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We present a particular low-energy limit of the Hamiltonian of free test particle motion in arbitrary
relativistic space-times. As it turns out, this limit gives insight into the general Newtonian limit by
providing an intermediate, “pseudo-Newtonian” step, which encompasses some pseudo-Newtonian
formulas already present in the literature. If the metric is expressed so as to be diagonal in the
coordinate-time components, we are able to derive a description exactly reproducing the spatial
shapes of geodesics. In fully general space-times where dragging (“time non-diagonal”) terms appear
in the metric, the limit at least yields a previously unknown Hamiltonian reproducing exact shapes of
null geodesics. Furthermore, if the space-time is stationary, the exact shapes of null geodesics can be
also correctly parametrized by coordinate-time; the limit thus provides an alternative Hamiltonian
for computations in gravitational lensing.

Relevant astrophysical superpositions of gravitating sources, the addition of electromagnetic fields,
and fluid dynamics in the pseudo-Newtonian limit are discussed. Additionally, the method is demon-
strated in the case of the Kerr space-time and massive-particle circular orbits, and analogies with
respect to the recent pseudo-Kerr Lagrangian by Ghosh et al. [1] is commented upon.

I. INTRODUCTION

Pseudo-Newtonian potentials are a common tool in as-
trophysics used to avoid unnecessarily complicated rel-
ativistic formulas while at the same time salvaging at
least some of the features of a strong-field gravitational
situation in a Newtonian framework (see introduction
of Tejeda and Rosswog [2] or Artemova et al. [3] for a
review). Typically, the pseudo-Newtonian description
is used for astrophysical simulations in which most of
the dynamics happens in regions where a Newtonian de-
scription is fully appropriate but where the dynamics
marginally pass into a strongly relativistic mode near a
compact object such as a Schwarzschild black hole. Split-
ting the description into a 3D Newtonian and 4D rela-
tivistic part while preserving accuracy is often difficult to
conceive, so the researcher has to choose between using a
fully Newtonian or a fully relativistic code. Thus, if there
is a modified “pseudo-Newtonian” dynamics mimicking
relativity which seamlessly coincides with Newtonian dy-
namics in an appropriate limit, then it can be very useful
for the purposes of such astrophysical models.

Even though pseudo-Newtonian potentials have been
proposed for over 35 years [3–6], until recently the po-
tentials were not able to accurately reproduce proper-
ties of general orbits or to accurately describe the field
of a rapidly spinning black hole. However, Tejeda and
Rosswog [2, 7] proposed a class of generalized (velocity-
dependent) pseudo-Newtonian potentials accurately de-
scribing the motion of quite general test-particles in the
Schwarzschild and generally any spherically symmetric
space-time (the same result on spherically symmetric
space-times was almost simultaneously given by Sarkar
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et al. [8]). By a similar but slightly more complicated
argument, Ghosh et al. [1] gave a generalized pseudo-
Newtonian potential for test-particles in the equatorial
plane of a slowly spinning Kerr black hole.

Many questions arise in connection with the recent
results: Are the potentials also applicable for null-
geodesics, i.e. gravitational lensing? Is there a deeper
pattern in the way the potentials are formulated? How
do the potentials superpose with additional gravitating
matter and forces such as electromagnetism? Is it cor-
rect to use these relativistic-like potentials along with
non-modified Newtonian fluid dynamics? Can we extend
the pseudo-Newtonian description to higher spins of the
black hole and off-equatorial particles? This paper par-
tially clarifies these questions.

In Section II the notion of reparametrization of phase-
space trajectories is introduced to be applied in Sections
III and IV to relativistic geodesics in general and so-
called “time-diagonal” space-times respectively. The is-
sues such as superposition of gravitating sources, charged
particle motion, and fluid dynamics are discussed in Sec-
tion V; the effectivity of the framework in the Kerr space-
time is then investigated in Section VI.

II. REPARAMETRIZATION OF PHASE-SPACE
TRAJECTORIES

It is a well known fact often utilized in the theory of
classical and celestial mechanics that it is possible to
reparametrize a trajectory by a given coordinate using
its conjugate momentum as a new Hamiltonian [9]. I.e.,
if we have a variable q with a conjugate pq in the phase
space of an autonomous dynamical system with a (time-
parameter independent) Hamiltonian H and a coordinate
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λ with a conjugate momentum pλ, it holds that

dq

dλ
=
q̇

λ̇
=

∂H
∂pq
∂H
∂pλ

|H=const. =
∂(−pλ)

∂pq
|H=const., (1)

where the first equality holds only under the assumption
of λ̇ 6= 0 and the last equality follows from the implicit
function theorem.

Even though the resulting trajectory q(λ) might be
moving at a different pace with respect to the parameter
λ, it will draw the same shape in the full phase space of
coordinates and canonically conjugate momenta (q, pq).
Thus, for a given initial condition specified in terms of the
phase-space variables, the shape of the original trajectory
is reproduced exactly.

Nevertheless, we will use this reparametrization tech-
nique to obtain pseudo-Newtonian Hamiltonians and La-
grangians in a new pseudo-time with an interpretation of
dq/dλ as true physical velocities. Hence, the velocities
will be rescaled by dλ/dτ in comparison with the original
proper velocities dq/dτ . The motion in terms of coordi-
nates q and canonical momenta pq will be the same, but
the conversion from pq to the “new velocities” dq/dλ will
be often very different.

