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Abstract

We calculate the annihilation decay rates of the 3D2(2
−−) and 3D3(3

−−) charmo-
nia and bottomonia by using the instantaneous Bethe-Salpeter method. The wave
functions of states with quantum numbers JPC = 2−− and 3−− are constructed.
By solving the corresponding instantaneous Bethe-Salpeter equations, we obtain the
mass spectra and wave functions of the quarkonia. The annihilation amplitude is
written within Mandelstam formalism and the relativistic corrections are taken into
account properly. This is important, especially for high excited states, since their
relativistic corrections are very large. The results for the 3g channel are as follows:
Γ3D2(cc̄)→ggg = 3.71 keV, Γ3D3(cc̄)→ggg = 38.2 keV, Γ3D2(bb̄)→ggg = 0.140 keV, and
Γ3D3(bb̄)→ggg = 1.01 keV.

1 Introduction

The 13D2(2
−−) charmonium has been found in B decays by the Belle Collaboration [1]. It

was confirmed very recently by the BESIII Collaboration through the e+e− annihilation
process with a statistical significance of 6.2σ [2]. The mass of this particle is measured to
be 3821.7 ± 1.3 ± 0.7 MeV, and the decay width is less than 16 MeV. The discovery of
this triplet D-wave charmonium is important for checking the validity of phenomenolog-
ical models, such as the quark potential models, which have predicted abundant heavy
quarkonium spectra [3].

These experimental results have attracted some theoretical attention to the production
properties of this particle, such as the possibility to find this particle through Bc decays [4]
or e+e− annihilation with soft pion limit [5]. For the decay properties of this particle, since
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the mass of this particle is below the DD̄∗ threshold, and the DD̄ channel is forbidden,
there is no OZI-allowed channel. As a result, one-photon radiation processes [6] and
decays to light hadrons [7] are important. The later one is closely related to the three-
gluon annihilation process. This channel is expected to have a relatively small partial
width as it is in order of α3

s. Nevertheless, it still deserves a careful investigation, as it
gives useful information to understand the formalism of quark-antiquark interaction and
provides a testing ground for the non-perturbative properties of QCD.

For similar reasons, annihilation processes of D-wave quarkonia with JPC = 3−− also
need investigations. The 13D3(3

−−) charmonium has not been found experimentally, and
its mass is predicted to be 3812 ∼ 3903 MeV by potential models [8]. Although the DD̄
channel of this particle is opened, the high partial wave contribution makes it suppressed.
In the bottomonium sector, only the 13D2 state has been found [9, 10]. The mass of 13D3

state is predicted to be 10.181 GeV by Lattice QCD [11], and 10.16 GeV [3] by potential
models. Both states are below the open-flavor-decay threshold.

The annihilation processes of 3D2 and 3D3 quarkonium states have been investigated
only in a few works. Refs. [12, 13, 14] employed non-relativistic models to calculate
the annihilation amplitudes, which, for D-wave states, are only related to the second
derivative of the wave functions at the origin. Ref. [7] used the NRQCD method to
calculate annihilation decay widths. Since the relativistic corrections to the three-gluon
annihilation processes of quarkonia are large [15, 16], especially, the non-original parts
of the wave functions give considerable contributions, it is important at this stage to
investigate the three-gluon annihilation processes of 2−− and 3−− D-wave quarkonia with
relativistic corrections taken into account. In our previous work [15], the three-gluon
(photon) annihilation process of 3S1(1

−−) charmonia and bottomonia have been calculated
with an instantaneous Bethe-Salpeter (BS) method [17, 18], and the obtained decay widths
are within the limits of experimental error [19]. So in this work, we use the same framework
as the one used in Ref. [15] to calculate annihilations of 3D2 and 3D3 charmonium and
bottomonium states, that is, we construct the Salpeter wave functions for these mesons
and write the decay amplitude within Mandelstam formalism [20].

The remaining of this paper is organized as follows. In Section 2, we present the
details of the theoretical formalism including the wave functions and the decay amplitude.
Numerical results and discussions for the the annihilation processes of 3D2 and

3D3 heavy
quarkonia are presented in Section 3. Section 4 is devoted to a summary. The eigenvalue
equations fulfilled by 3D2 and 3D3 heavy mesons are given in the Appendix.

