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Abstract

We consider dataflow architecture for two classes of computations which admit taking linear com-
binations of execution runs: probabilistic sampling and generalized animation. We improve the earlier
technique of almost continuous program transformations byadopting a discipline of bipartite graphs
linking nodes obtained via general transformations and nodes obtained via linear transformations
which makes it possible to develop and evolve dataflow programs over these classes of computa-
tions by continuous program transformations. The use of bipartite graphs allows us to represent the
dataflow programs from this class as matrices of real numbersand evolve and modify programs by
continuous change of these numbers.

We develop a formalism for higher-order dataflow programming for this class of dataflow graphs
based on the higher-order matrix elements. Some of our software experiments are briefly discussed.

1 Introduction

Because probabilistic sampling and generalized animationare both stream-based, dataflow program-
ming is a natural framework for this situation. Earlier we were able to leverage the ability to take linear
combinations of execution runs to obtain the notion ofalmost continuous transformationof dataflow
programs [1].

There were three main sources ofbenign discontinuitiesin [1]: addition of new subgraphs via an
operation oflimited deep copy, insertion of a new vertex and an edge during the first stage ofS-insert,
and insertion of an edge during the second stage of S-insert.

We now allow to decorate subgraphs with weights and require that new subgraphs created by limited
deep copy appear initially with zero weight subject to subsequent continuous evolution.

We also introduce the discipline of arranging and linking vertices as a bipartite graph, namely that
general transforms of fixed arity must point only at linear transforms of unlimited arity, and vice versa.

This allows to eliminate the benign discontinuities mentioned above and obtaincontinuous program
transformations.

1.1 Dataflow Graphs as Matrices

It is convenient to have a situation where for any trajectoryof program development or evolution all
parts of the program which might emerge preexist in a silent way.

The discipline of bipartite graphs actually makes this possible. We fix a particularsignatureby
taking a finite number of operations, each with its own fixed finite non-negative arity.
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We take a countable number of copies of eachtemplate operationfrom the signature. Then we have
a countable set of inputs of those operations,Yj , and a countable set of their outputs,Xi .

Associate with eachYj a linear combination of allXi with real coefficientsai j . We require that no
more than finite number of elements of the matrix(ai j ) are nonzero.

We often impose additional conditions, e.g. we often require that allai j are nonnegative, and that
the sum of elementsai j associated with a particular matrix columnYj does not exceed 1.

Thus we have a countable-sized program, namely a countable dataflow graph, all but a finite part of
which is suppressed by zero coefficients. Any finite dataflow graph over a particular signature can be
embedded into a universal countable dataflow graph over thissignature in this fashion.

Hence we represent programs over a fixed signature as countable-sized real-valued matrices with no
more than finite number of nonzero elements, and any program evolution would be a trajectory in this
space of matrices.

1.2 Multiple Types of Data Streams

Originally this construction was envisioned for the situation when each nodeXi andYj has a data stream
of the same type, and all these streams are equipped with the same meaningful addition operation [1].

The most important case here is when these are streams of realnumbers which can be considered as
one-point generalized animations.

However, we might want to consider situations when there aremultiple stream types associated with
nodes. Consider a situation whenYj andXi are of different types. Ifai j = 0, this is fine, because then
ai j ·Xi does not affectYj . If there is a default adapterTi j between these types, then other values ofai j are
allowed, andai j ·Ti j (Xi) is contributed to the sum. Otherwise the conditionai j = 0 has to be enforced
(ai j are clamped at zero).

1.3 Multiple Types of Addition

One might want to also consider a situation where more than one meaningful addition operation is
possible within the same program (e.g. point-wise additionof generalized animations and stochastic
sum of the streams of probabilistic samples).

(Note that these additions are different from template operations: additions have unlimited arity and
map infinite tuples ofX’s to Y’s, and template operations have finite fixed nonnegative arity and map
finite tuples ofY’s to X’s.)

In the case of multiple types of addition, each inputYj of a template operation from the signature
needs to be marked with the type of the addition operation it uses. If necessary, similar template opera-
tions with different addition types should be included in the signature separately.

One would typically include an identity transform for everytype of data stream and for every type
of addition applicable to this particular type of data stream in order to provide a capability to group the
sums hierarchically.

1.4 String-based Indices

Rather than indexing our countable sets{Xi} and{Yj} with numbers we are going to fix an alphabet
and to index them with strings from that alphabet. Of course,letters can be considered as digits in an
appropriate base, and strings as the corresponding naturalnumbers, but by indexing with strings we
are trying to de-emphasize the order associated with this natural-numbers-based interpretation and to
encourage an implementation of sparse arrays based on dictionaries (hash tables), with the expectation
that zero elements of arrays and matrices would typically beomitted from their respective dictionaries.
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In order to maintain our convention that the association between a particularXj and its template oper-
ation is fixed, and that the association betweenXj and its correspondingargumentsYk1, . . . ,Yknj

(n j >=0)
is fixed and that all flexibility is concentrated solely in thevaluesai j we adopt the following naming
conventions.

