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Abstract A biological experiment is the most reliable way of assigning function to
a protein. However, in the era of high-throughput sequencing, scientists are unable
to carry out experiments to determine the function of every single gene product.
Therefore, to gain insights into the activity of these molecules and guide experi-
ments, we must rely on computational means to functionally annotate the majority
of sequence data. To understand how well these algorithms perform, we have es-
tablished a challenge involving a broad scientific community in which we evaluate
different annotation methods according to their ability to predict the associations be-
tween previously unannotated protein sequences and Gene Ontology terms. Here we
discuss the rationale, benefits and issues associated with evaluating computational
methods in an ongoing community-wide challenge.

1 Introduction

Molecular biology has become a high-volume information science. This rapid trans-
formation has taken place over the past two decades and has been chiefly enabled by
two technological advances: (i) affordable and accessible high-throughput sequenc-
ing platforms, sequence diagnostic platforms and proteomic platforms, and (ii) af-
fordable and accessible computing platforms for managing and analyzing these data.
It is estimated that sequence data accumulates at the rate of 100 exabases per day
(1 exabase = 1018 bases) [30]. However, the available sequence data are of limited
use without understanding their biological implications. Therefore, the development
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of computational methods that provide clues about functional roles of biological
macromolecules is of primary importance.

Many function prediction methods have been developed over the past two decades
[11, 27]. Some are based on sequence alignments to proteins for which the func-
tion has been experimentally established [21, 10, 4], yet others exploit other types
of data such as protein structure [24, 23], protein and gene expression data [14],
macromolecular interactions [18, 22], scientific literature [3], or a combination of
several data types [31, 29, 8]. Typically, each new method is trained and evaluated
on different data. Therefore, establishing best practices in method development and
evaluating the accuracy of these methods in a standardized and unbiased setting is
important. To help choose an appropriate method for a particular task, scientists
often form community challenges for evaluating methods [7]. The scope of these
community challenges extends beyond testing methods: they have been successful
in invigorating their respective fields of research by building communities and pro-
ducing new ideas and collaborations (e.g. [17]).

In this chapter we discuss a community-wide effort whose goal is to help un-
derstand the state of affairs in computational protein function prediction and drive
the field forward. We are holding a series of challenges which we named the Criti-
cal Assessment of Functional Annotation, or CAFA. CAFA was first held in 2010-
2011 (CAFA1) and included 23 groups from 14 countries who entered 54 compu-
tational function prediction methods that were assessed for their accuracy. To the
best of our knowledge, this was the first large-scale effort to provide insights into
the strengths and weaknesses of protein function prediction software in the bioin-
formatics community. CAFA2 was held in 2013-2014, and more than doubled the
number of groups (56) and participating methods (126). Although several repeti-
tions of the CAFA challenge would likely give accurate trajectory of the field, there
are valuable lessons already learned from the two CAFA efforts.

For further reading on CAFA1, the results were reported in full in [26]. As of
this time, the results of CAFA2 are still unpublished and will be reported in the near
future. The preprint of the paper is available on arXiv [16].

2 Organization of the CAFA challenge

We begin our explanation of CAFA by describing the participants. The CAFA chal-
lenge generally involves the following groups: the organizers, the assessors, the
biocurators, the steering committee, and the predictors (Figure 1A).

The main role of the organizers is to run CAFA smoothly and efficiently. They
advertise the challenge to recruit predictors, coordinate activities with the assessors,
report to the steering committee, establish the set of challenges and types of evalu-
ation, and run the CAFA web site and social networks. The organizers also compile
CAFA data and coordinate the publication process. The assessors develop assess-
ment rules, write and maintain assessment software, collect the submitted predic-
tion data, assess the data, and present the evaluations to the community. The asses-
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B. Experiment timeline
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Fig. 1 The organizational structure of the CAFA experiment. (A) Five groups of participants
in the experiment together with their main roles. Organizers, assessors and biocurators cannot
participate as predictors. (B) Timeline of the experiment.

sors work together with the organizers and the steering committee on standardizing
submission formats and developing assessment rules. The biocurators joined the ex-
periment during CAFA2: they provide additional functional annotations that may
be particularly interesting for the challenge. The steering committee members are in
regular contact with the organizers and assessors. They provide advice and guidance
that ensures the quality and integrity of the experiment. Finally, the largest group,
the predictors, consists of research groups who develop methods for protein func-
tion prediction and submit their predictions for evaluation. The organizers, assessors
and biocurators are not allowed to officially evaluate their own methods in CAFA.

