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Abstract

In 1966, Cummins introduced the “tree graph”: the tree graph T(G) of a graph
G (possibly infinite) has all its spanning trees as vertices, and distinct such trees
correspond to adjacent vertices if they differ in just one edge, i.e., two spanning trees
T1 and T2 are adjacent if T2 = T1 − e+ f for some edges e ∈ T1 and f /∈ T1. The tree
graph of a connected graph need not be connected. To obviate this difficulty we define
the “forest graph”: let G be a labeled graph of order α, finite or infinite, and let N(G)
be the set of all labeled maximal forests of G. The forest graph of G, denoted by F(G),
is the graph with vertex set N(G) in which two maximal forests F1, F2 of G form an
edge if and only if they differ exactly by one edge, i.e., F2 = F1 − e+ f for some edges
e ∈ F1 and f /∈ F1.

Using the theory of cardinal numbers, Zorn’s lemma, transfinite induction, the
axiom of choice and the well-ordering principle, we determine the F-convergence, F-
divergence, F-depth and F-stability of any graph G. In particular it is shown that a
graph G (finite or infinite) is F-convergent if and only if G has at most one cycle of
length 3. The F-stable graphs are precisely K3 and K1. The F-depth of any graph G
different from K3 and K1 is finite. We also determine various parameters of F(G) for
an infinite graph G, including the number, order, size, and degree of its components.

Keywords: Forest graph operator; Graph dynamics.

Mathematics Subject Clasification 2010: Primary 05C76; Secondary 05C05,
05C63

1 Introduction

A graph dynamical system is a set X of graphs together with a mapping φ : X → X (see
Prisner [12]). We investigate the graph dynamical system on finite and infinite graphs defined
by the forest graph operator F, which transforms G to its graph of maximal forests.
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Let G be a labeled graph of order α, finite or infinite. (All our graphs are labeled.) A
spanning tree of G is a connected, acyclic, spanning subgraph of G; it exists if and only if G
is connected. Any acyclic subgraph of G, connected or not, is called a forest of G. A forest
F of G is said to be maximal if there is no forest F ′ of G such that F is a proper subgraph
of F ′. The tree graph T(G) of G has all the spanning trees of G as vertices, and distinct
such trees are adjacent vertices if they differ in just one edge [12, 15]; i.e., two spanning
trees T1 and T2 are adjacent if T2 = T1 − e + f for some edges e ∈ T1 and f /∈ T1. The
iterated tree graphs of G are defined by T0(G) = G and Tn(G) = T(Tn−1(G)) for n > 0.
There are several results on tree graphs. See [1, 18, 11] for connectivity of the tree graph,
[8, 13, 16, 19, 4, 7, 10, 3, 6] for bounds on the order of T(G) (that is, on the number of
spanning trees of G), [2, 14] for Hamilton circuits in a tree graph.

There is one difficulty with iterating the tree graph operator. The tree graph of an
infinite connected graph need not be connected [2, 14], so T2(G) may be undefined. For
example, T(Kℵ0

) is disconnected (see Corollary 2.5 in this paper; ℵ0 denotes the cardinality
of the set N of natural numbers); therefore T2(Kℵ0

) is not defined. To obviate this difficulty
with iterated tree graphs, and inspired by the tree graph operator T, we define a forest graph
operator. Let N(G) be the set of all maximal forests of G. The forest graph of G, denoted
by F(G), is the graph with vertex set N(G) in which two maximal forests F1, F2 form an
edge if and only if they differ by exactly one edge. The forest graph operator (or maximal
forest operator) on graphs, G 7→ F(G), is denoted by F. Zorn’s lemma implies that every
connected graph contains a spanning tree (see [5]); similarly, every graph has a maximal
forest. Hence, the forest graph always exists. Since when G is connected, maximal forests
are the same as spanning trees, then F(G) = T(G); that is, the tree graph is a special case of
the forest graph. We write F2(G) to denote F(F(G)), and in general Fn(G) = F(Fn−1(G))
for n ≥ 1, with F0(G) = G.

Definition 1.1. A graph G is said to be F-convergent if {Fn(G) : n ∈ N} is finite; otherwise
it is F-divergent.