Once giving the initial condition in terms of coordi-
nates and velocities, the trajectories will be different ac-
cordingly because before the reparametrization the ini-
tial velocity is plugged into initial dq/dτ whereas in the
second case the initial velocity is inserted as the initial
dq/dλ. I.e., each trajectory generated by these models
will correspond to some exact trajectory in the original
space-time, but with a rescaled velocity.

On the other hand, integrals of motion are always func-
tions of the phase space which means that if we have a
complete set of first integrals of motion, then by giving
their values we obtain the exact relativistic orbit even un-
der reparametrization. For instance, in many space-times
there is a family of circular orbits uniquely characterized
by their position (coordinate shape) and a set of angular
momenta. As follows from the previous discussion, such
a family of circular orbits will be exactly preserved under
reparametrization in the sense of the same position and
canonical angular momenta.

III. GEODESICS IN GENERAL SPACE-TIMES

In the following, we mostly use the G = c = 1 units
and −+++ sign convention of the metric gµν . In certain
instants we will switch to SI units and indicate so. The
Lagrangian of a free test particle in any purely metric
theory (such as general relativity) reads

L =
1

2
gµν ẋ

µẋν , ẋµ ≡ uµ ≡ dxµ

ds
, (2)

where s is the proper time τ for massive particles and
affine parameter λ for massless particles. Under a Leg-

endre transform we obtain the Hamiltonian

H =
1

2
gµνuµuν , (3)

where uµ is canonically conjugate with respect to xµ.
It will prove useful that both the Hamiltonian and La-
grangian are an integral of motion with a fixed value for
all particles of a given kind; H = L = −κ/2 where κ = 1
corresponds to massive particles and κ = 0 to massless
particles.

Say we now have a convenient time coordinate t cor-
responding to the 0-component of the metric and spatial
coordinates labelled by i, j = 1, 2, 3 (the presented results
are in fact applicable in any dimension). In the following,
it will be important that t is a “good” time coordinate
in the sense of e.g. being the time of some class of ob-
servers at asymptotically flat infinity. Then we can invert
the Hamiltonian to obtain

H̃ = −u0 ≡ E = ωiui −
√

(ωiui)2 − (gijuiuj + κ)/g00,

(4)
where we have chosen the root which corresponds to par-
ticles travelling forward in time under the assumption
g00 < 0, and where ωi ≡ g0i/g00 is the gravitomagnetic
part of the metric. The expression (4) could be used as
a “Newtonian” Hamiltonian as it will exactly reproduce
the shapes of trajectories in the 3-dimensional coordinate
space parametrized by the coordinate time t as long as

∂H

∂u0
= g0µuµ ≡ u0 6= 0. (5)

Nonetheless, there is nothing Newtonian about the mo-
tion, which is fully relativistic.

To obtain an expression for the respective generalized
velocity-dependent potential one has to pass back to La-
grangian formalism via a Legendre transform. Neverthe-
less, it should be kept in mind that

ui 6=
dxi

dt
, (6)

and that Legendre transforming back to Lagrangian for-
malism requires expressing uj from

dxi

dt
= uiu0 = giνuνg

0µuµ (7)

with the substitution of equation (4) for u0. However,
the complicated form of equation (4) seems not to allow
such an inversion in general so one can only resort to
approximations. The approximation used henceforth is
that E = 1 + δ where δ is a small dimensionless quantity.

It should be noted that in nearly flat space-time and
for massive particles this limit yields exactly the dynam-
ics of a non-relativistic particle in the Newtonian gravi-
tational fields. However, such an assertion is not true in
strongly curved space-times. Hence, we will call this limit
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the “pseudo-Newtonian” limit. Taking the four-velocity
normalization we obtain up to O(δ2)

2g00δ − 2g0iδui + g00 + g0iui + gijuiuj ≈ −κ (8)

which can be rearranged as

1 + δ ≈ HPN . (9)

where

HPN ≡ −
1

2(1− ωiui)
gij

g00
uiuj −

1

2(1− ωiui)

(
κ

g00
− 1

)
.

(10)
Hence, we could try to use HPN a new Hamiltonian to
reproduceO((E−1)2) error in the local particle evolution.
To obtain a better estimate of the error the trajectory
is introduced to when taking expression (10) as a new
Hamiltonian we recover HPN exactly in terms of δ

HPN = 1 + δ +
δ2

2(1− ωiui)
= E +

(E − 1)2

2(1− ωiui)
. (11)

If we take a coordinate q and its canonically conjugate
momentum pq, Hamilton’s equations yield

−∂HPN

∂q
= −E − ω

iui
1− ωiui

∂E
∂q

+
(E − 1)2

2(1− ωiui)2

∂

∂q
(ωiui)

=
E − ωiui
1− ωiui

dpq
dt

+
(E − 1)2

2(1− ωiui)2

∂

∂q
(ωiui).

(12)

Under the interchange q ↔ −pq we get a similar result
for the other equation of motion. Thus, the pseudo-
Newtonian Hamiltonian HPN yields an approximate
shape of the geodesic with an O(δ)-rescaled parametriza-
tion with respect to coordinate time and with an O(δ2)
deformation term.

It is obvious that the description will fail for ωiui → 1,
so we would like to at least intuitively understand the
meaning of the term ωiui and the importance of ωiui →
1. The formal vector ωi represents the local dragging ve-
locity with respect to the t-static observers (see the ap-
plication to Kerr space-time in Section ??), and ui is the
specific momentum of the particle. The whole term ωiui
then roughly represents the specific energy a t-static par-
ticle would have to receive to acquire specific momentum
ui. It is then intuitive that the low-specific-energy limit
E − 1 � 1 will work well only if the “specific dragging
energy” ωiui � 1.

