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Abstract

We consider dataflow architecture for two classes of contipmswhich admit taking linear com-
binations of execution runs: probabilistic sampling andegelized animation. We improve the earlier
technique of almost continuous program transformationadmpting a discipline of bipartite graphs
linking nodes obtained via general transformations andesabtained via linear transformations
which makes it possible to develop and evolve dataflow prograver these classes of computa-
tions by continuous program transformations. The use ddrtite graphs allows us to represent the
dataflow programs from this class as matrices of real nundrsisevolve and modify programs by
continuous change of these numbers.

We develop a formalism for higher-order dataflow programgror this class of dataflow graphs
based on the higher-order matrix elements. Some of our aodtexperiments are briefly discussed.

1 Introduction

Because probabilistic sampling and generalized animatierboth stream-based, dataflow program-
ming is a natural framework for this situation. Earlier werevable to leverage the ability to take linear
combinations of execution runs to obtain the notioramhost continuous transformatiaf dataflow
programsl[1].

There were three main sourceshfnign discontinuitie [I]: addition of new subgraphs via an
operation ofimited deep copyinsertion of a new vertex and an edge during the first stageiokert
and insertion of an edge during the second stage of S-insert.

We now allow to decorate subgraphs with weights and regoéertew subgraphs created by limited
deep copy appear initially with zero weight subject to sgosat continuous evolution.

We also introduce the discipline of arranging and linkingtiees as a bipartite graph, namely that
general transforms of fixed arity must point only at lineansforms of unlimited arity, and vice versa.

This allows to eliminate the benign discontinuities menéd above and obtagontinuous program
transformations

1.1 Dataflow Graphs as Matrices

It is convenient to have a situation where for any trajectfrprogram development or evolution all
parts of the program which might emerge preexist in a silext w

The discipline of bipartite graphs actually makes this pmes We fix a particulasignatureby
taking a finite number of operations, each with its own fixeddinon-negative arity.


http://arxiv.org/abs/1601.01050v1

Dataflow Graphs as Matrices Bukatin and Matthews

We take a countable number of copies of ehplate operatiofrom the signature. Then we have
a countable set of inputs of those operatiofisand a countable set of their outpuxs,

Associate with eaclyj a linear combination of alk; with real coefficientsyj. We require that no
more than finite number of elements of the matey ) are nonzero.

We often impose additional conditions, e.g. we often regjthat alla;; are nonnegative, and that
the sum of elements; associated with a particular matrix colurndoes not exceed 1.

Thus we have a countable-sized program, namely a countataélaiv graph, all but a finite part of
which is suppressed by zero coefficients. Any finite dataflomph over a particular signature can be
embedded into a universal countable dataflow graph ovesitpmature in this fashion.

Hence we represent programs over a fixed signature as céensiabd real-valued matrices with no
more than finite number of nonzero elements, and any progvatateon would be a trajectory in this
space of matrices.

1.2 Multiple Types of Data Streams

Originally this construction was envisioned for the sitaatwhen each nodg andY; has a data stream
of the same type, and all these streams are equipped witlathe seaningful addition operatidd [1].

The most important case here is when these are streams ofuraalers which can be considered as
one-point generalized animations.

However, we might want to consider situations when thererariéiple stream types associated with
nodes. Consider a situation whegpandX; are of different types. I&; = 0, this is fine, because then
ajj - X; does not affecy;. If there is a default adapt@y; between these types, then other values oére
allowed, and;j - Tij (X) is contributed to the sum. Otherwise the conditign= 0 has to be enforced
(ayj are clamped at zero).

1.3 Multiple Types of Addition

One might want to also consider a situation where more thanmeaningful addition operation is
possible within the same program (e.g. point-wise additibgeneralized animations and stochastic
sum of the streams of probabilistic samples).

(Note that these additions are different from template afp@ns: additions have unlimited arity and
map infinite tuples oX’s to Y’s, and template operations have finite fixed nonnegatitg arid map
finite tuples ofY’s to X’s.)

In the case of multiple types of addition, each injubf a template operation from the signature
needs to be marked with the type of the addition operatiosgsulf necessary, similar template opera-
tions with different addition types should be included ie Hignature separately.

