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1 Introduction

In [9] F. C. Marques and A. Neves have shown the existence of infinitely many
embedded minimal hypersurfaces in a closed manifold with positive Ricci cur-
vature. Their result is divided in two cases: when ωp < ωp+1 for all p or the
equality case ωp = ωp+1, for some p.

In the first case the minimal hypersurfaces they obtain are geometrically
distinct because they must have different areas. However, nothing is known
about their topological types, a priori they could all be the same surface with
distinct embeddings. For example, in the 3-torus it is possible to find a sequence
of embedded 2-tori with area tending to infinity.

In the second case the hypersurfaces given by their proof actually have con-
stant area, so they could all be the same embedding under isometries. Take the
round 3-sphere as an example. As it is known, in this case ω1 = ω2, so their
construction is actually giving us the 3-parameter of S2 in the equator, all of
which are isometric.

It would be interesting to know whether in the second case the minimal hy-
persurfaces in [9] are isometrically distinct. To answer this one could analyse
either how the index or the area changes along the space of minimal hypersur-
faces. It turns out that a bound on both the index and the area is sufficient to
have compactness, as it was proven by B. Sharp in [14]. With that in mind, a
non-compactness result would imply that either the index or the area of minimal
hypersurfaces must be unbounded, thus yielding geometrical distinctness.

In this paper we are interested in showing that the space of minimal hy-
persurfaces is non-compact when the metric is analytic with positive Ricci cur-
vature. The idea of the proof is the following. First we show that if we have
compactness then there exists N > 0 so that ωp < ωp+N . Now the result follows
as in [9] because we are able to obtain an increasing subsequence of the width
spectrum with the number of parameters growing linearly.

The first step is based on the ideas of Lusternik-Schnirelmann category the-
ory. In their context they are able to obtain results on the topology of the critical
set whenever one has equality ωp = ωq. However, their method only works for
smooth functions in Banach manifolds so we need a careful adaptation to our
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setting. The second step follows from the asymptotic behaviour of the width
proved first by M. Gromov (see [5]).

This work is divided as follows. In section 2 we establish notation and cover
some preliminaries to make this sufficiently self-contained. All of the results
and definitions in this section are taken from [9]. In section 3 we introduce the
concept of 1-category and we prove the topological theorem about the critical

set under the equality case ω
(m)
p = ω

(m)
p+N . In section 4 we apply the result of the

previous section to some specific cases and we prove the main non-compactness
result.

2 Preliminaries

Throughout this section we assume that (M,g) is a Riemannian manifold is-
metrically embedded in R

N for some N ∈ N. We will establish notations and
definitions that are not standard in the literature.

Varifolds and Currents
Denote by Ik(M ;Z2) and Zk(M ;Z2) the spaces of k-currents modulo 2

and k-cycles in M , respectively. Let RVk(M) be the space of k-dimensional
rectifiable varifolds in R

N whose support lies in M with the weak topology (we
agree with the definition in [11, §2]). The subspace of k-dimensional integral
varifolds is denoted by IVk(M) ⊂ RVk(M).

Given V ∈ RVk(M) we denote by ∥V ∥ the Radon measure in M associated
with V , we call ∥V ∥(M) the mass of V . Now, given a k-current T ∈ Ik(M ;Z2)we
denote ∣T ∣ ∈ IVk(M) the integral varifold associated to T and to simplify notation
we write ∥T ∥ its associated Radon measure in M . Reversely, if V ∈ IVk(M)
then [V ] ∈ Ik(M ;Z2) denotes the unique k-current satisfying Θk([V ], x) =
Θk(V,x)mod 2 for all x ∈M (see [15]).

The weak topology in RVk(M) is induced by the F-metric, denoted by F (see
[11, §2]). On the space of currents we will work with three different topologies
induced by the flat metric F , the mass M and the F-metric for currents also
denoted by F. For the definition of the first two see [4, §4.2.26], the latter is
defined as

F(T,S) = F(T − S) +F(∣T ∣, ∣S∣),
for all T,S ∈ Ik(M ;Z2). We will always assume Ik(M ;Z2) and Zk(M ;Z2) to
be endowed with the flat topology unless otherwise specified.

Almost-minimising Varifolds
For our purposes it will be sufficient to only consider Z2-almost-minimising

varifolds, the definition is the same for a different group G (see [11, §3.1]). We
also remark that our definition is slightly different from [11] but all the results
therein contained remain true.
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Definition 2.1. Let U ⊂M be an open set, ε > 0 and δ > 0. We define

Ak(U ; ε, δ) ⊂ Zk(M ;Z2)
to be the set of cycles T ∈ Zk(M ;Z2) such that any finite sequence T1, . . . , Tm ∈
Zk(M ;Z2) satisfying
(a) supp(T − Ti) ⊂ U for all i = 1, . . . ,m;

(b) F(Ti, Ti−1) ≤ δ for all i = 1, . . . ,m and

(c) M(Ti) ≤M(T ) + δ
must also satisfy

M(Tm) ≥M(T ) − ε.
We say that a varifold V ∈ Vk(M) is almost-minimising in U if for every

ε > 0 there exists δ > 0 and T ∈ Ak(U ; ε; δ) such that

F(V, ∣T ∣) < ε.
Furthermore, we say that V is almost-minimising in annuli if for every p ∈

supp∥V ∥ there exists r > 0 such that V is almost-minimising in the annulus
A(p; s, r) = B(p, r) /B(p, s) for all positive s < r.

