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                 Abstract   
 
Rugged (or, rough) energy landscape (REL) with spatially distributed 
maxima and minima are often employed in applications of physics, 
chemistry and biology (enzyme kinetics, protein folding, diffusion in 
disordered solids, transport in organic semiconductors, relaxation in 
random spin systems, in supercooled liquids and glasses). Sometimes the 
system needs to be modeled as a random walker in high dimensions (like in 
protein folding/unfolding) where dimensions could be the distances between 
different amino acid residues (as in unfolding of HP-36). Nevertheless, most 
of the theoretical studies of these phenomena still  employ a one 
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dimensional description. This is despite the prediction that in a rough (or, 
rugged) energy landscape (REL), diffusion in one dimension (1d) is 
predicted to be pathologically different from any higher dimension with the 
increased chance of encountering broken ergodicity (Stein and Newman, 
2012). We explore the dimensionality dependent diffusion on REL by 
carrying out an effective medium approximation based analytical 
calculations and compare them with the available computer simulation 
results. We find that at intermediate level of ruggedness (assumed to have 
a Gaussian distribution), where diffusion is well-defined, the value of the 
effective diffusion coefficient depends on dimensionality and changes 
(increases) by several factors (~5-10) in going from 1d to 2d. In contrast, the 
changes in subsequent transitions (like 2d to 3d and 3d to 4d and so on) are 
far more modest, of the order of 10-20% only .  When ruggedness is given by 
random traps with an exponential distribution of barrier heights, the mean 
square displacement is sub-diffusive (a well-known result), but the growth 
of MSD is described by different exponents in one and higher dimensions. 
The exponent of growth is larger in higher dimensions than in 1d.  The 
reason for such strong ruggedness induced retardation in the case of one 
dimensional REL is discussed. We also discuss the special limiting case of 
infinite dimension ( ) where the effective medium approximation 

becomes exact and where theoretical results become simple.  
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I.  Introduction 
 

Diffusion of a tagged particle on a complex energy landscape has a long history [1-38]. 

Such models were initially developed to explore the effects of random disorder on the 

electrical conductivity, essentially to study the retardation of diffusive motion of 

electrons and quasi-particles in solids due to the in-built disorders arising from the 

presence of impurity [4-10]. Several different stochastic models were introduced to 

account for the presence of random barriers and traps that retard the rate of migration of 

electrons. In an influential early paper, Scher and Lax introduced the use of the 

formalism of waiting time distribution to explain the observed power law decay of 

current in disordered materials [4-6]. Kehr and Haus [11-13] used “hopping over 

barriers” model to take into account randomly placed barriers and traps. Subsequently, 

many different theoretical studies were carried out in different areas of condensed 

matter physics and chemistry to include effects of complex environments on diffusion.  

Goldstein and Johari discussed the possible influence of energy landscape in describing 

slow relaxation in glassy liquids. [16] This pioneering idea was further studied using 

inherent structure formalism [17-23]. In another important area where the idea of 

diffusion in a rugged energy landscape has found wide use is protein folding [24-28]. 

While the presence of a funnel shape energy landscape is assumed to accelerate kinetics 
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of folding by opening up of multitude of parallel pathways, ruggedness slows down 

downhill diffusion [24-28], and can even trap the protein in non-native, quasi-stable 

configurations (sometimes collectively referred to as molten globules). 

In an interesting application of dimension dependent diffusion, Slutsky and Mirny 

[29] suggested that the efficient search by a protein of the binding site on a DNA may 

involve a combination of one and three dimensional diffusion. The protein may slide 

along the DNA in a one dimensional diffusion, but can switch over to a three 

dimensional diffusion when faced with a bottle-neck along its sliding motion. The 

combined use of one and three dimensional mode of diffusion is expected to reduce the 

search time in this complex landscape of diffusion. This model was extended to include 

the effects of a rugged energy landscape to account for the heterogeneity along the DNA 

chain [30,31]. The study presented in this article has a direct bearing on the role of 

higher (than one) dimension. Rough or rugged energy landscape has been used to 

explain distribution of relaxation times observed in enzyme kinetics [32]. Random 

energy landscape has also been employed in the study of evolution in theoretical 

biology where the relevant order parameter is different [33]. 

In two recently published studies, we have explored the role of ruggedness on 

diffusion [37,38]. In the first study, we interrogated (for the first time) by computer 
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simulations the quantitative validity of the well-known expression of Zwanzig on the 

dependence of diffusion on ruggedness [37]. We found that Zwanzig’s expression 

breaks down due to the presence of three site traps formed by one deep minimum 

flanked by two large maxima on two sides. We presented a correction term that 

accounts for the simulation results quantitatively. In the second study we explored the 

relation between diffusion and entropy in a rugged energy landscape. In particular, we 

presented a statistical mechanical derivation that showed that the Rosenfeld 

diffusion-entropy scaling can be recovered exactly in the rugged energy landscape 

[34,35,38]. 