One would typically include an identity transform for evéype of data stream and for every type
of addition applicable to this particular type of data stnea order to provide a capability to group the
sums hierarchically.

1.4 String-based Indices

Rather than indexing our countable sé¥} and{Y;} with numbers we are going to fix an alphabet
and to index them with strings from that alphabet. Of coulestéers can be considered as digits in an
appropriate base, and strings as the corresponding natumabers, but by indexing with strings we
are trying to de-emphasize the order associated with thigalanumbers-based interpretation and to
encourage an implementation of sparse arrays based oargiges (hash tables), with the expectation
that zero elements of arrays and matrices would typicallgrbéted from their respective dictionaries.
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In order to maintain our convention that the associatiowbeh a particulaX; and its template oper-
ation is fixed, and that the association betw¥gand its corresponding argumenis, . . . 7Yknj (nj>=0)
is fixed and that all flexibility is concentrated solely in thaluesa;; we adopt the following naming
conventions.

We call a multiset (bag) of stringsrefix-freeif none of the strings in that multiset is a prefix of
another string in that multiset. (Note that a prefix-freetisat cannot have multiple occurrences of the
same string.) All template operations are given string reimesuch a way that the multiset consisting
of all these names and the strifegg’ is prefix-free. A nodé; is indexed with a string which starts
with the name of the template operation associated withnibée. We say that the strirjgs the name
of Yj. A nodeX; which is one of the arguments f¥[ is indexed with the stringwhich is obtained by
concatenating the preffargl’ (‘arg2’ etc.) with the name of;. We say that the strinigis the name of

X.

1.5 Higher-order Programming

Because matrices, their columns, and their elements atergabemselves, this is a platform with a
variety of opportinuties to create techniques for higheleo programming.

In this text we focus on one particular avenue for doing sa, this approach is centered around
making elements;; higher-order (see Sectibh 2).

To quote from Section 1.1 of [2] “A lot of expressive power bfst architecture comes from the
ability to have non-standard secondary structures on thefgmints. Points can be associated with
vertices or edges of a graph, grammar rules, etc. One sheultble to formulate mechanisms of
higher-order animation programming via variable illuntioa of elements of such structures.”

What is being done in the present paper is an instance ofpi®ach.

A more precise mathematical description of the way this kihdomputational engine functions is
in SectiorB.

Ouir first series of exercises in matrix-based dataflow pragrang which have been open-sourced
simultaneously with the release of this preprint is desttiim Sectioh 4.

2 Higher-order Matrix Elements

2.1 Degrees of Order

Here we classify varieties @i;.

2.1.1 Not Properly Higher-order Elements

A not properly higher-order elemeay; is not associated with a stream of any particular ngde

Zero elements (zero-order). These coefficients are zero and are not typically includetendictio-
naries implementing the matrix or its columns.

First-order elements. Constant elements of the mat(ia; ) are called first-order elements.

Variable elements (first-and-a-half order, sesquialteralorder elements). Elements of the matrix
(aj) which vary with time belong to this class. Our exercises ghlei-order dataflow have belonged to
this class so far.



Dataflow Graphs as Matrices Bukatin and Matthews

2.1.2 Properly Higher-order Elements

A properly higher-order element is associated with a degast of a particular nods,. The three types
above are still representable with higher-order elemeéfitseen a node is not turned on (and typically is
not in the appropriate dictionary), this is the case of zender element. When a node is constant value
with no arguments, this is the case of first-order matrix €emWhen a node is a variable stream, but
does not have argument nodes (so we are talking about a prediefkternal variable stream), this is the
case of sesquialteral-order element.

Specialized higher-order elements. When a nod& is computed by a template operation with at least
one argument, this is the case of a higher-order element. aiVé specialized, because the operation
which computes this element is fixed, although it can be ollett via its argument(s). Evaluation of
such an operation is immediately effective, i.e. the newlyputed coefficient is then immediately used
to compute the appropriate linear combination.

