ))

0 0

)
σω4

n
(s)

+

(
1
2 (−g2(t)− 1) =(G(t, χ))

0 0

)
σω4

n
(ωs).

4. Examples

The images of cyclic supercharacters σω satisfying the hypotheses of Theorem
3.7 belong to Minkowski sums of im(σωn

) where each summand is subject to an
R-linear transformation. This observation informs our perspective in what follows.

For a positive integer a, a divisor b of a, and a unit ω mod a, the sets

{σω(y) : y ≡ j (mod b)}

for j = 0, 1, . . . , b − 1 are called the layers mod b of σω. The layer mod b corre-
sponding to j = 0 is called trivial. Different shades of points plotted in Figures 1,
6(b), 8(b), 10(b), 11(a) and 11(b) mark distinct layers of the corresponding cyclic
supercharacters. That is, in each figure, if y ≡ y′ (mod b) for some fixed divisor b
of the modulus, then σω(y) and σω(y′) have the same shade. Under the hypotheses
of Theorem 3.7, σω has r + 1 distinct layers mod p, the trivial one of which is the
subset of R consisting of all values σω(sp+ tn) for which p|t.

4.1. Stretching. In the following, we assume the hypotheses of Theorem 3.7(a),
where the R-linear transformations discussed above are scalings along the real and
imaginary axes, possibly by negative factors. When n is an odd prime distinct from
p and v is a power of an odd prime, the discussion in Section 2 tells us that the
corresponding images im(ωω) can be arranged in sequences filling out Minkowski
sums of stretched versions of Hr. Figure 6 illustrates this behavior.

(a) (5, 13291, 8142) (b) (17, 6493, 27213) (c) (5, 6247, 2317)

Figure 6. For the given triples (p, n, ω), the images of the cyclic
supercharacters σω mod pn are explained by Theorem 3.7(a). See
Section 4.1 for details.
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On the other hand, if v = 1 for any n, ellipses emerge. For the remainder of the
subsection, suppose that v = 1. We see that

σω(sp+ tn) =
2

ru

u/2∑
j=1

(
gru/2(ωjt)− 1 0

gru(ωjt)− gru/2(ωjt) 0

)
e
( s
n

)
.

Here, σω(sp+ tn) belongs to a Minkowski sum of ellipses in standard form:

u/2⊕
j=1

{
z ∈ C :

<(z)2

(gru/2(ωjt)− 1)2
+

=(z)2

(gru(ωjt)− gru/2(ωjt))2
= 1

}
.

Take, for example, the case u = 2 and r = 1. In this situation, the nontrivial
layer of σω mod p is contained in the ellipse with equation <(z)2 + =(z)2/p = 1.
This behavior, depicted by Figures 7(a) and 7(c), was first noted in [7, Proposition
5.2], but the framework here is more general. In particular, it is apparent now that
such examples are more common than previously thought. Figure 7(b) illustrates
the case u = r = 2 and, accordingly, features r = 2 distinct ellipses.

(a) (5, 137, 273) (b) (17, 269, 1613) (c) (37, 137, 684)

Figure 7. For the given triples (p, n, ω), discretized versions of
ellipses appear in the plots of cyclic supercharacters σω mod pn.
See Section 4.1 for details.

Suppose now that u = 4 and r = 1, and that χ is a character mod p of order 4.
It can be shown that each nontrivial layer of σω mod p is contained in the image
of the lcm(2, n)-th roots of unity under the map

z 7→
(

1
2 (
√
p− 1) 0
0 <(G(χ))

)
z +

(
1
2 (
√
p+ 1) 0
0 =(G(χ))

)
zω,

which can be rewritten to reflect the fact that |G(χ)| = √p. The image in question
is most easily visualized as the path of a point winding ω times around an ellipse
whose center travels once around another ellipse. Figures 8(a) and 8(c) depict this
behavior, while Figure 8(b), which appeared in [7] unexplained, illustrates the case
u = 4 and r = 2.

Returning to the case u = 2, suppose now that r is maximal, i.e., r = ϕ(p)
4 . Each

of the r nontrivial layers of σω is the image of the set of lcm(2, n)-th roots of unity
under R-linear map with matrix(

cos(2πt/n) + cos(2πωt/n) 0
0 cos(2πt/n)− cos(2πωt/n)

)
,
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(a) (41, 541, 52) (b) (17, 5365, 2337) (c) (17, 3581, 364)

Figure 8. For the given triples (p, n, ω), the ovate figures con-
tained in the plots of the cyclic supercharacters σω mod pn are the
effect of one ellipse “winding around” another. See Section 4.1 for
details.

for some t coprime to p. This image, in turn, belongs to an ellipse whose semimajor
and semiminor axes sum to at most 4. The envelope of the family of all such ellipses
is the boundary of H4. Accordingly, for large p, plots of these cyclic supercharacters
tend to resemble H4. Figure 9 presents several examples.