We call a multiset (bag) of stringsprefix-freeif none of the strings in that multiset is a prefix of
another string in that multiset. (Note that a prefix-free multiset cannot have multiple occurrences of the
same string.) All template operations are given string names in such a way that the multiset consisting
of all these names and the string′arg′ is prefix-free. A nodeYj is indexed with a stringj which starts
with the name of the template operation associated with thisnode. We say that the stringj is the name
of Yj . A nodeXi which is one of the arguments forYj is indexed with the stringi which is obtained by
concatenating the prefix′arg1 ′ (′arg2 ′ etc.) with the name ofYj . We say that the stringi is the name of
Xi .

1.5 Higher-order Programming

Because matrices, their columns, and their elements are vectors themselves, this is a platform with a
variety of opportinuties to create techniques for higher-order programming.

In this text we focus on one particular avenue for doing so, and this approach is centered around
making elementsai j higher-order (see Section 2).

To quote from Section 1.1 of [2] “A lot of expressive power of this architecture comes from the
ability to have non-standard secondary structures on the set of points. Points can be associated with
vertices or edges of a graph, grammar rules, etc. One should be able to formulate mechanisms of
higher-order animation programming via variable illumination of elements of such structures.”

What is being done in the present paper is an instance of this approach.
A more precise mathematical description of the way this kindof computational engine functions is

in Section 3.
Our first series of exercises in matrix-based dataflow programming which have been open-sourced

simultaneously with the release of this preprint is described in Section 4.

2 Higher-order Matrix Elements

2.1 Degrees of Order

Here we classify varieties ofai j .

2.1.1 Not Properly Higher-order Elements

A not properly higher-order elementai j is not associated with a stream of any particular nodeXk.

Zero elements (zero-order). These coefficients are zero and are not typically included inthe dictio-
naries implementing the matrix or its columns.

First-order elements. Constant elements of the matrix(ai j ) are called first-order elements.

Variable elements (first-and-a-half order, sesquialteral-order elements). Elements of the matrix
(ai j ) which vary with time belong to this class. Our exercises in higher-order dataflow have belonged to
this class so far.
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2.1.2 Properly Higher-order Elements

A properly higher-order element is associated with a datastream of a particular nodeXk. The three types
above are still representable with higher-order elements.When a node is not turned on (and typically is
not in the appropriate dictionary), this is the case of zero-order element. When a node is constant value
with no arguments, this is the case of first-order matrix element. When a node is a variable stream, but
does not have argument nodes (so we are talking about a predefined/external variable stream), this is the
case of sesquialteral-order element.

Specialized higher-order elements. When a nodeXk is computed by a template operation with at least
one argument, this is the case of a higher-order element. We call it specialized, because the operation
which computes this element is fixed, although it can be controlled via its argument(s). Evaluation of
such an operation is immediately effective, i.e. the newly computed coefficient is then immediately used
to compute the appropriate linear combination.

Fully higher-order elements. In this case the nodeXk is computed by a template operation which is
the identity transform (one of the identity transforms, if multiple types of addition of streams of reals are
included in the signature). In this case, the value in question can be computed in a very flexible manner
from any linear combination of any transformations. However, the value is essentially computed on
the “downswing” using the previous values of(ai j ), and becomes the new effective value of the matrix
only after the identity transform is applied to it. So if one needs to implement changing theai j via a
particular specialized template operation, a one-cycle delay is involved before the new value ofai j goes
via a linear combination and via an identity transform and becomes effective.

2.2 Embedding the Set of Matrix Coefficient Indices into the Set of Column In-
dices

An interesting question is whether one can have all matrix elements to be properly higher-order ele-
ments. The answer is “yes”, and it is essentially based on thecountability of the union of countable sets.
This countability allows us to take the set of indices of matrix coefficients,(i j ), and embed it into the
set of indices of matrix columns,j.

Here we are going to give an example of such an embedding whichis sufficiently detailed to enable
computer implementation.

Without properly higher-order matrix elements, it was possible to avoid giving unique names for
matrix elements. For example, one could represent matrix columns as separate dictionaries and then
just use the row names for matrix elements, like we do in the example of Section 4.

With properly higher-order matrix elements one needs unique names for matrix elements. We start
with the naming scheme for columns and rows given in Section 1.4 and given the nameNj for col-
umn j and the nameMi for row i, we define the name for the matrix element(i j ) as concatenation
′(′+Nj+

′)#(′+Mi+
′)′. Now we should just reserve parentheses for the use within the names of matrix

elements only, but not within the “originally present names”, and this should be enough to avoid the
name clashes.