 

 Interestingly however while the landscape is multidimensional, theoretical discussions 

almost always employed one dimensional treatment. This is partly because 

dimensionality of diffusion is usually considered via Einstein’s definition in the 

following fashion [39] 

,                        (1) 

where  is the mean square displacement of a tagged particle, t is the time and 

d is the dimension. The above definition, valid for an ergodic system, is the standard 

starting point of diffusion in d-dimensional system, and in most cases dependence is 

2( )( ) Lim
2t
rD d
d t→∞

< Δ >=

2( )r< Δ >
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removed by dividing by d (as in Eq.1). Thus, if we consider random walk in a uniform 

d-dimensional lattice (like simple cubic) without ruggedness of any kind then the 

diffusion constant is independent of d. 

 

 Recently, an elegant study potentially of far-reaching consequence has been carried out 

by Newman and Stein [40,41] who addressed the issue of dimensionality of diffusion in 

a rugged landscape. These authors treated diffusion as a percolation invasion problem 

and concluded that diffusion in one dimension is pathological because the particle (in 

their language “water in a lake or river”) can get trapped (“cannot flow to the sea”) due 

to insurmountable barriers on both sides of exit. This conclusion flows from the 

observation that the height of the barriers encountered by the walker grows with time as 

T log t, where T is the temperature. Therefore, as time increases, the height of barriers 

encountered increases, the probability of walked getting reflected back and retracing the 

same path (in 1d) increases, leading to a sharp decrease of diffusion constant (even 

going to zero asymptotically), if we take the limit of time going to infinity at constant 

temperature and constant ruggedness and thus raising the possibility of facing an 

ergodicity that is broken or at least compromised. This may not rule out the existence of 

diffusion constant with a well-defined value at intermediate times. The situation is 
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different in higher dimensions, including 2d, because the walker can find practically an 

infinite number of escape routes, so that “the water can flow to the sea”. In an earlier 

publication [41], the same authors considered the problem of broken ergodicity in the 

problem of diffusion in a rugged landscape, and arrived at similar conclusion about 

possible lack of diffusion in the asymptotic limit. As noted, this issue of broken 

ergodicity in rugged landscape does not arise in higher dimensions. 

As mentioned earlier, we recently carried out an investigation of the relationship 

between entropy (S) and diffusion (D) in a rugged landscape and established the relation 

proposed by Rosenfeld a few years back. [34-38] In the course of the work we noticed 

that there can indeed be certain significant differences in the determination of diffusion 

in one dimension (1d). We note that entropy-diffusion relation as envisaged by 

Rosenfeld scaling relation is oblivious to this difference [34-38]. 

The relation between diffusion and entropy has a long and illustrated history. In 

addition to Rosenfeld scaling, the relation proposed by Adam and Gibbs finds wide use, 

particularly in explanation of glassy dynamics. In this relation, diffusion coefficient 

decreases sharply as an entropy crisis drives configuration entropy to zero near glass 

transition. An entropy crisis may develop through emergence of ruggedness, and one 

may envisage a cross-over from Rosenfeld to Adam-Gibbs scenario. 
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The objective of the present work is to further explore this dimensionality dependence 

of diffusion in a rugged landscape and the motivation is provided by the inspiring work 

of Stein and Newman. Our theory and calculations are based on a simple cubic lattice 

with random site energies that can be both positive and negative, thus creating the 

ruggedness.  

 

We find that diffusion in one dimension is indeed markedly different from higher 

dimension. We, however, are not sure whether the difference can be termed 

pathological because for small to intermediate range of ruggedness, diffusion in 1d can 

be lower by a factor of ~5 to 10 or even larger (than in 2d and 3d) while the difference 

between any two consecutive higher dimension, like 2d and 3d, is only 20-30%. 

In the subsequent chapters we introduce the models studied, the theoretical analysis 

of the dimensionality dependence of diffusion in random lattices, compare the results 

with available simulation results, consider the asymptotic limit of infinite dimension, 

and present some results on effects of correlation in the energy landscape. We conclude 

with a discussion of results and future problems. 

II. Models of rugged landscape 

In his landmark paper, Zwanzig considered a continuous rough potential, .  ( )U x ( )U x
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is assumed to be composed of a back ground potential  and a rough potential 

 and we have . The effective diffusion coefficient ( ) is 

obtained as [27,28]  

,                   (2) 

where D0 is the diffusion constant on the smooth potential, 
 
!  denotes the spatial 

average of the rough potential,  is the Boltzmann constant, and  is the 

temperature. The subscript z of  indicates Zwanzig’s expression obtained using a 

continuous potential. When the amplitude of the rough potential is given by a Gaussian 

distribution with a mean zero and variance ,  

 ,                  (3) 

Zwanzig expressed the effective diffusion constant in the following elegant form, 

[27] 

.      (4)
 

Zwanzig’s derivation relies heavily on the local average to smooth the rough potential. 