(a) (59, 53, 235) (b) (19, 3617, 1234) (c) (107, 109, 1711)

Figure 9. For the given triples (p, n, ω), the plots of the cyclic
supercharacters σω mod pn contain discretized ellipses within H4.

4.2. Rhombi. For this section, we assume the hypotheses of Theorem 3.7(b), and

additionally that u = 4 and v = 1. A routine computation gives g2r(ωt) = g2r(t)
for all t, so

σω(sp+ tn) =
1

r

(
<(g2r(t))− 1 0
=(g2r(t)) 0

)
e
( s
n

)
+

1

r

(
<(g2r(t))− 1 0
−=(g2r(t)) 0

)
e
(ωs
n

)
.

We claim that scaling the real and imaginary parts of σω(sp + tn) by factors de-
pendent only on t and rotating counterclockwise by π

2 about the origin yields a
point with real and imaginary parts each in the interval [−1, 1]. Indeed, consider
the R-linear map on C with matrix

T =

(√
2
2 −

√
2
2√

2
2

√
2
2

)(√
2
r (<(g2r(t))− 1) 0

0
√
2
r =(g2r(t))

)−1
,
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and notice that

Tσω(sp+ tn) =

(
1 0
0 0

)
e
( s
n

)
+

(
0 0
1 0

)
e
(ωs
n

)
.

It follows that each nontrivial layer of σω mod p is contained in the convex hull
of a rhombus in C with vertices at ± 2

r (<(g2r(t))− 1) and ±i 2r=(g2r(t)) for some t
coprime to p. Plots of these cyclic supercharacters appear in both [7] and [12]. In
case r = 1, as in Figures 10(a) and 10(c), the vertices of the sole rhombus are at
±2 and ±2i

√
p. Figure 10(b) illustrates the case r = 5.

(a) (7, 1229, 3055) (b) (31, 11849, 24527) (c) (31, 1429, 809)

Figure 10. For the given triples (p, n, ω), the nontrivial layers of
the cyclic supercharacters σω mod pn are contained in rhombi. See
Section 4.2 for details.

5. The present unknown

While Theorem 3.7 provides concrete explanations of certain graphical behaviors,
many remain elusive. It seems likely, however, that more could be handled in similar
fashion to the ones above, armed with Theorem 3.2 and the language of Minkowski
addition and multiplication. To close, we present Figure 11, which provides a small
gallery of plots yet unexplained. In Figure 11(a), the nontrivial layers appear to
be contained in Minkowski sums of 3 line segments. The nontrivial layers in Figure
11(b) suggest Minkowski sums of ellipses, as in Section 4.1. Patterns resembling
the one in Figure 11(c), where n = 524287 and ω = 2, seem to occur whenever n
has the form 2j − 1 and ω = 2. We leave the reader with these observations.

Appendix

We dedicate this section to proving Proposition 3.4. For A ⊂ C, define the
backward cone of A to be the set C(A) given by

C(A) = {λz ∈ C : λ ∈ [0, 1] and z ∈ A}.

If A is compact, we define its outer boundary ∂(A) by

∂(A) = {z ∈ A : A ∩ {λz : λ > 1} = ∅}.

Notice that if A is compact, then ∂(A) = ∂(C(A)), and that if B is also compact,
then ∂(A ⊗ B) ⊂ ∂(∂(A) ⊗ ∂(B)), with equality if A and B are star shaped with
center 0.
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(a) n = 398157, ω = 1070 (b) n = 546975, ω = 593 (c) n = 524287, ω = 2

Figure 11. The plots of these cyclic supercharacters σω mod n
have yet to be explained.

Proof of Proposition 3.4. Let Ek (resp., E`) be the edge of the polygon ∂(Pk) (resp.,
∂(P`)) perpendicular to the real axis. By the preceding discussion, we see that

∂(Pk ⊗ P`) = ∂(Pk)⊗ ∂(P`)

= ∂({e( jk` ) : j = 1, . . . , k`} ⊗ (Ek ⊗ E`))

⊂ {e( jk` ) : j = 1, . . . , k`} ⊗ ∂(Ek ⊗ E`)

= {e( jk` ) : j = 1, . . . , k`} ⊗ ∂(C(Ek ⊗ E`)). (11)

Let ak = −k cos πk (resp., a` = −` cos π` ), so that a−1k Ek (resp., a−1` E`) is the
line segment connecting 1 ± i tan π

k (resp., 1 ± i tan π
` ). By [16, Theorem 2.4(c)],

C(a−1k Ek ⊗ a−1` E`) is the set illustrated in Figure 12, where

z1 = 1 + tan2 π
`

z2 = 1 + tan π
k tan π

` + i(tan π
k − tan π

` )

z3 = 1− tan π
k tan π

` + i(tan π
k + tan π

` ).

