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Abstract

The functional linear model is a popular tool to investigate the relationship

between a scalar/functional response variable and a scalar/functional covariate.

We generalize this model to a functional linear mixed-effects model when re-

peated measurements are available on multiple subjects. Each subject has an

individual intercept and slope function, while shares common population in-

tercept and slope function. This model is flexible in the sense of allowing the

slope random effects to change with the time. We propose a penalized spline

smoothing method to estimate the population and random slope functions. A

REML-based EM algorithm is developed to estimate the variance parameters

for the random effects and the data noise. Simulation studies show that our es-

timation method provides an accurate estimate for the functional linear mixed-

effects model with the finite samples. The functional linear mixed-effects model

is demonstrated by investigating the effect of the 24-hour nitrogen dioxide on

the daily maximum ozone concentrations and also studying the effect of the

daily temperature on the annual precipitation.

Keywords: EM algorithm, Functional Linear Regression, Penalized Splines,

Random Effects Model

∗Corresponding email: jiguo cao@sfu.ca

Preprint submitted to Computational Statistics & Data Analysis January 7, 2016

ar
X

iv
:1

60
1.

01
03

9v
1 

 [
st

at
.M

E
] 

 6
 J

an
 2

01
6



1. Introduction

When a random variable is measured or observed at multiple time points

or spatial locations, the data can be viewed as a function of time or spatial

locations. This type of data is generally called as functional data (Ramsay

and Silverman, 2005). In the current big data era, functional data analysis

(FDA) has become very popular in statistical methodology and applied data

analysis. Functional linear models (FLMs) is one of the most popular models in

FDA. It models the relationship between functional variables and/or predicts the

scalar response from the functional input. FLMs have been studied extensively

since Ramsay and Dalzell (1991) introduced them. With the developments

of modern technology, FLMs have been popularly applied to model functional

data in many fields such as economics, medicine, environment, climate [see for

instance, Ramsay and Silverman (2002), Ramsay and Silverman (2005), and

Ferraty and Vieu (2006), for several case studies].

There is extensive literature studying estimations and properties of FLMs.

For example, Chiou et al. (2003) applied a quasi-likelihood approach to study

a FLM with a functional response and a finite-dimensional vector of scalar

predictors. Yao et al. (2005) studied FLMs for sparse longitudinal data and

suggested a nonparametric estimation method based on the functional principal

components analysis (FPCA). Their proposed functional regression approach is

flexible to allow for different measurement time points of functional predictors

and the functional response. Cai and Hall (2006) discussed the prediction prob-

lem in FLMs based on the FPCA technique. Crambes et al. (2009) proposed

a smoothing spline estimator for the functional slope parameter, and extended

it to covariates with measurement-errors. Yuan and Cai (2010) suggested a

smoothness regularization method for estimating FLMs based on the reproduc-

ing kernel Hilbert space (RKHS) approach. They provided a unified treatment

for both the prediction and estimation problems by developing a tool on si-

multaneous diagonalization of two positive-definite kernels. Wu et al. (2010)

proposed a varying-coefficient FLM which allows for the slope function depend-
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ing on some additional scalar covariates. A systematic review on FLMs can be

found in Morris (2015).

One popular FLM is to link a scalar response variable Yj , j = 1, . . . ,m, with

a functional predictor Xj(t) through the following model

Yj = α+

∫
S

β(t)Xj(t)dt+ εj , (1)

where α is the intercept, β(t) is a smooth slope function, εj ’s are independent

and identically distributed (i.i.d.) random variables with mean 0 and variance

σ2
ε , and S is often assumed to be a compact subset of an Euclidean space such

as [0, 1]. The slope function, β(t), represents the accumulative effect of the

functional covariate Xj(t) on the scalar response Yj .

For purposes of illustration, we take the air pollution data as an example.

This data is from the R package NMMAPSdata (Peng and Welty, 2004). The

data have hourly measurements of ozone and nitrogen dioxide NO2 concentra-

tions for some U.S. cities. Our aim is to study the relationship of the daily

maximum ozone concentration and the functional predictors nitrogen dioxide

NO2(t) measured during 24 hours (from 0 am to 11 pm) of that day. For the

i-th city, the scalar response Yij is the maximum ozone concentration during 24

hours (from 0 am to 11 pm) in the j-th day, and the functional covariate Xij(t)

is the hourly NO2(t) concentration measured during 24 hours. In a preliminary

analysis, we performed a functional linear regression model (Cardot et al., 2007)

on each individual city and found that there was a dramatic variation of the

estimated β̂(t). This indicates that each city has different effects of the hourly

NO2(t) concentration on the daily maximum ozone. Therefore, it may not be

appropriate to pool all the data of U.S. cities together and provide only one av-

erage effect of hourly NO2(t) on the daily maximum ozone. On the other hand,

we may not use all of the data information available if we fit the functional

linear model for each individual city separately.