A graph H is said to be an F-root of G if F(H) is isomorphic to G, F(H) ∼= G. The
F-depth of G is

sup{n ∈ N : G ∼= Fn(H) for some graph H}.

The F-depth of a graph G that has no F-root is said to be zero.

The graph G is said to be F-periodic if there exists a positive integer n such that
Fn(G) = G. The least such integer is called the F-periodicity of G. If n = 1, G is called
F-stable.

This paper is organized as follows. In Section 2 we give some basic results. In later
sections, using Zorn’s lemma, transfinite induction, the well ordering principle and the theory
of cardinal numbers, we study the number of F-roots and determine the F-convergence, F-
divergence, F-depth and F-stability of any graph G. In particular we show that: i) A graph
G is F-convergent if and only if G has at most one cycle of length 3. ii) The F-depth of
any graph G different from K3 and K1 is finite. iii) The F-stable graphs are precisely K3

and K1. iv) A graph that has one F-root has innumerably many, but only some F-roots are
important.
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2 Preliminaries

For standard notation and terminology in graph theory we follow Diestel [5] and Prisner [12].

Some elementary properties of infinite cardinal numbers that we use are (see, e.g., Kamke
[9]):

(1) α+ β = α.β = max(α, β) if α, β are cardinal numbers and β is infinite. In particular,
2.β = ℵ0.β = β.

(2) βn = β if β is an infinite cardinal and n is a positive integer.

(3) β < 2β for every cardinal number.

(4) The number of finite subsets of an infinite set of cardinality β is equal to β.

We consider finite and infinite labeled graphs without multiple edges or loops. An isthmus
of a graph G is an edge e such that deleting e divides one component of G into two of G− e.
Equivalently, an isthmus is an edge that belongs to no cycle. Each isthmus is in every
maximal forest, but no non-isthmus is.

Let C(G) and N(G) denote the set of all possible cycles and the set of all maximal forests
of a graph G, respectively. Note that a maximal forest of G consists of a spanning tree in
each component of G. A fundamental fact, whose proof is similar to that of the existence of
a maximal forest, is the following forest extension lemma:

Lemma 2.1. In any graph G, every forest is contained in a maximal forest.

Lemma 2.2. If G is a complete graph of infinite order α, then |N(G)| = 2α.

Proof: Let G = (V,E) be a complete graph of order α (α infinite), i.e., G = Kα. Let v1, v2
be two vertices of G and V ′ = V \ {v1, v2}. Then for every A ⊆ V ′ there is a spanning tree
TA such that every vertex of A is adjacent only to v1 and every vertex of V ′ \ A is adjacent
only to v2. It is easy to see that TA 6= TB whenever A 6= B. As the cardinality of the power
set of V ′ is 2α, there are at least 2α spanning trees of G. Since G is connected, the maximal
forests are the spanning trees; therefore |N(G)| ≥ 2α. Since the degree of each vertex is
α and G contains α vertices, the total number of edges in G is α.α = α. The edge set of
a maximal forest of G is a subset of E and the number of all possible subsets of E is 2α.
Therefore, G has at most 2α maximal forests, i.e., |N(G)| ≤ 2α. Hence |N(G)| = 2α.

For two maximal forests of G, F1 and F2, let d(F1, F2) denote the distance between them
in F(G). We connect this distance to the number of edges by which F1, F2 differ; the result
is elementary but we could not find it anywhere in the literature. We say F1, F2 differ by l
edges if |E(F1) \ E(F2)| = |E(F2) \ E(F1)| = l.

Lemma 2.3. Let l be a natural number. For two maximal forests F1, F2 of a graph G, if
|E(F1) \ E(F2)| = l, then |E(F2) \ E(F1)| = l. Furthermore, F1 and F2 differ by exactly l
edges if and only if d(F1, F2) = l.
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We cannot apply to an infinite graph the simple proof for finite graphs, in which the
number of edges in a maximal forest is given by a formula. Therefore, we prove the lemma
by edge exchange.

