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Collective fermion excitation in a warm massless Dirac system
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Abstract

We predict theoretically that there occurs not only a normal (quasi) fermion mode, but also a collective
fermion mode, plasmino, in a warm 2D massless Dirac system, especially in a warm intrinsic graphene system.
Results of Landau damping show that both fermion and plasmino are well defined modes. We find that there
are sharp differences between the discussed system and the QCD/QED system. Firstly, the thermal mass is

proportional to α
3/4
g T but not αgT . Secondly, under a finite momentum satisfying 0 < q < qc, the plasmino

energy is not smaller but larger than the fermion energy. Thirdly, the fermion behaves as a ”relativity particles”
at large momentum and the plasmino exhibits an anormal dispersion at moderate momentum.

keywords: plasmino, massless Dirac system, Landau damping.

One of the hot topics of LHC and RHIC is the hot
QCD or quark-gluon-plasma (QGP) [1]. QGP exists at
extremely high temperature and/or high density and is
difficult to detect, so an important way to study QGP
is to study the collective modes of the system, for in-
stance, collective bosonic mode, plasmon, and collective
fermionic mode, plasmino.

Scientists have predicted that at high temperature
and/or high density, there are two types of fermionic ex-
citations. One is the well known normal (quasi)fermion
branch, and the other is the collective excitation
branch, plasmino or antiplasmino [2, 3]. One of the
remarkable characteristic of plasmino is that its chi-
rality is opposite to the ordinary (quasi) fermion (In
this Letter we only focus on energy larger than zero;
we do not distinguish between fermion/plasmino and
quasifermion/antiplasmino). The excitation has been ex-
tensively investigated in many literatures, for instance,
Refs. [4–7]. Meanwhile, there are still some debates on
the mode; for instance, Ref. [8, 9] claimed non-existence
of a temperature generated plasmino mode.

Experimenting on plasmino effects in QCD faces
many difficulties. Therefore, one alternative way is to
study plasmino in other condensed matter systems, for
instance, in superconductors [10]. In this Letter we re-

port our study on plasmino in a warm 2D massless Dirac
system. We show that, although there are some similari-
ties in the discussed system and QCD system, there are
also many striking differences between these systems.

The most famous 2D Dirac system is the graphene
system [11], the dispersion of which is ǫp = ±vF p, where
ǫp is the fermion energy with momentum p. In this Letter
we use notations ~ = vF = kB = 1. In an intrinsic warm
massless Dirac system (that is, having no net charge), the
fermion propagator is read as

iSF (p
0, p) = iS0

F (p
0, p)− 2π(p0 + α · p)f+(p)δ(p

02 − p2),
(1)

where iS0
F (p) = i

2 [
1+α·p/ǫp
p0−ǫp+iη +

1−α·p/ǫp
p0+ǫp−iη ] = i(p0+α·p)

p02−ǫ2p+iη is

the fermion propagator without temperature correction,
f+(p) = 1

1+eβp is the so-called Fermi-Dirac distribution
function, and temperature T = 1/β.

According to Ref. [12], when p0 ≫ p, the potential
between fermions reads as

V (p0, p) =
2παg

p+ p2Ncαgvc

≃
2παg

q
−

iNcα
2
g

4q0
+

Ncπα
2
g

q02
×

(−
Ncqπ

2αg

32
+ θ(T − p)T ln 4), (2)
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where Nc is fermion degenerate (Nc = 4 in graphene)

and vc = iπ
8q0 (1 + p2

2p02 ) −
T ln 2
p02 θ(T − p). The first term

in vc is the ordinary vortex correction and the second
term in vc is attributed to the temperature correction.
At finite temperature, the Coulomb interaction between
fermions is suppressed by temperature correction, that is,
the potential between fermions behaves as er/rD , where
r is the radius between fermions and rD ∝ 1/T is the
Debye radius. However, if r is not large, the temper-
ature correction is not important and therefore can be
neglected.

The Dirac fermion self-energy correction is depicted
in Fig. 1.

q q-p q

p

Figure 1: The Feynman Diagram of fermion self-
energy correction.

The self-energy expression is in fact an integral,

Σ(q) =

∫

d3p

(2π)3
iSF (p

′0,p′)V (p0,p)eip
0η, (3)

where (p0′,p′) = (q0−p0,q−p). The integral can be de-
composed into two parts. As studied by many literatures,
for instance, Ref. [13], the integrand of the first one is

temperature independent, iS0
F (p

′0,p′)V (p0,p)eip
0η, the

effect of which is vF renormalization at p0 ≃ vF p, and
will be ignored in this paper.

