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PERIODIC GROUPS FROM MINIMAL ACTIONS OF THE

INFINITE DIHEDRAL GROUP

VOLODYMYR NEKRASHEVYCH

Abstract. We give an explicit construction transforming an arbitrary min-
imal non-free action of the infinite dihedral group on the Cantor set into an
orbit-equivalent action of a finitely generated amenable periodic group. In
particular, we construct first examples of simple infinite finitely generated
amenable periodic groups.

1. Introduction

Groups of Burnside type (infinite finitely generated periodic groups) are im-
portant examples for the theory of amenable groups. They are never obviously
non-amenable, since they do not contain free subgroups. They are also never ele-
mentary amenable, see [3, Theorem 2.3]. Note that the fact that the class of groups
without free subgroups and the class of elementary amenable groups are distinct
is proved in [3] precisely using the existence of infinite finitely generated periodic
groups.

Periodic groups were the first examples to show that neither class (groups with-
out free subgroups and elementary amenable groups) does not coincide with the
class of amenable groups. They were the first examples of non-amenable groups
without free subgroups (free Burnside groups and Tarski monsters, see [17, 1]), and
the first example of a non-elementary amenable group (the Grigorchuk group [6, 7]).

New examples of non-elementary amenable groups were discovered recently as
groups naturally associated with dynamical systems. It was shown by K. Juschenko
and N. Monod [9] that the topological full group of a minimal homeomorphism of
the Cantor set is amenable. Here the topological full group of a (cyclic in this case)
group G acting on a Cantor set X is the group of all homeomorphisms h : X −→ X
such that for every ζ ∈ X there exists a neighborhood U of ζ and an element
g ∈ G such that g|U = h|U . An action of a group is said to be minimal if all
its orbits are dense. It was proved earlier by H. Matui [10] that if τ is a minimal
homeomorphism of the Cantor set, then the topological full group of the cyclic
group generated by τ has simple derived subgroup, and if the homeomorphism is
expansive, then the derived subgroup is finitely generated. This provides, by the
results of K. Juschenko and N. Monod, the first examples of infinite simple finitely
generated amenable groups.

The aim of this paper is to show that minimal dynamical systems can be also
used to construct simple amenable periodic groups. In particular, we construct the
first examples of simple amenable groups of Burnside type (previous examples of
simple periodic groups—Olshanskii-Tarski monsters—are non-amenable).

We show that any minimal non-free action of the infinite dihedral group on a
Cantor set can be modified to produce a periodic group.
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Namely, let a and b be homeomorphisms of a Cantor set X such that a2 = b2 = 1,
the group generated by a and b acts minimally on X , and b has a fixed point ξ.
Choose a partition P = {P1, P2, . . . , Pn} of X \ {ξ} into a finite number of disjoint
b-invariant open subsets such that the closure of each set Pi contains ξ. Consider
now the homeomorphisms bi of X acting as b on Pi and identically on X \ Pi.
The homeomorphisms bi generate a group K isomorphic to (Z/2Z)n. Consider a
subgroup H < K not containing b, but such that for every i there exists gi ∈ H
acting as b on Pi.

Theorem 1.1. The group GP,H generated by H ∪ {a} is periodic. Moreover, the

topological full group of GP,H is periodic and amenable.

We prove amenability of the full group by embedding it into a topological full
group of a minimal homeomorphism of a Cantor set.

It is shown in [16] that if the action of a groupG on a Cantor set is expansive, then
the topological full group contains an infinite simple finitely generated subgroup.

Our procedure of building a periodic group from a dihedral group is very close
to the original construction of the Grigorchuk’s group. In fact, the Grigorchuk
group is defined in the original paper [5] in a way that is very similar to the above
description of GP,H , and is particular case of it. The original proof of periodicity
of the Grigorchuk group, however, used self-similarity of the action on the Cantor
set in a very essential way. Our proof of periodicity is very “soft”: it uses only the
large-scale structure of the orbits of the dihedral group and elementary properties
of minimal group actions. This makes it possible to generalize periodicity of the
Grigorchuk group to a very wide class of groups of dynamical origin. Orbital graphs
of the Grigorchuk groups were studied in great detail by Y. Vorobets in [19]; a large
part of our construction is based on his results.

2. Preliminaries on group actions

2.1. Graphs of actions. All graphs in this section are oriented, loops and multiple
edges are allowed. Their edges (and sometimes vertices) are labeled. Distances
between vertices in such graphs are measured ignoring the orientation. Similarly,
connectedness and connected components also are defined ignoring the orientation.
Isomorphisms must preserve orientation and labeling. A graph is called rooted if
one vertex, called the root, is marked. Every morphism of rooted graphs must map
the root to the root.

We denote a ball of radius r with center in a vertex v of a graph Γ by Bv(r).
It is considered to be a rooted graph (with root v). Its set of edges is the set of
all edges of Γ connecting the vertices of Bv(r). The orientation and labeling are
inherited from Γ.

Let G be a group generated by a finite set S and acting by homeomorphisms on
a compact metric space X . For ζ ∈ X , the orbital graph Γζ is the graph with the
set of vertices equal to the orbit Gζ of ζ, in which for every η ∈ Gζ and s ∈ S there
is an arrow from η to s(η) labeled by s.