2 Theoretical calculations

The ggg and γgg decay widths of the 3D2 and
3D3 mesons are related to that of the three-

photon channel just by a parameter. So here we first calculate the later case. According
to the Mandelstam formalism [20], the three-photon annihilation amplitude (see Fig. 1)
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is written as

T3γ =
√
3(ieeq)

3

∫
d4q

(2π)4
Tr

[
χP (q)

(
/ǫ3

1

/k3 − /p2 −mq + iǫ
/ǫ2

1

/p1 − /k1 −mq + iǫ
/ǫ1

+ all other permutations of 1, 2, 3

)]
,

(1)

where
√
3 is the color factor; eeq is the electric charge of the heavy quark in unit of e (for

charmonium eq = 2
3
and for bottomonium eq = −1

3
); χP (q) is the Bethe-Salpeter wave

function of the meson with mass M and momentum P , and q is the relative momentum of
the inner quark and antiquark (with mass mq and momentum pi); k1 ∼ k3 are momenta
of final photons (gluons) with polarizations ǫ1 ∼ ǫ3, respectively.

p1

p2

P , q

k1, ǫ1

k2, ǫ2

k3, ǫ3

(a)

(b) (c)

Figure 1: Feynman diagrams for the annihilation processes: (a) γγγ; (b)γgg; (c)ggg. For
each case, there are also five other diagrams with permutations of photons and gluons.

To do the integration in Eq. (1), we take the approximation p1 → p̃1 =
1
2
P + q⊥ and

p2 → p̃2 =
1
2
P − q⊥ (q⊥ is defined as q − P ·q√

P 2
P ), which is reasonable when p01 + p02 ≈ M .

By doing so, the heavy quark propagators will only depend on ~q, while q0 is only included
in the wave function. By using the definition

ϕP (q⊥) = i

∫
dq0

2π
χP (q), (2)

we could get the three-dimensional form of the amplitude

T3γ =
√
3(ieeq)

3

∫
d~q

(2π)3
Tr

{
ϕP (q⊥)

[
/ǫ3

/k3 − /̃p2 +mq

(k3 − p̃2)2 −m2
q + iǫ

/ǫ2
/̃p1 − /k1 +mq

(p̃1 − k1)2 −m2
q + iǫ

/ǫ1

+ all other permutations of 1, 2, 3

]}
.

(3)
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Here we give the explicit expressions for the D-wave mesons. Following Refs. [21, 22],
with the instantaneous approximation (set q0 = 0), the general wave function of 3D2

meson is constructed to have the following form

ϕ2−−(q⊥) = iǫµναβ
P ν

M
qα⊥ǫ

βδq⊥δγ
µ

(
g1 +

/P

M
g2 +

/q⊥
M

g3 +
/P/q⊥
M2

g4

)
, (4)

where ǫµν is the polarization tensor of the meson and ǫµναβ is the Levi-Civita simbol; gis
are functions of q2⊥, one can check that this wave function has the quantum number of
JPC = 2−−. For the 3D3 state, according to the quantum number 3−−, its wave function
is given as follows

ϕ3−−(q⊥) = ǫµναq
µ
⊥q

ν
⊥

[
qα⊥

(
f1 +

/P

M
f2 +

/q⊥
M

f3 +
/P/q⊥
M2

f4

)
+Mγα

(
f5 +

/P

M
f6

+
/q⊥
M

f7 +
/P/q⊥
M2

f8

)]
,

(5)

where ǫµνα is the third-order polarization tensor of the meson. As there are constrained
conditions (see Appendix), not all the gis and fis are independent. For the 2

−− state, only
g1 and g2 are independent, while for the 3−− state, f3 ∼ f6 are independent. The numer-
ical values of these independent wave functions can be obtained by solving the Salpeter
equations, and the corresponding eigenvalue equations and normalization conditions are
given in the Appendix.

The three-photon decay width is given by

Γ3γ =
1

3!

1

8M(2π)3

∫ M
2

0

dk1

∫ M
2

M
2
−k1

dk2
1

2J + 1

∑

pol

|T3γ|2, (6)

where J is the spin of the meson. To sum the meson polarization, we have used the
complete relation of polarization tensors [23]. First we difine

Pµν ≡ −gµν +
PµPν

M2
. (7)

For the 2−− state, the relation is

∑

λ

ǫ(λ)µν ǫ
∗(λ)
µ′ν′ =

1

2
(Pµµ′Pνν′ + Pµν′Pνµ′)− 1

3
PµνPµ′ν′ , (8)

and for the 3−− state, it has the form

∑

λ

ǫ
(λ)
abcǫ

∗(λ)
xyz =

1

6
(PaxPbyPcz + PaxPbzPcy + PayPbxPcz

+ PayPbzPcx + PazPbyPcx + PazPbxPcy)

− 1

15
(PabPczPxy + PabPcyPxz + PabPcxPyz

+ PacPbzPxy + PacPbyPxz + PacPbxPyz

+ PbcPazPxy + PbcPayPxz + PbcPaxPyz).