To avoid the local averaging and consider the effective diffusion constant in 

d-dimension, we introduce a hyper-cubic lattice of d-dimension. The random energy of 

i-site is assumed to obey the same Gaussian distribution given by  of Eq. (3). We 

0( )U x

1( )U x = +0 1( ) ( ) ( )U x U x U x effD

( ) ( )1
1

0
, U k TB

B
eff z U k T

DD
e e

−
=

Bk T

,eff zD

σ

σπσ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

2
1

1 22

1( ) exp
22
UP U

( )22
, 0 expeff Z BD D k Tσ⎡ ⎤= −⎣ ⎦

( )iP U
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consider two models of rugged landscape. In general random energy landscape, the site 

energy can be both local maximum and minimum as shown in Fig. 1(A). We denote the 

transition rate from i-site to j-site by . The transition rates are given by [37] 

   

Γ =
Γ ≤

−⎛ ⎞
Γ >

⎧
⎪⎪
⎨
⎪
⎪⎩

⎜ ⎟
⎝ ⎠

0

0
B

exp

	  ij
j i

i j
j i

U U
U U

U U
k T

,                   (5) 

which are identical to those known as the Miller-Abraham process. [9,10]  

 

  As a reference, we also present the results of trap model, where  every site 

constitutes a local minimum. In random trap model shown in Fig. 1 (B), the transition 

occurs with the equal rate from the site denoted by i to one of the nearest neighbor site j 

and the rate is given by [12-14] 

  ,                 (6) 

where  denotes the potential depth and is negative. For the trap model, we consider, 

in addition to the Gaussian distribution, the case where the site energy distribution is 

given by an exponential distribution 

                   (7) 

to elucidate the difference between the results based on the Gaussian distribution and 

Γ ij

( )⎡ ⎤Γ =Γ ⎣ ⎦
( )

0( ) exp /trap
ij i i BU U k T

iU

( )exp 0( ) exp / BP U U k T= −⎡ ⎤⎣ ⎦
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those based on the exponential distribution.  

 

Fig. 1  Schematic representation of (A) rugged energy landscape with 
Gaussian distribution of energy at sites, showing multiple-site trap model 
and (B) trap model with random barriers, both in one dimension. The 
positions of trap sites are denoted by short dashed lines. In (A), site energy 
can be both maximum and minimum. The 3-site trap can be formed when a 
local minimum site is surrounded by two local maximum sites in one 
dimension. In (B), an ordinary trap model is shown, where every trap site 
constitutes a local minimum. The transition rates are given by the potential 
depth. 
 

III. Treatment of diffusion in one dimensional rugged energy 

landscape : Quantitative agreement with simulations 

Multiple-site trap
(A)

(B) Trap model
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Treatment of diffusion in one dimensional systems occupies a special place in studies of 

random walk mainly because one can obtain exact results for such systems. In one 

dimension, when a random walker faces a barrier it is forced to bounce back. As a result, 

when trapped between two large barriers, the random walker traces the same path, 

repeatedly. The diffusion constant can be expressed formally in terms of all transition 

rates involved in the trajectory on a line of arbitrary period of N sites. [42] When the 

random walker is equilibrated after the initial transient period, an exact simple 

expression of the diffusion constant is obtained using the detailed balance condition, 

[11-13] 

  ,                     (8) 

where  represents the equilibrium distribution at the site denoted by i 

 .                      (9) 

Using Gaussian distribution given by Eq. (3), the effective diffusion constant is 

obtained as [37] 

,                (10) 

where  is the bare diffusion constant in the absence of rugged landscape. In a very 

different context, the mobility expression of this type was obtained earlier. [43] 

( )(eq)1 1 ieff ijD ρ= Γ

(eq)
iρ

( )
( )

(eq) exp

exp B
i

i B

j

U k T

U k T
ρ
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( )0
22exp 1 erf

2e B
B

ff k T
k T

D D σσ
⎡ ⎤⎛ ⎞⎡ ⎤− +⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎣ ⎦

=

0D
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In one dimensional systems, the effective diffusion constant can be generalized 

to include the spatial correlation given by Gaussian fields characterized by the 

correlation function 

  ,                 (11) 

where  represents the correlation length and  is the lattice spacing. In the 

presence of spatial correlation, Eq. (10) is modified. As shown previously, the effective 

diffusion constant can be obtained using the mean first passage time  as [11-13] 

.                           (12) 

Equation (12) reproduces the exact result given by Eq. (8) in the absence of the spatial 

correlation. In general, the mean first passage time can be expressed as [11-13,15,37] 

.                  (13) 

 When  and  are uncorrelated, we can introduce decoupling  

        (14) 

and the effective diffusion constant can be expressed using  given by Eq. (9). For 

correlated Gaussian potential, we cannot introduce decoupling given by Eq. (14) and we 

need to evaluate Eqs. (12) and (13). The final result is given by [37] 
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  .     (15) 

By increasing ξ , the effective diffusion constant increases and approaches to that of 

Zwanzig. This is consistent with the fact that the Zwanzig expression of the effective 

diffusion constant is obtained by introducing an extra smoothing of the rugged 

landscape. Before closing the section, we stress that the above results are obtained using 

the special nature of the one dimensional random walk that the path of the random walk 

can be expressed by all transition rates involved in the random walker’s path on a line. 