The graph Γζ is naturally isomorphic to the Schreier graph of the group G
modulo the stabilizer Gζ of ζ. The Schreier graph of G modulo a subgroup H is,
by definition, the graph with the set of vertices equal to the set of cosets gH , g ∈ G,
in which for every coset gH and every generator s ∈ S there is an arrow from gH
to sgH labeled by s.
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Denote by G(ζ) the subgroup of G consisting of all elements g ∈ G such that

ζ is an interior point of the set of fixed points of g. The graph of germs Γ̃ζ is
the Schreier graph of G modulo G(ζ). Note that G(ζ) is a normal subgroup of Gζ ,

hence the map hG(ζ) 7→ hGζ induces a Galois covering of graphs Γ̃ζ −→ Γζ with
the group of deck transformations Gζ/G(ζ).

The vertices of Γ̃ζ are identified with germs of elements of G at ζ. Here a germ is
an equivalence class of a pair (g, ζ), where two pairs (g1, ζ) and (g2, ζ) are equivalent
if there exists a neighborhood U of ζ such that g1|U = g2|U .

Definition 2.1. A point ζ ∈ X is said to be G-regular, if G(ζ) = Gζ , i.e., if every
element g ∈ G fixing ζ fixes pointwise a neighborhood of ζ.

Note that for every g ∈ G the set of points ζ ∈ X such that g(ζ) = ζ but g /∈ G(ζ)

is equal to the boundary of the set of fixed points of g. It follows that this set is
closed and nowhere dense. Consequently, if G is countable (in particular, if G is
finitely generated), the set of G-regular points is co-meager (residual).

Note also that gGζg
−1 = Gg(ζ) and gG(ζ)g

−1 = G(g(ζ)) for all ζ ∈ X and g ∈ G,
which implies that the set of G-regular points is G-invariant.

Let (Γ1, v1), (Γ2, v2) be connected labeled graphs with marked vertices (roots).
Define the distance d((Γ1, v1), (Γ2, v2)) between them as 2−(R+1), where R is the
maximal integer such that the balls Bv1(R) ⊂ Γ1 and Bv2(R) ⊂ Γ2 of radius R
with centers in v1 and v2 are isomorphic as rooted graphs. Define the metric to be
equal to 1 if such R does not exist. This metric defines a natural topology on the
space G of all isomorphism classes of connected oriented rooted labeled graphs. If
we fix a finite set of labels, then the space of all such graphs is a compact space.

Definition 2.2. The action of G on X is said to be minimal if all G-orbits are
dense in X .

Proposition 2.1. Suppose that the action of G on X is minimal. Let ζ ∈ X be a

G-regular point. Then for every ball Bξ(r) of Γζ there exists a number R > 0 such

that for every η ∈ X there exists a vertex η′ of Γη such that d(η, η′) ≤ R and the

rooted balls Bξ(r) and Bη′(r) are isomorphic.

Proof. The ball Bξ(r) can be described by a finite system of equations and inequal-
ities of the form g1(ξ) = g2(ξ) or g1(ξ) 6= g2(ξ), for pairs of elements g1, g2 ∈ G
of length at most r. Since the set of G-regular points is G-invariant, the point ξ
is G-regular, hence each such equality or inequality is valid for all points of some
neighborhood of ξ. It follows that there exists a neighborhood N of ξ such that
for every η′ ∈ N the balls Bξ(r) and Bη′(r) of the corresponding orbital graphs are
isomorphic as rooted graphs.

For every point η ∈ X there exists an element g ∈ G such that g(η) ∈ N . The set
of sets of the form g−1(N) cover X , and by compactness there exists a finite sub-
cover g−1

1 (N), g−1
2 (N), . . . , g−1

n (N). Let R be the maximal length of the elements
gi with respect to the generating set S. Then for every η ∈ X there exists gi such
that gi(η) ∈ N , and hence the balls Bξ(r) and Bη′(r) are isomorphic for η′ = gi(η).
Distance from η to η′ is not more than R. �

Suppose that X is a Cantor set. Fix a partition V = {Vi}i=1,...,s of X into a
disjoint union of a finite number of clopen sets. We can label in the graphs Γζ and

Γ̃ζ the vertices according to the partition V : a vertex g(ζ) or (g, ζ) is labeled by
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Vi if g(ζ) ∈ Vi. It is easy to see that Proposition 2.1 remains to be true for such
vertex labeled graphs, since labels of vertices are locally constant on X .

2.2. Topological full groups. Let G be a group acting on a Cantor set X . The
topological full group F(G,X ) of the action is the group of all homeomorphisms
h : X −→ X such that for every ζ ∈ X there exists a neighborhood U of ζ and an
element g ∈ G such that h|U = g|U . Topological full groups were introduced in [4].
See the papers [10, 12, 13, 11] for various properties of topological full groups of
group actions and étale groupoids.

Let U ⊂ X be a clopen set, and let g1, g2, . . . , gn ∈ G be such that the sets
U1 = g1(U), U2 = g2(U), . . . , Un = gn(U) are pairwise disjoint. Then for every
permutation α ∈ Sn we get the corresponding element hα of the topological full
group acting by the rule:

hα(ζ) =

{
gjg

−1
i (ζ) if ζ ∈ Ui and α(i) = j;

ζ if ζ /∈
⋃n

i=1 Ui.

The map α −→ hα is a monomorphism from Sn to F(G). Denote by S(G,X ) the
subgroup of F(G,X ) generated by images of such monomorphisms for all possible
choices of U and gi. Similarly, denote by A(G,X ) the subgroup generated by images
of the alternating subgroups An < Sn for all such monomorphisms.

The following is proved in [16].