(9)
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For the decay channels 3D2(
3D3) → γgg and 3D2(

3D3) → ggg, the decay widths
are [15]

Γγgg =
2

3

α2
s

α2e4q
Γ3γ , (10)

and [24]

Γggg =
5

54

α3
s

α3e6q
Γ3γ , (11)

respectively.

3 Results and Discussions

When solving the Salpeter equation, we use the instantaneously approximated potential
which in the momentum space has the following form

V (~q) = (2π)3Vs(~q) + γ0 ⊗ γ0(2π)3Vv(~q),

Vs(~q) = −
(
λ

α
+ V0

)
δ3(~q) +

λ

π2

1

(~q2 + α2)2
,

Vv(~q) = − 2

3π2

αs(~q)

~q2 + α2
,

αs(~q) =
12π

(33− 2Nf)

1

ln

(
a + ~q2

Λ2

QCD

) .

(12)

Parameters in the above equations have the values [15, 22]: a = e = 2.71828, α = 0.06
GeV, λ = 0.21 GeV2, ΛQCD = 0.27 GeV (0.20 GeV for bb̄), mb = 4.96 GeV, mc = 1.62
GeV. We set the flavor number Nf = 3 for charmonia and Nf = 4 for bottomonia. By
using the fourth equation above we get αs(mc) = 0.38 and αs(mb) = 0.23. We choose
appropriate values of V0 to get the mass spectra and wave functions. The results are as
follows: M13D2(cc̄) = 3.8217 GeV, M13D3(cc̄) = 3.830 GeV, M13D2(bb̄) = 10.1637 GeV and
M13D3(bb̄) = 10.165 GeV.

The wave functions are plotted in Fig. 2. For the 2−− state, g1 and g2 are independent
functions. The numerical result shows that this two functions are very close to each other.
So here we just plot g1 as an example. For the 3−− state, there are four independent
functions, while f3 is close to f4 and f5 is close to f6. So we only plot the f3 and f5. To
make the wave functions to be dimensionless, we have rescaled them by a factor. Because
the normalization condition is different, this factor for 2−− and 3−− is different. One can
see the wave functions of bb̄ are quite large than those of cc̄. This is mainly because we
have used different scale factors. Actually, for 2−− states, gi(bb̄) is more than two times
smaller than gi(cc̄). It should be mentioned that the position of the peak value for the
former is at the right of the later. This means that the contribution coming from non-zero
|~q| for the bb̄ state is larger than that for the cc̄ state.

In Fig. 3, we present the three-photon differential decay widths of 2−− and 3−− char-
monia against k1 and k2 (here we use ki to represent the photon energy; the projection to
the k1-k2 plane is the Dalitz plot). For bottomonia, the results are plotted in Fig. 4. One
notices that as the kinematics (k1, k2) goes toward the points (0, M

2
), (M

2
, 0), and (0, 0),
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Figure 2: Wave functions of 2−− and 3−− mesons. (a) for the 2−− state, only f1 is
plotted both for charmonium and bottomonium. (b) for the 3−− states, the f3 and f5 are
presented. All the wave functions are rescaled to be dimensionless.

respectively, the differential width gets larger and larger. In Ref. [12], a similar diagram
was given, while there k2 was integrated out. The differential decay width of the 2−− cc̄
(bb̄) state is generally smaller than that of the 3−− cc̄ (bb̄) state at the same kinematic
point. Compared to the charmonium states, the differential widths of the bottomonia are
more flat in the central region.

The decay widths for the chamonia are presented in Table 1. One can see that the
three-photon results are tiny which is hard to be detected in the future. For the 3D2 → ggg
channel, our result is 3.71 keV, which is about 5 times smaller than that of Ref. [13] and 3
times smaller than that of Ref. [12]. This indicates a large suppression due to relativistic
corrections in this channel. For the 3D3 → ggg channel, we get 38.2 keV, which is about
3 times smaller than that of Ref. [13] and 2 times smaller than that of Ref. [12]. These
comparisons show that the relativistic corrections to the three-gluon annihilations of 3D2

and 3D3 are considerably large. Ref. [7] gave the result which is more than 10 times larger
than ours for the 3D2 → ggg channel and 6 times for the 3D3 → ggg channel. The results
of Ref. [7] we cited here is calculated at µ = mc. The authors there also gave the widths
at µ = 2mc, which are 50 keV and 172 keV for 3D2 and 3D3, respectively.