The following is a well known regularity theorem for stationary varifolds of
codimension 1. This was originally proven in by Pitts, up to dimension n+1 ≤ 6
and later extended by Schoen-Simon to n + 1 ≤ 7.
Theorem 2.2 ([11, §7], [12, §4]). Let Mn+1 be a closed manifold of dimension
n + 1 with 2 ≤ n ≤ 6. If V ∈ IVn(M) is stationary and almost-minimising in
annuli, then supp∥V ∥ is a smooth embedded minimal hypersurface.

Remark 1. If n ≥ 7 then it was also proven that supp∥V ∥ has a singular set of
Hausdorff dimension at most n − 7.
Almgren-Pitts Min-max Theory

We want to present the appropriate modification of the Almgren-Pitts Min-
max Theory that will be necessary. All of the results and definitions are taken
from [8] where one can find detailed proofs. Henceforth we restrict ourselves to
the codimension one case, that is, k = n and M has dimension n + 1.

Firstly, given a cell complex X and l ∈ Z≥0 we denote by X(l) the set of
l-cells. Let Im = [0,1]m denote the m-dimensional cube. For each j ∈ N we
denote by I(1, j) the cell decomposition of I = I1 whose 0-cells and 1-cells are
given by

I(1, j)(0) = {[0], [3−j], . . . , [1 − 3−j], [1]},
I(1, j)(1) = {[0,3−j], . . . , [1 − 3−j,1]}.

3



Now, if m > 1 then, for each j ∈ N, the standard cell complex of Im is defined as

I(m,j) = I(1, j) ⊗ . . .⊗ I(1, j)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m times

.

Definition 2.3. A set X ⊂ Im is said to be a cubical subcomplex of Im (accord-
ing to our standard chosen cell decomposition) if X is a subcomplex of I(m,j)
for some j ∈ N.

By abuse of notation we write X for both the cell decomposition and its
support. Note that the dimension of X is not required to be m.

If X is a cubical subcomplex of I(m,j) and l ≥ j we write X(l) for the union
of all cells in I(m, l) whose support is contained in X .

Definition 2.4. Let {mi} ⊂ N be positive integers, Xi ⊂ I
mi cubical subcom-

plexes and S = {Φi ∶ Xi → Zn(M ;Z2)} a sequence of flat continuous maps. We
define the width of a sequence of maps as

L(S) = lim sup
i→∞

sup{M(Φi(x)) ∶ x ∈ Xi}
and the following compact set of critical varifolds

C(S) = {V ∈ RVn(M) ∶V = lim
j→∞
∣Φij (xj)∣ for some increasing sequence

{ij}j∈N, xj ∈ Xij and ∥V ∥(M) = L(S)}.
In case we have a fixed map Φ ∶ X → Zn(M ;Z2) it defines an homotopy class

(with free boundary) [Φ] ∈ [X ∶ Zn(M ;Z2)] and its width is given by

L[Φ] = inf
Ψ∈[Φ]

sup
x∈X

M(Ψ(x)).
Remark 2. Although the nomenclature is the same it will always be clear when
we refer to the width of a sequence, width of an homotopy class.

Definition 2.5. We say that a map Φ ∶ X → Zn(M ;Z2) has no concentration
of mass if

lim
r→0

sup{∥Φ(x)∥(B(q, r)) ∶ x ∈ X and q ∈M} = 0.
Remark 3. One can show that mass continuous maps have no concentration of
mass (see [9, Lemma 3.8])

The following theorem is a consquence of the interpolation theorems in [9].

Theorem 2.6. Let X ⊂ Im be a cubical subcomplex of I(m,j) and Φ ∶ X →
Zn(M ;Z2) be a flat continuous map with no concentration of mass. There
exist l ≥ j, X̃ = X(l) cubical subcomplex and Φ̃ ∶ X̃ → Zn(M ;M;Z2) a mass
continuous map satisfying:

(i) Φ
X̃

is homotopic to Φ̃ in the flat topology;
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(ii) L[Φ̃] ≤ L[Φ]
The critical set of a sequence is the set of candidates to be critical min-

max varifolds. However, it is not even true that they are stationary in general.
Applying a pull-tight procedure and using the interpolation results in [9] we
can always refine a sequence of flat continuous maps such that its critical set
contains only stationary varifolds.