Theorem 2.2. If the action of G on X is minimal, then A(G,X ) is simple. If

the action of G on X is expansive and has infinite orbits, then A(G,X ) is finitely

generated.

Here an action of G on X is said to be expansive if there exists δ > 0 such
that d(g(ζ1), g(ζ2)) < δ for all g ∈ G implies ζ1 = ζ2 (where d is a metric on X
compatible with the topology). An action on a Cantor set (G,X ) is expansive if and
only if there exists a G-equivariant homeomorphism from X to a closed G-invariant
subset of AG for some finite alphabet A.

3. Perturbations of dihedral groups

3.1. Construction. Let a, b be involutive homeomorphisms of a Cantor set X such
that the dihedral group 〈a, b〉 acts minimally on X , and b has a fixed point ξ ∈ X .

If a set of generators S of a group G consists of elements of order two, then we
will consider the orbital graphs and graphs of germs as non-oriented, so that an
edge connecting two vertices v1 and v2 labeled by s ∈ S replaces two arrows labeled
by s: one from v1 to v2 and one from v2 to v1 (if the edge is not a loop).

Lemma 3.1. The orbital graphs of 〈a, b〉 are either one-ended or two-ended infinite

chains. The graphs of germs are two-ended infinite chains. The orbital graphs of

regular points are two-ended infinite chains.

Proof. Since the action is minimal, its orbits are infinite. The Schreier graphs of
the infinite dihedral group D∞ are either infinite chains (one-ended or two-ended),
or finite chains, or finite cycles. The latter two cases are impossible, since then we
have a finite orbit.

Suppose that a graph of germs is a one-ended infinite chain. Then the endpoint
of the chain is a fixed point of one of the generators. Since this is a graph of
germs, it follows that the generator fixes this point together with every point of a
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neighborhood. But then, by minimality, there are other points of the orbit where
the germ of the generator is trivial, which is a contradiction.

Orbital graphs of generic points coincide with their graphs of germs, therefore
they are two-ended chains. �

Lemma 3.2. For every n ≥ 1 there exists a partition of X \ {ξ} into a disjoint

union of open b-invariant subsets P1, P2, . . . , Pn such that each set Pi accumulates

on ξ.

Proof. Let Uk, k ≥ 0, be a descending sequence of clopen neighborhoods of ξ such
that U0 = X and

⋂

k≥0 Uk = {ξ}. For example, one can take Un to be equal to the

ball of radius 1/n for some ultrametric compatible with the topology on X .
Then Vk = Uk ∩ b(Uk) is a descending sequence of clopen b-invariant neighbor-

hoods of ξ such that
⋂

k≥1 Vk = {ξ}. Remove all repetitions, so that Vk 6= Vk+1 for
every k.

Choose an arbitrary partition of the set of non-negative integers into n disjoint
infinite subsets I1, I2, . . . , In, and define Pi =

⋃

k∈Ii
Vk \ Vk+1. �

Choose a partition P of X \ {ξ} into n open sets satisfying the conditions of
Lemma 3.2. Choose a subgroup H < (Z/2Z)n not containing (1, 1, . . . , 1) and such
that for every i = 1, 2, . . . , n the projection πi : H −→ Z/2Z onto the ith coordinate
of the direct product (Z/2Z)n is surjective.

For h ∈ H denote by bh the homeomorphism:

bh(ζ) =







ξ if ζ = ξ;
b(ζ) if ξ ∈ Pi and πi(h) = 1;
ζ if ξ ∈ Pi and πi(h) = 0.

Note that since (1, 1, . . . , 1) is not in H , for every h ∈ H there exists Pi such that
bh is identical on Pi.

Let G = GP,H be the group generated by the set {a}∪{bh : h ∈ H}. Note that
the map h 7→ bh is an isomorphism of the group {bh}h∈H < G with H . It follows
that every element of G can be written in the form aǫ1bh1

abh2
a · · · bhn

aǫ2 , where
hi ∈ H and ǫi ∈ {0, 1}.

Example 3.1. Consider the space {0, 1}∞ of right-infinite sequences x1x2 . . . over
the binary alphabet {0, 1}. Define the transformations a and b by the rules:

a(0x2x3 . . .) = 1x2x3 . . . , a(1x2x3 . . .) = 0x2x3 . . .

and

b(0x2x3 . . .) = 0a(x2x3 . . .), b(1x2x3 . . .) = 1b(x2x3 . . .).

It is easy to show that a and b are of order 2 and that the cyclic group generated
by ab has dense orbits. In fact, ab is conjugate to the binary odometer. The home-
omorphism b has a unique fixed point ξ = 111 . . .. See Figure 1 for a description of
the action of a and b.

The sets Wn = 11 . . .1
︸ ︷︷ ︸

n times

0{0, 1}∞, for n ≥ 0, of sequences starting with exactly n

ones form a partition of {0, 1}∞ \ {ξ} into clopen b-invariant subsets.
Consider the partition P0 =

⋃∞
k=0 W3k, P1 =

⋃∞
k=0 W3k+1, P2 =

⋃∞
k=0 W3k+2

of {0, 1}∞ \ {ξ}, and the subgroup H = {h1 = (1, 1, 0), h2 = (1, 0, 1), h3 =
(0, 1, 1), (0, 0, 0)}. The corresponding group GP,H is the first Grigorchuk group,
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Figure 1. The dihedral group

Figure 2. The orbital graphs of the Grigorchuk group and the
dihedral group

introduced in [5]. Its generators a, bh1
, bh2

, bh3
are usually denoted a, b, c, d. Choos-

ing different partitions P0, P1, P2 equal to unions of the sets Wk, we get all groups
from the family of Grigorchuk groups Gw studied in [7].