Since C(Ek ⊗ E`) = aka`C(a−1k Ek ⊗ a−1` E`), the result follows from combining
standard trigonometric identities with (11) and (3). �

0 z1

z3

z3

z2

z2

Figure 12. The set C(a−1k Ek ⊗ a−1` E`) defined in the proof of
Proposition 3.4.



GRAPHICAL CYCLIC SUPERCHARACTERS FOR COMPOSITE MODULI 15

References

1. Leonard D. Baumert, Cyclic difference sets, Springer, 1971.
2. Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams, Gauss and jacobi sums, Cana-

dian Mathematical Society series of monographs and advanced texts, Wiley, 1998.

3. J.L. Brumbaugh, Madeleine Bulkow, Patrick S. Fleming, Luis Alberto Garcia German,
Stephan Ramon Garcia, Gizem Karaali, Matt Michal, Andrew P. Turner, and Hong Suh,

Supercharacters, exponential sums, and the uncertainty principle, J. Number Theory 144

(2014), 151–175.
4. Paula Burkhardt, Alice Zhuo-Yu Chan, Gabriel Currier, Stephan Ramon Garcia, Florian

Luca, and Hong Suh, Visual properties of generalized Kloosterman sums, J. Number Theory
160 (2016), 237–253.

5. Barrie Cooper, Almost Koszul duality and rational conformal field theory, Ph.D. thesis, Uni-

versity of Bath, July 2007.
6. Persi Diaconis and I.M. Isaacs, Supercharacters and superclasses for algebra groups, Trans.

Amer. Math. Soc. 360 (2008), no. 5, 2359–2392.

7. William Duke, Stephan Ramon Garcia, and Bob Lutz, The graphic nature of Gaussian periods,
Proc. Amer. Math. Soc. 143 (2015), no. 5.

8. Ronald J. Evans, Generalized cyclotomic periods, Proc. Amer. Math. Soc. 81 (1981), no. 2,

207–212 (English).
9. , Period polynomials for generalized cyclotomic periods, Manuscripta Math. 40 (1982),

no. 2-3, 217–243.
10. Rida T. Farouki, Hwan Pyo Moon, and Bahram Ravani, Algorithms for Minkowski products

and implicitly-defined complex sets, Adv. Comput. Math. 13 (2000), no. 3, 199–229.

11. , Minkowski geometric algebra of complex sets, Geom. Dedicata 85 (2001), no. 1,
283–315.

12. Stephan Ramon Garcia, Mark Huber, and Bob Lutz, A supercharacter approach to Heilbronn

sums, arXiv preprint arXiv:1312.1034 (2015).
13. Trevor Hyde, Stephan Ramon Garcia, and Bob Lutz, Gauss’s hidden menagerie: from cyclo-

tomy to supercharacters, Notices Amer. Math. Soc. 62 (2015), no. 8, 878–888.

14. D.H. Lehmer and Emma Lehmer, Cyclotomy for non-squarefree moduli, Analytic Number
Theory (Marvin I. Knopp, ed.), Lecture Notes in Math., vol. 899, Springer, 1981, pp. 276–

300.

15. H.W. Lenstra, Primality testing with Gaussian periods, FST TCS 2002: Foundations of Soft-
ware Technology and Theoretical Computer Science (Manindra Agrawal and Anil Seth, eds.),

Lecture Notes in Computer Science, vol. 2556, Springer Berlin Heidelberg, 2002, pp. 1–1

(English).
16. Chi-Kwong Li, Diane Christine Pelejo, Yiu-Tung Poon, and Kuo-Zhong Wang, Minkowski

product of convex sets and product numerical range, Oper. Matrices, to appear.
17. Ross M. Starr, Quasi-equilibria in markets with non-convex preferences, Econometrica 37

(1969), no. 1, 25–38.

Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church

Street, Ann Arbor, MI 48109, USA
E-mail address: boblutz@umich.edu

URL: http://www-personal.umich.edu/~boblutz

http://www-personal.umich.edu/~boblutz

	1. Introduction
	2. Prime-power moduli
	3. Composite moduli
	3.1. General behavior
	3.2. A new perspective
	3.3. Gauss sums
	3.4. Main results

	4. Examples
	4.1. Stretching
	4.2. Rhombi

	5. The present unknown
	Appendix
	References