The last remark is that in the case of massless parti-
cles the trajectory depends only on the direction of the
four-velocity and we are thus free to normalize the ini-
tial velocity uµ so that −u0 = E = 1. As a result, the
equations of motion (12) correspond, at least initially, to
exact evolution of the light-ray as parametrized by co-
ordinate time t. In the case of a space-time stationary
with respect to t, E is an integral of motion and the t-
parametrization can thus be made exact along the whole

curve by the mentioned normalization. I.e., if we are
given an initial direction of the light-ray in terms of ũi,
we obtain the correct parametrization by using the initial
momenta ui = ũi/α where

α = ωiũi −
√

(ωiũi)2 − gij ũiũj/g00, (13)

This Section in fact ends in a different tone than its out-
set; the Hamiltonian (10) still does not allow for a Legen-
dre transform and the most “solid” result of this Section
is the fact that one can use it the κ = 0 case as an alterna-
tive 3D description of exact null geodesics parametrized
by coordinate time. In the next Section, more satisfac-
tory results are presented in a restricted class of space-
times.

IV. TIME-DIAGONAL SPACE-TIMES

We now investigate the class of metrics for which g0i =
0. Such metrics correspond to static space-times, but also
to e.g. cosmological or gravitational-wave metrics. For
these equation (10) gives (up to a constant)

HPN = −1

2
g00g

ijuiuj −
κ

2
(g00 + 1). (14)

The resulting equations of motion can be related to the
exact geodesics similarly as in equation (1)

∂HPN

∂pq
= E dq

dt
= −g00

dq

ds
, s = τ, λ, (15)

and analogously for the equations of motion for momenta.
Equation (15) implies that the shape of the orbit gener-
ated by this Hamiltonian will be an exact geodesic up to
a rescaling of velocities and time. One can understand
the rescaling either as a local deformation of proper time
(affine parametrization) by −1/g00 or a global rescaling
of coordinate time by E (in the case E is a constant of
motion).

Additionally, under the assumption g00 → −1 at in-
finity the Hamiltonian will also generate exact scatter-
ing with respect to initial conditions given in terms of
proper-time velocities or in terms of canonically conju-
gate momenta. (Recall that the phase-space trajectory
is reproduced exactly by the reparametrizing Hamilto-
nian.)

The corresponding Lagrangian reads

LPN = −1

2

gij
g00

ẋiẋj +
κ

2
(g00 + 1), (16)

where in this case ẋi ≡ dxi/dt̃ are the velocities with re-
spect to the rescaled time dt̃ = dt/E . If we would like to
identify a velocity-dependent pseudo-Newtonian poten-
tial ΦPN, we must first identify a natural “flat” metric in
the coordinate space dij . The Lagrangian is then simply
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rewritten into the form

LPN =
1

2
dij ẋ

iẋj1 + ΦPN(xi, ẋi), (17)

ΦPN =
κ

2
(g00 + 1)− 1

2
(
gij
g00

+ dij)ẋ
iẋj . (18)

For example, in the case of an asymptotically flat space-
time the pseudo-gravitational potential ΦPN goes asymp-
totically to zero if g00 → −1 and −gij/g00 → dij .

Another nice feature is the fact that for a gravita-
tional source of mass M the first term of the pseudo-
gravitational potential in SI units is a GM/r effect
whereas the second one is a GMc−2/r effect. Thus once
neglecting ∼ 1/c2 terms, we gain exactly the well known
non-relativistic weak-field relation g00 = −1− 2Φ.

Additionally, the specific form of the potential (18)
allows for an intriguing intuitive interpretation. The
first term in the pseudo-Newtonian potential is a purely
potential term corresponding to the Newtonian gravita-
tional potential, whereas the second term is a “geometri-
cal correction” of the kinetic energy. For instance, near a
Schwarzschild black hole of mass M the centrifugal term
`2/2r2 of a particle bearing specific angular momentum `
at Schwarzschild radius r gets “geometrically corrected”
as

`2

2r2
→ `2

2r2

(
1− 2M

r

)
. (19)

One can then intuitively explain the in-fall into the black
hole merely as a consequence of the geometry “turning
off” the centrifugal barrier. The second point to be made
on the intuitive interpretation of the structure of the po-
tential (18) is that a photon, as a massless particle, is not
affected by the purely potential term and only by the sec-
ond “geometric” term. (Note also the obvious invariance
with respect to conformal rescalings of the metric.)

It is only from the discussion in this Section where
the plausibility of the usage of expression (9) as a new
Hamiltonian and its Newtonian interpretation is im-
minent. The presented limit can also be used as a
conceptually different understanding of the Newtonian
limit; Newtonian-like expressions such as in equation (18)
emerge once we force a unified time parametrization, and
that is even in the case of fully exact relativistic geodesics.

A. Spherically symmetric space-times

The first example which comes to mind is the
Schwarzschild space-time for which the formula (16) gives

LTR =
1

2

(
ṙ2

(1− 2M/r)2
+
r2(sin2ϑ φ̇2 + ϑ̇2)

1− 2M/r

)
+ κ

M

r
,

(20)
which for κ = 1 coincides with the Lagrangian derived
from the equations of motion in the Schwarzschild space-
time by Tejeda and Rosswog [2]. (The κ = 0 case giving

exact light-rays is proposed only here.) Similarly, one
obtains the same formula as in Tejeda and Rosswog [7],
Sarkar et al. [8] once applying formula (16), κ = 1 to
spherically symmetric space-times.