CAFA is run as a timed-challenge (Figure 1B). At time t0, a large number of
experimentally unannotated proteins are made public by the organizers and the pre-
dictors are given several months, until time t1, to upload their predictions to the
CAFA server. At time t1 the experiment enters a waiting period of at least several
months, during which the experimental annotations are allowed to accumulate in
databases such as Swiss-Prot [2] and UniProt-GOA [13]. These newly accumulated
annotations are collected at time t2 and are expected to provide experimental anno-
tations for a subset of original proteins. The performance of participating methods is
then analyzed between time points t2 and t3 and presented to the community at time
t3. It is important to mention that unlike some machine learning challenges, CAFA
organizers do not provide training data that is required to be used. CAFA, thus,
evaluates a combination of biological knowledge, the ability to collect and curate
training data and the ability to develop advanced computational methodology.
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We have previously described some of the principles that guide us in organizing
CAFA [12]. It is important to mention that CAFA is associated with the Automated
Function Prediction Special Interest Group (Function-SIG) that is regularly held
at the Intelligent Systems for Molecular Biology (ISMB) conference [32]. These
meetings provide a forum for exchanging ideas and communicating research among
the participants. Function-SIG also serves as the venue at which CAFA results are
initially presented and where the feedback from the community is sought.

3 The Gene Ontology provides the functional repertoire for
CAFA

Computational function prediction methods have been reviewed extensively [11,
27] and are also discussed in the chapter by Cozzetto & Jones. Briefly, a function
prediction method can be described as a classifier: an algorithm that is tasked with
correctly assigning biological function to a given protein. This task, however, is
arbitrarily difficult unless the function comes from a finite, preferably small, set of
functional terms. Thus, given an unannotated protein sequence and a set of available
functional terms, a predictor is tasked with associating terms to a protein, giving a
score (ideally, a probability) to each association.

The Gene Ontology (GO) [1] is a natural choice when looking for a standard-
ized, controlled vocabulary for functional annotation. GO’s high adoption rate in
the protein annotation community helped ensure CAFA’s attractiveness, as many
groups were already developing function prediction methods based on GO, or could
migrate their methods to GO as the ontology of choice. A second consideration is
GO’s ongoing maintenance: GO is continuously maintained by the Gene Ontology
Consortium, edited and expanded based on ongoing discoveries related to the func-
tion of biological macromolecules.

One useful characteristic of the basic GO is that its directed acyclic graph struc-
ture can be used to quantify the information provided by the annotation; for details
on the GO structure see the chapter by Munoz-Torres et al. Intuitively, this can be
explained as follows: the annotation term “Nucleic acid binding” is less specific
than “DNA binding” and, therefore, is less informative (or has a lower information
content). (A more precise definition of information content and its use in GO can
be found in [20, 28].) The following question arises: if we know that the protein is
annotated with the term “Nucleic acid binding”, how can we quantify the additional
information provided by the term “DNA binding” or incorrect information provided
by the term “RNA binding”? The hierarchical nature of GO is therefore important
in determining proper metrics for annotation accuracy. The way this is done will be
discussed in Section 4.2.

When annotating a protein with one or more GO terms, the association of each
GO term with the protein should be described using an Evidence Code (EC), in-
dicating how the annotation is supported. For example, the Experimental Evidence
code (EXP) is used in an annotation to indicate that an experimental assay has been
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located in the literature, whose results indicate a gene product’s function. Other ex-
perimental evidence codes include Inferred by Expression Pattern (IEP), Inferred
from Genetic Interaction (IGI), and Inferred from Direct Assay (IDA), among oth-
ers. Computational evidence codes include lines of evidence that were generated by
computational analysis, such as orthology (ISO), genomic context (IGC), or identi-
fication of key residues (IKR). Evidence codes are not intended to be a measure of
trust in the annotation, but rather a measure of provenance for the annotation itself.
However, annotations with experimental evidence are regarded as more reliable than
computational ones, having a provenance stemming from experimental verification.
In CAFA, we treat proteins annotated with experimental evidence codes as a “gold
standard” for the purpose of assessing predictions, as explained in the next section.
The computational evidence codes are treated as predictions.