Proof: We prove the first part by induction on l. Let F1, F2 be maximal forests of G and
let E(F1) \E(F2) = {e′1, e

′
2, . . . , e

′
k}, E(F2) \E(F1) = {e1, e2, . . . , el}. If l = 0 then k = 0 = l

because F2 = F1. Suppose l > 0; then k > 0 also. Deleting el from F2 divides a tree of F2

into two trees. Since these trees are in the same component of G, there is an edge of F1

that connects them; this edge is not e1 so it is not in F2; therefore, it is an e′i, say e′k. Let
F ′
2 = F2−el+e′k. Then E(F1)\E(F ′

2) = {e′1, e
′
2, . . . , e

′
k−1}, E(F2)\E(F1) = {e1, e2, . . . , el−1}.

By induction, k − 1 = l − 1.

We also prove the second part by induction on l. Assume F1, F2 differ by exactly l edges
and define F ′

2 as above. If l = 0, 1, clearly d(F1, F2) = l. Suppose l > 1. In a shortest path
from F1 to F2, whose length is d(F1, F2), each successive edge of the path can increase the
number of edges not in F1 by at most 1. Therefore, F1 and F2 differ by at most d(F1, F2)
edges. That is, l ≤ d(F1, F2). Conversely, d(F1, F

′
2) = l− 1 by induction and there is a path

in F(G) from F1 to F ′
2 of length l−1, then continuing to F2 and having total length l. Thus,

d(F1, F2) ≤ l.

From the above lemma we have two corollaries.

Corollary 2.4. For any graph G, F(G) is connected if and only if any two maximal forests
of G differ by at most a finite number of edges.

Corollary 2.5. If G = Kα, α infinite, then F(G) is disconnected.

Lemma 2.6. Let G be a graph with α vertices and β edges and with no isolated vertices. If
either α or β is infinite, then α = β.

Proof: We know that |E(G)| ≤ |V (G)|2, i.e., β ≤ α2 so if β is infinite, α must also be
infinite. We also know, since each edge has two endpoints, that |V (G)| ≤ 2|E(G)|, i.e.,
α ≤ 2.β so if α is infinite, then β must be infinite. Now assuming both are infinite, α2 = α
and 2.β = β, hence α = β.

The following lemmas are needed in connection with F-convergence and F-divergence
in Section 5 and F-depth in Section 6.

Lemma 2.7. Let G be a graph. If Kn (for finite n ≥ 2) is a subgraph of G, then K⌊n2/4⌋ is
a subgraph of F(G).

Proof: Let G be a graph such that Kn (n ≥ 2, finite) is a subgraph of G with vertex labels
v1, v2, . . . , vn. Then there is a path L = v1, v2, . . . , vn of order n in G. Let F be a maximal
forest of G such that F contains the path L. In F if we replace the edge v⌊n/2⌋v⌊n/2⌋+1 by any
other edge vivj where i = 1, . . . , ⌊n/2⌋ and j = ⌊n/2⌋+1, . . . , n, we get a maximal forest Fij .
Since there are ⌊n2/4⌋ such edges vivj , there are ⌊n2/4⌋ maximal forests Fij (of which one
is F ). Any two forests Fij differ by one edge. It follows that they form a complete subgraph
in F(G). Therefore K⌊n2/4⌋ is a subgraph of F(G).

Lemma 2.8. If G has a cycle of (finite) length n with n ≥ 3, then F(G) contains Kn.
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Proof: Suppose that G has a cycle Cn of length n with edge set {e1, e2, . . . , en}. Let
Pi = Cn − ei for i = 1, 2, . . . , n and let F1 be a maximal forest of G containing the path P1.
Define Fi = F1 \P1 ∪Pi for i = 2, 3, . . . , n. These Fi’s are maximal forests of G and any two
of them differ by exactly one edge, so they form a complete graph Kn in F(G).

In particular, F(Cn) = Kn.

Lemma 2.9. Suppose that G contains Kn, where n ≥ 3. Then F2(G) contains Knn−2.

Proof: Cayley’s formula states that Kn has nn−2 spanning trees. Cummins [2] proved that
the tree graph of a finite connected graph is Hamiltonian. Therefore, F(Kn) contains Cnn−2 .
Let FT0

be a spanning tree of G that extends one of the spanning trees T0 of theKn subgraph.
Replacing the edges of T0 in FT0

by the edges of any other spanning tree T of Kn, we have a
spanning tree FT that contains T . The FT ’s for all spanning trees T of Kn are nn−2 spanning
trees of G that differ only within Kn; thus, the graph of the FT ’s is the same as the graph
of the T ’s, which is Hamiltonian. That is, F(G) contains Cnn−2 . By Lemma 2.8, F2(G)
contains Knn−2.