3 A More Precise Description of the Abstract Machine

We only describe the machine for the situation where all nodes are streams of reals, and where one kind
of addition operation exists with the sum being component-wise addition. It is not difficult to generalize
appropriately.
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Define an alphabetΣ which does not contain parentheses and the number sign,′()#′.
Denote the set of all finite strings overΣ asΣ∗.
Define an operation as a tupleF containing name (a stringNF ∈ Σ∗), arity (a non-negative integer

AF ), and a mathematical functionfF : RAF → R (if AF is zero,fF is simply a real number).
Define a signature as a finite set of operations,S= {F1, . . . ,Fn}.
We require that the multiset{NF1, . . . ,NFn,

′ arg′} is prefix-free per Section 1.4.
We takeF1 to be the identity operation,〈′id′,1,x 7→ x〉.

3.1 Abstract Machine Without Properly Higher-order Matrix Elements

The first case we consider is the case of sesquialteral-ordermatrix elements, which will be further
illustrated by the example in Section 4.

We introduce the partially defined mapOp from Σ∗ to S(operations) and two partially defined maps
X andY from Σ∗ toN→ R (data streams).

We denote string concatenation with + and string representation of a non-negative integerk asstr(k).
Forw∈ Σ∗ and for everyFm ∈ S introducei = NFm+

′ ′+w. For all suchi, Op(i) andX(i) (denoted
asXi) are defined andOp(i) = Fm.

For all suchi, for all k ∈ {1, . . . ,AFm}, introduce j = ′arg′+ str(k)+′ ′ + i. For all suchj, Y( j)
(denoted asYj ) is defined.

Now we have a dataflow graph representing the machine, and we need to define the values of data
streamsN→ R associated with graph nodesXi andYj , which will define how the machine works.

Time starts with value 0 and increases by 1 at each machine step. For everyi and j defined above
there is a stream of valuesN → R associated withai j . Given that we are considering the case of
sesquialteral-order matrix elements, we assume that streams associated withai j are external to the pro-
gram and are just generated by their externally programmed generators.

At time 0 we start with allXi andYj being the streams of one element, which equals to 0 for all
those streams. The values ofai j at the moment 0 are not important at this level of consideration, be-
cause we only give a mathematical definition in this section and ignore the question of sparseness as an
implementation detail (of course, nothing would even fit a finite machine without this implementation
detail).

Then given streamsXi, Yj , andai j of lengtht, here is how the componentst + 1 are defined (that
is, computed by the abstract machine; so this is a definition by induction with respect to time, and this
definition describes how the machine works).

Step 1. First, for all i, the value ofXi at timet +1 is computed as follows. One considersOp(i), and
for all k∈ {1, . . . ,AOp(i)} and jk = ′arg′+str(k)+′ ′+ i one takes the valuey jk as being the value of the
streamYjk at momentt. The value ofXi at timet+1 then is computed (defined) asfOp(i)(y j1, . . . ,y jAOp(i)

).

Step 2. Then the values of streams corresponding toai j at the momentt +1 are externally generated.
The condition that only a finite number of those are differentfrom 0 at the momentt +1 is observed.

Step 3. Finally, for all j, the values of streams associated withYj at the momentt+1 are computed as
the linear combinationsΣiai j ·Xi , whereai j andXi are the values of the corresponding data streams at
the momentt +1.
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3.2 A More Abstract View

Here is a more abstract way to describe what is going on in the previous subsection.
There are two (in general, countably dimensional) vector spacesX andY. There is a fixed non-linear

functionF : Y → X induced by the signature. There is a family of linear transformationsLt : X → Y
parametrized with time (this corresponds to sesquialteral-order ofL).

We define streams of vectorsxt , yt from X,Y parametrized with time by induction over time. We
definex0 andy0 to be zero vectors andL0 is irrelevant.

At time t+1, first we takext+1 = F(y(t)), then we note the currentLt+1 and takeyt+1 = Lt+1(xt+1).
In the subsection which follows we use the embedding from Section 2.2 to incorporateL into X.
Then at timet +1 we takext+1 = F(y(t)) and among other things this yieldsLt+1. Then we take

yt+1 = Lt+1(xt+1).
We occasionally parametrizeF as Ft as well, to allow the dynamic tuning of the system and to

account for the stochastic factors in randomized template operations.

3.3 Abstract Machine with all Fully Higher-order Matrix Ele ments

Here we modify the construction of Section 3.1 in order to deliver what was promised at the end of the
previous subsection.We start with sets of namesI = {i} andJ = { j} defined in Section 3.1.