Since we focus on the case q0 ≫ q, it is enough to
consider only the second part. Therefore, we have

Σ =
1

8π2

∫

d2pf+(p
′)[(1 − α · p′/p′)V (q0 + p′,p)−

(1 + α · p′/p′)V (q0 − p′,p)]. (4)

One can further decompose the above expression into two
parts, a scalar part, imaginary part and real one of which
are even and odd functions of q0 respectively and can be
written as aq0, and a spinor part, which is the even func-
tion of q0 and can be written as−bα·q. With the notation
x = q/T and y = q0/T , we have,

a ≃
3πNcα

2
gζ(3)

16y3
i+

N2
c πα

3
g

16y4
d1(x) −

4Ncα
2
g ln 2

πy4
ds1(x)

b ≃
αg

π
d2(x) +

N2
c πα

3
g

64y2
d3(x) +

Ncα
2
g ln 2

πy2
ds2(x), (5)

where

d1(x) =

∫

x4u2v2dudv

(1 + evx)
√

((1 + v)2 − u2)(u2 − (1− v)2)

≃ 8.926 + 0.372x− 0.017x2,

ds1(x) =

∫

x3uv2θ(1/x− u)dudv

(1 + evx)
√

((1 + v)2 − u2)(u2 − (1− v)2)

≃

{

0.169 + 0.025x2, x < 1

0.193e(x−1)(1.63−0.955x)/(1.48+x), x > 1

d2(x) =

∫

(1 + v2 − u2)dudv

(1 + evx)
√

((1 + v)2 − u2)(u2 − (1− v)2)

≃ ln(0.713 +
1.11

x
+ 0.019x),

d3(x) =

∫

x2u2(u2 − 1− v2)dudv

(1 + evx)
√

((1 + v)2 − u2)(u2 − (1− v)2)

≃ 1.33− 0.218x+ 0.012x2,

ds2 =

∫

(1 + v2 − u2)uθ(1/x− u)dudv

(1 + evx)
√

((1 + v)2 − u2)(u2 − (1− v)2)

≃

{

0.426− 0.1x2, x < 1
1.09e−1.2x. x > 1

(6)

Notice that in the above integrals the domain of the inte-
gration is v ∈ (0,∞) and u ∈ (|1− v|, 1 + v). To demon-
strate the coincidence of the integrals and their approx-
imations, we show them in Fig. 2. We find that in the
interesting region all the approximations coincide with
the corresponding integrals very well.
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Figure 2: Integrals and corresponding approxima-
tions. Solid curves and dashed curves correspond in-
tegrals and corresponding approximation respectively
of d1 (a), ds1 and ds2 (b), d2 (c) and d3 (d).

In the RPA, the full fermion propagator is,

S−1
FRPA(q) = S−1

F (q)− Σ(q). (7)

Or, it can be written as

S−1
FRPA(q

0,q) = (1− a)q0 − (1 − b)α · q. (7′)
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The fermion propagator has twice as many as normal
zero-temperature fermion propagators, analogous to the
results in Refs. [2–4]. In noticing that both real parts of
1 − a and 1 − b are even functions of q0, one finds that

the expression q0

T = 1−b
1−a

q
T gives the both the fermion

dispersion relation, ǫp = q0 > 0 and the (anti) plasmino
dispersion relation, ǫh = −q0 > 0.

The fact that a is a complex function (b is a real func-
tion) leads to Landau damping both for fermion mode
and for plasmino mode. This means that both the width
(or the inverse lifetime) of the fermion mode, γp, and that
of the plasmino mode, γh, are nonzero. However, from
the expression of a, both γp/ǫp and γh/ǫh, caused by
Landau damping, are suppressed by |T/ǫp|

3 and |T/ǫh|
3.

If ǫp, ǫh > T (we shall see in Fig. 4 that this is really
the picture), the Landau damping is not important and
the excitation modes are well defined. (The energies and
widths of the excitation mode can be depicted by the
Briet-Wigner approximation). In this case we can at first
ignore the imaginary part in a to compute the excitation
energies and then replace q0 by ǫp or ǫh respectively in

computing the exciton width in the term
3πNcα

2

gζ(3)

16y3 .
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Figure 3: Dispersion relations of fermion and plas-
mino. The solid curve is the dispersion of fermion
while the dashed one is the dispersion of antiplas-
mino. The dotted curve between solid and dashed
curves is the expression N

1/4
c α

1/2
g (Ncπα

16 d1(x) −
4 ln 2
π ds1(x))

1/4. The vertical line shows the posi-
tion of qc.

Choosing a suspended graphene, that is, αg = 2.1
and Nc = 4 , we present in Fig. 3 our results of en-
ergy dispersions of fermion excitation and plasmino exci-
tation. (Notice that as pointed out by Ref. [12], the pre-
dicted semimetal-insulator transition has not yet been
observed in experiments in zero magnetic field). We
find that there are similarities and several striking dif-
ferences between the results of our system and the ones
of QCD/QED [3,4, 7].

There are some similarities. First, in the larger
x = q/T region, the plasmino energy is always below

the fermion energy, analogous to QCD and QED [2,3,7].
Second, the plasmino and fermion are the same at q = 0.
In our system the coincident energy at q = 0 is around

ǫ0 ≃ 1.15N
1/2
c α

3/4
g (1− 0.13/(Ncαg))

1/4T ≃ 4T , which is
also proportional to temperature T .

