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Abstract

We present a new method of conducting molecular dynamics simulation in isothermal-isobaric

ensemble based on Langevin equations of motion. The stochastic coupling to all particle and cell

degrees of freedoms is introduced in a correct way, in the sense that the stationary configurational

distribution is proved to be in consistent with that of the isothermal-isobaric ensemble. In order to

apply the proposed method in computer simulations, a second order symmetric numerical integra-

tion scheme is developed by Trotter’s splitting of the single-step propagator. Moreover, a practical

guide of choosing working parameters is suggested for user specified thermo- and baro-coupling

time-scales. The method and software implementation are carefully validated by a numerical ex-

ample.
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I. INTRODUCTION

Molecular dynamics (MD) simulation is a powerful tool for investigating a broad range

of systems, from biological to materials sciences. In the equilibrium situation, it is of crucial

importance to consider the ensemble that an MD simulation samples, because the quantities

to observe is often calculated from the ensemble averages. Moreover, the equilibrium ensem-

ble may serve as the initial condition for non-equilibrium MD simulations [1]. Most of early

MD simulations solve the Hamiltonian dynamics, and sample the microcanonical ensemble.

In practical applications, alternative ensembles like canonical or isothermal-isobaric (NPT)

ensembles are usually more desirable, so various methods have been developed to sample

the required ensemble by modifying the Hamiltonian dynamics.

One class of approaches to generate the desired ensemble is the extended phase space

methods. For example, the Nosé-Hoover [2, 3], Nosé-Hoover chain [4] and stochastic Nosé-

Hoover thermostats are proposed to generate the canonical ensemble; The Andersen [5],

Parrinello-Rahman [6, 7] and Martyna-Tuckerman-Klein [8, 9] barostats are proposed to

generate the NPT ensemble. These methods share the idea of extending the physical phase-

space (positions, velocities of particles and the simulation cell) by extra variables that control

the temperature and/or pressure of the system. The dynamics of the extended system is

carefully designed to fulfill the condition that if the trajectory is ergodic, then the marginal

stationary distribution in the physical phase-space is in consistent with that of the desired

ensemble.

Langevin dynamics is an alternative method for generating the canonical ensemble. It

has been proved that the ergodicity is guaranteed under mild restrictions [10, 11], there-

fore the convergence to the canonical distribution is ensured in the limit of infinitely long

simulation time. Because of this advantage, Langevin dynamics has attracted increasing

attention recently, and various integration schemes were developed in order to improve the

accuracy of numerical simulations [12–17]. The first attempt of using the Langevin dynam-

ics in generating the NPT ensemble was from Feller et.al. [18] and Kolb and Dünweg [19],

who proposed the Langevin dynamics for both the particle degrees of freedom and the vol-

ume of the simulation cell (isotropic cell fluctuation). Quigley and Probert coupled the

Parrinello-Rahamn dynamics with Langevin stochastic terms to extend the method to the

fully flexible cell motions (anisotropic cell fluctuation) [20, 21]. However, it is not possible,
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as the authors stated, to prove that the stationary distribution of the dynamics is subject

to the NPT ensemble when the stochastic terms in cell motions do not vanish. Therefore,

theoretically, the cell motions in this approach should be deterministic, and the convergence

to the NPT distribution is not guaranteed, although the NPT distribution is one of the

stationary distributions. In practice, the authors recommended to accept the cell stochastic

motions at the cost of rigor in theory.

In this work, we propose a fully-flexible-cell NPT Langevin dynamics that allows explicit

stochastic components in both the particle and cell motions, due to which the convergence of

configurational distribution to the NPT ensemble is naturally ensured in the infinitely long

time limit. We start by defining the Hamiltonian for an extended phase-space composed

of scaled coordinates and simulation cell variables. Then the Langevin dynamics of this

system can be directly written down, and the Boltzmann stationary distribution is obtained

in the extended phase-space. In order to have a direct description of the particle motions in

terms of physical coordinates, the scaled coordinates are transformed back, and the Langevin

dynamics is reformulated accordingly by using Ito’s formula. The configurational stationary

distribution is then proved to be consistent with that of the NPT ensemble by transforming

the Boltzmann distribution back to the physical coordinates in the same way. To develop the

numerical scheme, we start by considering the Fokker-Planck equation that is equivalent to

the Langevin equation, then the scheme is formulated by splitting the single-step propagator

of the Fokker-Planck equation according to Trotter’s theorem. By construction, the proposed

scheme is of second order accuracy with respect to the time-step size.