We do not know exactly what graphs F(Kn) and F2(Kn) are.

Lemma 2.10. If G has two edge disjoint triangles, then F2(G) contains K9.

Proof: Suppose that G has two edge disjoint triangles whose edges are e1, e2, e3 and f1, f2, f3,
respectively. The union of the triangles has exactly 9 maximal forests F ′

ij , obtained by
deleting one ei and one fj from the triangles. Extend F ′

11 to a maximal forest F11 and let Fij

be the maximal forest F11 \E(F ′
11)∪Fij, for each i, j = 1, 2, 3. The nine maximal forests F ′

ij ,
and consequently the maximal forests Fij in F(G), form a Cartesian product graph C3×C3,
which contains a cycle of length 9. By Lemma 2.8, F2(G) contains K9.

We now show that repeated application of the forest graph operator to many graphs
creates larger and larger complete subgraphs.

Lemma 2.11. If G has a cycle of (finite) length n with n ≥ 4 or it has two edge disjoint
triangles, then for any finite m ≥ 1, Fm(G) contains Km2.

Proof: We prove this lemma by induction on m.

Case 1: Suppose that G has a cycle Cn of length n (n ≥ 4, n finite). By Lemma 2.8,
F(G) contains Kn as a subgraph, which implies that F(G) contains K4. By Lemma 2.9,
F3(G) contains K16 and in particular it contains K32 .

Case 2: Suppose that G has two edge disjoint triangles. By Lemma 2.10 F2(G) contains
K9 as a subgraph. It follows by Lemma 2.7 that F3(G) contains K⌊92/4⌋ = K20 as a subgraph.
This implies that F3(G) contains K32 as a subgraph.

By Cases 1 and 2 it follows that the result is true for m = 1, 2, 3. Let us assume that
the result is true for m = l ≥ 3, i.e., that Fl(G) contains Kl2 as a subgraph. By Lemma
2.7 it follows that F(Fl(G)) has a subgraph K⌊l4/4⌋. Since ⌊l4/4⌋ > (l + 1)2, it follows that
Fl+1(G) contains K(l+1)2 . By the induction hypothesis Fm(G) contains Km2 for any finite
m ≥ 1.

With Lemma 2.9 it is clearly possible to prove a much stronger lower bound on complete
subgraphs of iterated forest graphs, but Lemma 2.11 is good enough for our purposes.
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Lemma 2.12. A forest graph that is not K1 has no isolated vertices and no isthmi.

Proof: Let G = F(H) for some graph H . Consider a vertex F of G, that is, a maximal
forest in H . Let e be an edge of F that belongs to a cycle C in H . Then there is an edge f
in C that is not in F and F ′ = F − e+ f is a second maximal forest that is adjacent to F in
G. Since C has length at least 3, it has a third edge g. If g is not in F , let F ′′ = F − e+ g.
If g is in F , let F ′′ = F − g + f . In both cases F ′′ is a maximal forest that is adjacent to F
and F ′. Thus, F is not isolated and the edge FF ′ in G is not an isthmus.

Suppose F, F ′ ∈ N(H) are adjacent in G. That means there are edges e ∈ E(F ) and
e′ ∈ E(F ′) such that F ′ = F − e + e′. Thus, e belongs to the unique cycle in F + e′. As
shown above, there is an F ′′ ∈ N(H) that forms a cycle with F and F ′. Therefore the edge
FF ′ of G is not an isthmus.

Let F ∈ N(H) be an isolated vertex in G. If H has an edge e not in F , then F + e
contains a cycle so F has a neighboring vertex in G, as shown above. Therefore, no such e
can exist; in other words, H = F and G is K1.

3 Basic Properties of an Infinite Forest Graph

We now present a crucial foundation for the proof of the main theorem in Section 5. The
cyclomatic number β1(G) of a graph G can be defined as the cardinality |E(G)\E(F )| where
F is a maximal forest of G.