From the point of view of a computational challenge, it is important to emphasize
that the hierarchical nature of the GO graph leads to the property of consistency
in functional annotation. Consistency means that when annotating a protein with
a given GO term, it is automatically annotated with all the ancestors of that term.
For example, a valid prediction cannot include “DNA binding” but exclude “Nucleic
acid binding” from the ontology because DNA binding implies nucleic acid binding.
We say that a prediction is not consistent if it includes a child term, but excludes its
parent. In fact, the UniProt resource and other databases do not even list these parent
terms from a protein’s experimental annotation. If a protein is annotated with several
terms, a valid complete annotation will automatically include all parent terms of the
given terms, propagated to the root(s) of the ontology. The result is that a protein’s
annotation can be seen as a consistent sub-graph of GO. Since any computational
method effectively chooses one of a vast number of possible consistent sub-graphs
as its prediction, the sheer size of the functional repertoire suggests that function
prediction is non-trivial.

4 Comparing the performance of prediction methods

In the CAFA challenge, we ask the participants to associate a large number of pro-
teins with GO terms and provide a probability score for each such association. Hav-
ing associated a set of GO sub-graphs with a given confidence, the next step is to
assess how accurate these predictions are. This involves: (i) establishing standards
of truth and (ii) establishing a set of assessment metrics.

4.1 Establishing standards of truth

The main challenge to establishing a standard-of-truth set for testing function pre-
diction methods is to find a large set of correctly annotated proteins whose functions
were, until recently, unknown. An obvious choice would be to ask experimental
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scientists to provide these data from their labs. However, scientists prefer to keep
the time between discovery and publication as brief as possible, which means that
there is only a small window in which new experimental annotations are not widely
known and can be used for assessment. Furthermore, each experimental group has
its own “data sequestration window” making it hard to establish a common time
for all data providers to sequester their data. Finally, to establish a good statistical
baseline for assessing prediction method performance, a large number of prediction
targets are needed, which is problematic since most laboratories research one or
only a few proteins each. High-throughput experiments, on the other hand, provide
a large number of annotations, but those tend to concentrate only on few functions,
and generally provide annotations that have a lower information content [28].

Given these constraints, we decided that CAFA would not initially rely on di-
rect communication between the CAFA organizers and experimental scientists to
provide new functional data. Instead, CAFA relies primarily on established biocu-
ration activities around the world: we use annotation databases to conduct CAFA
as a time-based challenge. To do so, we exploit the following dynamics that occurs
in annotation databases: protein annotation databases grow over time. Many pro-
teins that at a given time t1 do not have experimentally-verified annotation, but later,
some of proteins may gain experimental annotations, as biocurators add these data
into the databases. This subset of proteins that were not experimentally annotated at
t1, but gained experimental annotations at t2, are the ones that we use as a test set
during assessment (Figure 1B). In CAFA1 we reviewed the growth of Swiss-Prot
over time and chose 50,000 target proteins that had no experimental annotation in
the Molecular Function or Biological Process ontologies of GO. At t2, out of those
50,000 targets we identified 866 benchmark proteins; i.e., targets that gained exper-
imental annotation in the Molecular Function and/or Biological Process ontologies.
While a benchmark set of 866 proteins constitutes only 1.7% of the number of orig-
inal targets, it is large enough set for assessing performance of prediction methods.
To conclude, exploiting the history of the Swiss-Prot database enabled its use as the
source for standard-of-truth data for CAFA. In CAFA2, we have also considered ex-
perimental annotations from UniProt-GOA [13] and established 3,681 benchmark
proteins out of 100,000 targets (3.7%).