The decay widths of 3D2 and 3D3 bottomonia are listed in Table 2. For the three-
photon decay channels, they are smaller than that of the charmonia almost by three orders
of magnitude, while for the other two channels, they are about two orders and one order
of magnitude smaller, respectively. The reason for this is that the wave function (fi or gi)
of bottomonia is smaller than that of charmonia, which cause the differential decay width
to be small. Besides that, the electric charges of heavy quarks differs by a factor of 2, and
the strong coupling constant αs has different value at different energy scale. Our results
for Γ3D2→ggg of the bottomonium is roughly 2 (4, 4) times smaller than that of Ref. [14]
([12], [7]), while for the Γ3D3→ggg channel, it is 1 (3, 3) times smaller.

Our result for the ratio of the γgg channel and the ggg channel is

Γ(3DJ → γgg)

Γ(3DJ → ggg)
= 6.2% (J = 2, 3) (13)
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for the charmonium, which is close to 7% given in Ref. [12]. This ratio is totally determined
by some basic parameters (the fine structure constant, the strong coupling at the relevant
scale, etc.), so it is irrelevant to the model employed and could be used to measure the
strong coupling at the corresponding scale. For the bottomonium, the corresponding
result is 2.5% which is about half of the ratio above. In Ref. [12], this ratio is 3% which
is also close to ours. As for the ratios of 3g channel for different D-waves, we get

Γ(3D3 → ggg)

Γ(3D2 → ggg)
= 10.3 (for cc̄) and 7.2 (for bb̄). (14)

The ratio is irrelevant to the strong coupling and only reflects the difference in wave
functions between 2−− and 3−− states. Our results of this ratio are larger than those
of other models (5 ∼ 6 for cc̄ and 4 ∼ 5 for bb̄), which indicates that the relativistic
corrections to the 2−− and 3−− states are different.

In conclusion, we have calculated the three-photon (gluon) decay widths with the
Bethe-Salpeter method with which the relativistic corrections are taken into account
properly. Our results show that three photon decay channels have very small decay
widths, especially for the bottomonium state. For the three-gluon processes we get:
Γ3g[

3D2,
3D3] = (3.71, 38.2) keV for the charmonia and (0.140, 1.01) keV for the bot-

tomonia. Compared to the results given by the non-relativistic models, our results are con-
siderably suppressed due to relativistic corrections, which indicates that the three-gluon
(photon) annihilation processes of heavy quarkonia suffer large relativistic corrections for
the 3D2 and 3D3 states.

(a) (b)

Figure 3: The differential width dΓ
dk1dk2

of three-photon decay changes with respect to k1
and k2. (a) for 1

3D2(cc̄) and (b) for 13D3(cc̄).
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(a) (b)

Figure 4: The differential width dΓ
dk1dk2

of three-photon decay changes with respect to k1
and k2. (a) for 1

3D2(bb̄) and (b) for 13D3(bb̄).

Table 1: Partial decay widths (keV) of 3D2 and 3D3 charmonia.

Decay Channel Ours Ref. [13] Ref. [12] Ref. [7]

Γ3D2→γγγ 2.49× 10−5

Γ3D3→γγγ 2.57× 10−4

Γ3D2→γgg 0.228 0.84

Γ3D3→γgg 2.35 4.76

Γ3D2→ggg 3.71 19± 3 12 42

Γ3D3→ggg 38.2 121 68 223

5 Appendix

The Bethe-Salpeter equation which describes two-body bound state relativistically has
the following form [17]

S−1
1 (p1)χP

(q)S−1
2 (−p2) = i

∫
d4k

(2π)4
V (P ; q, k)χ

P
(k), (15)

where p1 = 1
2
P + q⊥ and p2 = 1

2
P − q⊥ are respectively the momenta of quark and

antiquark in the bound state; χ
P
(q) is the BS wave function of the bound state; V (P ; q, k)

is the interaction potential between quark and antiquark. The fermion propagator Si(Jpi)
(J = (−1)i+1, i = 1 for quark and i = 2 for antiquark) is defined as

− iJSi(Jpi) =
Λ+

i

pi − ωi + iǫ
+

Λ−
i

pi + ωi − iǫ
, (16)

where we have used the projector Λ±
i (p

µ
i⊥) =

1
2ωi

[ /P
M
ωi±(/pi⊥+Jmi)]. mi is the (anti)quark

mass and ωi has the form
√

m2
i − q2⊥. With instantaneous approximation, V (P ; q, k) ≈

V (q⊥, k⊥), we write the integral in Eq. (15) as η
P
(q⊥) =

∫
d3~k
(2π)3

V (q⊥, k⊥)ϕP
(k⊥). By

8



Table 2: Partial decay widths (keV) of 3D2 and 3D3 bottomonia.