Proposition 3.1. Let G be a graph such that |C(G)| = β, an infinite cardinal number. Then:

i) β1(G) = β and β1(F(G)) = 2β.

ii) Both the order of F(G) and its number of edges equal 2β. Both the order and the number
of edges of G equal β, provided that G has no isolated vertices and no isthmi.

iii) F(G) is β-regular.

iv) The order of any connected component of F(G) is β, and it has exactly β edges.

v) F(G) has exactly 2β components.

vi) Every component of F(G) has exactly β cycles.

vii) |C(F(G))| = 2β.

Proof: Let G be a graph with |C(G)| = β (β infinite).

i) Let F be a maximal forest of G. The number of cycles in G is not more than the
number of finite subsets of E(G)\E(F ). This number is finite if E(G)\E(F ) is finite, but it
cannot be finite because |C(G)| is infinite. Therefore E(G)\E(F ) is infinite and the number
of its finite subsets equals |E(G) \ E(F )| = β1(G). Thus, β1(G) ≥ |C(G)|. The number of
cycles is at least as large as the number of edges not in F , because every such edge makes
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a different cycle with F . Thus, |C(G)| ≥ β1(G). It follows that β1(G) = |C(G)| = β. Note
that this proves β1(G) does not depend on the choice of F .

The value of β1(F(G)) follows from this and part (vii).

ii) For the first part, let F be a maximal forest of G and let F0 be a maximal forest of
G \ E(F ). As G \ E(F ) has β1(G) = β edges by part (i), it has β non-isolated vertices by
Lemma 2.6. F0 has the same non-isolated vertices, so it too has β edges.

Any edge set A ⊆ F0 extends to a maximal forest FA in F ∪ A. Since FA \ F = A, the
FA’s are distinct. Therefore, there are at least 2β maximal forests in F0 ∪ F . The maximal
forest F consists of a spanning tree in each component of G; therefore, the vertex sets of
components of F are the same as those of G, and so are those of F0 ∪ F . Therefore, a
maximal forest in F0 ∪ F , which consists of a spanning tree in each component of F0 ∪ F ,
contains a spanning tree of each component of G.

We conclude that a maximal forest in F0 ∪ F is a maximal forest of G and hence that
there are at least 2β maximal forests in G, i.e., |N(G)| ≥ 2β. Since G is a subgraph of Kβ,
and since |N(Kβ)| = 2β by Lemma 2.2, we have |N(G)| ≤ 2β. Therefore |N(G)| = 2β. That
is, the order of F(G) is 2β. By Lemmas 2.12 and 2.6, that is also the number of edges of
F(G).

For the second part, note that G has infinite order or else β1(G) would be finite. If G
has no isolated vertices and no isthmi, then |V (G)| = |E(G)| by Lemma 2.6. By part (i)
there are β edges of G outside a maximal forest; hence β ≤ |E(G)|.

Since every edge of G is in a cycle, by the axiom of choice we can choose a cycle C(e)
containing e for each edge e of G. Let C = {C(e) : e ∈ E(G)}. The total number of pairs
(f, C) such that f ∈ C ∈ C is no more than ℵ0.|C| ≤ ℵ0.|C(G)| = ℵ0.β = β. This number of
pairs is not less than the number of edges, so |E(G)| ≤ β. It follows that G has exactly β
edges.

iii) Let F be a maximal forest of G. By part (i), |E(G) \ E(F )| = β. By adding any
edge e from E(G) \E(F ) to F we get a cycle C. Removing any edge other than e from the
cycle C gives a new maximal forest which differs by exactly one edge with F . The number
of maximal forests we get in this way is β1(G) because there are β1(G) ways to choose e
and a finite number of edges of C to choose to remove, and β1(G) is infinite. Thus we get β
maximal forests of G, each of which differs by exactly one edge with F . Every such maximal
forest is generated by this construction. Therefore, the degree of any vertex in F(G) is β.

iv) Let A be a connected component of F(G). As F(G) is β-regular by part (iii), it follows
that |V (A)| ≥ β. Fix a vertex v inA and define the nth neighborhoodDn = {v′ : d(v, v′) = n}
for each n in N. Since every vertex has degree β, |D0| = 1, |D1| = β and |Dk| ≤ β|Dk−1|.
Thus, by induction on n, |Dn| ≤ β for n > 0.