One criticism of a time-based challenge is that when assessing predictions, we
still may not have a full knowledge of a protein’s function. A protein may have
gained experimental validation for function f1, but it may also have another func-
tion, say f2, associated with it, which has not been experimentally validated by the
time t2. A method predicting f2 may be judged to have made a false-positive predic-
tion, even though it is correct (only we do not know it yet). This problem, known as
the “incomplete knowledge problem” or the “open world problem” [9] is discussed
in detail in the chapter by Skunca et al. Although the incomplete knowledge prob-
lem may impact the accuracy of time-based evaluations, its actual impact in CAFA
has not been substantial. There are several reasons for this, including the robust-
ness of the evaluation metrics used in CAFA, and that the newly added terms may
be unexpected and more difficult to predict. The influence of incomplete data and
conditions under which it can affect a time-based challenge were investigated and
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discussed in [15]. Another criticism of CAFA is that the experimental functional
annotations are not unbiased because some terms have a much higher frequency
than others due to artificial considerations. There are two chief reasons for this bias:
first, high-throughput assays typically assign shallow terms to proteins, but being
high throughput means they can dominate the experimentally-verified annotations
in the databases. Second, biomedical research is driven by specific areas of human
health, resulting in over-representation of health-related functions [28]. Unfortu-
nately, CAFA1 and CAFA2 could not guarantee unbiased evaluation. However, we
will expand the challenge in CAFA3 to collect genome-wide experimental evidence
for several biological terms. Such an assessment will result in unbiased evaluation
on those specific terms.

4.2 Assessment metrics

When assessing the prediction quality of different methods, two questions come
to mind. First, what makes a good prediction? Second, how can one score and
rank prediction methods? There is no simple answer to either of these questions.
As GO comprises three ontologies that deal with different aspects of biological
function, different methods should be ranked separately with respect to how well
they perform in Molecular Function, Biological Process, or the Cellular Compo-
nent ontologies. Some methods are trained to predict only for a subset of any given
GO graph. For example, they may only provide predictions of DNA-binding pro-
teins or of mitochondrial-targeted proteins. Furthermore, some methods are trained
only on a single species or a subset of species (say, eukaryotes), or using specific
types of data such as protein structure, and it does not make sense to test them on
benchmark sets for which they were not trained. To address this issue, CAFA scored
methods both in general performance, but also on specific subsets of proteins taken
from humans and model organisms, including Mus musculus, Rattus norvegicus,
Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans, Saccha-
romyces cerevisiae, Dictyostelium discoideum, and Escherichia coli. In CAFA2, we
extended this evaluation to also assess the methods only on benchmark proteins on
which they made predictions; i.e., the methods were not penalized for omitting any
benchmark protein.

One way to view function prediction is as an information retrieval problem,
where the most relevant functional terms should be correctly retrieved from GO
and properly assigned to the amino-acid sequence at hand. Since each term in the
ontology implies some or all of its ancestors,1 a function prediction program’s task
is to assign the best consistent sub-graph of the ontology to each new protein and
output a prediction score for this sub-graph and/or each predicted term. An intuitive
scoring mechanism for this type of problem is to treat each term independently and

1 Some types of edges in Gene Ontology violate the transitivity property (consistency assumption),
but they are not frequent.
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provide the precision-recall curve. We chose this evaluation as our main evaluation
in CAFA1 and CAFA2.

Let us provide more detail. Consider a single protein on which evaluation is
carried out, but keep in mind that CAFA eventually averages all metrics over the set
of benchmark proteins. Let now T be a set of experimentally-determined nodes and
P a non-empty set of predicted nodes in the ontology for the given protein. Precision
(pr) and recall (rc) are defined as

pr(P,T ) =
|P∩T |
|P|

; rc(P,T ) =
|P∩T |
|T |

,

where |P| is the number of predicted terms, |T | is the number of experimentally-
determined terms, and |P∩T | is the number of terms appearing in both P and T ;
see Figure 2 for an illustrative example of this measure. Usually, however, methods
will associate scores with each predicted term and then a set of terms P will be es-
tablished by defining a score threshold t; i.e., all predicted terms with scores greater
than t will constitute the set P. By varying the decision threshold t ∈ [0,1], the pre-
cision and recall of each method can be plotted as a curve (pr(t),rc(t))t , where one
axis is the precision and the other the recall; see Figure 3 for an illustration of pr-rc
curves and [26] for pr-rc curves in CAFA1. To compile the precision-recall informa-
tion into a single number that would allow easy comparison between methods, we
used the maximum harmonic mean of precision and recall anywhere on the curve,
or the maximum F1-measure which we call Fmax