For every ζ ∈ X and h ∈ H we have bh(ζ) = b(ζ) or bh(ζ) = ζ. For every
ζ ∈ X there exists h ∈ H such that bh(ζ) = b(ζ), since every projection map
πi : H −→ Z/2Z is onto. It follows that the orbital graphs of G are just decorated
versions of the orbital graphs ofD∞ = 〈a, b〉. The orbital graphs ofD∞ are obtained
from the orbital graphs of G by removing loops labeled by bh at points that are
not fixed points of b and replacing each multiple edge labeled by some elements
bh, h ∈ H , by one edge labeled by b. See Figure 2 where an orbital graph of the
Grigorchuk group and the corresponding orbital graph of the dihedral group are
shown (where bhi

are denoted bi).
Let Γξ be the orbital graph of the special point ξ in G, and let Γ′

ξ be obtained
from Γξ by removing all loops labeled by bh at the root ξ.

Consider the graph Ξ with the set of vertices H × Γ′
ξ in which two vertices

(h1, v1) and (h2, v2) are connected by an edge labeled by s ∈ {a} ∪ {bh}h∈H either
if h1 = h2 and v1 and v2 are vertices of Γ′

ξ connected by an edge labeled by s, or

if v1 = v2 = ξ and s = bh1+h2
. In other words, we take |H | copies of Γ′

ξ, and then

connect their roots ξ by a full graph (the Cayley graph of H < G). See Figure 3,
where the graph Ξ for the Grigorchuk group is shown. The group H acts on Ξ in
the natural way: h1(h2, v) = (h1 + h2, v).

Proposition 3.3. The graph of germs Γ̃ξ is isomorphic to Ξ. The action of the

group of deck transformations Gξ/G(ξ)
∼= H of the covering Γ̃ξ −→ Γξ coincides

with the natural action of H on Ξ.

Proof. If ζ 6= ξ, then the germ (bh, ζ) is equal either to (id, ζ), or to (b, ζ). It
follows that every germ (g, ξ) is equal to a germs of the form (g′bh, ξ), where g′ ∈
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Figure 3. The graph of germs Ξ

Figure 4. A covering λi

{a, ba, aba, baba, . . .}. Identify the germ (g′bh, ξ) with the vertex (h, v) ∈ Ξ, where
v = g′(ξ) = g(ξ). It is easy to check that this identification is an isomorphism
of graphs. The statement about the action by deck transformations also follows
directly from the description of the germs (g, ξ). �

For each i = 1, . . . , n, denote by Λi the quotient of Γ̃ξ by the action of kerπi. It
is the graph obtained by taking two copies {0}×Γ′

ξ and {1}×Γ′
ξ of Γξ; connecting

the roots (0, ξ) and (1, ξ) by edges labeled by bh for h ∈ H such that πi(H) = 1;
and adding loops at both vertices (0, ξ), (1, ξ) labeled by bh for h ∈ H such that

πi(h) = 0. Denote by λi : Γ̃ξ −→ Λi the natural covering map. In terms of Ξ, it
is given by the rule λi(h, v) = (πi(h), v). See Figure 4 where a coverings λi for the
Grigorchuk group is shown.
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Proposition 3.4. If ζn ∈ Pi, n ≥ 1, is a sequence of regular points converging to

ξ, then the rooted orbital graphs Γζn converge to Λi in the space G of rooted labeled

graphs.

For the definition of the space of rooted graphs, see Subsection 2.1.

Proof. For a given positive integer r consider the ball Bξ(r) of radius r in the graph

of germs Γ̃ξ. It is given by a set of equalities and inequalities of germs of the form
(g1, ξ) = (g2, ξ) or (g1, ξ) 6= (g2, ξ) for elements g1, g2 ∈ G of length at most r.
If (g1, ξ) = (g2, ξ), then g1(ζ) = g2(ζ) for all ζ belonging to a neighborhood of ξ.
If g1(ξ) 6= g2(ξ), then we also have g1(ζ) 6= g2(ζ) for all ζ in a neighborhood of
ξ. Suppose that (g1, ξ) 6= (g2, ξ) but g1(ξ) = g2(ξ). Then (g1, ξ) = (gbh1

, ξ) and
(g2, ξ) = (gbh2

, ξ) for some g ∈ 〈a, b〉 and h1, h2 ∈ H . If πi(h1 + h2) = 0, then
bh1

|Pi
= bh2

|Pi
, hence g1(ζ) = g2(ζ) for all ζ ∈ N ∩ Pi for some neighborhood N

of ξ. If πi(h1 + h2) = 1, then g1(ζ) 6= g2(ζ) for all regular points ζ ∈ N ∩ Pi for
some neighborhood N of ξ, since bh1+h2

|Pi
= b|Pi

and the set of fixed points of b is
nowhere dense.

We see that for all regular points ζ ∈ N ∩ Pi, where N is a sufficiently small
neighborhood of ξ, the ball Bζ(m) of the orbital graph Γζ is equal to the quotient

of the ball Bξ(m) ⊂ Γ̃ξ by the action of the kernel of the projection πi. �

3.2. Periodicity.

Theorem 3.5. The group F(GP,H ,X ) is periodic.