Since A is connected, it follows that V (A) =
⋃

i∈N∪{0}Di, i.e., V (A) is the countable

union of sets of order β. Therefore |A| = β, as |N|.β ′ = β ′. Hence any connected component
of F(G) has β vertices. By Lemma 2.6 it has β edges.

v) By parts (ii, iv) the order of F(G) is 2β and the order of each component of F(G)
is β. Since |F(G)| = 2β, F(G) has at most 2β components. Suppose that F(G) has β ′

components where β ′ < 2β. As each component has β vertices, it follows that F(G) has
order at most β ′.β = max{β ′, β}. This is a contradiction to part (ii). Therefore F(G) has
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exactly 2β components.

vi) Let A be a component of F(G). Since it is infinite, by part (iv) it has exactly β
edges. Suppose that |C(A)| = β ′. Then β ′ is at most the number of finite subsets of E(A),
which is β since |E(A)| = β is infinite; that is, β ′ ≤ β. By the argument in part (iii)
every edge of F(G) lies on a cycle. The length of each cycle is finite. Thus A has at most
ℵ0.β

′ = max{β ′,ℵ0} = β ′ edges if β ′ is infinite and it has a finite number of edges if β ′ is
finite. Since |E(A)| = β, which is infinite, β ′ ≥ β. We conclude that β ′ = β.

vii) By parts (v, vi) F(G) has 2β components and each component has β cycles. Since
every cycle is contained in a component, |C(F(G))| = β.2β = 2β.

From the above proposition it follows that an infinite graph cannot be a forest graph
unless every component has the same infinite order β and there are 2β components. A
consequence is that the infinite graph itself must have order 2β. Hence,

Corollary 3.2. Any infinite graph whose order is not a power of 2, including ℵ0 and all
other limit cardinals, is not a forest graph.

Corollary 3.3. For a graph G the following statements are equivalent.

i) F(G) is connected.

ii) F(G) is finite.

iii) The union of all cycles in G is a finite graph.

Proof: (i) =⇒ (iii). Suppose that F(G) is connected. If G has infinitely many cycles
then by Proposition 3.1(v) F(G) is disconnected. Therefore G has finitely many cycles. Let
A = {e ∈ E(G) : edge e lies on a cycle in G}. Then |A| is finite because the length of each
cycle is finite. That proves (iii).

(iii) =⇒ (ii). As every maximal forest of G consists of a maximal forest of A and all
the edges of G which are not in A, G has at most 2n maximal forests where n = |A|. Hence
F(G) has a finite number of vertices and consequently is finite.

(ii) =⇒ (i). By identifying vertices in different components (Whitney vertex identifica-
tion; see Section 4) we can assume G is connected so F(G) = T(G). Cummins [2] proved
that the tree graph of a finite graph is Hamiltonian; therefore it is connected.

4 F-Roots

In this section we establish properties of F-roots of graphs. We begin with the question of
what an F-root should be.

Since any graph H ′ that is isomorphic to an F-root H of G is immediately also an F-
root, the number of non-isomorphic F-roots is a better question than the number of labeled
F-roots. We now show in some detail that a still better question is the number of non-
isomorphic F-roots without isthmi.

Let tβ be the number of non-isomorphic rooted trees of order β. We note that tℵ0
≥ 2ℵ0 ,

by a construction of Reinhard Diestel (personal communication, July 10, 2015). (We do not
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know a corresponding lower bound on tβ for β > ℵ0.) Let P be a one-way infinite path
whose vertices are labelled by natural numbers, with root 1; choose any subset S of N and
attach two edges at every vertex in S, forming a rooted tree TS (rooted at 1). Then S is
determined by TS because the vertices in S are those of degree at least 3 in TS. (If 2 ∈ S but
1 /∈ S, then vertex 1 is determined only up to isomorphism by TS, but S itself is determined
uniquely.) The number of sets S is 2ℵ0 , hence tℵ0

≥ 2ℵ0 .

Proposition 4.1. Let G be a graph with an F-root of order α. If α is finite, then G has
infinitely many non-isomorphic finite F-roots. If α is finite or infinite, then G has at least
tβ non-isomorphic F-roots of order β for every infinite β ≥ α.