To address this dilemma, we generalize the FLM (1) to incorporate random

effects into the slope function, and call it the functional linear mixed-effects

model (FLMM). Assume that we repeatedly observed a distinct functional pre-
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dictor and scalar outcome for each subject over several visits. Then the observed

data has the structure {Yij , Xij(t)} for 1 ≤ i ≤ n and 1 ≤ j ≤ mi, where Yij is

the j-th repeated measurement of the scalar response for the i-th subject, and

Xij(t) is the corresponding functional predictor. The functional linear mixed-

effects model can be expressed as following:

Yij = α0 +ai+

∫
S

[β(t)+bi(t)]Xij(t)dt+εij , i = 1, 2, ..., n, j = 1, 2, ...,mi, (2)

where α0 is the population intercept, ai is the intercept random effect, β(t)

represents the population effect of Xij(t) on Yij , bi(t) stands for the random

effect of Xij(t) on Yij for the i-th subject, and εij is the i.i.d. random variable

with mean 0 and variance σ2
ε . In this article, we assume that ai ∼ N(0, σ2

a),

εij ∼ N(0, σ2
ε ), and bi(t) follows a Gaussian stochastic process with mean 0 and

covariance function γ(s, t), that is, bi(t) ∼ GP (0, γ(s, t)). We also assume that

ai, εij , bi(t), and Xij(t) are mutually independent. The above functional linear

mixed-effects model is very attractive, because it can estimate the population

effect and random effect of the functional predictor X(t)(e.g. the hourly NO2(t)

in the air pollution study) on the scalar response Y (e.g. daily maximum ozone

concentrations) as well as the population intercept and intercept random effect

simultaneously. The application of the proposed functional linear mixed-effects

model on the air pollution problem is not unique, and many similar applications

can be found in environmental or biological problems.

The proposed functional linear mixed-effect model (2) is different from the

following functional mixed model (Goldsmith et al., 2011, 2012):

Yij = Zibi +

∫
S

β(t)Xij(t)dt+ εij , (3)

where bi ∼ N(0, σ2
bI) accounts for correlations in the repeated outcomes for

the i-th subject. The highlight of the distinction between (2) and (3) is: the

subject-specific random effect bi of (3) remains the same across visits, while the

random effect bi(t) of (2) allows for varying with time. The including of the

random effect bi(t) in (2) can characterize the different trend effect of functional

predictor on scalar outcomes for different subjects.
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Many nonparametric smoothers used for the FLMs can be applied to fit

the model (2). In this article, we use the idea of penalized splines smoothers of

Ramsay and Silverman (2005) to estimate β(t) and bi(t) in (2). Then, the model

(2) is transformed by a linear mixed-effects model (LMM). Then a REML-based

EM algorithm is proposed to fit the LMMs, and its efficiency is illustrated by

examples.

The remainder of this article is organized as follows. Section 2 introduces a

smoothing spline method to estimate the above functional linear mixed-effects

model. Section 3 implemented some simulations to evaluate the finite sample

performance of the smoothing spline method. Then the functional linear mixed-

effects model is demonstrated by two real applications in Section 4. Conclusions

are given in Section 5.

2. Method

Without giving any parametric assumption on the slope functions, β(t) and

bi(t), we estimate them as linear combinations of splines basis functions

β(t) =

J∑
j=1

cjφj(t) = φ′(t)c , bi(t) =

K∑
k=1

bikψk(t) = ψ′(t)bi .

where φ(t) = (φ1(t), ..., φJ(t))′ and ψ(t) = (ψ1(t), ..., ψK(t))′ are two vectors

of basis functions with dimensions J and K, respectively, and c = (c1, ..., cJ)′

and bi = (bi1, ..., biK)′ are the corresponding vectors of basis coefficients to

estimate. Let D = Cov(bi) = E(bib
′
i) denote the variance-covariance matrix of

random-effects, then bi ∼ N(0,D), and the covariance function γ(s, t) for the

random effect bi(t) can be expressed as γ(s, t) = ψ′(s)Dψ(t) . We first consider

the scenario of the functional predictors Xij(t) observed without measurement

errors. When Xij(t) is observed with measurement errors, many nonparametric

smoothing approaches can be applied to reconstruct the underlying functional

predictors Xij(t), such as the functional principal component analysis method

(Yao et al., 2005), which is introduced in Subsection 2.5.
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2.1. Estimating Fixed and Random Effects

Let θ = (α0, c
′)′ and ξ = (ξ′1, ..., ξ

′
n)′ with ξi = (ai,b

′
i)
′, i = 1, ..., n. The

fixed effects {α0, β(t)}, and random effects {ai, bi(t)} are estimated by minimiz-

ing

H(θ, ξ) =

n∑
i=1

mi∑
j=1

1

2σ2
ε

(
Yij − α0 − ai −

∫
S

[β(t) + bi(t)]Xij(t)dt

)2

+
1

2

n∑
i=1

b′iD
−1bi

+

[
λβ
2

∫
S

{
d2β(t)

dt2

}2

dt+
λb
2

n∑
i=1

∫
S

{
d2bi(t)

dt2

}2

dt

]
+

1

2σ2
a

n∑
i=1

a2i . (4)

Define three vectors Yi = (Yi1, ..., Yimi
)′, Wi = [wi1, · · · ,wimi

]′ and Zi =

[zi1, · · · , zimi
]′ where wij =

(
1,
∫
S
φ′(t)Xij(t)dt

)′
and zij =

(
1,
∫
S
ψ′(t)Xij(t)dt

)′
.