Proof. Let g ∈ F(GP,H ,X ). In the rest of the proof, when we talk about orbital
graphs and graphs of germs of G = GP,H we add a labeling of vertices according to
a partition of X into pieces on which g acts as same element of G. Propositions 3.3
and 3.4 obviously remain to be valid for such vertex labeled graphs.

Let m be the maximal length of elements of G describing local action of g. Then
for every ζ ∈ X the image g(ζ) belongs to the ball Bζ(m) in the orbital graph Γζ ,
and is uniquely determined by the labels of the edges of Bζ(m).

Below under segment of an orbital graph of a regular point we mean a finite
connected subgraph of the orbital graph with all labelings of vertices and edges.

Lemma 3.6. For every segment Σ of an orbital graph of a regular point, a sub-

segment ∆ ⊂ Σ of edge-length m, and a vertex v of ∆ there exists an embedding

ϕ of Σ into an orbital graph of a regular point and an integer k ≥ 1 such that

gk(ϕ(v)) ∈ ϕ(∆).

Proof. Suppose that it is not true for some Σ, ∆, and v ∈ ∆, i.e., that for every
orbital graph Γ and an embedding ϕ : Σ −→ Γ the sequence gk(ϕ(v)), k ≥ 1, does
not come back to ϕ(∆). Since for every vertex u the distance from u to g(u) is
not more than m, the sequence gk(ϕ(v)), k ≥ 1, always stays in one of the two
connected components of Γ \ϕ(∆). It follows that gk(ϕ(v)) converges to one of the
two ends of the graph Γ.

By Proposition 2.1, there exists an embedding of Σ into the ray Γ′
ξ. It follows

that each Λi contains two symmetric copies ϕ+, ϕ− : Σ −→ Λi of Σ, see Figure 5.
If gk(ϕ+(v)), k ≥ 1, converges to one end of Λi, then gk(ϕ−(v)), k ≥ 1, converges
to the other end, by the symmetry of Λi. Let Σ′ be a segment of Λi containing
both copies of Σ.
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Figure 5. Embedding Σ into Λi

Figure 6. Coming back

There exists an embedding Σ′ −→ Γ′
ξ. Consider the corresponding copy ϕ′ :

Σ′ −→ (~0,Γ′
ξ) of Σ

′ in the ray (~0,Γ′
ξ) of the graph of germs Γ̃ξ.

Consider the image λi ◦ ϕ′(Σ′) of ϕ′(Σ′) in any Λi. It belongs to the ray (0,Γξ)
of Λi. Then for some ∗ ∈ {+,−} the sequence gk(λi ◦ ϕ′ ◦ ϕ∗(v)) will converge to
the other end (1,Γ′

ξ) of Λi.

It follows that the sequence gk(ϕ′ ◦ϕ∗(v)) will converge in Γ̃ξ to an end different

from (~0,Γ′
ξ). Denote w = ϕ′ ◦ ϕ∗(v). Suppose that gk(w) converges to the end

(h,Γ′
ξ). Since (1, 1, . . . , 1) /∈ H , there exists a projection λj : Γ̃ξ −→ Λj such that

λj((h,Γ
′
ξ)) = λj(~0,Γ

′
ξ). Then the sequence λj(g

k(w)) will move from one connected

component of Λj \λj ◦ϕ1◦ϕ∗(∆) to another, which is a contradiction. See Figure 6,

where projections of Γ̃ξ onto Λi and Λj are shown. �

Let ∆ be as in the Lemma 3.6, and let v0, v1, . . . , vm be the list of its vertices.
According to the lemma, there exists a copy of ∆ in an orbital graph Γ of a regular
point such that gk0(v0) ∈ ∆ for some k0 ≥ 1. Let Σ0 be a sufficiently big segment
of Γ containing ∆ such that the sequence gk(v0) for k = 0, 1, . . . , k0 is inside Σ0

and is defined in Σ0. Then gk0(v0) ∈ ∆ in every copy of Σ0 in every orbital graph.
Apply now Lemma 3.6 for Σ = Σ0 and for the vertex v1 of ∆. We will find an

orbital graph with a copy of Σ0 in which both sequences gk(v0) and gk(v1) return
back to ∆. Therefore there exists a segment Σ1 containing ∆ such that gk(v0) and
gk(v1) return to ∆ in every orbital graph containing Σ1. Continuing in this way
we will find a segment Σm such that every vertex of ∆ returns inside Σm back to
∆ under some positive power of g. It follows that orbit of every vertex of ∆ ⊂ Σm

is finite and contained in Σm.
Let Γ be an orbital graph of any regular point. By Proposition 2.1, there exists

R > 0 such that for every vertex u of Γ there exists a copy of Σm on both sides of
u on distances at most R. Let M be the number of vertices of Σm. Then for every
vertex u of Γ either the sequence gk(u) includes a point of one of the neighboring
copies of ∆, or always stays between them. In the first case the length of the orbit
is not more than M , in the second case it is less than 2R+2M . It follows that the
lengths of all g-orbits of vertices of Γ are uniformly bounded, hence there exists n
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such that gn acts trivially on the vertices of Γ. But the set of vertices of Γ is dense
in X , so gn = 1. �

3.3. Amenability and simple groups.

Proposition 3.7. Every finitely generated subgroup of F(GP,H ,X ) can be embedded

into the topological full group of a minimal action of Z on a Cantor set.