An exception is the random trap model, where the effective diffusion constant for the 

Gaussian potential is given by Eq. (4) in any dimension even under long-range 

correlations. [14] We will discuss this issue later.  

IV. Effective medium approximation for higher (than one) 

dimensional systems 

Except the trap model, the effective diffusion constant can be calculated only 

approximately in the dimension higher than one. One of the widely used methods is the 

effective medium approximation (EMA). [1] In EMA, the random energy landscape is 

replaced by the effective medium except some sites around the origin. The 

corresponding Master equation contains a memory kernel with the effective transition 

rates. The effective transition rate is obtained by imposing that after averaging over the 

( )
2

0 2
22 1 eexp 1 x

2
erf

2
pBf

B
ef

bD k T
k T

D
ξ

σσ ⎛ ⎞
= −
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⎢ ⎜
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⎟ ⎥
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realization of random energy landscape, Green’s function of the Master equation should 

be consistent with that of the Master equation given by the effective transition rate 

alone.        

The simplest EMA uses random site energies connected by a single bond. The 

random transition rates of the bond should be symmetric for isotropic systems in the 

absence of external bias. The symmetric transition rates can be constructed via the 

detailed balance condition using the equilibrium occupation probability. The 

equilibrium occupation probability at site i denoted by  is given by Eq. (9). The 

symmetric rates in view of the detailed balance can be given by [13] 

  .                            (16) 

The self-consistency condition in d-dimension can be expressed as [12,13,44] 

                       (17) 

where denotes the effective mobility.  
In one dimension, the result can be simplified as [13] 

  ,                          (18) 

which leads to the exact result given by Eq. (8). In general, the analytical exact solution 

of the self-consistency condition is not available in the dimension higher than one. We 

solve the self-consistency equation approximately and compared the solution with the 

numerical results of the self-consistent equation.  

ρ (eq)
i

ρΓ = Γsym (eq)
ij i ij

Γ −Γ
=

− Γ +Γ

sym
eff

sym
eff

0,
( 1)d

Γeff

=
Γ Γsym
eff

1 1



 16 

In order to solve the self-consistency condition approximately, we note that the 

self-consistency condition can be rewritten as, [38]   

   .               (19) 

The right-hand side of eq. (19) can be smaller when  is smaller, which is suited 

for the application of the saddle point method. By defining  

  ,                (20) 

where  is defined by 

 
,
            (21) 

eq. (19) can be rewritten using  as  

      (22) 

where the last equality follows from  with  
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          (23) 
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where  is defined by, 

                   (25) 

Since the factor
 

 is close to 1 when  is up to  and 

decreases to zero as  increases over , Eq. (24) can be approximated as,  

         (26) 

We note that  defined by Eq. (25) is close to zero by comparison to the result with 

that obtained from the original self-consistent condition. By introducing the 

approximation given by  when , we obtain,   

                    (27) 
By substituting eq. (25) into eq. (27), and rearrangement we obtain,  

           (28) 

In 2D, the result can be expressed as,  

              (29) 

According to the Einstein relation, the ratio between the effective diffusion constant and 
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the bare transition rate .  
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V. Results and analysis 
 

In Fig. 2, we present the results of theoretical analyses, along with limited 

amount of available simulation results. In Fig. 2, 1 dimensional exact result is obtained 

from Eq. (10). We also show Zwanzig’s results by red dashed line. The open circles and 

squares are obtained by numerical solution of the self-consistency equation Eq. (17). 

Thick black dashed line indicates the 2-dimensional approximate result of Eq. (29). The 

dashed-and-dotted line represents Eq. (28). In 3D the result of Eq. (28) did not 

reproduces the correct limit  as . The error occurred in 

deriving Eq. (26) when we introduced and the integration to  is set up 

to  and assumed . By slightly modifying Eq. (28), EMA in 2D and 3D 

analytical results can be well approximated by 

  .              (30) 

In 2 d, the result is the same as that of Eq. (29). In 3 d, the modified result is shown in 

the magenta thick line. The results are close to published Monte-Carlo simulation 

results. 
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Fig. 2 
 

is plotted as a function of . The numerical solutions of the 

self-consistency equation given by Eq. (17) are shown by circles (2D), and squares (3D). 

The thick blue line indicates the analytical exact result of 1D given by Eq. (10). The 

approximate results of Eq. (28) are given by the thick dashed line (2D) and the magenta 

dash-dotted line (3D). The magenta thick line represents the results of Eq. (30) for 3D. The 

red thick dashed line indicates Zwanzig’s expression given by Eq. (4). The black squares 

represent the Monte-Carlo simulation results of ref. [13]. In one dimension, the theoretical 

result agrees quantitatively with simulations [38]. Zwanzig’s expression moderately 

overestimates the exact result in 1D.   
 

 

Figure 2 clearly brings out the different nature of diffusion in one dimension compared 

D e
ff/D
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σ
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to that in higher dimensional systems. For example, when  ,  

in one dimension is order of magnitude smaller than those in two and three dimensions.