Define a J × J matrix G =
∫
S
(d2φ(t)/dt2)(d2φ(t)/dt2)′dt and a K × K ma-

trix Gb =
∫
S
(d2ψ(t)/dt2)(d2ψ(t)/dt2)′dt. Then H(θ, ξ) can be expressed in a

matrix form

H(θ, ξ) =

n∑
i=1

1

2σ2
ε

‖Yi −Wiθ − Ziξi‖2 +
1

2

n∑
i=1

b′iD
−1bi

+ (
λβ
2

c′Gc +
λb
2

n∑
i=1

b′iGbbi) +
1

2σ2
a

n∑
i=1

a2i .

Then the estimates for θ and ξ are obtained by minimizing H(θ, ξ):

θ̂ =
(
W′Ṽ−1W + λG̃

)−1
W′Ṽ−1Y,

ξ̂ = (In
⊗

D̃ξ)Z
′Ṽ−1(Y −Wθ̂) .

(5)

where Y = (Y′1, ...,Y
′
n)′, W = (W′

1, ...,W
′
n)′, Ṽ = diag(Ṽ1, ..., Ṽn) with

Ṽi = ZiD̃ξZ
′
i + σ2

ε Imi
, i = 1, ..., n, G̃ = diag(0,G), D̃ξ = (D−1ξ + λbGξ)

−1,

Dξ = diag(σ2
a,D), Gξ = diag(0,Db), Z = diag(Z′1, ...,Z

′
n), and

⊗
denotes the

kronecker product.

Once obtaining the estimates θ̂ = (α̂0, ĉ
′)′ and ξ̂i = (âi, b̂

′
i)
′, the estimates

of β(t) and bi(t), i = 1, ..., n, can be given by

β̂(t) = φ′(t)ĉ, b̂i(t) = ψ′(t)b̂i, i = 1, ..., n. (6)
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2.2. The REML-based EM algorithm

To estimate the fixed-effects, θ, the random-effects, ξ, and the variance

parameters, σ2
a, σ2

ε and D, we recommend an EM algorithm procedure called

the REML-based EM-algorithm. It was proposed by Wu and Zhang (2006)

for estimating nonparametric mixed-effects regression models with longitudinal

data. The REML-based EM-algorithm has three steps, which are outlined as

follow.

Initializing. Initializing the starting values for σ2
a, σ2

ε and D, denoted by

σ
2(0)
a , σ

2(0)
ε and D(0) , respectively. For example, we can choose σ

2(0)
a = σ

2(0)
ε = 1

and D(0) as an identity matrix .

Step 1. Set r = r + 1. Compute

D̃
(r−1)
ξ = [{D(r−1)

ξ }−1 + λbGξ]
−1,

Ṽ
(r−1)
i = ZiD̃

(r−1)
ξ Z′i + σ

2(r−1)
ε Imi , i = 1, 2, ..., n.

Denote Ṽ(r−1) = diag(Ṽ
(r−1)
1 , ..., Ṽ

(r−1)
n ). Then estimate θ̂

(r)
and ξ̂

(r)

i by

θ̂
(r)

= [W′{Ṽ(r−1)}−1W + λβG̃]−1W′{Ṽ(r−1)}−1Y,

ξ̂
(r)

i = D̃
(r−1)
ξ Z′i{Ṽ

(r−1)
i }−1(Yi −Wiθ̂

(r)
), i = 1, 2, ..., n.

Step 2. Compute the residuals ε̂
(r)
i = Yi−Wiθ̂

(r)
−Ziξ̂

(r)

i and the matrix

H
(r−1)
i = {Ṽ(r−1)

i }−1−{Ṽ(r−1)
i }−1Wi[W

′{Ṽ(r−1)}−1W+λβG̃]−1W′
i{Ṽ

(r−1)
i }−1.

Then the updates of σ
2(r)
ε and D

(r)
ξ = diag(σ

2(r)
a ,D(r)) are given by

σ
2(r)
ε = N−1

n∑
i=1

{
{ε̂(r)i }′ε̂

(r)
i + σ

2(r−1)
ε [mi − σ2(r−1)

ε trace(H
(r−1)
i )]

}
,

D
(r)
ξ = n−1

n∑
i=1

{
ξ̂
(r)

i {ξ̂
(r)

i }′ + [D
(r−1)
ξ −D

(r−1)
ξ Z′iH

(r−1)
i ZiD

(r−1)
ξ ]

}
.