Before moving to the main results of this work, it should be noted that it is in general

difficult to check if the convergence to the NPT distribution is achieved in a finite simulation

time. One might check the convergence of some properties of the system, for example the

free energy profile along a certain reaction coordinate [22], but the choice of indicating

properties depends on the nature of the system and what is wanted from the simulation,

and they are usually not sufficient to prove the convergence of the distribution. Therefore,

we do NOT intend to investigate the ergodicity or the speed of convergence to the desired

ensemble distribution in numerical simulations. The significance of this work is to propose

a new fully-flexible-cell NPT Langevin dynamics that takes the theoretical advantage of

ergodicity, and can be used as an alternative to the existing NPT simulation methods.

This paper is organized as following: The development of NPT Langevin dynamics is
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discussed in detail in Sec. II. The discretization of Langevin dynamics is provided in Sec. III.

In Sec. IV, we validate the NPT Langevin dynamics by a solid argon system of triclinic region

cell. This work is concluded in Sec. V.

II. THE LANGEVIN EQUATIONS OF MOTION

We denote the particle positions in the system by r1, · · · , rN , where N is the number

of particles in the system. The simulation cell matrix is denoted by h = [h1, h2, h3], where

hα, α = 1, 2, 3 are cell vectors. The scaled (direct) coordinate of a particle si is defined by

ri = hsi. In order to generate the fully-flexible-cell NPT ensemble, all components of the

cell vectors are allowed to fluctuate. We define the kinetic energy of the system by

K =
∑

i

1

2
mi(hṡi)

2 +
∑

αβ

1

2
Mαβ ḣ

2
αβ , (1)

where Mαβ is the fictitious mass corresponding to the motion of hαβ that is the β-th compo-

nent of the α-th cell vector. The first term on the RHS of (1) is different from the physical

kinetic energy of the system, which is
∑

1
2
mi[d(hsi)/dt]

2. The consequence of this difference

will be discussed in detail later. It worth noting that the Parrinello-Rahamn barostat [6, 7]

also uses Eq. (1) as the definition of kinetic energy. The Lagrangian of the system is defined

as

L({si}, {ṡi}, h, ḣ) = K − (U + P det(h)), (2)

where U = U(hs1, · · · , hsN) is the potential energy of the system, and P is the target

pressure. The generalized momenta corresponding to ri and h are

πi = mih
⊤hṡi, phαβ = Mαβ ḣαβ, (3)

respectively. Therefore, the Hamiltonian of the system yields

H({si}, {πi}, h, ph) =
∑

αβ

(phαβ)
2

2Mαβ

+
∑

i

(h−⊤πi)
2

2mi

+ U + P det(h). (4)

The first term on the RHS of (4) is the kinetic energy of cell vectors, and the summation of

the last three terms gives the instantaneous enthalpy. The Langevin dynamics is defined by
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ṡi =
∂H
∂πi

(5a)

π̇i = −
∂H
∂si
− Γi

∂H
∂πi

+ ΣiẆi (5b)

ḣαβ =
∂H
∂phαβ

(5c)

ṗhαβ = − ∂H
∂hαβ

− γ̂αβ
∂H
∂phαβ

+ σ̂αβẆαβ , (5d)

where Wi, Wαβ denote the standard Wiener processes, which are independent for different

particle and cell degrees of freedom. The friction Γi and noise magnitude Σi are h dependent

matrices defined by Γi = γmih
⊤h, Σi = σ

√
mi h

⊤, where σ2 = 2γ/β, then the fluctuation-

dissipation theorem ΣiΣ
⊤
i = 2Γi/β holds for (5a)–(5b). We define γ̂αβ = Mαβγαβ and σ̂αβ =

√

Mαβσαβ , where σ2
αβ = 2γαβ/β, then the fluctuation-dissipation theorem σ̂2

αβ = 2γ̂αβ/β

holds for (5c)–(5d). It is well known that the stationary probability density of the Langevin

dynamics (5) is

ρequi ∝ exp
[

− βH({si}, {πi}, h, ph)
]