  

VI. The upper bound of the effective diffusion constant 

In high dimensions, the transitions are most likely considered to be independent 

events. Even when the transition rate to a certain neighboring site is extremely small, 

the transition back to the previously occupied site is unlikely in high dimension. In the 

simplest effective medium approximation, correlations between two sites are taken into 

account. This implies that the random walker remembers the transition rate at the 

previous step on the paths. In the limit of , the memory of previous jumps is lost. 

The loss of the memory of the previous step by taking  limit is taken into 

account in the EMA result. Indeed, by taking  limit of Eq. (17), we obtain the 

exact result   

 
.
                  (31) 

By using the asymptotic expansion,  

                         (32) 

the results can be approximated as,  

                 (33) 
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when !! σ /(2kBT)≫1 . Equation (31) is derived when the each transition is statistically 

independent. The situation is in sharp contrast to the transition in 1d. In 1d, if transition 

to a new position does not occur, the position after the transition should be the same 

place previously occupied. The each transition is not independent and the result given 

by eq. (10) differs from eq. (31). In 2 and 3 d, such correlation is partly preserved and 

the resultant equation given by eq. (30) also differs from eq. (31).    

  In the below, we show that the value of  given by eq. (31) is the 

upper bound. 

First we rewrite eq. (17) as 

.                    (34)
 

Using Jensen’s inequality given by  

 ,     (35) 

we obtain   

 .                (36) 

By combining eqs. (34) and (36), we have   

 .                (37) 

By rearrangement we find  
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eff eff
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− Γ +Γsym

eff
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sym
effd

d

−Γ Γ + Γ≤( 1) sym
effeff dd
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.                              (38) 

The result indicates that  is the upper bound of  calculated from the 

self-consistency equation. If a random walker is surrounded by high barriers and 

barriers are static, the diffusion is suppressed compared to the situation that the barriers 

are not static and can be removed. If every transition is treated as statistically 

independent event, barrier height is determined for each transition and is a dynamical 

quantity. As a result, the effective transition rate overestimates that of a random walker 

under quenched disorder.    

  

Fig. 3 
 

as a function of .  The thick red line indicates the result of 

infinite D given by Eq. (19). The numerical solutions of the self-consistency equation given 

Γ ≤ Γeff
sym

Γsym Γeff

D
ef

f/D
0

σ
2
/(kBT)2

Infinite dimension

0/effD D ( )σ 22
Bk T
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by Eq. (17) are shown by circles (2D), squares (3D), diamonds (10D) and crosses (100D). 

The thick blue line indicates the analytical exact result of 1D given by Eq. (10). The black 

squares represent the Monte-Carlo simulation results of ref. [13]. The theoretical result 

agrees almost quantitatively with simulations [38]. The agreement becomes a bit poorer at 

large ruggedness, although the general behavior is well reproduced by theory. 

 

In Figure 3, we show the results of infinite dimension given by Eq. (31). The results are 

the upper bounds of  as we have proved above. When , 

 of infinite dimension is in the same order as those of 2 and 3 d. In 1 d, if the 

transition rate to the new site is small due to the energy barrier, random walker moves 

back to the original occupied site. In infinite dimension, even if the transition to a 

certain site requires high energy barrier, there would always be available a new site with 

a lower energy barrier. These are two opposite limits. As shown in Fig. 3,  in 

one dimension differs significantly from those in higher dimensions. However, even in 

high dimensions, effects of ruggedness remains significant. 

     
VII. Random trap model 

In the random trap model, the transition rate to a neighboring site is the same for 

any direction in any dimension. Even for the dimension higher than one, the effective 

diffusion constant is exactly given by Zwanzig’s effective diffusion constant. [14] This 

can be understood from the fact that symmetrized rate is given by the bare transition 

rate divided by  at every site, [14] 

0/effD D ( )σ =22 6Bk T

0/effD D

0/effD D

( )⎡ ⎤−⎣ ⎦exp i BU k T
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 .                 (39) 

By substituting  calculated from Eq. (39) into the one dimensional result of Eq. (8), 

Zwanzig’s expression of Eq. (4) can be obtained. Since  is a constant, the 

effective diffusion constant is given by Zwanzig’s expression even in the dimension 

higher than 1d. The above relation on the symmetrized rate holds even under long-range 

correlations. It can be easily shown that the effective diffusion constant is still given by 

Zwanzig’s result of Eq. (4) under a long-range correlation.  

For the trap model, if the average in the above equation [Eq. (8)] is evaluated 

using exponential ruggedness given by Eq. (7), the diffusion constant becomes zero 

when  is smaller than one. In this case, the time evolution of the mean square 

displacement is given by  

                     (40) 

with the exponent  being smaller than one. [45] The process is called sub-diffusion. 