Step 3. Repeat Steps 2 and 3, until some convergence conditions are satis-

fied.

2.3. Smoothing Parameter Selection

The smoothness of β(t) and bi(t), i = 1, . . . , n, are controlled by the smooth-

ing parameter λβ and λb, respectively. Define λ = (λβ , λb)
′, then the optimal
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value for λ is chosen by minimizing the generalized cross-validation (GCV) cri-

terion defined as follows

GCV(λ) =
SSE(λ)

(N − df(λ))2
,

where SSE(λ) =
n∑
i=1

‖Yi −Wiθ̂ − Ziξ̂i‖2, N =
∑n
i=1mi, and df(λ) is the

effective degrees of freedom, which is calculated as df(λ) = trace(Q), where Q

is given by

Q = (W,Z)

 1

σ2
ε

 W′W W′Z

Z′W Z′Z

+

 λβG̃ 0

0 In
⊗

D̃ξ

−1 W′

Z′

 .

Define the matrix Si = Wi[W
′Ṽ−1W + λβG̃]−1W′Ṽ−1. The predictor Ŷi =

Wiθ̂ + Ziξ̂i can then be expressed as Ŷi = QiY with

Qi = Si + ZiD̃ξZ
′
iṼ
−1(Imi

− Si).

Note that the smooth matrix Q = (Q′1, ...,Q
′
n)′.

2.4. Constructing the Confidence Intervals

To construct the confidence intervals of α0 and the point-wise confidence

bands of β(t), we need to calculate the covariance matrix of θ̂:

Cov(θ̂) =

(
n∑
i=1

W′
iṼ
−1
i Wi + λβG̃

)−1( n∑
i=1

W′
iṼ
−1
i Cov(Yi)Ṽ

−1
i Wi

)
(

n∑
i=1

W′
iṼ
−1
i Wi + λβG̃

)−1
. (7)

In (7), Cov(Yi) can be replaced by Ṽi to account for our roughness penalty on

bi(t), i = 1, ..., n. For simplicity, instead of using Cov(θ̂), we use

Cov(θ̂) =

(
n∑
i=1

W′
iṼ
−1
i Wi + λβG̃

)−1
. (8)

Let Ĉov(θ̂) be the estimator of the covariance matrix (8) and partition it as

Ĉov(θ̂) =

 σ̂2
11 Σ̂12

Σ̂
′
12 Σ̂22

. Then the 95% confidence intervals of α0 is approx-

imately as

(α̂0 − 1.96σ̂11, α̂0 + 1.96σ̂11) ,

8



and the 95% pointwise bands of β(t) can be approximately given by(
β̂(t)− 1.96

√
V̂ar[β̂(t)], β̂(t) + 1.96

√
V̂ar[β̂(t)]

)
, for all t ∈ S,

where V̂ar[β̂(t)] = Φ′(t)Σ̂22Φ(t). Moreover, the estimate of γ(s, t) can be given

as

γ̂(s, t) = Ψ′(s)D̂bΨ(t) ,

where we use D̂b = (0, IK)
(
D̂−1ξ + λbGξ

)−1
(0, IK)′ instead of D̂ in order to

account for our roughness penalty on bi(t), i = 1, ..., n in our method.

2.5. Reconstructing the predictors Xij(t)

When covariates Xij(t) in the functional linear mixed-effects model (2) are

not be exactly observable but measured with errors, the estimators and infer-

ence may be biased if one ignores these measurement errors. Hence, we need to

adjust the resulting bias. In this article, we suggest to reconstruct the functional

predictors Xij(t) by using a large number of functional principal components ob-

tained from a smooth estimator of the covariance matrix estimator (Goldsmith

et al., 2012) firstly. Then, we treat the estimated X̂ij(t) as the true predictors

and applying the REML-based EM algorithm.

Define the covariance function of X(t) as

C(s, t) = Cov(X(t), X(s)).

Mercer’s theorem (Ash and Gardner, 1975) states that C(s, t) has the eigen-

decomposition

C(s, t) =

∞∑
k=1

λkϕk(s)ϕk(t),

where λ1 ≥ λ2 ≥ ... ≥ 0 satisfying
∑∞
k=1 λk < ∞, and ϕk(t)’s form a complete

orthonormal basis in S× S. Then, X(t) allows the Karhunen-Loeve decomposi-

tion (Rice and Silverman, 1991)

X(t) = µ(t) +

∞∑
k=1

ξkϕk(t)
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where ϕk(·) is the orthonormal eigenfunction, which is also called the functional

principal component (FPC). The coefficients ξk is called the FPC score of X(t),

which satisfies E(ξk) = 0, E(ξ2k) = λk, and E(ξkξl) = 0 for k 6= l.