Theorem 2.7 ([8, 9],[11, §4.3]). Let Xi ⊂ Imi be cubical subcomplexes of
I(mi, ji) and S = {Φi ∶ Xi → Zn(M ;Z2)} be a sequence of flat continuous
maps with no concentration of mass. There exist li ≥ ji, X̃i = Xi(li) cubical
subcomplexes and S̃ = {Φ̃i ∶ X̃i → Zn(M ;M;Z2)} sequence of mass continuous
maps such that:

(i) Φi
X̃i

is homotopic to Φ̃i in the flat topology;

(ii) if V ∈ C(S̃) then V is stationary.

(iii) L(S̃) ≤ L(S);
Furthermore, if L(S̃) = L(S) then

C(S̃) ⊂ C(S) ∩ {V ∈ RVn(M) ∶ V is stationary}
The following theorem shows the existence of almost-minimising varifolds

and it was originally proven by Pitts for maps with cubical domain and a bound-
ary condition. However, it remains true for a cubical subcomplex and allowing
homotopies with free boundary (see [9]).

Theorem 2.8. Let X ⊂ Im be a cubical subcomplex and Φ ∶ X → Zn(M ;F;Z2)
a F-continuous map. If L[Φ] > 0 then there exists V ∈ IVn(M) satisfying
(i) V is stationary;

(ii) V is almost-minimising in annuli;

(iii) ∥V ∥(M) = L[Φ].
From the proof of the previous theorem we extract a result that follows from

Pitts’ combinatorial arguments [11, §4.10]. To obtain the version that we state
here it is necessary to further apply the interpolation theorems in [9].

Theorem 2.9. Fix m ∈ N and let Xi ⊂ I
m be cubical subcomplexes of I(m,ji)

and S = {Φi ∶ Xi → Zn(M ;Z2)} be a sequence of flat continuous maps with no
concentration of mass such that every V ∈ C(S) is stationary.

If no element of C(S) is almost-minimising in annuli then there exist li ≥ ji,
X∗i =Xi(li) cubical subcomplexes and S∗ = {Φ∗i ∶ X∗i → Zn(M ;M;Z2)} sequence
of mass continuous maps such that

(i) Φi
X∗

i

is homotopic to Φ∗i in the flat topology;
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(ii) L(S∗) < L(S).
In [1] F.J. Almgren Jr. shows, in particular, the existence of an isomorphism

FFFM ∶ πq(Zn(M ;Z2),{0}) → Hq+n(M ;Z2) for all q ∈ N which is called the
Almgren isomorphism.

Definition 2.10. We say that a flat continuous map Φ ∶ S1 → Zn(M ;Z2) is a
sweepout if FFFM([Φ]) ≠ 0, where [Φ] ∈ π1(Zn(M ;Z2)).

It is possible to show the existence of a fundamental cohomology class λ̄ ∈
H1(Zn(M ;Z2);Z2) such that the p-th cup product is non-zero for all p ∈ N,
λ̄p ≠ 0. In particular it means that the cohomology ring H∗(Zn(M ;Z2);Z2)
contain the polynomial ring Z2[λ̄] generated by λ̄ ∈ H1. In fact we have that
they are isomorphic, that is, H∗(Zn(M ;Z2);Z2) = Z2[λ̄]. For further details
see [5, §1].

Definition 2.11. Let X ⊂ Im be a cubical subcomplex for some m ∈ N, Φ ∶
X → Zn(M ;Z2) a flat continuous map and p ∈ N. We say that Φ is a p-sweepout
if

Φ∗(λ̄p) ≠ 0 ∈Hp(X ;Z2),
where λ̄p is the p-th cup product of λ̄. This is equivalent to saying that there
exists λ ∈H1(X ;Z2) such that

(a) given any map γ ∶ S1 → X , we have λ(γ) ≠ 0 if, and only if, Φ ○ γ is a
sweepout (as in Definition 2.10) and

(b) λp ≠ 0 in Hp(X ;Z2).
We denote by Pp(M) the set of p-sweepouts in M with no concentration of
mass:

Pp(M) = {(Φ,X) ∶X ⊂ Im is a cubical subcomplex for some m ∈ N

and Φ ∶ X → Zn(M ;Z2) is a p-sweepout

with no concentration of mass}
Given a fixed m ∈ N we denote P

(m)
p (M) = {(Φ,X) ∈ Pp(M) ∶ X ⊂ Im}, that is,

the p-sweepouts with no concentration of mass whose domain is contained in a
cube Im of fixed dimension.

Note that a nullhomotopic map is not a sweepout. It is easy to see that

P
(m)
p (M) ⊂ P(m+1)p (M) and Pp(M) = ∪m∈NP(m)p (M).
The following is an adaptation of an elementary result and is often referred

to as Vanishing Lemma (see [5] or [9, Claim 6.3]).