Fully higher-order elements. In this case the nods is computed by a template operation which is
the identity transform (one of the identity transforms, ifiltiple types of addition of streams of reals are
included in the signature). In this case, the value in qaestan be computed in a very flexible manner
from any linear combination of any transformations. Howetlee value is essentially computed on
the “downswing” using the previous values(@fj ), and becomes the new effective value of the matrix
only after the identity transform is applied to it. So if oneeds to implement changing thg via a
particular specialized template operation, a one-cyd&yds involved before the new value aff goes
via a linear combination and via an identity transform ancidoees effective.

2.2 Embedding the Set of Matrix Coefficient Indices into the $t of Column In-
dices

An interesting question is whether one can have all matexneints to be properly higher-order ele-
ments. The answer is “yes”, and it is essentially based oodbatability of the union of countable sets.
This countability allows us to take the set of indices of nxatoefficients,(ij), and embed it into the
set of indices of matrix columng,

Here we are going to give an example of such an embedding wsalfficiently detailed to enable
computer implementation.

Without properly higher-order matrix elements, it was flassto avoid giving unique names for
matrix elements. For example, one could represent mattixnoos as separate dictionaries and then
just use the row names for matrix elements, like we do in tlzevete of Sectiofl4.

With properly higher-order matrix elements one needs umitames for matrix elements. We start
with the naming scheme for columns and rows given in Se¢fidraihd given the namb; for col-
umn j and the nameV; for row i, we define the name for the matrix eleméijt) as concatenation
'("+Nj+")#('+Mi+")". Now we should just reserve parentheses for the use witeinéimes of matrix
elements only, but not within the “originally present nafmesd this should be enough to avoid the
name clashes.

3 A More Precise Description of the Abstract Machine

We only describe the machine for the situation where all s@de streams of reals, and where one kind
of addition operation exists with the sum being componeisewddition. It is not difficult to generalize
appropriately.
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Define an alphabét which does not contain parentheses and the number’§jgh,

Denote the set of all finite strings ovERSZ*.

Define an operation as a tugfecontaining name (a stringg € >*), arity (a non-negative integer
Ar), and a mathematical functioiz : R4 — R (if Ar is zero,fr is simply a real number).

Define a signature as a finite set of operati®s,{Fy,...,F}.

We require that the multiséNr,, ..., Ng,,’arg'} is prefix-free per Sectidn 1.4.

We takeF; to be the identity operatiorf,id’, 1,x — X).

3.1 Abstract Machine Without Properly Higher-order Matrix Elements

The first case we consider is the case of sesquialteral-ondénix elements, which will be further
illustrated by the example in Sectibh 4.

We introduce the partially defined m&gp from Z* to S(operations) and two partially defined maps
X andY from Z* to N — R (data streams).

We denote string concatenation with + and string repretientaf a non-negative integ&rasstr(k).

Forw € >* and for everyqy € Sintroducei = Nr,, + /4 w. For all suchi, Op(i) andX(i) (denoted
asX;) are defined an®p(i) = Fm.

For all suchi, for all k € {1,...,Ag,}, introducej = 'arg’ + str(k) +' ' +i. For all suchj, Y(j)
(denoted a¥j) is defined.

Now we have a dataflow graph representing the machine, and®aa to define the values of data
streamsN — R associated with graph nod¥sandY;, which will define how the machine works.

Time starts with value 0 and increases by 1 at each machipe Bt everyi and j defined above
there is a stream of value$ — R associated withajj. Given that we are considering the case of
sesquialteral-order matrix elements, we assume thanstraasociated with;j are external to the pro-
gram and are just generated by their externally programrapdrgtors.

At time 0 we start with allX; andY; being the streams of one element, which equals to 0 for all
those streams. The valuesaf at the moment O are not important at this level of considenatbe-
cause we only give a mathematical definition in this sectimhignore the question of sparseness as an
implementation detail (of course, nothing would even fit @&dimachine without this implementation
detail).

Then given streamX;, Yj, anda;; of lengtht, here is how the componertts- 1 are defined (that
is, computed by the abstract machine; so this is a definityoinduction with respect to time, and this
definition describes how the machine works).

Step 1. First, for alli, the value ofX; at timet + 1 is computed as follows. One consid&g(i), and
forallke {1,...,Aopi } andjx = ‘arg’ +str(k) +' ' +i one takes the valug, as being the value of the
streanij, at moment. The value o attimet + 1 then is computed (defined) &gy (Vj,, - - - ,yjAom) ).