. (6)

It is more convenient to represent the Langevin dynamics (5) in physical coordinates, so

we introduce the following transformation

ri = hsi, pi = h−⊤πi. (7)

By using Ito’s formula, and writing down all partial derivatives explicitly, we reach

ṙi =
1

mi

pi + ḣh−1ri (8a)

ṗi = −∂iU − h−⊤ḣ⊤pi − γ pi +
√
mi σ Ẇi (8b)

ḣαβ =
1

Mαβ

phαβ (8c)

ṗhαβ = det(h)[(Pins − P )h−⊤]αβ − γαβ p
h
αβ +

√

Mαβ σαβ Ẇαβ, (8d)

where Pins is the instantaneous pressure tensor defined by

Pins =
1

det(h)

∑

i

( 1

mi

pi ⊗ pi + Fi ⊗ ri

)

. (9)
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It can be easily shown that the Jacobian determinant of the transform (7) is 1, therefore,

by integrating out the cell vector momenta, the equilibrium probability density generated

by dynamics (8a)–(8d) is

ρequi ∝ exp
[

− β
(

N
∑

i=1

p2i
2mi

+ U({ri}) + P det(h)
)]

. (10)

Remark 1: The stationary distribution (10) obtained here is different from that can be

found in some literature, e.g. Ref. [8], by a prefactor of [det(h)]d−1 (d being the dimension

of the physical space), regardless of the normalization constant. This prefactor stems from

the conservation of the system momentum when using the deterministic extended phase-

space methods. For Langevin dynamics, the system momentum is neither conserved nor

restrained, so the prefactor [det(h)]d−1 does not appear in (10). The prefactor contributes

the free energy at the order of O(d/N), therefore, when the system contains a large number

of particles, this difference is expected to be negligible.

Remark 2: It should be noted here that the particle momentum pi is not exactly the

physical momentum pphysi . As a matter of fact, we have the relation:

pphysi = pi +miḣh
−1ri. (11)

This inconsistency is the direct consequence of the definition of the kinetic energy (1), in

which the particle contribution is not the physical kinetic energy. There is no substantial

difficulty in using the physical definition, however, the derivation of the Langevin dynamics

would become much more complicated. In most applications, only the correctness of system

configuration is of importance. The current definition guarantees the configurational distri-

bution to be consistent with that of the NPT ensemble, so we consider it to be acceptable.

Remark 3: The choice of the parameters in the Langevin dynamics (8) has been extensively

discussed in literature, e.g. [19, 20]. We pick up the friction coefficients based on a rule of

thumb [20]: γ = γαβ = ωT/2π = 1/τT , where ωT denotes the frequency of the thermostat

and τT = 2π/ωT is the time-scale of the thermostat. In order to provide the way of choosing

the fictitious mass Mαβ , we firstly assume that the cell matrix h is diagonal (a cuboid cell).

With a first order expansion of the pressure with respect to the cell fluctuation in h11, h22

and h33, we have

P − P 0 = − 1

κh0
11h

0
22h

0
33

(h11h22h33 − h0
11h

0
22h

0
33), (12)
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where κ = − 1
V

∂V
∂P

is the compressibility. The superscript “0” denotes the equilibrium value

of the corresponding variable. We further assume that the fluctuation from the equilibrium

value is small, i.e. |hαα − h0
αα|, α = 1, 2, 3 are small. Arranging the equation (12) in the

component-wise way and preserving only the first order fluctuations on the RHS, we have

1

3

[

(P11 − P 0
11) + (P22 − P 0

22) + (P33 − P 0
33)

]

= − 1

κh0
11h

0
22h

0
33

[

(h11 − h0
11)h

0
22h

0
33 + (h22 − h0

22)h
0
11h

0
33 + (h33 − h0

33)h
0
11h

0
22

]

.