Lemma 2.12 (Vanishing Lemma). Let p, l ∈ N, X,Y ⊂ Im two cubical subcom-
plexes and Z = X ∪ Y . If Φ ∶ Z → Zn(M ;Z2) is a (p + l)-sweepout and Φ

Y
is

not a l-sweepout then Φ
X

must be a p-sweepout.
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Proof. Take λ ∈ H1(Z;Z2) so that condition (a) of Definition 2.11 is satisfied
in Z and λp+l ≠ 0. Define λX = i∗Xλ and λY = i∗Y λ, where iX , iY denote the
respective inclusion maps onto Z. Since every 1-cycle in X or Y is also in Z,
then condition (a) with respect to λX and λY is satisfied for both spaces. We
can assume that (λY )l = 0 and we want to prove that (λX)p ≠ 0.

Consider the exact sequence of the pair (Z,Y ):
H l(Z,Y ;Z2) j∗Y

Ð→H l(Z;Z2) i∗Y
Ð→H l(Y ;Z2).

Because i∗Y (λl) = 0, there exists λ1 ∈ H
l(Z,Y ;Z2) so that j∗Y λ1 = λ

l.
Now, suppose (λX)p = (i∗Xλ)p = i∗X(λp) = 0 and consider the exact sequence

for the pair (Z,X):
Hp(Z,X ;Z2) j∗X

Ð→Hp(Z;Z2) i∗X
Ð→Hp(X ;Z2).

If we chose λ2 ∈H
p(Z,X ;Z2) such that j∗Xλ2 = λ

p, then we will have

j∗Y λ1 ∪ j∗Xλ2 = λ
p+l ∈ H(p+l)(Z;Z2).

However, X ∪ Y = Z, hence H∗(Z,X ∪ Y ;Z2) = 0. By the definition of cup
product on relative cohomology we must have λ1 ∪ λ2 ∈ H

(p+l)(Z,X ∪ Y ;Z2),
that is, λ1 ∪ λ2 = 0(see [6, §3.2]).

On the other hand, we have

λp+l = j∗Y λ1 ∪ j∗Xλ2 = j
∗
X∪Y (λ1 ∪ λ2) = 0,

which is a contradiction. We conclude that (λX)p ≠ 0, hence ΦX is a p-sweepout.

Definition 2.13. Given p ∈ N, the p-width of (M,g) is defined as

ωp(M,g) = inf
(Φ,X)∈Pp(M)

sup{M(Φ(x)) ∶ x ∈X}.
For a fixed m ∈ N we define the restricted p-width as

ω(m)p (M,g) = inf
(Φ,X)∈P

(m)
p (M,g)

sup{M(Φ(x)) ∶ x ∈ X},
where we only consider p-sweepouts whose domain is contained in a cube Im of
fixed dimension m.

Remark 4. Note that for any p-sweepout Φ it is true that ωp ≤ L[Φ]. However,
it is not known in general whether it is always possible to have equality for some
sweepout. It is trivial from the definition that we can always find a sequence
of p-sweepouts S that satisfies L(S) = ωp. Nevertheless that is not very useful
because we must allow the ambient cubical domain Imi to vary and in this case
Pitts combinatorial construction do not work (see [11, §4.10]).
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3 Category of a Critical Set

In this section we are going to explain the notion of A-category of a set, which is
a generalization of the Lusternik-Schnirelmann Category (see [2]). We will use
this alternate notion of category to study the topology of the space of min-max
minimal hypersurfaces.

Let us briefly explain the reason for not using the Lusternik-Shcnirelmann
Category. We are working with the space Zn(M ;Z2) and we want to obtain
a lower bound on the category of the set of minimal hypersurfaces. SinceZn(M ;Z2) might not be locally contractible this result could be useless as a
covering of the critical set by contractible sets might not exist.

Definition 3.1 ([2, 1.1]). Let X be a topological space and A a non-empty
collection of non-empty subsets of X . We say that a subset U ⊂X is deformable
to A if there exists A ∈ A and an homotopy ht ∶ U → X , t ∈ [0,1], such that
h0 = ιU is the inclusion map and h1(U) ⊂ A.

A finite covering {U1, . . . , Uk} of open sets such that each Uj is deformable
to A is called a A-categorical covering. Given a subspace Y ⊂ X we define theA-category of Y as the smallest cardinality k of such covering and we writeA-cat(Y ) = k. If no such covering exists we put A-cat(Y ) =∞.

Remark 5. The A-category of a subset Y ⊂X is relative to the ambient space X .
In general the relative category is different from the intrinsic category (seeing
Y as a subset of itself). This happens for the Lusternik-Schnirelmann category
as well.