Step 2. Then the values of streams corresponding;f@t the moment+ 1 are externally generated.
The condition that only a finite number of those are diffefemtn 0 at the momertt+ 1 is observed.

Step 3. Finally, for all j, the values of streams associated Wwitfat the moment+ 1 are computed as
the linear combinationkja;j - Xi, wherea;; andX; are the values of the corresponding data streams at
the moment + 1.
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3.2 A More Abstract View

Here is a more abstract way to describe what is going on inradqus subsection.

There are two (in general, countably dimensional) vectacepX andY. There is a fixed non-linear
functionF : Y — X induced by the signature. There is a family of linear tramsftionsL; : X — Y
parametrized with time (this corresponds to sesquiak@ndér ofL).

We define streams of vectoxg y; from X,Y parametrized with time by induction over time. We
definexy andyy to be zero vectors arlg is irrelevant.

Attimet+1, first we take¢ 1 = F(y(t)), then we note the curreht,; and takey 11 = Li11(X+1)-

In the subsection which follows we use the embedding fronti®@&2.2 to incorporaté into X.

Then at timet + 1 we takex1 = F(y(t)) and among other things this yieltls, ;. Then we take
Yer1 = Leya(X11).

We occasionally parametrize ask as well, to allow the dynamic tuning of the system and to
account for the stochastic factors in randomized templaégaiions.

3.3 Abstract Machine with all Fully Higher-order Matrix Ele ments

Here we modify the construction of Section]3.1 in order tavéelwhat was promised at the end of the
previous subsection.We start with sets of naines{i} andJ = {j} defined in Section 3] 1.

Then we definéy = | andJp = J, and organize the induction as follows.

Givenl, andJ, we first use the scheme from Section] 2.2 to define set of nanmaatoik elements:
Anir = {'('+]+)#(+i+)]i € In, ] € In}.

Then we use the fact that our signature has the identity Gperand defing, 1 =1 J{'id '+ alae
Anii}tanddnp =JU{’arglid ' +alac A1}

Now consider the limit of this procesls, = UJIn andJe = J Jn.

Then this limits is the fixed point of this process, namely tthih we define
Ao ={'(+j+")#(+i+")]i €le, | € Jo}, thenle, = | J{'id '+ alac As} andd., = JJ{’arglid ' +alac
Axt.

Now the steps at the end of Sectlon]3.1 are modified as foll®esforming Step 1 yields values
of streams corresponding &y at the moment+ 1. If only finite number of those values are different
from 0 at the momertt then only a finite number of them would be different from Oheg inoment + 1
(for the detailed explanation of the reasons for that seéatigaragraph of the next subsection).

Then we can go ahead and perform Step 3.

3.4 Sparseness Considerations

The discussion of the abstract machines would not be complgghout discussing how to keep the
amount of computations at each step finite (as, if possibigymal).

For the setup of Sectidn 3.1, the requirement is that if aimeakements;; is nonzero, then its linear
combination needs to be evaluated and the template opeitioputingX; and the template operation
usingY;j as an argument both need to be evaluated, so the approprgss should be included into the
dictionaries in question. When for a template operatiomwiputsYs, ..., Yy and outpufX; all matrix
elements related to nod®s, ..., Y, and outputX; are zero, it is not recommended to evaluate such a
template operation or to include the nodes in question ifdiotharies (although doing so is legal).

This means that whes; becomes nonzero for the first time, thenode and the template operation
using this node as an input together with the other verti€gsi@template operation must be added to
the appropriate dictionaries, if it is not already thereni&rly, the X; node and the template operation
computing it together with the other vertices of that tergtgperation must be added to the appropriate
dictionaries, if it is not already there, and moreover, gad&to be retroactively computed (by evaluating
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the corresponding template operation with zero valuessadrigjuments) before the linear combination
usinga;; can be evaluated.

The same considerations are valid for the setup of SeCif@n/At any given moment of time we
only have a finite number of operations computagbeing in the dictionaries and subject to being
evaluated. So only finite number of them might become nonfmrthe first time at any given time
moment. Hence no more than a finite number of new nodes needddded to the dictionaries on each
time step.