One possible solution to the equation is

Pαα − P 0
αα = − 3

κh0
αα

(hαα − h0
αα), α = 1, 2, 3. (13)

By inserting (8c) and (13) into (8d), and discarding the friction and noise, and higher order

terms, we have

Mααḧαα = −3 det(h
0)

κ(h0
αα)

2
(hαα − h0

αα),

which is the equation of motion of harmonic oscillator hαα with spring constant kαα = 3 det(h0)
κ(h0

αα)
2

and equilibrium position h0
αα. By using the relation ωαα =

√

kαα/Mαα, where ωαα is the

barostat frequency, we derive the expression for the fictitious mass

Mαα =
3det(h0)

κ(h0
αα)

2

( 1

ωαα

)2

=
3det(h0)

κ(h0
αα)

2

(ταα
2π

)2

, (14)

where ταα is the time-scale of the barostat. For simplicity, we choose the off-diagonal value

of fictitious mass by

Mαβ =
3det(h0)

κ(h0
αα)

2

(ταβ
2π

)2

. (15)

In practice, it is often impossible to predict the equilibrium cell matrix h0 before performing

the simulation, however, if the initial condition does not deviate very far from equilibrium,

we take the initial value of h as a reasonable guess for h0. The compressibility κ can either

take an experimental value, or be estimated from short testing simulations using the formula:

κ = β(〈V 2〉 − 〈V 〉2)/〈V 〉.
It worth noting that regardless of the choice of the parameters, the Langevin dynamics (8)

samples the configurational distribution of the NPT ensemble at infinitely long time limit.

The difference in using different parameters lies in the sampling efficiency. If the time-

scales of the thermo- and barostat were chosen too large, then the temperature and pressure
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of the system would not be adjusted in a responsive way, and the sampling of the NPT

ensemble would be too slow. On the other hand, if they were chosen too small, then an

unnecessarily small time-step would be needed to keep the MD simulation stable. Therefore,

it was suggested that the inverse time-scales be chosen just below the typical molecular

frequency [19].

III. DISCRETIZE THE LANGEVIN DYNAMICS

The evolution of a system governed by the Langevin dynamics (8a) – (8d) is equivalently

described by the following Fokker-Planck equation:

∂ρ

∂t
= Fρ, (16)

where ρ(t, {ri}, {pi}, h, ph) is the time dependent probability density defined on the phase

space. F is the infinitesimal generator, which can be factorized as

F = FK + FU + FO + Fh
K + Fh

U + Fh
O, (17)

with each term defined by

FK =
∑

i

[ pi
mi

+ ḣh−1ri

]

· ∂

∂ri

FU =
∑

i

[

− ∂iU − h−⊤ḣ⊤pi

]

· ∂

∂pi

FO =
N
∑

i=1

[

3γ + γpi
∂

∂pi
+

miσ
2

2

∂2

∂p2i

]

Fh
K =

∑

αβ

phαβ
Mαβ

∂

∂hαβ

Fh
U =

∑

αβ

det(h)
[

(Pins − P )h−⊤
]

αβ

∂

∂phαβ

Fh
O =

∑

αβ

[

γαβ + γαβp
h
αβ

∂

∂phαβ
+

Mαβσ
2
αβ

2

∂2

∂(phαβ)
2

]

.

Given this factorization, the single-step propagator e∆tF (∆t being the time-step) can be

split by the Trotter theorem:

e∆tF = e
∆t
2
Fh

Ue
∆t
2
FU e

∆t
2
Fh

Ke
∆t
2
FKe∆tFh

Oe∆tFOe
∆t
2
FKe

∆t
2
Fh

Ke
∆t
2
FU e

∆t
2
Fh

U +O(∆t3). (18)
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This style of splitting is actually the “BAOAB” scheme proposed by Ref. [15]. The authors

argued that the BAOAB splitting is more accurate than other schemes in the sense of

configurational sampling. The action of propagator e∆tFK and e∆tFU corresponds to evolve

ri and pi by ∆t under the ordinary differential equation ṙi = 1
mi
pi + ḣh−1ri and ṗi =

−∂iU − h−⊤ḣ⊤pi, respectively. Here we adopt the convention that the cell matrix h is

an upper triangular matrix, then one has to solve, in general, ẋ = b + Ax with A being

an upper or lower triangular matrix. In the current work, the analytic solution of ẋ =

b + Ax in the upper and lower triangular cases are denoted by x(t) = Su(x(0), t, b, A) and

x(t) = Sl(x(0), t, b, A), respectively. The explicit forms of function Su and Sl are provided in

Appendix A. The action of propagator e∆tFO and e∆tFh
O corresponds to evolve variables pi and

phαβ by ∆t under the Ornstein-Uhlenbeck process. In general, an Ornstein-Uhlenbeck process

dp = −γpdt + σ
√
mdwt can be explicitly solved by p(t) = e−γtp(0) + σ√

2γ

√
1− e−2γt

√
mR,

where R is a random number subject to the normal distribution with vanishing mean and

unit variance, i.e. N (0, 1).