Suppose we have the following additive measurement error model,

Wij(t) = Xij(t) + eij(t),

where Wij(t) is the observed value, Xij(t) is the underlying true value for the ith

subject at the time point t, and eij(t) represents the measurement error at the

time point t. We assume that eij(t) is a mean zero process, and {Xij(t), eij(t)}

are mutually independent. We estimate C(s, t) by using a method-of-moments

approach, and then smooth the off-diagonal elements of this observed covari-

ance matrix to remove the ‘nugget effect’ that is caused by measurement error

(Staniswalis and Lee, 1998; Yao et al., 2005; Goldsmith et al., 2012).

We use the principal analysis by conditional estimation (PACE) algorithm

proposed by Yao et al. (2005) to estimate the mean curve µi(t), the FPCs ϕik(t)

and the FPC scores ξijk from the observations Wij(tijk). Let µ̂i(t), ϕ̂ik(t), and

ξ̂ijk be the corresponding estimators of µi(t), ϕik(t) and ξijk, respectively. Then

an estimate of Xij(t) is obtained as

X̂ij(t) = µ̂i(t) +

M∑
k=1

ξ̂ijkϕ̂ik(t)

where the number of FPCs, M , can be chosen by AIC, BIC, the cross-validation

method, or the empirical experience based on the percentage of explained vari-

ance (such as 90% or 95%).

3. Simulation studies

In this section, we perform some numerical experiments to assess the effi-

ciency of our proposed estimating procedure for the functional linear mixed-

effects model (2). The performance of our estimation method is evaluated by

the following relative mean integrated square error (RMISE) for the estimated
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population slope function β̂(t) and the individual slope function β̂1(t), · · · , β̂n(t),

RMISE(β̂(t)) =

∫
S
(β̂(t)− β(t))2dt∫

S
β2(t)dt

,

and

RMISE(β̂1(t), · · · , β̂n(t)) =

∑n
i=1

∫
S
(β̂i(t)− βi(t))2dt∑n
i=1

∫
S
β2
i (t)dt

,

where βi(t) = β(t) + bi(t), and β̂i(t) = β̂(t) + b̂i(t), i = 1, . . . , n.

We assume that the functional predictor Xij(t) are observed at n equally-

spaced time points {tk, k = 1, ..., n} of [0, 1] with the additive normal measure-

ment errors:

Wij(tk) = Xij(tk) + eijk, eijk ∼ N(0, σ2
e),

where σe = 0.0 or 0.5, and the true underlying predictors Xij(t) are given by

Xij(t) = µi(t) +
√

2

4∑
k=1

ξijkψk(t) , t ∈ [0, 1] ,

where µi(t) = δi0+δi1 sin(πt) with independent random variables δi0 ∼ U [−2, 2],

δi1 ∼ N(0, 4), ξijk ∼ N(0, 2/2k), k = 1, 2, 3, 4, and ψ1(t) = sin(2πt), ψ2(t) =

cos(2πt), ψ3(t) = sin(4πt) and ψ4(t) = cos(4πt). We choose two types of func-

tions for the individual slope functions βi(t): (1) βi(t) = η0i+η1it
2+η2i exp(−3t)

with the population slope function given by β(t) = 1 + 2t2 + exp(−3t); (2)

βi(t) = η0i + η1i sin(2πt) + η2i cos(2πt) with the population slope function given

by β(t) = 1 + 2 sin(2πt) + cos(2πt). The random coefficients are generated as

(η0i, η1i, η2i)
′ ∼ N((1.0, 2.0, 1.0)′, diag(0.22, 0.42, 0.22)) for both of cases. The

scalar response is generated from the following model:

Yij = αi +

∫ 1

0

βi(t)Xij(t)dt+ εij , εij ∼ N(0, σ2
ε ), i = 1, 2, ..., n, j = 1, 2, ...,mi ,

where αi is generated from N(3.0, 0.25). The number of repeated measurements

for each individual is varied as mi = 5, 10, 20. The number of individuals is set

as n = 50 and 100, and the standard deviation of the data noises is varied as

σε = 0.5 and 1.0.

The functional linear mixed-effects model (2) is estimated using the method

introduced in Section 2. In case 1, we choose 35 cubic B-splines basis functions

11
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Figure 1: The pointwise mean, bias, standard deviation (STD) and root mean squared error

(RMSE) of the estimated population slope function β̂(t) in 1,000 simulation replicates when

mi = 20 and σε = 1.0 in our simulation studies. The dashed line in the top left panel is the

true population slope function β(t) = 1 + 2t2 + exp(−3t).

for β(t) and bi(t); while in case 2, we choose 35 Fourier basis functions for β(t)

and bi(t). Figure 1 and 2 display the pointwise mean, bias, standard deviation

and root mean squared error of the estimated population slope function β(t) in

1,000 simulation replicates when (mi, n) = (20, 100) and (σe, σε) = (0.5, 1.0). It

shows that the pointwise mean of the estimated population slope function β̂(t)

is very close to the true function β(t) in both of cases.