Proof. Let G1 ≤ F(GP,H ,X ) be a subgroup generated by a finite set S. Let U be a
finite partition of X into disjoint clopen subsets such that for every element s ∈ S
and every U ∈ U the restriction s|U is equal to g|U for some g ∈ GP,H .

Let Γζ be the orbital graph (with respect to the original generating set of GP,H)
of a regular point ζ ∈ X with vertices labeled by the elements of U to which they
belong. It is a bi-infinite chain. Identify the vertices of the chain with integers,
so that adjacent vertices of the chain are identified with integers n,m such that
|n−m| = 1. Let n ∈ Z, and let v be the corresponding vertex of Γζ . Let v−1 and
v1 be the vertices corresponding to n−1 and n+1, respectively. Let an be the tuple
(x−1, x0, x1, E1, E−1, L−1, L0, L1), where x−1, x0, x1 are the labels of the vertices
v−1, v, v1, respectively, E1, E−1 are the sets of labels of the edges connecting v1 to
v and v−1 to v, respectively, and L−1, L0, L1 are the sets of labels of the loops at
v−1, v0, v1, respectively.

Then wζ = (an)n∈Z is a sequence over a finite alphabet, and it uniquely deter-
mines, up to an isomorphism, the graph Γζ . Note that the action of every generator
of G1 on the orbit of ζ is uniquely determined by the isomorphism class of Γζ , and
hence by the sequence wζ .

Let W be the set of all sequences w = . . . y−1y0y1 . . . such that every finite
subword of w is a subword of wζ . The set W is obviously a closed and shift-
invariant set. Note that since the point ζ is regular, for every finite subword u
of wζ there exists R > 0 such that for every i ∈ Z there exists j ∈ Z such that
|i − j| ≤ R and xjxj+1 . . . xj+|u|−1 = u, see Proposition 2.1. This in turn implies
that the action of the shift on W is minimal.

Since the action of every element s ∈ S on a vertex η of Γζ is uniquely determined
by the isomorphism class of a ball of uniformly bounded radius with center in η, the
action of s induces a homeomorphism of W equal to an element of the topological
full group of the shift, hence G1 is isomorphic to a subgroup of the full group of a
minimal Z-subshift. �

Theorem 3.8. The group F(GP,H ,X ) is amenable.

Proof. By a theorem of K. Juschenko and N. Monod [9], the topological full group
of a minimal homeomorphism group of a Cantor set is amenable. Proposition 3.7
implies then that every finitely generated subgroup of F(GP,H ,X ) is amenable,
hence F(GP,H ,X ) is amenable. �

Theorem 3.9. Suppose that the action of 〈a, b〉 on X is expansive. Then the action

of GP,H on X is also expansive, and the group A(GP,H ,X ) is simple and finitely

generated.

Proof. Let δ > 0 be such that d(g(ζ), g(η)) < δ for all g ∈ 〈a, b〉 implies ζ = η.
Consider an arbitrary pair 1 ≤ i, j ≤ n of indices, and the corresponding homo-

morphism πi ⊕ πj : H −→ Z/2Z ⊕ Z/2Z. The image of this homomorphism can
not be zero, and can not be equal to any of the direct summands of Z/2Z⊕ Z/2Z,
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since the homomorphisms πi, πj are surjective. It follows that the element 1 ⊕ 1
belongs to the image, i.e., that there exists h ∈ H such that πi(h) = πj(h) = 1.

It follows that for every two points ζ, η ∈ X there exists h ∈ H such that
bh(ζ) = b(ζ) and bh(η) = b(η). Consequently, for every g ∈ 〈a, b〉 there exists
g′ ∈ GP,H such that g′(ζ) = g(ζ) and g′(η) = g(η).

Suppose that d(g(ζ), g(η)) < δ for all g ∈ GP,H . Then, by the above, we have
d(g(ζ), g(η)) < δ for all g ∈ 〈a, b〉, which implies, by expansivity of (〈a, b〉,X ), that
ζ = η. Thus, (GP,H ,X ) is also expansive. Properties of A(GP,H ,X ) follow now
from Theorem 2.2. �

4. Examples

4.1. Irrational rotation. Consider the circle R/Z and the rotation x 7→ x + θ
(mod 1), where θ ∈ R \ Q. By the classical Kroneker’s theorem, the action of Z
generated by the rotation is minimal.

Consider now the interval [0, 1] ⊂ R with the natural order on it. Denote by
frac(x) the fractional part of x ∈ R, i.e., the point of [0, 1) equal to x modulo Z.

Let us replace in the interval [0, 1] each point α = frac(nθ), for n ∈ Z \ 0,
by two copies α+0 and α−0. Let X be the obtained set with the natural order
(where α−0 < α+0). Consider X with the order topology, i.e., topology given by
the basis of open sets of the form (α, β) = {x ∈ X : α < x < β}. Note that
since the set {frac(nθ) : n ∈ Z} is dense in [0, 1], the set of intervals of the form
[α+0, β−0] = (α−0, β+0) for α, β ∈ θZ (mod 1) is a basis of the topology. These
intervals are clopen, hence X is totally disconnected. It is also easy to see that X
has no isolated points, and is compact, hence it is homeomorphic to the Cantor set.
We also denote 0−0 = 1, 0+0 = 0 (according to the natural cyclic order on R/Z),
and α−0 = α+0 = α if α does not belong to the set frac(nθ) : n ∈ Z}.

Let Q : X −→ R/Z be the natural quotient map identifying α+0 with α−0 for
every α = frac(nθ), n ∈ Z.