The authors have found that these pseudo-Newtonian
descriptions reproduce exactly the relation between the
radii of circular orbits and the particle energy and angu-
lar momentum. This is to be anticipated in light of the
discussion in Section II. Furthermore, neither the Kep-
lerian or epicyclic frequencies of circular orbits given by
the pseudo-Newtonian Lagrangian have been found to
differ by more than 10% from the values in the relativis-
tic space-times considered by the authors. Once again,
this concordance is easily explained by the fact that the
reparametrization introduces a relative time-lag

ηt = 1− E , (21)

with the frequencies of close oscillations scaling accord-
ingly. For instance, in the case of the Schwarzschild
space-time, the tightest-bound circular orbit has E =√

8/9 yielding the highest relative time-lag ηt ≈ 0.06.
Similarly in any given space-time, the highest time lag
will be derived from the specific binding energy of the
tightest bound orbit.

V. APPLICATIONS AND EXTERNAL FORCES

A. Superposition with axi-symmetric sources

A class of astrophysical situations of interest can be
described by a superposition of a central black hole and
an additional axisymmetric structure such as a slowly ro-
tating gravitating disk or torus. Exact relativistic super-
positions of a static black hole with a disc were studied
e.g. by Semerák et al. [10, 11] and in this Subsection, the
pseudo-Newtonian counterpart is briefly investigated.

Static, axially symmetric vacuum space-times are de-
scribed by the Weyl metric [12]

ds2 = −e2νdt2 + e2λ−2ν(dρ2 + dz2) + e−2νρ2dφ2, (22)

where the cosmological constant is necessarily set to zero,
the metric function ν(ρ, z) satisfies the Poisson equation
in cylindrical coordinates with respect to the gravitat-
ing matter-density distribution, and λ(ρ, z) is obtained
through a line integral of a quadratic function of deriva-
tives of ν

λ =

∫ ρ,z

axis

ρ
{[

(ν,ρ)
2 − (ν,z)

2
]

dρ+ 2ν,ρν,zdz
}
. (23)

Hence, the functions ν superpose linearly for various
gravitating sources and λ will always contain nonlinear
cross-terms. For Weyl metrics formula (16) yields

LW =
1

2

[
e2λ−4ν(ρ̇2 + ż2) + e−4νρ2φ̇2

]
+
κ

2
(1− e2ν) .

(24)
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We would now like to see how do additional axially
symmetric matter sources superpose with the Tejeda-
Rosswog potential, i.e. the pseudo-Newtonian potential
of a Schwarzschild black hole. In that case it is useful to
switch to the pseudo-Schwarzschild coordinates r, ϑ (φ
stays the same)

ρ =
√
r(r − 2M) sinϑ, z = (r −M) cosϑ (25)

where M is the black hole mass. In terms of these coor-
dinates, a Schwarzschild black hole is represented by the
metric function

νschw = ln

(
1− 2M

r

)
. (26)

Once we add the νE of an external gravitating source we
obtain the Lagrangian of the superposition

Lsup =
1

2

[ e2λE−4νE

(1− 2M/r)2
ṙ2 +

e−4νEr2

1− 2M/r
(e2λE ϑ̇2 + sin2 ϑφ̇2)

]
−1

2

[
1− e2νE(1− 2M

r
)
]
,

(27)

where λE will once again be a function acquired by a line
integral involving both νE and Schwarzschild terms (see
eq. (23)). These “cross terms” in λE do not allow for
a simple linear superposition of sources in the pseudo-
Newtonian limit.

The only case when it is possible to simply add the
Newtonian gravitational potential νE of the additional
source into the Lagrangian (20) as a simple additional
term is when

1. νEνschw � 1 , νE,ανschw,β � 1 , α, β = ρ, z every-
where, and

2. νE/c
2 � 1 (in SI units).

Otherwise additional corrections would arise. For in-
stance, the Newtonian gravitational potential of per-
turbing faraway axi-symmetric halos surely fulfil these
conditions and can be safely added to the pseudo-
Schwarzschild Lagrangian without further complications.

B. Electromagnetic forces

The Hamiltonian of a charged particle with specific
charge q in an electromagnetic field Aµ reads

HEM =
1

2
gµν(πµ − qAµ)(πν − qAν) , (28)

where πµ = uµ + qAµ is canonically conjugate to xµ.
Analogously to Section III we invert the expression for
the constant value of the Hamiltonian HEM = −κ/2
to get a Hamiltonian of coordinate-time parametrized
electro-geodesics

H̃ = −π0 ≡ EEM = E + qA0 =√
−g00(κ+ gij(πi − qAi)(πj − qAj)) + qA0.

(29)

However, there seems not to be a satisfactory pseudo-
Newtonian limit when A0 6= 0 i.e. when π0 6= u0. In
most astrophysical situations this will not be an issue
because electrostatic fields play a negligible role in the
dynamics. Alternatively, one can use the gauge freedom
A′µ = Aµ + ∂µα to eliminate A0. Once A0 = 0, the
pseudo-Newtonian limit gives trivially

HPN,EM = − 1

2(1− ωiui)
gij

g00
uiuj−

1

2(1− ωiui)

(
κ

g00
− 1

)
,

(30)
with the substitution ui = πi − qAi. The reparametriza-
tion and deformation of the geodesic is exactly analo-
gous to equation (12). Hence, the addition of electro-
magnetism up to the gauge fix A0 = 0 is exactly in the
lines of the usual minimal coupling.