Discarding the higher order terms and applying from left to right the propagators on the

RHS of (18) yields the following numerical scheme:

1: while MD continues do

2: phαβ ← phαβ +∆t/2 det(h)[(Pins − P )h−⊤]αβ

3: pi ← Sl(pi,∆t/2,−∂iU,−h−⊤ḣ⊤)

4: hαβ ← hαβ +∆t/2 (phαβ/Mαβ)

5: ri ← Su(ri,∆t/2, pi/mi, ḣh
−1)

6: phαβ ← e−γαβ∆tphαβ +
√
1− e−2γαβ∆t

√

Mαβ/β R

7: pi ← e−γ∆tpi +
√
1− e−2γ∆t

√

mi/βR

8: ri ← Su(ri,∆t/2, pi/mi, ḣh
−1)

9: hαβ ← hαβ +∆t/2 (phαβ/Mαβ)

10: Compute the force for each particle

11: pi ← Sl(pi,∆t/2,−∂iU,−h−⊤ḣ⊤)

12: Compute the instantaneous pressure tensor

13: phαβ ← phαβ +∆t/2 det(h)[(Pins − P )h−⊤]αβ

14: end while

The operators FO and Fh
O are mutable, therefore, lines 6 and 7 in the algorithm can be

9
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FIG. 1: The equilibriation of the Lennard-Jones argon system toward 300 K and 40 kBar. The

simulation starts from a perfect FCC configuration at 0 K, and lasts for 100 ps. The plots present

the equilibriation of temperature (upper plot) and pressure (lower plot) at the first 2 ps. The

solid line uses a compressibility of 4.5× 10−5 Bar−1, and the dashed line uses a compressibility of

0.8× 10−5 Bar−1.

swapped.

IV. NUMERICAL RESULTS

The NPT Langevin method was implemented in the in-house molecular dynamics simu-

lation package MOASP developed on infrastructure JASMIN [23]. In order to validate the

theory and the implementation, we tested a solid argon system modeled by the Lennard-

Jones interaction:

U(r) =
C12

r12
− C6

r6
+ C, (19)

where r is the distance between a pair of particles. C12 = 2.71507 × 10−7 kJ mol−1nm−12

and C6 = 1.72685× 10−4 kJ mol−1nm−6 are parameters taken from the CHARMM27 force

field [24, 25]. C is a shifting constant that ensures the continuity of energy at the cut-off.

The cut-off radius was chosen to be 0.9 nm in all simulations. The neighbor list was build

for particles that are at most 1.1 nm apart, and was updated every 20 time-steps. The

time-step of all simulations was chosen to be 1 fs.

An initial configuration of perfect FCC crystal was prepared by extending the Bravais

10
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FIG. 2: The conservation of Hamiltonian when the friction and noise vanish. The time evolution

of the cell kinetic energy (green), the instantaneous enthalpy (blue) and the Hamiltonian (red)

are presented. The kinetic energy uses the left y-axis, while the instantaneous enthalpy and the

Hamiltonian use the right y-axis, as the arrows in the Figure indicate. The unit of the energy is

kJ/mol.

lattice cell of |h1| = |h2| = |h3| = 1.825 nm and α = β = γ = 60◦ by 30 × 20 × 20

times along three cell vectors, respectively. Therefore, the system contained 12,000 atoms

in total. An 100 ps equilibriation simulation that used this configuration and zero initial

velocities was conducted at 300 K and 40 kBar. The initial guess of the compressibility was

4.5 × 10−5 Bar−1 (which was actually a value taken from the liquid water under ambient

condition). The time-scales of thermostat and barostat were set to 0.1 ps and 0.5 ps, re-

spectively. The system was successfully equilibriated to the desired thermodynamic state

within only 1 ps (the solid lines in Fig. 1), and the initial FCC solid structure was stable

under this thermodynamic condition. The finial coordinates and velocities of atoms were

recorded for productive simulations. The compressibility, 0.8 × 10−5 Bar−1, was estimated

from this simulation, and was used for all following simulations. Since the initial guess of

the compressibility was much larger than 0.8 × 10−5 Bar−1, the speed of equilibriation was

actually faster than the user specified thermo- and barostat time-scales. We conducted the

equilibriation again with the correct compressibility, and found that the speed of equilibri-

ation was roughly the same as the specified thermo- and barostat time-scales (the dashed

lines in Fig. 1).