The rotation x 7→ x + θ on R/Z is naturally lifted by Q to a homeomorphism
ρ : X −→ X by the rule ρ(α+0) = frac(α+ θ)+0 and ρ(α−0) = frac(α − θ)−0. The
homeomorphism ρ is also minimal.

Note that unlike the rotation of the circle, the homeomorphism ρ : X −→ X is
expansive, since for any pair of points x, y ∈ X there exists n such that ρn(x) and
ρn(y) belong to different pieces of the partition X = [0, θ−0] ⊔ [θ+0, 1].

Consider the following transformations of X :

a(α+0) = frac(θ − α)−0, a(α−0) = frac(θ − α)+0

and

b(α+0) = frac(−α)−0, b(α−0) = frac(−α)+0.

In other words, a and b are reflections of the circle R/Z with respect to the diameters
{θ/2, (θ+ 1)/2} and {0, 1/2}, naturally lifted to X .

Note that ab = ρ, hence the action of the dihedral group 〈a, b〉 on X is minimal
and expansive. Note that the homeomorphism b has a unique fixed point 1/2 ∈ X
(the point 0 is doubled in X , and its copies 0, 1 ∈ X are switched by b). Using
Lemma 3.2, we can find a partition P of X \{1/2} into an arbitrary number of open
b-invariant sets accumulating on 1/2. Then the corresponding groups A(GP,H ,X )
are finitely generated, simple, amenable, and periodic.
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4.2. Constructing D∞-shifts from Z-shifts. Let us show how expansivity (resp.
minimality) conditions for D∞- and Z-actions are related.

Proposition 4.1. Suppose that involutive homeomorphisms a and b generate an

expansive action of D∞ on a Cantor set X . Then there exists a finite alphabet A,
a permutation ι : A −→ A such that ι2 = 1, and a Z-subshift S ⊂ AZ such that

there exists a homeomorphism X −→ S conjugating the action of the generators a
and b with the homeomeomorphisms of S given by the formulas:

a(w)(n) = ι(w(−n)), b(w)(n) = ι(w(1 − n))

for every w ∈ S and n ∈ Z.

Proof. There exists a partition U = {U1, U2, . . . , Un} of D∞ into clopen sets such
that every point ζ ∈ X is uniquely determined by its itinerary, which is defined as
the map Iζ : D∞ −→ U given by the condition g(ζ) ∈ Iζ(g). We may assume that
U is a-invariant, i.e., that for every U ∈ U the set a(U) belongs to U . Otherwise,
we can replace U by the partition induced by U and a(U): two points ζ1, ζ2 belong
to one piece of the induced partition if and only if they belong to one piece of U
and to one piece of a(U).

Then for every ζ ∈ X and g ∈ D∞ we have Iζ(g) = a(Iζ(ag)), so that Iζ , and
hence ζ, are uniquely determined by the sequence Iζ((ab)

n), n ∈ Z. Let us denote
Jζ(n) = Iζ((ab)

n).
The set of sequences of the form Jζ(n) is obviously a closed shift-invariant subset

of the full shift UZ.
Let us describe the action of a and b on the sequences Jζ(n). We have Ja(ζ)(n) =

Iζ((ab)
na) = Iζ(a(ba)

n) = a(Iζ((ba)
n)) = a(Jζ(−n)) and Jb(ζ)(n) = Iζ((ab)

nb) =

Iζ(a(ba)
n−1) = a(Iζ((ba)

n−1) = a(Jζ(1 − n)). We can set the permutation ι of U
equal to the action of a. �

Proposition 4.2. Let a and b be involutive homeomorphisms of a Cantor set X .

If the action of 〈ab〉 on X is minimal, then the action of 〈a, b〉 is minimal too.

If the action of 〈a, b〉 is minimal, then either the action of 〈ab〉 is minimal, or X
can be split into a disjoint union of two clopen 〈ab〉-invariant sets S1, S2 such that

the action of 〈ab〉 on each of these sets is minimal, and a(S1) = b(S1) = S2 and

a(S2) = b(S2) = S1.

In particular, if a or b have a fixed point, then D∞-minimality is equivalent to
Z-minimality.

Proof. The first statement is obvious. Suppose that the 〈a, b〉-action is minimal.
If A ⊂ S is a closed non-empty 〈ab〉-invariant set, then a(A) is also a closed 〈ab〉-
invariant set (since (ab)a(A) = a(ba)A = a(ab)−1(A) = a(A)). It follows that
a(A)∩A and a(A)∪A are closed and 〈a, b〉-invariant. Consequently, a(A)∪A = S,
and either a(A) ∩ A = S, or a(A) ∩ A = ∅. It follows that either the 〈ab〉-action is
minimal, or S is split into two disjoint clopen ab-invariant subsets S1, S2 such that
a(S1) = b(S1) = S2 and a(S2) = b(S2) = S1, and each 〈ab〉-orbit is dense either in
S1 or in S2. �

4.3. Groups from the Thue-Morse sequence. As an example of application of
Proposition 4.1, consider the Thue-Morse shift. Let τ be the substitution (i.e., an
endomorphism of the free monodi {0, 1}∗) given by:

τ : 0 7→ 01, 1 7→ 10.
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The words τn(0) converge to an infinite sequence 0110100110010110 . . .. Let S be
the set of all bi-infinite sequences w = . . . x−1x0x1 . . . such that every subword of
w is a subword of limn→∞ τn(0). It is known that S is a minimal subshift (see [2,
Example 10.9.3]).