The estimation results for all simulation setups are summarized in Table 1-

2. As expected, there is a substantial decrease in RMISE when more visits are

observed per subject. When the functional covariate X(t) is observed directly

without measurement errors (i.e. σe = 0), the mean and median of RMISE for
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Figure 2: The pointwise mean, bias, standard deviation (STD) and root mean squared error

(RMSE) of the estimated population slope function β̂(t) in 1,000 simulation replicates when

mi = 20 and σε = 1.0 in our simulation studies. The dashed line in the top left panel is the

true population slope function β(t) = 1 + 2 sin(2πt) + cos(2πt).
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the estimated population slope function β̂(t) and individual slope function β̂i(t)

is close, which indicates that the estimation is stable. In this case, when the

number of replicated measurements for each individual increases from mi = 5

to mi = 10, the mean of RMISE of the estimated population slope function

β̂(t) decreases 27%, and the mean of RMISE of the estimated individual slope

function β̂i(t) decreases 8%. When the functional covariate X(t) is observed

with measurement errors with the standard deviation σe = 0.5, the mean of

RMISE of the estimated population slope function β̂(t) increases 36%, and the

mean of RMISE of the estimated individual slope function β̂i(t) increases 25%,

in comparison with the case when the functional covariate X(t) is observed

directly without measurement errors.

4. Applications

In this section, we perform the afore-proposed FLMMs via the EM algorithm

to analyze two applications.

4.1. Ozone Pollution Analysis

The first study is to re-visit the air pollution study introduced in Section 1.

The functional linear mixed-effects model (2) is used to study the effect of the

24-hour nitrogen dioxide NO2(t) on the daily maximum ozone concentration.

We fit the following mixed-effect model

Yij = α0 + ai +

∫ 23

0

[β(t) + bi(t)]Xij(t)dt+ εij ,

ai ∼ N(0, σ2
a), εij ∼ N(0, σ2

ε ), i = 1, ..., n, j = 1, ...,mi ,

where Yij is the daily maximum ozone within 24 hours for the j-th day in the

i-th city, Xij(t) is the 24-hour nitrogen dioxide NO2(t) observations. The data

are collected for n = 62 cities from April 13 to September 30, 1996.

For computational facilities, we have considered the penalized spline esti-

mator and expand the functional coefficients in cubic B-splines basis functions

with K = 26 equispaced interior knots for the population slope function β(t)

and the random slope function bi(t).
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The fixed effects {α0, β(t)} and random effects {ai, bi(t)} are estimated by

minimizing

H(θ, ξ)

=

n∑
i=1

mi∑
j=1

1

2σ2
ε

(
Yij − α0 − ai −

∫ 23

0

[β(t) + bi(t)]Xij(t)dt

)2

+
1

2

n∑
i=1

b′iD
−1bi

+

[
λβ
2

∫ 23

0

{
d2β(t)

dt2

}2

dt+
λb
2

n∑
i=1

∫ 23

0

{
d2bi(t)

dt2

}2

dt

]
+

1

2σ2
a

n∑
i=1

a2i .

The smoothing parameters are chosen as λβ = 102.0 and λb = 100.5 by GCV cri-

terion. We implement the REML-based EM algorithm proposed in Section 2.4.

The estimate for the intercept α0 is α̂0 = 3.8262 with the estimated standard

error 0.0094, and the 95% confidence interval of α0 is [3.8078, 3.8446].

Figure 3 displays the estimate population slope function β̂(t) and its ap-

proximate 95% pointwise confidence interval. We can see a positive correlation

between the maximum ozone concentration and the nitrogen dioxide before 11

am and after 8 pm but negative correlation between 11 am and 8 pm. Due to

the stopping of the sun lighting in the night, a lot of nitrogen dioxide is accu-

mulated; with the sunrise at about 6 am, more and more nitrogen dioxide is

reacted with the sun light to generate ozone, so more ozone is generated with

the decreasing of nitrogen dioxide. This process will last until the sunset at

about 7-8 pm, then the nitrogen dioxide is accumulated again.