We are only able to express the Hamiltonian in a
gauge-independent manner in time-diagonal metrics

HEM,stat = −1

2
g00g

ijuiuj −
κ

2
(g00 + 1) + qA0 , (31)

where the ui = πi−qAi substitution is again understood.
The corresponding Lagrangian reads

LEM,stat = −1

2

gij
g00

ẋiẋj +
κ

2
(g00 + 1)− q(A0 + ẋjAj) .

(32)
The expression for the gauge-independent Hamiltonian
(31) was obtained by a qualified guess and can be easily
verified to yield gauge-independent equations of motion.

C. Fluid dynamics

Consider the Boltzmann equation (BE) for a phase-
space distribution f(qi, pi)

∂f

∂t
+
∂H

∂pi

∂f

∂qi
− ∂H

∂qi
∂f

∂pi
=
δf

δt
. (33)

For simplicity, we assume no collision term (it is trivial
to add it along the following analysis). When integrat-
ing the zeroth moment

∫
•d3p of the BE, under the as-

sumptions of vanishing boundary terms, we obtain the
continuity equation

∂n

∂t
+

∂

∂qi

(
n〈q̇i〉

)
= 0, (34)

where n =
∫
fd3p, 〈•〉 =

∫
•fd3p/n, and we have used

∂H/∂pi = q̇i. Under similar assumptions we can inte-
grate the first moment

∫
•pjd3p of the BE to obtain

∂

∂t
(n〈pj〉) +

∂

∂qi
(
n〈q̇ipj〉

)
+ δijn〈Ai〉 = 0, (35)

where Ai = ∂H/∂qi.
So far the discussion only required that

f, f∂H/∂pi, ... → 0 as pj → ±∞ to get rid of
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boundary terms in the integration. One of the already
mentioned problems of these equations is that for the
general pseudo-Newtonian Hamiltonian (10) we cannot
express p = p(q̇, ...) in an elegant form to obtain a phys-
ical description of the fluid in terms of its macroscopic
velocity.

Additionally, the issue of definition of pressure and vis-
cous stresses ∼ 〈q̇ipj〉, and the assumptions on the fluid
(such as a thermal equilibrium) to obtain the effective
acceleration 〈Ai〉 must be discussed. However, such a
discussion is out of the scope of the current paper and
should be presented once the pseudo-Newtonian fluid de-
scription is applied in a specific physical setting.

VI. THE KERR SPACE-TIME

In Boyer-Lindquist coordinates t, r, θ, φ we have the
non-zero inverse metric components

gtt = − A
∆Σ

,

grr =
∆

Σ
, gθθ =

1

Σ
,

gφφ =
∆− a2 sin2θ

∆Σ sin2θ
,

gtφ = −2Mra

∆Σ
,

(36)

where Σ = r2+a2 cos2ϑ, ∆ = r2−2Mr+a2 andA = (r2+
a2)2 − a2∆ sin2ϑ. The corresponding pseudo-Newtonian
Hamiltonian (9) then reads

HPNK =
1

2A(1− ωuφ)

(
∆2u2

r + ∆u2
θ +

∆− a2 sin2 θ

sin2 θ
u2
φ

)
+

1

2(1− ωuφ)

(
∆Σ

A
+ 1

)
,

(37)

where ω ≡ gtφ/gtt = 2Mra/A. Here the Hamilto-
nian is equal to 1 for a particle at rest at infinity, and
thus represents the total particle specific energy includ-
ing rest mass. The Hamiltonian is exactly equivalent to
the Tejeda-Rosswog potential (20) at a = 0.

To obtain a Lagrangian, we would have to invert for
uφ from the non-trivial

φ̇ =
∂HPNK

∂uφ
(38)

However, the resulting relations seem to be too compli-
cated and pathological to be of any use.

A. Circular orbits in the equatorial plane

When considering the case ωuφ < 1 and regions above
the horizon ∆ > 0, the Hamiltonian is positive-definite

in uθ and ur and we may use the following effective po-
tential for the analysis of turning points of orbits in the
equatorial plane θ = π/2

Veff =
2a2(M + r)− 2M

(
u2
φ + r2

)
+ r

(
u2
φ + 2r2

)
2 (a2r + 2aM(a− uφ) + r3)

.

(39)
The circular orbits are given by the roots of V ′eff = 0,

i.e. the roots of

Mau3
φc

+(r3 − 3Mr2 − 2Ma2)u2
φc

+(6Mar2 − 4M2ar + 2Ma3)uφc

+(−Mr4 − 2Mar2 + 4M2a2r −Ma4)uφc

= 0

(40)

The discriminant of the polynomial (40) understood as
a polynomial in uφc is positive for most r and a which
means that there are three real uφ corresponding to three
distinct circular orbits at almost every r. Two of the
roots correspond to the usual families of corotating and
counter-rotating orbits and the “third root” corresponds
to a particular family of counter-rotating unstable circu-
lar orbits (thus yielding them less physical). The said
“third root” uφ(3) goes to −∞ as a → 0 and stays at
highly negative values for a < 1 (see Subsection VI B for
further discussion).