Fmax = max
t

{
2× pr(t)× rc(t)

pr(t)+ rc(t)

}
,

where we modified pr(t) and rc(t) to reflect the dependency on t. It is worth point-
ing out that the F-measure used in CAFA places equal emphasis on precision and
recall as it is unclear which of the two should be weighted more. One alternative to
F1 would be the use of a combined measure that weighs precision over recall, which
reflects the preference of many biologists for few answers with a high fraction of
correctly predicted terms (high precision) over many answers with a lower frac-
tion of correct predictions (high recall); the rationale for this tradeoff is illustrated
in Figure 3. However, preferring precision over recall in a hierarchical setting can
steer methods to focus on shallow (less informative) terms in the ontology and thus
be of limited use. At the same time, putting more emphasis on recall may lead to
overprediction, a situation in which many or most of the predicted terms are incor-
rect. For this reason, we decided to equally weight precision and recall. Additional
metrics within the precision-recall framework have been considered, though not im-
plemented yet.

Precision and recall are useful because they are easy to interpret: a precision of
1
2 means that one half of all predicted terms are correct, where a recall of 1

3 means
that a third of the experimental terms have been recovered by the predictor. Un-
fortunately, precision-recall curves and F1, while simple and interpretable measures
for evaluating ontology-based predictions, are limited because they ignore the hi-
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Fig. 2 CAFA assessment metrics. (A) Red nodes are the predicted terms P for a particular de-
cision threshold in a hypothetical ontology and (B) blue nodes are the true, experimentally deter-
mined terms T . The circled terms represent the overlap between the predicted subgraph and the true
subgraph. There are two nodes (circled) in the intersection of P and T , whereas |P|= 5 and |T |= 3.
This sets the prediction’s precision at 2

5 = 0.4 and recall at 2
3 = 0.667, with F1 = 2× 0.4×0.667

0.4+0.667 = 0.5.
The remaining uncertainty (ru) is the information content of the uncircled blue node in panel
B, while the misinformation (mi) is the total information content of the uncircled red nodes in
panel A. An information content of any node v is calculated from a representative database as
− logPr(v|Pa(v)); i.e., the probability that the node is present in a protein’s annotation given that
all its parents are also present in its annotation.

erarchical nature of the ontology and dependencies among terms. They also do not
directly capture the information content of the predicted terms.

Assessment metrics that take into account the information-content of the terms
were developed in the past [20, 19, 25], and are also detailed in the chapter by
Pesquita. In CAFA2 we used an information-theoretic measure in which each term
is assigned a probability that is dependent on the probabilities of its direct parents.
These probabilities are calculated from the frequencies of the terms in the database
used to generate the CAFA targets. The entire ontology graph, thus, can be seen as
a simple Bayesian network [5]. Using this representation, two information-theoretic
analogs of precision and recall can be constructed. We refer to these quantities as
misinformation (mi), the information content attributed to the nodes in the predicted
graph that are incorrect, and remaining uncertainty (ru), the information content of
all nodes that belong to the true annotation but not the predicted annotation. More
formally, if T is a set of experimentally-determined nodes and P a set of predicted
nodes in the ontology, then

ru(P,T ) =− ∑
v∈T−P

logPr(v|Pa(v)); mi(P,T ) =− ∑
v∈P−T

logPr(v|Pa(v)),

where Pa(v) is the set of parent terms of the node v in the ontology (Figure 2). A
single performance measure to rank methods, the minimum semantic distance Smin,
is the minimum distance from the origin to the curve (ru(t),mi(t))t . It is defined as
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Fig. 3 Precision-recall curves and remaining uncertainty-misinformation curves. This figure
illustrates the need for multiple assessment metrics, and understanding the context in which the
metrics are used. (A) two pr-rc curves corresponding to two prediction methods M1 and M2. The
point on each curve that gives Fmax is marked as a circle. Although the two methods have a similar
performance according to Fmax, method M1 achieves its best performance at high recall values,
whereas method M2 achieves its best performance at high precision values. (B) two ru-mi curves
corresponding to the same two prediction methods with marked points where the minimum seman-
tic distance is achieved. Although the two methods have similar performance in the pr-rc space,
method M1 outperforms M2 in ru-mi space. Note, however, that the performance in ru-mi space
depends on the frequencies of occurrence of every term in the database. Thus, two methods may
score differently in their Smin when the reference database changes over time, or using a different
database.