Decay Channel Ours Ref. [14] Ref. [12] Ref. [7]

Γ3D2→γγγ 6.62× 10−8

Γ3D3→γγγ 4.76× 10−7

Γ3D2→γgg 3.55× 10−3 1.53× 10−2

Γ3D3→γgg 2.55× 10−2 8.1× 10−2

Γ3D2→ggg 0.140 0.26 0.51 0.60

Γ3D3→ggg 1.01 1.1 2.7 2.85

introducing the notation ϕ±± ≡ Λ±
1

/P
M
ϕ(q⊥)

/P
M
Λ±

2 , we get the instantaneous form of BS
equation, which is also called full Salpeter equation [18]

(M − ω1 − ω2)ϕ
++
P (q⊥) = Λ+

1 (q⊥)ηP
(q⊥)Λ

+
2 (q⊥), (17a)

(M + ω1 + ω2)ϕ
−−
P (q⊥) = −Λ−

1 (q⊥)ηP
(q⊥)Λ

−
2 (q⊥), (17b)

ϕ+−
P (q⊥) = ϕ−+

P (q⊥) = 0. (17c)

Here Eq. (17c) are the constrained conditions, which result in relations between gis or fis
(see below). The normalization condition for Salpeter wave functions is [18]

∫
d~q

(2π)3
Tr

[
ϕ++

/P

M
ϕ++

/P

M
− ϕ−− /P

M
ϕ−− /P

M

]
= 2P 0, (18)

where ϕP (q⊥) is defined as γ0ϕ†
P (q⊥)γ

0.

Eq. (17b) describes the negative energy part of the wave function which gives small
contributions. So it is neglected by many authors in literatures. Here we solve the full
Salpeter equation. By inserting Eq. (4) into Eq. (17c), we get the constrained conditions

g3 =
M(ω1 − ω2)

m1ω2 +m2ω1
g1, g4 =

M(ω1 + ω2)

m1ω2 +m2ω1
g2. (19)

From Eq. (17a) and Eq. (17b) we get the eigenvalue equations fulfilled by 2−− states

(M − ω1 − ω2)

(
g1 −

ω1 + ω2

m1 +m2

g2

)
=

∫
d~k

(2π)3
1

4ω1ω2~q4

[
A1

(
g1 −

m1 +m2

ω1 + ω2

g2

)

+A2

(
g1 −

ω1 + ω2

m1 +m2
g2

)]
,

(20a)

(M + ω1 + ω2)

(
g1 +

ω1 + ω2

m1 +m2

g2

)
=

∫
d~k

(2π)3
−1

4ω1ω2~q4

[
A1

(
g1 +

m1 +m2

ω1 + ω2

g2

)

+A2

(
g1 +

ω1 + ω2

m1 +m2
g2

)]
,

(20b)
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where gis on the left side of the equation are functions of −q2⊥, while those on the right
side are functions of −k2

⊥ (k⊥ ≡ k − P ·k√
P 2
P ). Ais are defined as

A1 = (m1m2 + ~q2 + ω1ω2)
[
~k2~q2 − 3(~k · ~q)2

]
(Vs − Vv) ,

A2 =
(E1 − E2)(m1 −m2)

m1E2 +m2E1
2(~k · ~q)3(Vs + Vv),

(21)

where we have used the definition Ei =
√
m2

i − k2
⊥. By solving the eigenvalue equation

(Eq. (20)) numerically, we obtain the eigenvalue M and wave functions gis with the
normalization condition (Eq.(18))

∫
d~q

(2π)3
8ω1ω2~q

4

m1ω2 +m2ω1

g1g2 = −5M. (22)

For the 3−− state, the constrained conditions are

f1 =
−~q2f3(ω1 + ω2) + 2M2f5ω2

M(m1ω2 +m2ω1)
, f2 =

−~q2f4(ω1 − ω2) + 2M2f6ω2

M(m1ω2 +m2ω1)

f7 =
M(ω1 − ω2)

m1ω2 +m2ω1
f5, f8 =

M(ω1 + ω2)

m1ω2 +m2ω1
f6.