In our case we consider the collection

N1 = {N ⊂ Zn(M ;Z2) ∶U is open in the flat topology and

(ιU)∗ ∶ πl(U)→ πl(Zn(M ;Z2)) is trivial }.
It follows from [1, Theorem 8.2] that for every neighborhood of 0 ∈ Zn(M ;Z2)
contains an element U ∈N1 such that 0 ∈ U .

Remark 6. Since πl(Zn(M ;Z2)) = 0 for all l > 1, it follows that the induced
map (ιU)∗ is trivial for all l ∈ N.

We only summarize some trivial properties that we will be necessary for our
applications.

Proposition 3.2. Let N1 be defined as above. For any subset Y ⊂ Zn(M ;Z2)
the following holds:

(i) N1-cat(Y ) = 1 if and only if Y is contained in an open set U such that(ιU)∗ ∶H1(U)→H1(X) is zero;

(ii) if W ⊂ Y then N1-cat(W ) ≤ N1-cat(Y );
(iii) if K ⊂X is compact then N1-cat(K) <∞.
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Proof. (i):It follows from the definition that there must be a set U such that
the maps induced by the inclusion on the fundamental group is trivial. Simply
note that the Hurewicz homomorphism is surjective in dimension 1 and natural,
so the induced map in homology must also be trivial.
(ii) and (iii) are straightforward from the definition and the fact that N1 defines
a local neighborhood system in Zn(M ;Z2).

The motivation is to try to obtain a result similar to [2, 2.3(iii)] in our weaker
setting, where we don’t have Banach manifolds or a smooth functional. One
could hope to mimic their proof but it is not clear that the critical values ci,
defined in their paper, correspond to the width ωi. It might be possible to
show that ci corresponds to a critical value even in our setting, but even so,
nothing is known about its asymptotic behavior, which is a crucial property of
ωi. Nevertheless, we have found that it is possible to obtain information about
the topology of the critical set measured by its N1-category. To do so we must
know how the existence of sweepouts contribute to the 1-category of a set. The
main property that establishes this relation is given by the next lemma.

Lemma 3.3. Let K ⊂ Zn(M ;Z2) be a set with N1-cat(K) ≤ N . There exists
an open set U ⊂ Zn(M ;Z2) with K ⊂ U satisfying the following property:

If X is a cubical subcomplex and Φ ∶ X → Zn(M ;Z2) is a flat continuous
map with Φ(X) ⊂ U then Φ is not a N -sweepout.

Proof. We prove it by induction. If N = 1 then K is contained in an open set
U ⊂ Zn(M ;Z2) such that every map f ∶ S1 → U is nullhomotopic in Zn(M ;Z2).
So it cannot be a 1-sweepout.

Assume the result is valid forN−1 and supposeN1-cat(K) ≤N . There exists
U1, . . . , UN each of which does not contain 1-sweepouts and K ⊂ U1 ∪ . . . ∪UN .
It is clear that K ′ = K /UN has N1-cat(K ′) ≤ N − 1 so we can take U ′ with
K ′ ⊂ U ′ that doesn’t contain (N − 1)-sweepouts. We can also assume that
Ū ′ ⊂ U1 ∪ . . . ∪UN−1. Let U = U

′ ∪U ′N , where U ′N is such that K /U ′ ⊂ U ′N and

U ′N ⊂ UN .

Now, for Φ ∶ X → U let X1 = {x ∈X ∶ Φ(x) ∈ U ′} and X2 = X /X1. Note
that if either X1 or X2 are empty then the result follows simply because a N -
sweepout must also be a q-sweepout for all q <N . By the induction hypothesis
Φ

X1

is not a (N−1)-sweepout and, as in the first step, Φ
X2

is not a 1-sweepout.

Thus the Vanishing Lemma 2.12 implies that Φ cannot be a N -sweepout.

Let us denote the set of min-max minimal hypersurfaces as

Λ(M,g) = {V ∈ IVn(M) ∶ supp∥V ∥ is a smooth embedded minimal

hypersurface and V ∈C(S) for some sequence of flat

continuous maps with no concentration of mass}
and its associated cycles

T = {T ∈ Zk(M ;Z2) ∶ suppT is a smooth embedded minimal

hypersurface or T = 0}.
9



For β > 0 we denote Λβ = {V ∈ Λ ∶ ∥V ∥(M) ≤ β} and similarly Tβ = {T ∈ T ∶
M(T ) ≤ β}

The next Lemma is a direct application of the Constancy Theorem and lower
semicontinuity of the mass (see [9, Claim 6.2]).

Lemma 3.4. Fix m ∈ N and β > 0. For every open set U ⊂ Zn(M ;Z2), withT ⊂ U , there exists δ > 0 such that for any T ∈ Zn(M ;Z2)
F(∣T ∣,Λβ) < δ ⇒ T ∈ U.