Proof: Let G be a graph which has an F-root H , i.e., F(H) ∼= G, and let α be the order of
H . We may assume H has no isthmi and no isolated vertices unless it is K1.

Suppose α is finite; then let T be a tree, disjoint from H , of any finite order n. Identify
any vertex v of H with any vertex w of T . The resulting graph HT also has G as its forest
graph since T is contained in every maximal forest of HT . As the order of HT is α + n − 1
and n can be any natural number, the graphs HT are an infinite number of non-isomorphic
finite graphs with the same forest graph up to isomorphism.

Suppose α is finite or infinite and β ≥ α is infinite. Let T be a rooted tree of order β
with root vertex w; for instance, T can be a star rooted at the star center. Attach T to a
vertex v of H by identifying v with the root vertex w. Denote the resulting graph by HT ; it
is an F-root of G and it has order β because it has order α + β, which equals β because β
is infinite and β ≥ α. As H has no isthmi, T and w are determined by HT ; therefore, if we
have a non-isomorphic rooted tree T ′ with root w′ (that means there is no isomorphism of
T with T ′ in which w corresponds to w′), HT ′ is not isomorphic to HT . (The one exception
is when H = K1, which is easy to treat separately.) The number of non-isomorphic F-roots
of G of order β is therefore at least the number of non-isomorphic rooted trees of order β,
i.e., tβ .

Proposition 4.1 still does not capture the essence of the number of F-roots. Whitney’s
2-operations on a graph G are the following [17]:

(1) Whitney vertex identification. Identify a vertex in one component of G with a vertex in
a another component of G, thereby reducing the number of components by 1. For an
infinite graph we modify this by allowing an infinite number of vertex identifications;
specifically, let W be a set of vertices with at most one from each component of G,
and let {Wi : i ∈ I} be a partition of W into |I| sets (where I is any index set); then
for each i ∈ I we identify all the vertices in Wi with each other.

(2) Whitney vertex splitting. The reverse of vertex identification.

(3) Whitney twist. If u, v are two vertices that separate G—that is, G = G1 ∪ G2 where
G1∩G2 = {u, v} and |V (G1)|, |V (G2)| > 2, then reverse the names u and v in G2 and
then take the union G1 ∪G2 (so vertex u in G1 is identified with the former vertex v
in G2 and v with the former vertex u). Call the new graph G′. For an infinite graph
we allow an infinite number of Whitney twists.
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It is easy to see that the edge sets of maximal forests in G and G′ are identical, hence F(G)
and F(G′) are naturally isomorphic. It follows by Whitney vertex identification that every
graph with an F-root has a connected F-root, and it follows from Whitney vertex splitting
that every graph with an F -root has an F-root without cut vertices.

We may conclude from Proposition 4.1 that the most interesting question about the
number of F-roots of a graph G that has an F-root is not the total number of non-isomorphic
F-roots (which by Proposition 4.1 cannot be assigned any cardinality); it is not the number
of a given order; it is not even the number that have no isthmi; it is the number of non-
2-isomorphic, connected F-roots with no isthmi and (except when G = K1) no isolated
vertices.

We do not know which graphs have F-roots, but we do know two large classes that
cannot have F-roots.

Theorem 4.2. No infinite connected graph has an F-root.

Proof: This follows by Corollary 3.3.

Theorem 4.3. No bipartite graph G has an F-root.

Proof: Let G be a bipartite graph of order p (p ≥ 2) and let H be a root of G, i.e.,
F(H) ∼= G. Suppose H has no cycle; then F(H) is K1, which is a contradiction. Therefore
H has a cycle of length ≥ 3. It follows by Lemma 2.8 that F(H) containsK3, a contradiction.
Hence no bipartite graph G has a root.

5 F-Convergence and F-Divergence

In this section we establish the necessary and sufficient conditions for F-convergence of a
graph.

Lemma 5.1. Let G be a finite graph that contains a Cn (for n ≥ 4) or at least two edge
disjoint triangles; then G is F-divergent.

Proof: Let G be a finite graph. By Lemma 2.11, Fm(G) contains Km2 as a subgraph.
Therefore, as m increases the clique size of Fm(G) increases. Hence G is F-divergent.

Lemma 5.2. If |C(G)| = β where β is infinite, then G is F-divergent.