Figure 4 displays the estimated individual slope function β̂i(t) = β̂(t) + b̂i(t)

for four cities: Baton Rouge, Buffalo, Johnstown, and Tampa. The individual

slope function β̂i(t) for Buffalo is lower than the population slope function in the

whole day, which indicates that the hourly nitrogen dioxide has a lower effect

on maximum ozone concentration in the whole day. On the other hand, the

individual slope function β̂i(t) for Tampa is higher than the population slope

function in the whole day. This interesting phenomenon cannot be found from

the regular functional linear regression model.
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Figure 3: The estimated population slope function β̂(t) for predicting the log maximum of

ozone concentration from the hourly NO2(t). The shaded area indicates the pointwise 95%

confidence interval for β̂(t).
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Figure 4: The estimated individual slope function β̂i(t) = β̂(t) + b̂i(t) for predicting the log

maximum ozone concentration from the hourly NO2(t) for four cities: Baton Rouge, Buffalo,

Johnstown, and Tampa. The solid line is the estimated population slope function β̂(t), and

the dashed line is the individual slope function β̂i(t).
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4.2. Weather Data Analysis

In this study, we are exploring the effect of the daily temperature in each

year on the annual precipitation. We use the dataset consisting of the annual

precipitation and the corresponding daily temperature measurements for 38

Canadian weather stations in 1961-1991. There are a lot of missing data in

the year 1979, thus we delete the data in the year 1979. The functional linear

mixed-effects model of our interest is

Yij = α0+ai+

∫ 365

0

[β(t)+bi(t)]Xij(t)dt+εij , ai ∼ N(0, σ2
a), εij ∼ N(0, σ2

ε ) ,

where Yij is the logarithm of annual precipitation at the i-th weather station

in the j-th year, and Xij(t) is the daily temperature profile for i = 1, . . . , 38,

j = 1, . . . , 30.

Due to the periodicity of weather data, we choose 35 Fourier basis func-

tions to represent the population slope function β(t) and the individual slope

function bi(t). We follow the suggestion of Ramsay and Silverman (2005) to

use the harmonic acceleration operator to define the roughness penalty for the

population slope function β(t). The harmonic acceleration operator is defined

as Lβ(t) = d3β(t)/dt3 + ω2dβ(t)/dt, where ω = 2π
365 is the period of the non-

parametric function. Therefore, the zero roughness implies that β(t) is of the

form β(t) = a1 + a2 sin(ωt) + a3 cos(ωt). The harmonic acceleration operator is

also used to define the roughness penalty of the individual slope function bi(t).

The fixed effects {α0, β(t)} and random effects {ai, bi(t)} are estimated by

minimizing

H(θ, ξ)

=

n∑
i=1

mi∑
j=1

1

2σ2
ε

(
Yij − α0 − ai −

∫ 365

0

[β(t) + bi(t)]Xij(t)dt

)2

+
1

2

n∑
i=1

b′iD
−1bi

+

[
λβ
2

∫ 365

0

{
Lβ(t)

}2

dt+
λb
2

n∑
i=1

∫ 365

0

{
Lbi(t)

}2

dt

]
+

1

2σ2
a

n∑
i=1

a2i .

The smoothing parameters are chosen as λβ = 1013.75 and λb = 1012.25 by GCV

criterion. We implement the REML-based EM algorithm proposed in Section
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Figure 5: The estimated population slope function β̂(t) for predicting the log total annual

precipitation from the daily temperature. The shaded area indicates the pointwise 95% con-

fidence interval for β̂(t).

2.2. The estimate for the intercept α0 is α̂0 = 2.994 with the estimated standard

error 0.055, and the 95% confidence interval of α0 is [2.886, 3.101].

Figure 5 displays the estimated population slope function β(t) and the 95%

pointwise confidence interval. It indicates that the temperature in the winter has

a significant and positive effect on the annual precipitation. The temperature

in the summer has a negative effect on the annual precipitation, but this effect

is only marginally significant.

We also plot the individual slope function β̂i(t) = β̂(t)+b̂i(t) for four stations

in Figure 6. There are some obvious individual variations from the population

slope function for each station. For example, the Brandon city is located in
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western Manitoba province, on the banks of the Assiniboine River. Figure 6

shows that the individual slope function of Brandon is higher than the popu-

lation slope function in the whole year, because Brandon has a lower latitude

and a large amount of precipitation in most of whole year. This phenomenon

cannot be inferred from the regular functional linear regression model.
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Figure 6: The estimated individual slope function β̂i(t) = β̂(t) + b̂i(t) for predicting the log

total annual precipitation from the daily temperature for four cities: Brandon, Prince George,

Vancouver, Cambridge Bay. The solid line is the estimated population slope function β̂(t),

and the dashed line is the individual slope function β̂i(t).

5. Conclusions

The functional linear regression model (1) is a popular tool to analyze the

relationship between a scalar response variable and a functional covariate. But

when there are repeated measurements on multiple subjects, the same slope

function seems to be a too strict assumption. In this article, we propose a
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functional linear mixed-effect model (2). This model is more flexible than the

regular functional linear regression model in the sense that each subject has their

individual slope function while all subjects share a population slope function.

The population and random slope functions are estimated by the penalized

spline smoothing method, in which the roughness of the slope functions are

controlled by a penalty function. The variance parameters for the random slope

function and the data noise are estimated by a REML-based EM algorithm.

Our simulation studies show that the estimation method can provide accurate

estimates for the functional linear mixed-effect model.