We are now ready to prove the main theorem of this section. The proof
follows the exact same ideas of [9, Theorem 6.1] with the appropriate modifica-
tions.

Theorem 3.5. Let (Mn+1, g) be a closed Riemannian manifold of dimension

n + 1, with 2 ≤ n ≤ 6, and m,p,N ∈ N such that p +N ≤m. If ω
(m)
p = ω

(m)
p+N then

N1-cat(Tω(m)
p+N

) ≥N + 1.
Proof. To simplify notation, put ω = ω

(m)
p = ω

(m)
p+N .

Suppose by contradiction that N1-cat(Tω) ≤ N . By Lemma 3.3 there exists
an open set U ⊂ Zn(M ;Z2) with Tω ⊂ U that does not contain N -sweepouts. It
follows from Lemma 3.4 that there exists ε0 > 0 such that

F(∣T ∣,Λω) < 2ε0 ⇒ T ∈ U.

Let S = {Φi ∶ Xi → Zn(M ;Z2)}i∈N, with Xi ⊂ Im cubical subcomplexes,

be a sequence of (p +N)-sweepouts such that L(S) = ω
(m)
p+N . By Theorem 2.7

there exist X ′i ⊂ Xi cubical subcomplexes and a sequence of mass continuous
(in particular F-continuous) (p +N)-sweepouts S′ = {Φ′i ∶ X ′i → Zn(M ;M;Z2)}
such that L(S′) ≤ L(S).

We claim that L(S′) = L(S). Indeed, if we had L(S′) < L(S) then for i

sufficiently large Φ′i would be a (p +N)-sweepout such that sup{M(Φ′i(x′)) ∶
x′ ∈ X ′i} < L(S) = ω(m)p+N , which is a contradiction.

For each i ∈ N define Yi to be the cubical subcomplex of Im consisting of all
cells α ⊂X ′i such that

sup{F(∣Φ′i(x′)∣,Λω) ∶ x′ ∈ α} ≥ ε0.
It follows that F(∣Φ′i(x′)∣,Λ(m)ω ) < 2ε0 for all x′ ∈ X ′i /Yi, that is,

Φ′i(X ′i /Yi) ⊂ U.
Hence Φ′i X′

i
/Yi

is not a N -sweepout. Since Φ′i is a (N + p)-sweepout, it follows
that Yi must be non-empty and from the Vanishing Lemma 2.12 we get that
Φ′i Yi

is a p-sweepout.

Applying Theorem 2.7 for the sequence {Φ′i Yi

}i∈N we obtain Ỹi ⊂ Yi cubi-

cal subcomplexes and another sequence of mass continuous p-sweepouts S̃ =
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{Φ̃i ∶ Ỹi → Zn(M ;M;Z2)}i∈N. Since L({Φ′i Yi

}i∈N) ≤ L(S′) = ω
(m)
p+N = ω

(m)
p ,

we conclude as before that L(S̃) = L({Φ′i Yi

}i∈N). Thus, L(S̃) = ω and C(S̃) ⊂
C({Φ′i Yi

}i∈N)∩{V ∈ RVn(M) ∶ V is stationary}. It follows that F(V,Λ(m)ω ) ≥ ε0
for all V ∈ C(S̃). In particular no element of C(S̃) has smooth embedded sup-
port.

Applying Theorem 2.9 we obtain a sequence of p-sweepouts S∗ such that

L(S∗) < L(S̃) = ω(m)p which contradicts our initial hypothesis and concludes the
proof.

4 Applications

We will use the result in the previous section together with Sharp’s Compactness
Theorem [14, Theorem 2.3] to derive a non-compactness theorem for the space
of all minimal hypersurfaces in a manifold with positive Ricci curvature.

Thourghout this section (Mn+1, g) denotes a closed Riemannian manifold of
dimension 3 ≤ n + 1 ≤ 7 and Λ = Λ(M,g).

Before proceeding, let us first state a characterization of convergence of
minimal hypersurfaces. Given a minimal hypersurface Σ ⊂M we denote by LΣ

the Jacobi operator acting either on smooth functions (when Σ is two-sided) or
on normal vectorfields (when it is one-sided). The following is proved in Claims
4 − 6 in [14].

Proposition 4.1. Let Mn+1 be a closed Riemannian manifold of dimension 3 ≤
n+1 ≤ 7, {Σi}i∈N, Σ∞ be a sequence of minimal embedded smooth hypersurfaces
and S ⊂ Σ∞ a finite set of points. Suppose Σi → Σ∞ in the C∞

loc
(M /S) graphical

sense (see [14]). We have the following characterization of Σ∞:

(i) if the convergence is one-sheeted then S = ∅;
(ii) if Σ∞ is two-sided then there exists u ∈ C∞(Σ∞) such that

{u ≥ 0
LΣ∞(u) = 0.