The physicality of a given root must also be verified by
checking that the circular orbit with rc, uφc, a is above
the singularity of the effective potential (39), i.e. it must
hold that

a2rc + 2aM(a− uφc) + r3
c > 0 . (41)

B. Angular momentum, frequency and energy of
circular orbits

In Figure 1 the radial distribution of angular momenta
of the usual corotating and counter-rotating circular or-
bits is compared with the exact Kerr distribution [13]

uφ(K) =
M1/2r1/2 − 2Mar−1 +M1/2a2r−3/2

√
1− 3Mr−1 + 2M1/2ar−3/2

, (42)

where the counter-rotating case is obtained by a → −a.
Both the stable corotating and counter-rotating orbits
exhibit very satisfactory agreement with the exact Kerr
relation and up to a → M and r ≈ 4M the third uφ(3)

root is too large in magnitude to be of any physical in-
fluence.

For a = M there is a minimal magnitude of the third
root uφ(3) ≈ −13M at r ≈ 4.3M but for smaller a
and larger r the value of uφ(3) rapidly grows in mag-
nitude; for a = M , r = 5M it is around −45M and for
a = 0.8M, r = 4.3M it is ≈ −25M . It should be again
stressed that the physical significance of the root is also
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negligible due to the fact that the respective circular or-
bit is unstable and counter-rotating with respect to the
centre.

Nevertheless, Figure 1 does not show the fact that the
behaviour of unstable circular orbits (i.e. the sector on
the left from the local minimum of the angular momen-
tum distribution) is not very satisfactory. For all values
of a/M ∈ (0, 1) the corotating unstable circular orbits ex-
tend all the way to the horizon and take a finite value of
uφc there (this horizon-value of uφc diverges as a→ 0+).

Furthermore, the horizon is pathological also because
a radially in-falling particle gets frozen there, very much
like in the case of the Tejeda-Rosswog potential [2], or
like in the case of the exact-relativistic infall as observed
from infinity. Hence, the dynamics should be cut off
somewhere between the marginally stable orbit and the
horizon ∆ = 0.

The angular frequency of the orbits is given by Ω =
φ̇ = ∂HPNK/∂uφ for the pseudo-Kerr case, and for the
exact Kerr the angular frequency of corotating circular
orbits is given as

Ω =
1

a+ r3/2M−1/2
, (43)

where only values above the photon circular orbit rph =
2M(1 + cos[2 arccos(−a/M)/3]) are physical. We only
plot a comparison of the corotating case in Fig. 2 and
note that the tendencies of the counter-rotating case are
quite similar.

The specific energy of circular orbits in the Kerr space-
time reads

E(K) =
r2 − 2Mr + a

√
Mr

r
√
r2 − 3Mr + 2a

√
Mr

. (44)

The energy of the pseudo-Kerr circular orbits is given
simply by substituting uφc into HPNK. The relations for
the corotating case are compared in Figure 2. It should
be stressed that the plot ranges do not show the grow-
ing energies of unstable circular orbits extending to the
horizon.

C. Small perturbations of circular orbits

Let δr, δur, δθ, δuθ be small deviations from the sta-
ble circular orbits. At the point of reflectional symmety
θ = π/2 all the first ∂/∂θ derivatives of the Hamiltonian
vanish and for uθ = 0 first ∂/∂uθ derivatives are also
zero. Hence, the linearised equations decouple into two
sectors corresponding to the purely radial (epicyclic) and
purely vertical oscillations. The equations for the purely
radial oscillations read(

0 −∂
2H
∂2r

∂2H
∂2ur

0

)(
δur

δr

)
=

(
δu̇r

δṙ

)
. (45)

Because we are considering ur = 0, the diagonal terms
corresponding to first ∂/∂ur derivatives of the Hamilto-
nian are also zero. Assuming ∼ eiκt oscillating solutions
we obtain the epicyclic frequency

κ =

(
∂2H

∂2ur

∂2H

∂2r

)1/2

, (46)

where the expression is evaluated at θ = π/2, ur = uθ =
0, uφ = uφ(C). Similarly for the purely vertical oscilla-
tions

Ωv =

(
∂2H

∂2uθ

∂2H

∂2θ

)1/2

. (47)

Expressions (46) and (47) along with the substitution of
the appropriate uφc give the oscillation frequencies an-
alytically. However, the explicit form is rather involved
and can be easily obtained via symbolic software so we
only compare their values with the oscillation frequen-
cies for the stable corotating circular orbits in the Kerr
space-time in Fig. 3.

The conclusion drawn from the examination of Figures
1-3 is clear: The correspondence between pseudo-Kerr
and exact-Kerr properties of stable circular orbits is ex-
cellent for a/M ∈ (0, 0.8) and borderline-satisfactory for
a/M ∈ (0.8, 0.9). Furthermore, in the approximate re-
gion a/M ∈ (0.9, 1), both in the exact Kerr space-time
and in the pseudo-Kerr dynamics, a qualitative transi-
tion is taking place. In this region, the precise rate of
the transition and the various critical points such as van-
ishing and appearance of extrema of the various distri-
butions are not faithfully reproduced in the pseudo-Kerr
dynamics. On the other hand, even though the quantita-
tive differences are large, the qualitative correspondence
is recovered for a = M .

D. Special radii

As already noted, the main issue of the presented
pseudo-Kerr Hamiltonian is the non-existence of a pho-
ton circular orbit (uφc →∞ singularity in the radial dis-
tribution of angular momentum). However, all the other
features such as the marginally stable and the marginally
bound orbit are recovered.