Smin = min
t

{
(ruk(t)+mik(t))

1
k

}
,

where k ≥ 1. We typically choose k = 2, in which case Smin is the minimum Eu-
clidean distance between the ru-mi curve and the origin of the coordinate system
(Figure 3B). The ru-mi plots and Smin metrics compare the true and predicted an-
notation graphs by adding an additional weighting component to high-information
nodes. In that manner, predictions with a higher information content will be as-
signed larger weights. The semantic distance has been a useful measure in CAFA2
as it properly accounts for term dependencies in the ontology. However, this ap-
proach also has limitations in that it relies on an assumed Bayesian network as a
generative model of protein function as well as on the available databases of protein
functional annotations where term frequencies change over time. While the letter
limitation can be remedied by more robust estimation of term frequencies in a large
set of organisms, the performance accuracies in this setting are generally less com-
parable over two different CAFA experiments than in the precision-recall setting.

5 Discussion

Critical assessment challenges have been successfully adopted in a number of fields
due to several factors. First, the recognition that improvements to methods are in-
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deed necessary. Second, the ability of the community to mobilize enough of its
members to engage in a challenge. Mobilizing a community is not a trivial task, as
groups have their own research priorities and only a limited amount of resources
to achieve them, which may deter them from undertaking a time-consuming and
competitive effort a challenge may pose. At the same time, there are quite a few
incentives to join a community challenge. Testing one’s method objectively by a
third party can establish credibility, help point out flaws, and suggest improvements.
Engaging with other groups may lead to collaborations and other opportunities. Fi-
nally, the promise of doing well in a challenge can be a strong incentive heralding
a group’s excellence in their field. Since the assessment metrics are crucial to the
performance of the teams, large efforts are made to create multiple metrics and to
describe exactly what they measure. Good challenge organizers try to be attentive to
the requests of the participants, and to have the rules of the challenge evolve based
on the needs of the community. An understanding that a challenge’s ultimate goal is
to improve methodologies and that it takes several rounds of repeating the challenge
to see results.

The first two CAFA challenges helped clarify that protein function prediction is
a vibrant field, but also one of the most challenging tasks in computational biol-
ogy. For example, CAFA provided evidence that the available function prediction
algorithms outperform a straightforward use of sequence alignments in function
transfer. The performance of methods in the Molecular Function category has con-
sistently been reliable and also showed progress over time (unpublished results from
CAFA2). On the other hand, the performance in the Biological Process or Cellular
Component ontologies has not yet met expectations. One of the reasons for this
may be that the terms in these ontologies are less predictable using amino acid se-
quence data and instead would rely more on high-quality systems data; e.g., see [6].
The challenge has also helped clarify the problems of evaluation, both in terms of
evaluating over consistent sub-graphs in the ontology but also in the presence of
incomplete and biased molecular data. Finally, although it is still early, some best
practices in the field are beginning to emerge. Exploiting multiple types of data is
typically advantageous, although we have observed that both machine learning ex-
pertise and good biological insights tend to result in strong performance. Overall,
while the methods in the Molecular Function ontology seem to be maturing, in part
because of the strong signal in sequence data, the methods in the Biological Process
and Cellular Component ontologies still appear to be in the early stages of develop-
ment. With the help of better data over time, we expect significant improvements in
these categories in the future CAFA experiments.

Overall, CAFA generated a strong positive response to the call for both challenge
rounds, with the number of participants substantially growing between CAFA1 (102
participants) and CAFA2 (147). This indicates that there exists significant interest
in developing computational protein function prediction methods, in understanding
how well they perform, and in improving their performance. In CAFA2 we pre-
served the experiment rules, ontologies and metrics we used in CAFA1, but also
added new ones to better capture the capabilities of different methods. The CAFA3
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experiment will further improve evaluation by facilitating unbiased evaluation for
several select functional terms.

More rounds of CAFA are needed to know if computational methods will im-
prove as a direct result of this challenge. But given the community’s growth and
growing interest, we believe that CAFA is a welcome addition to the community of
protein function annotators.
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