An effective way to validate the correctness of the equations and software implementation

is to check the conservation of Hamiltonian (4) when the friction and noise in (8) vanish.
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FIG. 3: The distribution of the instantaneous enthalpy (left) and cell volume (right) of the solid ar-

gon system. The gray bars present the probability densities calculated from the 10,000 ps Langevin

NPT simulation (this work) at 300 K and 40 kBar. The solid lines present the same probability

densities calculated from the reference simulation (see the text for more details).

We performed this simulation with the initial positions and velocities from the previous

equilibriation, and plot the evolution of the cell kinetic energy, the instantaneous enthalpy

and the Hamiltonian in Figure 2. A perfect conservation of the Hamiltonian is observed. It

worth mentioning that the cell kinetic energy and the instantaneous enthalpy fluctuate at

the magnitude of roughly ±5 kJ/mol (see Fig. 2), and that the kinetic and potential energy

of particles fluctuate at the magnitude of roughly ±300 kJ/mol (not shown).

The productive NPT simulation lasted for 10,000 ps, and the data collection started from

100 ps. The instantaneous enthalpy and cell vectors were recorded every 0.02 ps. We plot

the distribution of the instantaneous enthalpy and cell volume in Fig. 3. The distribution

of the lengths of cell vectors and the angles between them are presented in Fig. 4. In the

figures, the results of the NPT Langevin dynamics are compared and consistent with those

of a reference simulation that uses velocity-rescaling thermostat [26] and Parrinello-Rahman

barostat [6, 7]. The initial condition and the other parameters were set to be the same as the

Langevin simulation. The reference simulation is considered to be reliable, because it was

conducted by a well-tested MD simulation package Gromacs [27, 28] (version 4.6.5). The

radial distribution functions (RDFs) calculated by Langevin and the reference simulation

are shown to be overlapping in the upper plot of Fig. 5. From the lower plot of Fig. 5,

we observe that the difference between them is dominated by the statistical uncertainty.

This means that the solid structures sampled by Langevin dynamics reproduce those of the

reference simulation.
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FIG. 4: The distribution of cell vectors. Plot (a) – (c) on the left column present the probability

densities of lengths of three cell vectors, i.e. |h1|, |h2| and |h3|, respectively. Plot (d) – (f) on the

right column present the probability densities of three angles α, β and γ between them, respectively.

(α is the angle between h2 and h3. β is the angle between h1 and h3. γ is the angle between h1

and h2.) The simulated system is the same as Fig. 3.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we proposed a new fully-flexible-cell Langevin dynamics in NPT ensemble.

Our approach couples stochastic terms to both the particle and cell degrees of freedom, and is

proved to correctly sample the configurational stationary distribution of the NPT ensemble.

We noted that the choice of the working parameters (friction coefficients and the fictitious

masses of cell vectors) does not affect the sampling of the NPT ensemble in the infinitely

long time limit, however it determines the sampling efficiency and the size of the MD time-

step. Therefore, we suggested a practical guide that automatically computes the fictitious

mass and the friction coefficients by using the user specified thermo-/barostat time-scales,

and the compressibility of the simulated material. In order to solve the Langevin equations
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FIG. 5: The radial distribution functions calculated by the NPT Langevin (this work) and reference

simulations. The two RDFs are plotted together in the upper plot; The difference between them

is presented in the lower plot.

by computers, a discretization scheme was developed by using the Trotter splitting of the

single-step propagator of the Fokker-Planck equation. This scheme is, by construction, of

second order accuracy. A solid argon system modeled by the Lennard-Jones interaction

was simulated to validate the proposed Langevin dynamics and the numerical scheme. The

conservation of the Hamiltonian in the case of vanishing friction and noise was firstly check,

and the correctness of the equations and the software implementation was confirmed. Then

the equilibrium distributions of enthalpy, cell volume and vectors were calculated, and were

found to be in good consistency with those calculated by a reference simulation (conducted

by package Gromacs 4.6.5). The accuracy of the equilibrium structure of the system was

verified by comparing the radial distribution function with the reference simulation.