4 A Simple Example

This architecture is applicable to probabilistic samplargl to generalized animation. We created an
open source software prototype demonstrating the use séttezhniques for streams of real numbers
implementing a family of continuous cellular automata.

The software and associated videos have been releasedtasismlsly with this preprint as
aug_20_15_experiment in the Project Fluid repository[3].

Note that we cannot make these video previews quite fajtivideo compression software intro-
duces some distortion at the initial stage of uploading aw@jdhen it notices the problems with quality
and offers to automatically fix lighting, the overall resoiight be worse in some aspects and better in
some other aspects than the video natively produced by fivesge.

This is an example of a situation when a matrix-based datgflmgram is used in combination
with other software. In this particular case, the video aufpom the dataflow program is being passed
through an external lighting-enhancing software.

The set of template operations for this series of experimmsntery simple: zero-arity constants,
black andwhite (-1 and 1), and a unary randomized propagator, copying tue e its inputy; to its
outputX; with probability p (a typical value of which in this series of experiments i9%.0and setting
the output to zero otherwise. The setup is essentially thaeotion 3.1, except that we allow several
copies of a template operation to share an input when coeme@athematically this is equivalent to
constraining several columns of a matrix to be the same).

In this series of experiments we use the dynamic nature ofixnelements very sparingly, first
having the weights concentrated on the output of the cotsstiitialization phase) and then switching it
(continuously, or, as in this series of experiments, alyyyifui the output of the randomized propagators
forming a structure determining the connectivity of thetommous cellular automaton in question. This
architecture also allows to continuously morph betweernrigtyeof connectivity structures, but we have
left this as a simple exercise to the reader.

We are observing a variety of emerging Turing structureh witeresting dynamics in this series of
experiments, depending mostly on the connectivity pattend also on the initialization configuration.
In the spirit of non-equilibrium thermodynamics, even wlaere starts with a uniform initial pattern
(all black or all white), the structures first emerge drivgntbe randomized propagators and by the
connectivity pattern, and then fade out to gray (zero vatle,thermodynamic equilibrium). If one
includes the amplification during the visualization stagea(ing the brightness of the image so that
the maximal absolute value of a rendered point reaches d1), dhe can observe that the meaningful
fine structures of the dynamic patterns tend to persist inttielfy (in some cases the main motive is
preserved, in other cases the pattern is shifting and exgplunpredictably).

See the Fluid repository for further details.
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4.1 An Example with Properly Higher-order Matrix Elements

Theaug 24 15_experiment implements the same example using fully higher-order efésn@ll but
two matrix elements in that experiment are fully higherasravhile two of its elements are not properly
higher-order, and their change is controlled from the olafsi

This experiment also features pause/resume facility ofett by the mouse key and the space bar,
improved brightness amplification, and an adjustment m@shato stabilize the values and prevent
their relaxation to zero.

We recommend that the reader uses this experiment to fuekipéore the system.

5 Conclusion

This architecture allows us to evolve dataflow programs intiooous fashion while those evolving
programs are running. This makes it possible to sample moatis trajectories in the space of dataflow
programs, in addition to the usual practices of samplingymtax trees of programs.

The representation of programs as matrices of real numbakesthe task of program learning
more similar to the task of machine learning for more narrad @onventional classes of models.

One way to introduce some higher-order mechanisms in dataflogramming (and in neural net-
works) is via letting any particular data stream to propag#ing multiple directions in the graph, and to
dynamically control the actual directions of propagatigrsktting the multipliers along some of those
paths to zero.

A somewhat unexpected result of the present preprint ighieparticular higher-order mechanism
seems to be universal: all higher-order programming forvargclass of dataflow graphs over datas-
treams with linear combinations of execution runs builtamaf a fixed signature of template operations
seems to be expressible via setting multipliers along thiespat data propagation (in particular, setting
all but the finite number of them to zero).

Acknowledgments. We would like to thank Ralph Kopperman, Lena Nekludova, avghJlenen-
baum for helpful discussions and to acknowledge collabmratith Lena Nekludova on software ex-
periments.
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