Furthermore, if the convergence is at least two-sheeted or Σi ∩ Σ∞ = ∅
for all i sufficiently large then u > 0 everywhere and Σ∞ is stable. In case
the convergence is one-sheeted and Σi∩Σ∞ ≠ ∅ for all i sufficiently large
then we can further conclude that index(Σ∞) ≥ 1.

(iii) if Σ∞ is one-sided and the convergence is one-sheeted then, in addition
to (i) we have a normal vectorfield J ∈ C∞(Σ∞, T �Σ∞) such that

{J /≡ 0
LΣ∞(J) = 0.

That is, J is a non-trivial Jacobi field.

11



(iv) if Σ∞ is one-sided and the convergence is at least two-sheeted then we
must have λ1(LΣ∞) > 0. In addition, if Σ̃∞ denotes the oriented double
covering of Σ∞ then λ1(LΣ̃∞

) = 0. That is, Σ̃∞ is a two-sided immersed
minimal hypersurface with a non-trivial Jacobi field.

For Ω ⊂ Λ we define

I(Ω) ={index(supp∥V ∥) ∈ Z≥0 ∶ V ∈ Ω},
A(Ω) ={area(supp∥V ∥) ∈ R≤0 ∶ V ∈ Ω}.

We know by Sharp’s Compactness Theorem that supI(Ω) + supA(Ω) < ∞
implies that Ω is compact in the weak topology. Furthermore, the convergence
is as described in Proposition 4.1.

Our goal is to prove that the space Λ is non-compact, then it is sufficient to
show that supI(Λ) + supA(Λ) = ∞. However, in the general case we are not
able to show this. We managed to overcome this by considering the quantity
supI(Λ) +#A(Λ) instead.
Theorem 4.2. Let (Mn+1, g) be a closed Riemannian manifold of dimension
3 ≤ n + 1 ≤ 7.

Fix p ∈ N, if #A(Λωp+1) <∞ then there exists m ∈ N such that

ω(m)p (M) = ωp(M).
Proof. Suppose false, that is, we have a strictly decreasing sequence {ω(m)p }m∈N
converging from above to ωp. In particular we obtain a sequence of p-sweepouts
with no concentration of mass {Φm ∶ Xm ⊂ I

m → Zn(M ;Z2)}m∈N satisfying

ω(m+1)p ≤ L[Φm+1] < ω(m)p ≤ L[Φm].
We can further assume that L[Φm] < ωp + 1 for all m ∈ N.

First we apply Theorem 2.6 to each Φm and obtain Φ̃m a mass continu-
ous p-sweepout. In particular is is F-continuous and has no concentration of
mass. Now, from Theorem 2.8 and the Regularity Theorem 2.2 we obtain a
sequence {Vm}m∈N of stationary varifolds with smooth embedded support such
that ∥Vm+1∥(M) < ∥Vm∥(M). We can write for each m

Vm =
l∑

i=1

ni ⋅Σi,

where Σi are minimal hypersurfaces such that area(Σi) ∈ A(Λωp+1) and ni ∈
N. Since A(Λωp+1) is finite there are only finitely many possible values of

∥Vm∥(M) = ∑l
i=1 niarea(Σi) ≤ ωp + 1 for all m, which is a contradiction.

Now we use the result from the previous section to prove a non-compactness
theorem.
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Theorem 4.3. Let (Mn+1, g) be a closed Riemannian manifold of dimension
3 ≤ n + 1 ≤ 7 with Ric(g) > 0. If the metric g is analytic then the space Λ(M,g)
of minimal hypersurfaces (with multiplicity) is non-compact.

Proof. Suppose false, then there exists C > 0 such that supI(Λ)+supA(Λ) < C.

Claim 1. #A(Λ) <∞
Indeed, if it is not true then there exists a sequence {Σi}i∈N of multiplicity

one minimal hypersurfaces with distinct area. Without loss of generality we
can assume that area(Σi) is increasing. By hypothesis we have Σi) < C for all
i. From Sharp’s Compactness Theorem we can take a convergent subsequence,
still denoted by {Σi}i∈N, with limit Σ∞.

We claim that the convergence must one-sheeted, hence smooth every-
where. In fact, suppose the convergence is two-sheeted, then we can divide
in two cases. That is to say, whether Σ∞ is one-sided or two-sided. If Σ∞ is
one-sided, then we are in case 4.1(iv). In this case the oriented double covering
gives us a stable minimal hypersurface Σ̃∞, which is a contradiction because
Ric(g) > 0. If Σ∞ is two-sided, then we are in case 4.1(ii) with two-sheeted
convergence, which give us a contradiction for the same reason. We conclude
that the convergence is graphically smooth everywhere.