Although the Langevin dynamics is an efficient sampling tool of the equilibrium ensem-

bles, the computed dynamical properties like time correlation functions are usually wrong,

because the stochastic terms in the momentum equations break the physical dynamics of the

system that is described by the Newton’s equations of motion. Therefore, in the cases where

the dynamical properties are intended to be computed precisely, more carefully designed

methods, e.g. local Langevin thermostat, should be used [29].
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Appendix A: Solve the equation ẋ = b+Ax

The ordinary differential equation ẋ = b + Ax can be solved analytically. We start with

the case that A is an upper triangular matrix:











ẋ0

ẋ1

ẋ2











=











b0

b1

b2











+











a00 a01 a02

0 a11 a12

0 0 a22











·











x0

x1

x2











. (A1)

The solution is given by:

x0(t) =x0(0)e
a00t + t b0F1(0, a00t)

+ t a01x1(0)F1(a00t, a11t) + t2 a01b1F2(a00t, 0, a11t)

+ t a02x2(0)F1(a00t, a22t) + t2 a02b2F2(a00t, 0, a22t)

+ t2a01a12x2(0)F2(a00t, a11t, a22t) + t3a01a12b2F3(a00t, a11t, 0, a22t) (A2)

x1(t) =x1(0)e
a11t + t b1F1(0, a11t)

+ t a12x2(0)F1(a11t, a22t) + t2 a12b2F2(a11t, 0, a22t) (A3)

x2(t) =x2(0)e
a22t + t b2F1(0, a22t), (A4)

where the function F1, F2 and F3 are defined to be

F1(A,B) =
eA − eB

A− B
(A5)

F2(A,B,C) =
1

B − C
(F1(A,B)− F1(A,C)) (A6)

F3(A,B,C,D) =
1

C −D
(F2(A,B,C)− F2(A,B,D)). (A7)
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It should be noticed that the definitions have singularity when any two of the A, B, C and

D are equal, and we do not exclude these cases in real simulations. Noticing that we only

need the solution of (A1) at small t, the singularity can be avoided by Taylor expansion of

the exponential functions around 0. Following this idea, we reach the serial expansions of

F1, F2 and F3:

F1(A,B) =
∞
∑

k=0

1

(k + 1)!

∑

0≤α,β≤k
α+β=k

AαBβ (A8)

F2(A,B,C) =
∞
∑

k=0

1

(k + 2)!

∑

0≤α,β,γ≤k
α+β+γ=k

AαBβ (A9)

F3(A,B,C,D) =

∞
∑

k=0

1

(k + 3)!

∑

0≤α,β,γ,δ≤k
α+β+γ+δ=k

AαBβCγDδ. (A10)

For the case that A is a lower triangular matrix:
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ẋ1
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b2











+











a00 0 0

a10 a11 0

a20 a21 a22











·











x0

x1

x2











, (A11)

the solution can be written down in a similar way:

x0(t) =x0(0)e
a00t + t b0F1(0, a00t) (A12)

x1(t) =x1(0)e
a11t + t b1F1(0, a11t)

+ t a10x0(0)F1(a11t, a00t) + t2 a10b0F2(a11t, 0, a00t) (A13)

x2(t) =x2(0)e
a22t + t b2F1(0, a22t)

+ t a21x1(0)F1(a22t, a11t) + t2 a21b1F2(a22t, 0, a11t)

+ t a20x0(0)F1(a22t, a00t) + t2 a20b0F2(a22t, 0, a00t)

+ t2a21a10x0(0)F2(a22t, a11t, a00t) + t3a21a10b0F3(a22t, a11t, 0, a00t). (A14)
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ensemble via continuous dynamics. The Journal of Chemical Physics, 97(4):2635–2643, 1992.

[5] H.C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature.

The Journal of Chemical Physics, 72:2384, 1980.

[6] M. Parrinello and A. Rahman. Polymorphic transitions in single crystals: A new molecular

dynamics method. Journal of Applied Physics, 52:7182, 1981.