The most important fact is, however, that our re-
sults are significantly different to those of QCD/QED
systems. Firstly, for ordinary Nc = 4 and αg ∼ 2,

i.e., 0.13/(Ncαg) ≪ 1, ǫ0 ∝ N
1/2
c α

3/4
g (Note that in a

QED/QCD system ǫ0 ∝ αg). Secondly, when 0 < q <
qc ≃ 0.953T , we have an opposite relation between ǫp and
ǫh, that is, ǫp < ǫh. Thirdly, the fermion and antiplas-
mino have the same energy not only at q = 0, but also at
q = qc, ǫp(0.95T ) = ǫh(0.95T ) = 4.04T .

In a QCD/QED system, the fermion energy increases
monotonically and the collective plasmino mode exhibits
a minimum at q 6= 0 when momentum q increases. In
our system, however, the fermion mode (but not plas-
mino mode) exhibits as sunken, that is, it has a mini-
mum at q1 ≃ 0.26T and ǫp(q1) ≡ mp ≃ 3.966T . Fur-
thermore, the behavior of plasmino mode is significantly
different from other systems. In the interesting region,
that is, ǫh > q, it has a maximum at q2 ≃ 0.44T and
ǫh ≡ mh ≃ 4.069T . At q > q2, ǫh(q) is not a monotoni-
cally increasing function but a monotonically decreasing
one. This phenomenon may be nominated as plasmino
anormal dispersion. To understand the anormal disper-
sion, we note that, roughly speaking, when the momen-
tum increases, on one hand, the average energy of the
trapped particle should generally increase as well, how-
ever, on the other hand, the trapping should decrease
as the momentum increases. When q is not very large,
the trapping decreasing is smaller than the momentum
increasing and the plasmino energy is an increasing func-
tion. However, and in contrast, when q > q2, the trapping
decreasing is larger than the momentum increasing and
therefore the plasmino energy is a decreasing function
(The point can be seen in Fig. 4). Since the plasmino is
related to the electromagnetic properties of the system,
studying the plasmino anormal dispersion and its effect
is interesting.

We also list decay widths of fermions and plasmi-
nos due to Landau damping in Fig. 4. From the fig-
ure one finds that obviously γh ≪ ǫh when q < 3T
and γp ≪ ǫp when q < 6T . Therefore, both fermion
and plasmino are well-defined modes. It is interest-
ing that, approximately, the fermion energies can be

approximately depicted by
√

m2
p + (q − q1)2 at moder-

ate q. In other words, the fermion behaves as a ”rel-
ativity particle” with effective mass mp. The plasmino
energy at moderate q can approximately be depicted
by mh − 0.086(q − q2)

2/T + 0.0054(q − q2)
4/T 3. Since
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ǫ0 ≃ mp ≃ mh, one can nominate ǫ0 as thermal mass.
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Figure 4: Dispersion relations and decay widths of
fermion (a) and plasmino (b). Solid curves are en-
ergies and dashed ones are decay widths. Dotted

curves are
√

m2
p + (q − q1)2 (a) and mh−0.086(q−

q2)
2/T + 0.0054(q− q2)

4/T 3 (b) respectively .

In summary, at nonzero temperature, we have found
that in the long-wavelength region of an intrinsic 2D
massless Dirac system there are not only normal collec-
tive fermion modes, but also collective plasmino modes,
the chiral of which are opposite to the fermion modes.

Both energies are on the order of ǫ0 ≃ 0.15N
1/2
c α

3/4
g (1−

0.13/(Ncαg))
1/4T ≃ 4T . Since in the interesting region

γp ≪ ǫp and γh ≪ ǫh, both fermion and plasmino are well
defined modes. However, there are sharp differences be-
tween the discussed system and the QCD/QED system.

Firstly, ǫ0 is proportional to α
3/4
g T but not the normal

one of αgT . Secondly, at 0 < q < qc, we have relation
ǫh > ǫp but not the normal one ǫh < ǫp which is valid
in QCD/QED systems. Thirdly, the mode which has a
minimum at q 6= 0 is not plasmino but fermion; on the
contrary, the plasmino has a maximum at q2 6= 0. Al-
though the fermion energy increases monotonically with
increasing momentum at q > q1, the plasmino energy
decreases monotonically with increasing momentum at
q > q2. In this Letter we nominated the interesting phe-
nomenon as anormal dispersion. We believe that our
predictions can be tested in a 2D massless Dirac sys-
tem, specifically, a graphene system, at finite tempera-
ture. Note that the material conductivity is related to
fermion degree. Our discussions may help to understand
the confliction of graphene dc conductivity between ex-
periments and theoretical calculations [14] at T → 0.

The plasmino mode was first predicted in a QCD
system. However, the existence of plasmino in QCD is
still under debated. We predict that in a 2D massless
condensed system, specifically, a graphene system, one
can observe the plasmino mode, which is on the order of
0.1eV at room temperature. The prediction can be de-
tected, for instance, by Infrared spectroscopic techniques

on graphene. It is hoped that the results of this study
will be helpful in designing new type of light-emitting
devices.
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