The marginally stable orbit is given by the zero of the
epicyclic frequency κ = 0 and the marginally bound orbit
is given by the specific energy equal to one H = Etot = 1.
But since the marginally stable orbit has δ = 0 or E =
1, the discussion in Section III precludes that both the
position and frequency of the marginally bound orbits
will be reproduced exactly in the pseudo-Kerr dynamics.
Indeed, we have verified by numerical root-finding that
the radius of the marginally bound is exactly equal to
the Kerr value [14]

rmb = 2M − a+ 2
√
M2 − a2. (48)
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FIG. 1. Angular momenta uφ of corotating (top) and counter-rotating (bottom) circular orbits of radius r in the Kerr space-time
(solid line) compared with the distribution as given by the pseudo-Kerr Hamiltonian (dashed). For r > 6M or a < 0.6M the
differences are virtually zero. The ranges for the corotating case are chosen to clearly document the vicinity of the marginally
stable orbit.
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FIG. 2. Specific energy (top) and angular frequency (bottom) of corotating circular orbits of radius r in the Kerr space-time (full
line) compared with the distribution as given by the pseudo-Kerr Hamiltonian (dashed). The plots of the angular frequencies
always show the endpoint of the exact-Kerr relation whereas the pseudo-Kerr relations continue to grow up to the horizon. In
the specific energy case, the exact-Kerr relation diverges at the endpoint for a < M and thus cannot be depicted.
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FIG. 4. Positions of marginally stable orbits rms in the
Kerr space-time (full line) compared with the positions of
marginally stable orbits as given by the pseudo-Kerr Hamil-
tonian (dashed). The exact-Kerr relation continues up to
a = M whereas the pseudo-Kerr one ends at a = acrit ≈ 0.934.

On the other hand, the marginally stable orbit van-
ishes “too soon” in the pseudo-Kerr dynamics, at acrit ≈
0.934M . This critical spin value acrit can be under-
stood as the ultimate limit of applicability of the pre-
sented Hamiltonian. The exact-Kerr marginally stable
orbit reads

rms(K) = 3M + Z2 −
√

(3M − Z1)(3M + Z1 + 2Z2),

Z1 = M + (M2 − a2)1/3
[
(M + a)1/3 + (M − a)1/3

]
,

Z2 =
√

3a2 + Z2
1 .

(49)

The value of rms for a/M ∈ (0, 0.934), as obtained by
numerical root finding in the pseudo-Kerr dynamics, is
compared with the exact-Kerr values in Fig. 4. Once
again we see that the correspondence is very strong for
a . 0.8 and reasonable up to a ≈ 0.9M .

E. Note on practical simulations

The Hamiltonian (37) might seem sufficiently effective
for practical purposes, but it is also rather complicated
and might not be worth the extra computational cost
for a large range of situations. Nonetheless, since the
presented Lagrangians and Hamiltonians have a seamless
Newtonian limit, it is possible to naturally “switch off”
parts of the dynamics for different regions of space-time
and do not spend computational time on them.

The deviation of the pseudo-Kerr Hamiltonian (37)
from the Hamiltonian of a test particle in the field of
a Newtonian monopole are of two kinds, the static field
corrections ∼ M/r and ∼ a2/r2, and the dragging term
∼ Mauφ/r

3 (all to leading order in 1/r). To obtain an

estimate independent of uφ and a, we use the leading-

order value for a circular orbit uφ ≈
√
Mr and the max-

imum spin a = M to get Mauφ/r
3 ∼ M5/2/r5/2 and

a2/r2 ∼ M2/r2. Since we are only interested in r > M ,
we can conclude that the dragging term will always be
less significant than the spin-static term ∼M2/r2.

For the sake of computation-time saving it is then
convenient to choose a small dimensionless inaccuracy
tolerance ε and switch between the near-blackhole dy-
namics in the following way (in the following discussion
M ↔ GM/c2 ). If M/r < ε use purely Newtonian dy-
namics; if ε < M/r <

√
ε, use the Tejeda-Rosswog dy-

namics; if M/r >
√
ε, use the pseudo-Kerr Hamiltonian

(37).

Since the intrinsic error of the Tejeda-Rosswog and the
presented pseudo-Kerr dynamics is at least in orders of
units of percent, a reasonable tolerance is ε = 0.01 be-
cause then the switch introduces about the same error
as the approximate dynamics themselves. Hence, the
pseudo-Kerr Hamiltonian should only be used from the
near-horizon cut-off up to r ≈ 10M and the Tejeda-
Rosswog Hamiltonian from r ≈ 10M up to r ≈ 100M .
Beyond r ≈ 100M it is pointless to use other than New-
tonian dynamics, unless, of course, describing extremely
fast objects for which none of the mentioned approxima-
tions are suited.

F. Remarks on the Ghosh-Sarkar-Bhadra
Lagrangian

The dynamics presented by Ghosh et al. [1] are con-
cordant with the presented approach in the idea of a
low-energy limit, not, however, in the idea of phase-
space reparametrization. Instead of covariant veloc-
ity components ui, the dynamics are constructed by a
series of ansatzes using the contravariant (canonically
non-conjugate) components ui. As a consequence, the
dynamics are restricted only to the equatorial plane
and it seems that there is no simple characterization
of the Ghosh-Sarkar-Bhadra Lagrangian in terms of
reparametrized geodesics.