(23)

And the eigenvalue equations are

(M − ω1 − ω2)

[
− ~q2

M2

(
f3 +

m1 +m2

ω1 + ω2
f4

)
+

(
f5 −

m1 +m2

ω1 + ω2
f6

)]
=

∫
d~k

(2π)3
1

4ω1ω2~q4

{
B1

[
f3 +

(E1 −E2)(ω1 − ω2)

(E1 + E2)(m1 +m2)
f4

]
+B2

(
f3 +

ω1 + ω2

m1 +m2

f4

)

+B3

[
f5 −

(E1 − E2)(ω1 − ω2)

(E1 + E2)(m1 +m2)
f6

]
+B4

(
f5 −

ω1 + ω2

m1 +m2
f6

)}
,

(24a)

(M + ω1 + ω2)

[
− ~q2

M2

(
f3 −

m1 +m2

ω1 + ω2
f4

)
+

(
f5 +

m1 +m2

ω1 + ω2
f6

)]
=

∫
d~k

(2π)3
−1

4ω1ω2~q4

{
B1

[
f3 −

(E1 − E2)(ω1 − ω2)

(E1 + E2)(m1 +m2)
f4

]
+B2

(
f3 −

ω1 + ω2

m1 +m2
f4

)

+B3

[
f5 +

(E1 − E2)(ω1 − ω2)

(E1 + E2)(m1 +m2)
f6

]
+B4

(
f5 +

ω1 + ω2

m1 +m2
f6

)}
,

(24b)

(M − ω1 − ω2)

(
f5 −

ω1 + ω2

m1 +m2
f6

)
=

∫
d~k

(2π)3
1

4ω1ω2~q4

{
C1

(
f3 +

m1 +m2

ω1 + ω2
f4

)

+C2

[
f5 −

(ω1 + ω2)(E1 + E2)

(m1 −m2)(E1 − E2)
f6

]
+ C3

(
f5 −

m1 +m2

ω1 + ω2

f6

)}
,

(24c)

(M + ω1 + ω2)

(
f5 +

ω1 + ω2

m1 +m2

f6

)
=

∫
d~k

(2π)3
−1

4ω1ω2~q4

{
C1

(
f3 −

m1 +m2

ω1 + ω2

f4

)

+C2

[
f5 +

(ω1 + ω2)(E1 + E2)

(m1 −m2)(E1 −E2)
f6

]
+ C3

(
f5 +

m1 +m2

ω1 + ω2
f6

)}
,

(24d)
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where we have defined

B1 =
(E1 + E2)(m1 +m2)

M2(m1E2 +m2E1)
~k · ~q~k2

[
3~q2~k2 − 5

(
~k · ~q

)2]
(Vs + Vv),

B2 = − 1

M2~q2
(m1ω2 +m2ω1)(~k · ~q)2

[
3~q2~k2 − 5

(
~k · ~q

)2] m1 +m2

ω1 + ω2

(Vs − Vv),

B3 = −(E1 + E2)(m1 +m2)

m1E2 +m2E1

~k · ~q
[
3~q2~k2 − 5

(
~k · ~q

)2]
(Vs + Vv),

B4 = (m1ω2 +m2ω1)

[
~q2~k2 − 3

(
~k · ~q

)2] m1 +m2

ω1 + ω2
(Vs − Vv),

(25)

and

C1 = − 3

4M2~q2
(
ω1ω2 +m1m2 + ~q2

) [
~k4~q4 − 6~k2~q2

(
~k · ~q

)2
+ 5

(
~k · ~q

)4]
(Vs − Vv),

C2 = −(m1 −m2)(E1 −E2)

m1E2 +m2E1

~k · ~q
[
3~k2~q2 − 5

(
~k · ~q

)2]
(Vs − Vv),

C3 =
(
ω1ω2 +m1m2 + ~q2

) [
~k2~q2 − 3

(
~k · ~q

)2]
(Vs − Vv).

(26)

In Eq. (24), fis on the left side and right side are functions of −q2⊥ and −k2
⊥, respectively.

And the normalization condition is
∫

d~q

(2π)3
16ω1ω2~q

4

15(m1ω2 +m2ω1)

(
−3~q4

M2
f3f4 − 3~q2f3f6 + 3~q2f4f5 + 7M2f5f6

)
= 7M. (27)
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