[7] M. Parrinello and A. Rahman. Crystal structure and pair potentials: A molecular-dynamics

study. Physical Review Letters, 45(14):1196–1199, 1980.

[8] G.J. Martyna, D.J. Tobias, and M.L. Klein. Constant pressure molecular dynamics algorithms.

The Journal of Chemical Physics, 101(5):4177–4189, 1994.

[9] G.J. Martyna, M.E. Tuckerman, D.J. Tobias, and M.L. Klein. Explicit reversible integrators

for extended systems dynamics. Molecular Physics, 87(5):1117–1157, 1996.

[10] Jonathan C Mattingly, Andrew M Stuart, and Desmond J Higham. Ergodicity for sdes and

approximations: locally lipschitz vector fields and degenerate noise. Stochastic Processes and

Their Applications, 101(2):185–232, 2002.

[11] Jonathan C Mattingly and Andrew M Stuart. Geometric ergodicity of some hypo-elliptic

diffusions for particle motions. Markov Process. Related Fields, 8(2):199–214, 2002.

[12] G. Bussi and M. Parrinello. Accurate sampling using langevin dynamics. Physical Review E,

75(5):056707, 2007.

[13] S. Melchionna. Design of quasisymplectic propagators for langevin dynamics. The Journal of

Chemical Physics, 127(4):44108–44108, 2007.

[14] N. Bou-Rabee and H. Owhadi. Long-run accuracy of variational integrators in the stochastic

context. SIAM Journal on Numerical Analysis, 48(1):278–297, 2010.

[15] B. Leimkuhler and C. Matthews. Robust and efficient configurational molecular sampling via

langevin dynamics. The Journal of Chemical Physics, 138:174102, 2013.

[16] Benedict Leimkuhler and Charles Matthews. Rational construction of stochastic numerical

methods for molecular sampling. Applied Mathematics Research eXpress, 2013(1):34–56, 2013.

17



[17] Elias Alphonsus Jozef Franciscus Peters, Nicolae Goga, and Herman JC Berendsen. Stochastic

dynamics with correct sampling for constrained systems. Journal of Chemical Theory and

Computation, 10(10):4208–4220, 2014.

[18] S.E. Feller, Zhang Y., R.W. Pastor, and B.R. Brooks. Constant pressure molecular dynamics

simulation: the langevin piston method. The Journal of Chemical Physics, 103(11):4613–4621,

1995.

[19] A Kolb and B Dünweg. Optimized constant pressure stochastic dynamics. The Journal of

Chemical Physics, 111(10):4453–4459, 1999.

[20] D Quigley and MIJ Probert. Langevin dynamics in constant pressure extended systems. The

Journal of Chemical Physics, 120(24):11432–11441, 2004.

[21] D Quigley and MIJ Probert. Constant pressure langevin dynamics: theory and application.

Computer Physics Communications, 169(1):322–325, 2005.

[22] Evan Kelly, Michael Seth, and Tom Ziegler. Calculation of free energy profiles for elementary

bimolecular reactions by ab initio molecular dynamics: sampling methods and thermostat

considerations. The Journal of Physical Chemistry A, 108(12):2167–2180, 2004.

[23] Zeyao Mo, Aiqing Zhang, Xiaolin Cao, Qingkai Liu, Xiaowen Xu, Hengbin An, Wenbing

Pei, and Shaoping Zhu. Jasmin: a parallel software infrastructure for scientific computing.

Frontiers of Computer Science in China, 4(4):480–488, 2010.

[24] Nicolas Foloppe and Alexander D MacKerell Jr. All-atom empirical force field for nucleic acids:

I. parameter optimization based on small molecule and condensed phase macromolecular target

data. Journal of Computational Chemistry, 21(2):86–104, 2000.

[25] Alexander D Mackerell and Nilesh K Banavali. All-atom empirical force field for nucleic acids:

Ii. application to molecular dynamics simulations of dna and rna in solution. Journal of

Computational Chemistry, 21(2):105–120, 2000.

[26] G. Bussi, D. Donadio, and M. Parrinello. Canonical sampling through velocity rescaling. The

Journal of Chemical Physics, 126:014101, 2007.

[27] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. Gromacs 4: Algorithms for highly effi-

cient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput, 4(3):435–

447, 2008.
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