The functional linear mixed-effect model is demonstrated using two real

applications. The first application uses the functional linear mixed-effects model

(2) to study the effect of the 24-hour nitrogen dioxide on the daily maximum

ozone concentration. Some interesting results are found. For example, the

hourly nitrogen dioxide has a consistently higher effect on the daily maximum

ozone concentration in the whole day in some cities such as Tampa. These

insights cannot be gained from the regular functional linear regression models.

The similar phenomenon is also found in our second application to investigate

the effect of the daily temperature on the annual precipitation.
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Table 1: The Bias, Standard deviation (STD) and RMSE of the intercept, and the means

of RMISE of slope functions obtained by applying the REML-based EM algorithm on the

simulated data with 1,000 simulation replicates. The true population slope function is β(t) =

1 + 2t2 + exp(−3t).

σe σε n mi

Intercept
RMISE{β(t)} RMISE{βi(t)}

Bias STD RMSE

0.0 0.5 50 5 -0.0017 0.0986 0.0986 0.0047 0.0210

10 0.0019 0.0926 0.0926 0.0032 0.0187

20 0.0005 0.0862 0.0862 0.0025 0.0166

100 5 -0.0034 0.0638 0.0639 0.0027 0.0180

10 -0.0012 0.0611 0.0611 0.0019 0.0161

20 -0.0021 0.0609 0.0610 0.0014 0.0145

0.0 1.0 50 5 -0.0010 0.1079 0.1079 0.0080 0.0274

10 0.0000 0.1023 0.1023 0.0060 0.0237

20 -0.0018 0.0923 0.0923 0.0043 0.0204

100 5 -0.0006 0.0760 0.0760 0.0054 0.0230

10 -0.0016 0.0663 0.0663 0.0036 0.0198

20 -0.0015 0.0630 0.0630 0.0024 0.0174

0.5 0.5 50 5 -0.0024 0.1001 0.1002 0.0049 0.0212

10 0.0003 0.0952 0.0952 0.0035 0.0189

20 0.0005 0.0890 0.0890 0.0033 0.0177

100 5 -0.0023 0.0636 0.0637 0.0029 0.0182

10 0.0011 0.0620 0.0620 0.0020 0.0162

20 -0.0016 0.0623 0.0624 0.0022 0.0155

0.5 1.0 50 5 -0.0036 0.1130 0.1131 0.0082 0.0277

10 0.0026 0.1039 0.1039 0.0057 0.0235

20 -0.0001 0.0935 0.0935 0.0043 0.0204

100 5 -0.0023 0.0764 0.0764 0.0053 0.0228

10 0.0009 0.0698 0.0698 0.0037 0.0199

20 -0.0011 0.0633 0.0633 0.0026 0.0176
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Table 2: The Bias, Standard deviation (STD) and RMSE of the intercept, and the means

of RMISE of slope functions obtained by applying the REML-based EM algorithm on the

simulated data with 1,000 simulation replicates. The true population slope function is β(t) =

1 + 2 sin(2πt) + cos(2πt).

σe σε n mi

Intercept
RMISE{β(t)} RMISE{βi(t)}

Bias STD RMSE

0.0 0.5 50 5 0.0039 0.0980 0.0981 0.0049 0.0415

10 0.0032 0.0912 0.0912 0.0038 0.0409

20 -0.0012 0.0890 0.0890 0.0033 0.0402

100 5 -0.0014 0.0643 0.0644 0.0026 0.0405

10 -0.0014 0.0630 0.0631 0.0023 0.0396

20 -0.0008 0.0629 0.0629 0.0019 0.0395

0.0 1.0 50 5 0.0059 0.1106 0.1107 0.0082 0.0447

10 0.0050 0.1005 0.1006 0.0053 0.0423

20 0.0006 0.0948 0.0948 0.0038 0.0407

100 5 -0.0014 0.0747 0.0747 0.0039 0.0418

10 -0.0006 0.0687 0.0687 0.0028 0.0401

20 -0.0003 0.0653 0.0653 0.0022 0.0397

0.5 0.5 50 5 0.0021 0.0981 0.0981 0.0052 0.0418

10 0.0042 0.0929 0.0930 0.0039 0.0409

20 -0.0012 0.0895 0.0895 0.0033 0.0402

100 5 -0.0030 0.0643 0.0644 0.0027 0.0406

10 -0.0016 0.0620 0.0620 0.0023 0.0396

20 -0.0013 0.0625 0.0625 0.0019 0.0395

0.5 1.0 50 5 0.0026 0.1142 0.1142 0.0082 0.0447

10 0.0026 0.1008 0.1009 0.0052 0.0422

20 -0.0020 0.0927 0.0927 0.0039 0.0408

100 5 -0.0034 0.0754 0.0755 0.0040 0.0419

10 -0.0015 0.0678 0.0678 0.0029 0.0402

20 0.0004 0.0652 0.0652 0.0022 0.0397
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