If the random walk is sub-diffusive, the trajectories are localized compared to those of 

normal diffusion at long times. For this case, the exact solution of the form Eq. (8) 

vanishes. However, we obtain  in one dimension and  in 

dimension higher than 1 apart from a weak logarithmic correction term in 2d, when the 

density of states is expressed by the exponential distribution [Eq. (7)]. [45] In 1d, 

( )ρ ⎡ ⎤Γ = Γ = Γ −⎣ ⎦
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0 exp /sym eq trap
ij i ij i BU k T

Γ ij

Γsym
ij

α = 0/T T

γ γ=2 ( )( ) 2 effr t dD t

γ

( )γ α α= +2 / 1 γ α=
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 can also be obtained by using the random barrier model. [8,46] In the 

random barrier model, the site energies are the same and the activation energies for the 

transitions are random. In one dimension, the self-consistency equation expressed in the 

Laplace domain is the same as that obtained by the random trap model including the 

dependence on the Laplace variable. Indeed, the duality between the random barrier 

model and the random trap model in one dimension has been rigorously proved. [36] 

The mean square displacements of the dual models are equal on all time scales. 

Therefore, in the following, we do not distinguish between the results of the random 

trap model and those of the random barrier model in 1d.  

In 1d, it is also known that transient kinetics obtained by the EMA can be 

expressed using hypernetted chain (HNC) diagram. [47] In 1d, EMA value of  

differs from that obtained using more accurate calculations. [48,49] In Fig. 4(a), the 

solid line indicates the EMA result given by [12] 

( ) ( ) ( ) ( ) ( )
αγ γ απα πα α α

+−⎡ ⎤ ⎡ ⎤Γ = Γ + +⎣ ⎦⎣ ⎦
2 1( ) 2 1

0 sin 2 1 3 1effD b .      (41) 

The deviation of the EMA results of  from the more accurate results can be seen in 

Fig. 4(a) when the reduced temperature  is decreased from 0.5. Although the 

value of  deviates by decreasing the value of , the diagonal element of the 

Green function obtained by EMA works fairly accurately for any value of . [49] In 

( )γ α α= +2 / 1

γ( )
effD

γ( )
effD

α = 0T T

γ( )
effD α

α
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Fig. 4 (b), the solid line represents the prefactor of the asymptotic time dependence for 

the diagonal element of the Green function [49]  

 ( )( )γγ
→∞

= Γ − /2
001/ lim ( ) 1 /2GF t

C G t t ,                  (42) 

 where the diagonal element of the Green function for the random trap model in 1d is 

denoted by 00( )G t . In EMA, the probability density profile of random walkers is 

expressed by a Gaussian. The deviation of  indicates that the profile deviates from 

this Gaussian by decreasing the value of . Judging from Fig. 4 (a) and (b), the profile 

of random walkers can be deviate from a Gaussian when  is smaller than 0.5.  

For the higher dimension [d>1], the duality does not hold and the mean square 

displacements can be calculated only approximately. For random trap models, EMA for 

the site disorder should be used instead that for the bond disorder considered so far. In d 

dimension and for the lattice disorder at the origin, the self-consistent equation of EMA 

with the Laplace transform of the time variable can be expressed as [12] 

 Γ −Γ
〈 〉 =

⎡ ⎤Γ + Γ −Γ⎣ ⎦

trap

trap trap
0

( )
0

( ) ( )
eff

eff

s
sE s s

 ,                   (43) 

where Γ ( )eff s  is the effective transition rate expressed in the Laplace domain and 

Γtrap  is the transition rate at the origin to an arbitrary neighboring lattice site. For 

random trap models, Γtrap  depends only on the lattice energy at the origin and is 

independent of the energy at the destination site of the transition. In the above, we 

γ( )
effD

α

α
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define 

 ( )⎛ ⎞Γ
= + Γ⎜ ⎟⎜ ⎟+ Γ⎝ ⎠
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( ) 0, / 2 ( )
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d s
E s g s d s

s d s
,                 (44) 

where the generating function of the lattice Green function is given by  

 ( ) ( ) ( )ξ π ξλ− ⎡ ⎤= − ⋅ −⎣ ⎦∫( , ) 2 exp / 1d
str

B

g d ir k r k k .              (45) 

B represents the first Brillouin zone and λstr  is the lattice structure factor. For a simple 

cubic lattice we have =(0,1) 1.516386g . [12] 

As shown in the Appendix, the effective diffusion coefficients can be obtained 

as  
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α α
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πα π α
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( ) 2
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)
)

eff
tgD b ,  (3d)           (47) 

for 2d (apart from a logarithmic factor) and 3d, respectively, where  in both 

dimensions.  

γ α=
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Fig. 4 (a)  as a function of . (b) ( )( )γγ
→∞

= Γ − /2
001/ lim ( ) 1 /2GF t

C G t t  

as a function of . . The effective diffusion constant and the 

diagonal element of the Green function for the random trap model in 1d are 

expressed by γ( )
effD  and 00( )G t , respectively. The solid lines indicate the EMA 

results given by Eq. (41) and Eq. (42), respectively. The circles represent the 
accurate result of ref. [49]. In (a), the results of ref. [48] overlap those given by 
circles. The cross in (a) indicates the numerical result of ref. [50].    