Nonetheless, the latter approach seems to be plagued
by analogous problems as the one presented in the current
paper. Namely, the Ghosh-Sarkar-Bhadra Lagrangian

LGSB =
1

2(r − 2M)2(1 + γφ̇)

(
r3(r − 2M)

∆
ṙ2 + ∆r2φ̇2

)
+
M

r
(1− γφ̇),

(50)

where γ = 2Ma/(r− 2M), has a Hamiltonian form com-
plicated beyond usefulness. For the angular momenta of
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circular orbits λGSB(C) it holds that

λGSB(C) =
−Q±

√
Q2 − 4R

2
,

Q =
4a3rM − 6Mar(r2 + a2)

a2r(r − 2M)− r(r − 3M)(r2 + a2)
,

R =
M(r2 + a2)[r(r3 + 3a2)− 2a2r]

a2r(r − 2M)− r(r − 3M)(r2 + a2)
.

(51)

What was not clearly stated or shown in the original pa-
per is the fact that this angular momentum distribution
has a singularity at

a2(rs − 2M)− (rs − 3M)(r2
s + a2) = 0, (52)

for which the solution varies quite uniformly from rs =
3M for a = 0 to rs ≈ 3.1M for a = M .

Even though the authors state that the marginally
bound circular orbit exists up to a ≈ 0.7M and that
the potential is thus useful up to such values, there is a
possible issue with the marginally bound orbit; the an-
gular momentum distribution (51) crosses the singularity
(52) before reaching the radius of the marginally bound
orbit already for a & 0.45M . Amongst other things, this
means that the Keplerian circular orbits have a “singular
pause” before reaching the marginally bound orbit and
the matter density of a stationary accretion disc would
quite probably exhibit non-physical behaviour at the sin-
gular r = rs.

Hence, the Ghosh-Sarkar-Bhadra Lagrangian should
be considered as useful only for r & 3.1M , and if the
marginally bound orbit is important in the given model,
only a . 0.45M should be considered. The point where
even the marginally stable orbit collides with this singu-
larity is a ≈ 0.7M (which is probably also the reason
why the authors were not able to find the marginally
stable orbit beyond that spin). Amongst other things,
this means that for a near-Keplerian accretion disk near
a center with spin a ≈ 0.7M the singularity (52) is very
near its edge and exotic effects might ensue. Thus, it
seems commendable to use the Lagrangian (50) only for
spins well below a ≈ 0.7M .

VII. CONCLUSION

We have shown that it is possible to formulate a gen-
eral pseudo-Newtonian limit for geodesics in arbitrary
space-times. The Hamiltonian (10) as given for a gen-
eral space-time has a pathological inversion ẋi(ui, ...) →
ui(ẋ

i, ...), and thus provides only a less direct descrip-
tion of particle motion (and no Lagrangian formalism).
Nevertheless, under the initial-condition normalization
(13), the Hamiltonian (10) yields exact null geodesics

parametrized by coordinate time, thus possibly present-
ing a useful tool for gravitational lensing.

Generally, the pseudo-Newtonian limit behaves very
well in “time-diagonal” space-times, i.e. where g0i = 0.
In these space-times, the description through physical
velocities and accelerations is possible, and even the pro-
duced trajectories of massive particles correspond, at
least in shape, to exact geodesics. A quick investigation
into the possible applications of the pseudo-Newtonian
limit given in Section V shows that the fluid dynamics,
electromagnetic forces, or external gravitating sources
must be handled in a less-than-naive approach.

An obvious benefit of the presented results is a uni-
fied framework for the estimate and understanding of
errors in the particle dynamics of Tejeda and Rosswog
[2, 7]. Even though the original ambition was to extend
the results of Tejeda and Rosswog to the Kerr space-
time, the usefulness of the presented limit seems to be,
in fact, in the extension to light geodesics and to gen-
eral time-diagonal space-times. The “time-non-diagonal”
space-times (g0i 6= 0) yield only a moderately satisfac-
tory pseudo-Newtonian limit, as is demonstrated also in
Section VI in the case of the Kerr space-time.

The current outlook is to finish the fluid formulation
as sketched in Subsection V C, and apply it in the phys-
ical context of accretion onto a spinning compact center.
The factor of the type ∼ 1/(1 − ωuφ), as seen e.g. in
the Hamiltonian (37), complicates the Legendre trans-
form to Lagrangian formalism and to a direct descrip-
tion of the fluid in terms of its velocity. In the current
moment it seems that the only workaround towards a rel-
atively straight-forward Legendre transform is to expand
the dragging factor as 1/(1−ωuφ) ≈ 1+ωuφ−ω2u2

φ+ ....
Nevertheless, the mentioned expansion in ωuφ is essen-

tially an expansion in the powers of a/M and would thus
be inaccurate for the case of supermassive black holes,
which are generally assumed to have spins a ∼ M . On
the other hand, even the fastest spinning known pulsars
are estimated to have spins a . 0.4M (e.g. [15]), so the
O(a2) expansion should yield reasonably accurate results
for that case. The development of the pseudo-Newtonian
framework for accretion onto neutron stars (utilizing an
appropriate non-Kerr metric such as the one by Manko
and Novikov [16]) or slowly spinning black holes will be
the subject of future papers.

ACKNOWLEDGMENTS

I would like to thank Emilio Tejeda and Oldřich Se-
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Astron. Soc. 308, 691 (1999).
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