Note that the words τ2(0) and τ2(1) are symmetric (are palindromes):

τ2(0) = 0110, τ2(1) = 1001.

It follows by induction that τ2n(0) and τ2n(1) are palindromes for all n ≥ 1. Con-
sequently, the shift S is invariant under the transformation . . . x−2x−1x0x1x2 . . . 7→
. . . x2x1x0x−1x−2 . . ..

Let a and b be the homeomorphisms of S defined by

a(w)(n) = w(−n), b(w)(n) = w(1 − n).

In other words, a “flips” a sequence around the letter number zero, b “flips” a
sequence around the space between the letters number zero and one. Then 〈a, b〉
is an infinite dihedral group acting minimally and expansively on S. Note that
τ2(n−1)(0) is the middle part of τ2n(0), so that the limit of the sequence of the
words

τ2n(0) = x−22n−1+1 . . . x−1x0 . x1x2 . . . x22n−1

is a bi-infinite word ξ = . . . 01101001 . 10010110 . . . such that b(ξ) = ξ.
Let Vn be the set of words ζ = . . . y−2y−1y0 . y1y2y3 . . . ∈ S such that

y−22n−1+1 . . . y−1y0 . y1y2 . . . y22n−1 = τ2n(0).

Then (Vn)n≥1 is a strictly descending sequence of b-invariant clopen neighborhood
of ξ, which can be used, as in Lemma 3.2, to construct groups GP,H . The corre-
sponding groups A(GP,H ,S) will be simple and finitely generated.

4.4. Iterated monodromy groups of Chebyshev polynomials. In some sense
the opposite condition to expansiveness is residual finiteness of the action. We say
that an action of a group G on a Cantor set X is residually finite if the G-orbit
of every clopen subsets of X is finite. An action is residually finite if and only if
there exists a homeomorphism Φ : X −→ ∂T of X with the boundary of a locally
finite rooted tree T and an action of G on T by automorphisms such that Φ is
G-equivariant (with respect to the action of G on ∂T induced by the action on T ),
see [8, Proposition 6.4].

Suppose that a dihedral group 〈a, b〉 acts by automorphisms on a rooted tree
T , so that the action is transitive on every level Ln of T (here Ln is the set of all
vertices of T on distance n from the root). The latter condition is equivalent to
minimality of the action on ∂T . Suppose that b has a fixed point ξ ∈ ∂T . The point
ξ is represented by an infinite path (v0, v1, . . .), where v0 is the root, and vk ∈ Lk.
Let Vk = ∂Tvk be the subset of ∂T consisting of all simple rooted paths passing
through vk. It is a clopen b-invariant set. The sets Vk can be used as in the proof
of Lemma 3.2 to construct a partition P and a group GP,H , which will also act on
the rooted tree T .

Examples of residually finite actions of dihedral groups appear naturally as the
iterated monodromy groups of the Chebyshev polynomials Td(x) = cos(d arccosx),
which are described below.

If g is an automorphism of the rooted tree of finite words over the alphabet
{1, 2, . . . , d}, then we write its action on the boundary {1, 2, . . . , d}∞ of the tree
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Figure 7. Iterated monodromy groups of Chebyshev polynomials

using recursive formulas of the form g = σ(g1, g2, . . . , gd), where σ is a permutation
of the alphabet, and gi are automorphisms of the tree, such that

g(x1x2 . . .) = σ(x1)gx1
(x2x3 . . .)

for all x1x2 . . . ∈ {1, 2, . . . , d}∞. We denote by id the identity transformation.
Then the iterated monodromy group of Td for even d is generated by

a = σ1(id, id, . . . , id), b = σ2(b, id, id, . . . , id, a),

where σ1 and σ2 are the permutations (1, 2)(3, 4) · · · (d−1, d) and (2, 3)(4, 5) · · · (d−
2, d− 1), respectively.

The iterated monodromy group of Td for odd d is generated by

a = σ1(id, id, . . . , id, a), b = σ2(b, id, id, . . . , id),

where σ1 = (1, 2)(3, 4) · · · (d−2, d−1) and σ2 = (2, 3)(4, 5) · · · (d−1, d). See Figure 7
for a schematic description of the action of a and b, and see [14, Proposition 6.12.6]
for details.

We see that in both cases the point ξ = 111 . . . is a fixed point of b. Denote
by Wk, for k ≥ 0, the set of sequences x1x2 . . . ∈ {1, 2, . . . , d}∞ such that xi = 1
for all i ≤ k, and xk+1 6= 1. Then Wk are disjoint clopen b-invariant sets, and
⋃

k≥0 Wk = {1, 2, . . . , d}∞ \ {ξ}. Consider a partition I1 ⊔ I2 ⊔ · · · ⊔ In of the set of

non-negative integers into n disjoint infinite sets, and define Pi =
⋃

k∈Ii
Wk. Then

the partition P = {P1, P2, . . . , Pn} can be used to construct periodic groups of the
form GP,H .

If the partition P is invariant under the shift x1x2 . . . 7→ x2x3 . . ., and H is
invariant under the permutation induced by the shift on P , then the group GP,H is
the iterated monodromy group of an orbispace uniformization of the action of the
Chebyshev polynomial on its Julia set (which is the interval [−1, 1]). In particular,
the group GP,H will be generated by a finite automaton. See more details in [15].
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The corresponding groups for the case d = 2 were considered before by Z. Šunić,
see [18].
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