If the transition to one of the nearest neighbor sites is considered as statistically 

independent, the waiting time distribution of making a jump to a nearest neighbor site 

can be expressed as  

!! 
ψ t( ) = dUPexp(U)

0

∞

∫ Γ ij
(trap)(U)exp −2dΓ ij

(trap)(Ui )t⎡⎣ ⎤⎦ ∼1/t
α .              (48) 

Continuous time random walk (CTRW) can be formulated using the waiting time 

distribution and we obtain . [51] As far as the exponent  is concerned, CTRW 

formalism is a reasonable approximation when the dimension is higher than one.  

The exponent  of the sub-diffusion processes of the one dimensional 
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random walk is different from that in the dimension higher than one. The difference 

indicates that the random walk trajectories in one dimension differ from those in other 

dimensions. In one dimension, the random walker moves back and forth and the 

movement produces larger temporal correlations. 

 

VIII. Conclusion 
 

One is well-aware that in isotropic homogeneous medium, diffusion constant is 

usually independent of dimension since the dimension d is factored out by dividing the 

mean square displacement by d, in Einstein’s expression. This may be the reason why 

(as discussed extensively by Stein and Newman) most of the existing discussions of 

relaxation in random systems employ a description of one dimensional diffusion.[40,41] 

The underlying physical picture is that of a random walker in one dimensional random, 

dissipative environment where the relaxation behavior is insensitive to dimension. 

 

Thus, one often “freely” uses reduction in degrees of freedom, as common in time 

dependent statistical mechanics, to obtain a one dimensional description, such as the 

one employed by van der Zwan and Hynes in the study of various chemical 

reactions.[52] Such a reduction procedure leaves one with a frequency dependent 
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friction in the Langevin equation which can then be transformed into a time dependent 

diffusion equation, if needed.[53] Another classic example of such reduction procedure 

is Zwanzig’s treatment of coupled oscillators where the solute degree of freedom is 

coupled to N-number of harmonic oscillators.[54]  As in the previous examples, this 

reduction of degrees of freedom is accommodated through a frequency dependent 

friction term. 

 

In the already discussed example of dynamics of protein folding which is modeled as a 

diffusion in configuration space of a protein, theoretical modeling sometimes employs a 

one dimensional Smoluchowski equation approach. This is however very much a 

multidimensional problem. Actually, one might err seriously by such modeling, as 

discussed above and also below, particularly when the energy surface is rugged. In fact, 

the funnel model of protein folding allows us to assert the importance of the present 

study. The rugged landscape model of protein folding starts with a many dimensional 

description and the multidimensional nature of the surface is essential for the success of 

the model as one assumes that multiple alternative pathways accelerates the folding rate 

(often referred to as the “new picture”). In the contrary, a one dimensional description 

with ruggedness may slow down folding, as demonstrated in the present work.  
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  As already noted, Stein-Newman’s argument about pathological nature of diffusion in 

a one dimensional rugged landscape (with simultaneous presence of maxima and 

minima that enhances the chance of trapping of the random walker) arises from the 

observation that the chance of encountering larger and larger barriers increase as T log t 

where T is the temperature and t is the time. The random walker faced with a large 

barrier gets rebounded and then retraces the same path it traversed before, leading to 

lowering and eventual vanishing of diffusion constant. This can be understood from 

Eq.1.   

 

In this context, another result of Stein and Newman that is of particular relevance here is 

that when dimensionality is higher than eight, different paths “from the lake leading to 

the sea” need not overlap. This conclusion is reached by mapping the random walk in 

random environment (RWRE) problem to an invasion percolation problem. [41,42] 

Note that conclusions of N-S are strictly valid in the limit when the T going to zero limit 

is taken prior to t going to infinity limit. But nevertheless, their conclusions have 

relevance when ruggedness is large and rate limiting, as discussed previously and 

demonstrated in this work. 

  Interestingly, the model of N-S seems to agree with and even justify the protein 
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folding funnel paradigm mathematically that beyond a critical high dimension, different 

paths to the native state need not overlap. Of course, there are many other aspects of the 

folding dynamics that are not included in this multidimensional description. 

 

  The result that diffusion in rugged landscape can be drastically different in 1d from 

that in higher dimensions is in itself an interesting result, so is the non-trivial 

dependence of diffusion constant on the dimension d.  This is purely a consequence of 

ruggedness. Such a scenario also unfolds in random trap model with an exponential 

distribution of activation energies in the escape rates. However, in the latter case we do 

not recover diffusion even in the long time limit. In the present case of Gaussian 

ruggedness, no such difficulty arises and diffusion constant exists if we keep ruggedness 

fixed and take the limit t going to infinity properly. 

  Our result clearly demonstrates that existence of ruggedness makes diffusion of a 

particle strongly dimensionality dependent. In particular, diffusion increases by even a 

factor of 5 at intermediate level of ruggedness in going from 1d to 2d. This seems to 

vindicate the argument of Stein and Newman about the unusual constrain that a random 

walker faces in 1d. 