Proof: Assume |C(G)| = β (β infinite). By Proposition 3.1(vii), as 2β < 22
β

< 22
2
β

< · · · ,
it follows that |C(F(G))| < |C(F2(G))| < |C(F3(G))| < · · · . Therefore, as n increases
|C(Fn(G))| increases. Hence G is F-divergent.

Theorem 5.3. Let G be a graph. Then,

i) G is F-convergent if and only if either G is acyclic or G has only one cycle, which is of
length 3.
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ii) If G is F-convergent, then it converges in at most two steps.

Proof: i) If G has no cycle, then it is a forest and F(G) is K1. If G has only one cycle and
that cycle has length 3, then F(G) is K3. Therefore in each case G is F-convergent.

Conversely, suppose that G has a cycle of length greater than 3 or has at least two
triangles. If G has infinitely many cycles, then it follows by Lemma 5.2 that G is F-divergent.
Therefore we may assume that G has a finite number of cycles. If G has a finite number of
vertices, then it is finite and by Lemma 5.1 it is F-divergent. Therefore G has an infinite
number of vertices. However, it can have only a finite number of edges that are not isthmi,
because each cycle is finite. Thus G consists of a finite graph G0 and any number of isthmi
and isolated vertices. Since F(G) depends only on the edges that are not isthmi and the
vertices that are not isolated, F(G) = F(G0) (under the natural identification of maximal
forests in G0 with their extensions in G by adding all isthmi of G). Therefore, G is F-
divergent.

ii) If G has no cycle, then G is a forest and F(G) ∼= F2(G) ∼= K1. If G has only one
cycle, which is of length 3, then F(G) ∼= F2(G) ∼= K3. Therefore G converges in at most 2
steps.

Corollary 5.4. A graph G is F-stable if and only if G = K1 or K3.

6 F-Depth

In this section we establish results about the F-depth of a graph.

Theorem 6.1. Let G be a finite graph. The F-depth of G is infinite if and only if G is K1

or K3.

Proof: Let G be a finite graph. Suppose that G is K1 or K3. Then by Corollary 5.4, it
follows that G is F-stable. Therefore, the F-depth of G is infinite.

Conversely, suppose that G is different from K1 and K3.

Case 1: Let |V | < 4. Then G has no F-root so its F-depth is zero.

Case 2: Let |V | = 4. Suppose G has an F-root H (i.e., F(H) ∼= G). Then H should
have exactly 4 maximal forests. That is possible only when H has only one cycle, which is
of length 4. By Lemma 2.8 it follows that F(H) contains K4, hence it is K4. Therefore G
has an F-root if and only if it is K4. Hence the F-depth of G is zero, except that the depth
of K4 is 1.

Case 3: Let |V | = n where n > 4. Suppose that G has infinite F-depth. Then for every
m there is a graph Hm such that Fm(Hm) = G. If Hm does not have two triangles or a cycle
of length greater than 3, then Hm has only one cycle which is of length 3, or no cycle and Hm

converges to K1 or K3 in at most two steps, a contradiction. Therefore Hm has two triangles
or a cycle of length greater than 3. By Lemma 2.11 it follows that Fm(Hm) contains Km2

for each m ≥ 2, so that in particular Fn(Hn) contains Kn2 . That is, G contains Kn2. This
is impossible as G has order n. Hence the F-depth of G is finite.
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Theorem 6.2. The F-depth of any infinite graph is finite.

Proof: Let G be a graph of infinite order α. If G has an F-root, then G is without isthmi
or isolated vertices.

If G is connected, Theorem 4.2 implies that G has no root. Therefore its F-depth is
zero.

If G is disconnected, assume it has infinite depth. Then for each natural number n there
exists a graph Hn such that G ∼= Fn(Hn). Let βn denote the order of Hn. Since F(H1) ∼= G,
by Proposition 3.1(ii) α = 2β1, from which we infer that β1 < α. This is independent of
which root H1 is, so in particular we can take H1 = F(H2) and conclude that β1 = 2β2, hence
that β2 < β1. Continuing in like manner we get an infinite decreasing sequence of cardinal
numbers starting with α. The cardinal numbers are well ordered [9], so they cannot contain
such an infinite sequence. It follows that the F-depth of G must be finite.
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