Now, a Theorem by L.Simon [13, §2 Theorem 3] says that, in a manifold with
analytic metric, there exists a C∞-neighbourhood of a minimal hypersurface such
that any other minimal hypersurface in that neighbourhood has constant area.
Since we have smooth convergence this shows that area(Σi) must be constant
and equal to area(Σ∞) for all i sufficiently large. This is a contradiction and it
finishes the proof of our first claim.

Claim 2. There exists a constant N ∈ N so that ωp < ωp+N for all p ∈ N.

Suppose false, then we can find a sequence {pi}i∈N such that

ωpi
= ωpi+i.

We already know that #A(Λ) < ∞, thus Theorem 4.2 tells us that for each i

there exists mi ∈ N so that ω
(mi)
pi

= ωpi
and ω

(mi)
pi+i

= ωpi
. Hence,

ω(mi)
pi

= ω
(mi)
pi+i

.

Finally, it follows from Theorem 3.5 that N1-cat(Tωpi+i
) ≥ i. By the monotonic-

ity property of N1-cat, Proposition 3.2(ii), this implies that N1-cat(T ) = ∞.
However, we are supposing that Λ is compact, which implies that so is T . This
is a contradiction because compact sets must have finite 1-category, thus proving
our second claim.

Now, for each i ∈ N we can find a (1 + iN)-sweepout Φi such that

ω1+iN ≤ L[Φi] < ω1+(i+1)N .

For each such sweepout we obtain by Theorem 2.8 a stationary varifold Vi

whose support is smooth and embedded and ∥Vi∥(M) = L[Φi]. By Frankel’s
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Theorem for manifolds with Ric(g) > 0 any two minimal hypersurfaces must
intersect, then the support of Vi can only have one connected component, that
is, Vi = ni ⋅Σi where Σi is a multiplicity one minimal hypersurface and ni ∈ N.

We already know that area(Σi) can only assume finitely many values, from
which follows that ∥Vi∥(M) = niarea(Σi) must have at least linear growth in
i. However, it is known that ωp has sublinear growth in p (see [5, Theorem 1]
or [9, Theorems 5.1 and 8.1]). Thus ω1+iN has sublinear growth, which implies
that so does L[Φi]. We arrive to a contradiction and this concludes the proof
of the theorem.

Corollary 4.4. Let Sn denote the n-sphere with the round metric and 3 ≤ n ≤ 7.
Then Sn admits infinitely many non-isometric minimal hypersurfaces.

Proof. Since the round metric in Sn is analytic we can apply the previous the-
orem. From Sharp’s Compactness Theorem it follows that supI(Λ(Sn)) +
supA(Λ(Sn)) = ∞, so it must contain a sequence of minimal hypersurfaces
with either the index going to infinity or the area.

We can also change the analyticity hypothesis by a bumpy metric. In this
case it extends a result by H. Li and X. Zhou to higher dimensions (see [7,
Corollary 1.5]).

We say that a metric is bumpy if no immersed minimal hypersurface has
a non-trivial Jacobi field. In [16] B. White showed that bumpy metrics for
embedded minimal hypersurfaces are generic and recently the author extended
the same result for bumpy metric for immersed minimal hypersurfaces (see [17]).

To prove this we also have to use a recent result shown by Marques-Neves in
[10]. The authors show that for a given F-continuous k-sweepout we can always
find a varifold that realizes the width of its homotopy class and has index ≤ k.

Theorem 4.5. Let (Mn+1, g) be a closed Riemannian manifold of dimension
3 ≤ n + 1 ≤ 7 with Ric(g) > 0. If the metric g is bumpy, then

ωp < ωp+1

and supI(Λ(M,g)) + supA(Λ(M,g)) =∞.

Proof. The proof is very similar to the previous theorem. First we show that

for every p there exists m such that ωp = ω
(m)
p .

Claim 1. For a fixed p, we have #A(Λωp+1) <∞
Suppose it is false. Arguing exactly as in the previous theorem we obtain a

sequence of varifolds {Vm}m∈N ⊂ Λωp+1 such that index(supp∥V ∥) ≤ p (see [10,
Theorem 1.2]). By Sharp’s Compactness Theorem we know that Vm → V∞ for
some V∞ ∈ Λωp+1 and the convergence is classified by proposition 4.1. Now,
in any situation described in 4.1 it is possible to construct a non-trivial Jacobi
field over supp∥V∞∥ or its immersed double covering. In any case, that is a
contradiction.
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Suppose now that ωp = ωp+1 that is, ω
(m)
p = ω

(m)
p+1 for some m ∈ N. In

particular the set Ω = V ∈ Λ ∶ ∥V ∥(M) = ωp is infinite and index(supp∥V ∥) ≤ p+1
for all V ∈ Ω. Arguing as before, these varifolds must accumulate on a minimal
hypersurface (possibly immersed) with a non-trivial Jacobi field, which is a
contradiction.

The remaining statement follows directly from Sharp’s Compactness Theo-
rem.
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