  In the results presented here and elsewhere [37], we show that presence of positive 
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correlations (giving coherence among energy values) increase diffusion in one 

dimensional systems. The magnitude of the effect is small in the model studied which 

may be a consequence of 1d and/or simplicity of the model. 

  It may be interesting to explore this role of correlations in more details. This has been 

a topic of discussion in evolutionary biology [33]. It will be particularly interesting to 

explore the effect of anti-correlation among energy landscape that may decrease the 

value of diffusion significantly. Correlations in landscape may explain the crossover 

from Rosenfeld to Adam-Gibbs scenario. We are working on this problem. 

It remains an interesting unfinished work to obtain a description of the time 

dependence of diffusion, or time dependence of mean square displacement, of the 

random walker in an arbitrary dimension, as a function of ruggedness (or, temperature, 

T) and time, t. In the short-to-intermediate times (to be determined by ruggedness in 

each case), dynamics lacks universality and determined by specificity of the model. 

 As future problems, more extensive computer simulation studies of dimensionality 

dependence of diffusion in correlated landscapes shall be worthwhile pursuits. We 

particularly need simulation results on diffusion in rugged two dimensional energy 

landscapes. No simulation results seem to exist for this system. Lastly, the role of 

temperature on diffusion in rugged landscape requires special attention, not just in the 
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context of the discussed cross-over from Rosenfeld scaling regime to Adam-Gibbs 

scenario but also from a fundamental dynamical point of view such as broken or 

compromised ergodicity in this model. Emergence of spatial correlations in the energy 

distribution of the landscape may play an important role in determining this crossover. 
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APPENDIX.   EMA FOR RANDOM TRAP MODELS 

For convenience, we define, 

 Γ
Γ =

Γ
( )

0

( )
( ) effr

eff

s
s  .                      (A1) 

By evaluating the ensemble average using exponential form of the site energy given by 

Eq. (7), the self-consistent equation can be rewritten as, 
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where ( )2 1	   , ; ;F a b c x  represents the Gaussian hypergeometric function [55]. When 

α <1  and !!s→0 , we can applying asymptotic expansion [55] 

 [ ] απαα α
πα

−+ − ≈2 1	   1, ;1 ;
sin

	  F x x  ,                   (A3) 

 [ ] αα α
α
++ + − ≈2 1
1 1	   1,1 ;2 ; 	  F x
x

 ,                 (A4) 

for →∞x . In these cases, Eq. (A2) can be approximately expressed as 

 ( )
α

απα
πα

−Γ⎛ ⎞
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1
0

0

( ) sin ( )eff s sE s  .                  (A5) 

The dimensionality dependence of Γ ( )eff s  originates from the difference in the 

generating function of the lattice Green function in 0( )E s .   

In 1d, we have ξ ξ= − 2(0, ) 1/ 1g  [12] and 

 ≈
Γ0

1 2( )
2 ( )eff

sE s
s

                          (A6) 

when !!s→0 . By substituting the above result into Eq. (A5), we obtain, 
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α α α α
α
πα
πα
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The mean square displacements are obtained from the inverse Laplace transform of 

Γ22 ( )/effdb s s  as 
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α απα α
πα α
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The result leads to Eq. (41). 
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In 2d, we have [ ]ξ π ξ= −(0, ) (1/ )ln 8/(1 )g  [12] and 
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eff
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sssE s
s s

                  (A9) 

when !!s→0 . By substituting the above result into Eq. (A5), we obtain, 
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.          (A10) 

The above equation is a self-consistent equation for Γ ( )/eff s s . Apart from a weak 

logarithmic factor, the mean square displacements are obtained from the inverse 

Laplace transform of Γ2 22 ( )/effdb s s  as 

 ( )ααπα
πα π α

− Γ⎛ ⎞〈 〉 = ⎜ ⎟ Γ +⎝ ⎠

1
02 2 sin ln(32)( ) 4

4 (1 )
t

r t b .              (A11) 

By comparing the result with Eq. (40), we obtain Eq. (46). 

In 3d, we can express 

 ≈
Γ0( ) (0,1)
6 ( )eff

ssE s g
s

,                      (A12) 

when !!s→0 . By substituting Eq. (A12), Eq. (A5) can be rewritten as, 

 
α

α
πα

πα

−Γ ⎛ ⎞≈ ⎜ ⎟Γ ⎝ ⎠

1

0

( ) sin (0,1)
6

eff s s g .                 (A13)  

The mean square displacements can be obtained from the inverse Laplace transform of 

Γ2 22 ( )/effdb s s . Using Tauberian theorem, we obtain  



 37 

 ( )ααπα
πα α

− Γ⎛ ⎞〈 〉 = ⎜ ⎟ Γ +⎝ ⎠

1
02 2 sin (0,1)( ) 6

6 (1 )
tgr t b .                 (A14) 

By comparing the result with Eq. (40), we obtain Eq. (47).  

As shown in the main text, α α+〈 〉2 2 /(1 )( ) ~r t t is obtained for 1d and 

α〈 〉2( ) ~r t t  is obtained for 2d and 3d. As regards to the exponents, they were obtained 

by different methods [45].  
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