Then we defineI0 = I andJ0 = J, and organize the induction as follows.
GivenIn andJn we first use the scheme from Section 2.2 to define set of names ofmatrix elements:

An+1 = {′(′+ j+′)#(′+i+′)′|i ∈ In, j ∈ Jn}.
Then we use the fact that our signature has the identity operation and defineIn+1 = I

⋃
{′id ′+a|a∈

An+1} andJn+1 = J
⋃
{′arg1 id ′+a|a∈ An+1}.

Now consider the limit of this process,I∞ =
⋃

In andJ∞ =
⋃

Jn.
Then this limits is the fixed point of this process, namely that if we define

A∞ = {′(′+ j+′)#(′+i+′)′|i ∈ I∞, j ∈ J∞}, thenI∞ = I
⋃
{′id ′+a|a∈A∞} andJ∞ = J

⋃
{′arg1 id ′+a|a∈

A∞}.
Now the steps at the end of Section 3.1 are modified as follows.Performing Step 1 yields values

of streams corresponding toai j at the momentt +1. If only finite number of those values are different
from 0 at the momentt, then only a finite number of them would be different from 0 at the momentt+1
(for the detailed explanation of the reasons for that see thelast paragraph of the next subsection).

Then we can go ahead and perform Step 3.

3.4 Sparseness Considerations

The discussion of the abstract machines would not be complete without discussing how to keep the
amount of computations at each step finite (as, if possible, minimal).

For the setup of Section 3.1, the requirement is that if a matrix elementai j is nonzero, then its linear
combination needs to be evaluated and the template operation computingXi and the template operation
usingYj as an argument both need to be evaluated, so the appropriate nodes should be included into the
dictionaries in question. When for a template operation with inputsY1, . . . ,Yk and outputXi all matrix
elements related to nodesY1, . . . ,Yk and outputXi are zero, it is not recommended to evaluate such a
template operation or to include the nodes in question into dictionaries (although doing so is legal).

This means that whenai j becomes nonzero for the first time, theYj node and the template operation
using this node as an input together with the other vertices of this template operation must be added to
the appropriate dictionaries, if it is not already there. Similarly, theXi node and the template operation
computing it together with the other vertices of that template operation must be added to the appropriate
dictionaries, if it is not already there, and moreover, it needs to be retroactively computed (by evaluating
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the corresponding template operation with zero values of its arguments) before the linear combination
usingai j can be evaluated.

The same considerations are valid for the setup of Section 3.3. At any given moment of time we
only have a finite number of operations computingai j being in the dictionaries and subject to being
evaluated. So only finite number of them might become nonzerofor the first time at any given time
moment. Hence no more than a finite number of new nodes need to be added to the dictionaries on each
time step.

4 A Simple Example

This architecture is applicable to probabilistic samplingand to generalized animation. We created an
open source software prototype demonstrating the use of those techniques for streams of real numbers
implementing a family of continuous cellular automata.

The software and associated videos have been released simultaneously with this preprint as
aug 20 15 experiment in the Project Fluid repository [3].

Note that we cannot make these video previews quite faithful; video compression software intro-
duces some distortion at the initial stage of uploading a video, then it notices the problems with quality
and offers to automatically fix lighting, the overall resultmight be worse in some aspects and better in
some other aspects than the video natively produced by the software.

This is an example of a situation when a matrix-based dataflowprogram is used in combination
with other software. In this particular case, the video output from the dataflow program is being passed
through an external lighting-enhancing software.

The set of template operations for this series of experiments is very simple: zero-arity constants,
black andwhite (-1 and 1), and a unary randomized propagator, copying the value of its inputYj to its
outputXi with probabilityp (a typical value of which in this series of experiments is 0.995) and setting
the output to zero otherwise. The setup is essentially that of Section 3.1, except that we allow several
copies of a template operation to share an input when convenient (mathematically this is equivalent to
constraining several columns of a matrix to be the same).

In this series of experiments we use the dynamic nature of matrix elements very sparingly, first
having the weights concentrated on the output of the constants (initialization phase) and then switching it
(continuously, or, as in this series of experiments, abruptly) to the output of the randomized propagators
forming a structure determining the connectivity of the continuous cellular automaton in question. This
architecture also allows to continuously morph between a variety of connectivity structures, but we have
left this as a simple exercise to the reader.

We are observing a variety of emerging Turing structures with interesting dynamics in this series of
experiments, depending mostly on the connectivity pattern, and also on the initialization configuration.
In the spirit of non-equilibrium thermodynamics, even whenone starts with a uniform initial pattern
(all black or all white), the structures first emerge driven by the randomized propagators and by the
connectivity pattern, and then fade out to gray (zero value,the thermodynamic equilibrium). If one
includes the amplification during the visualization stage (scaling the brightness of the image so that
the maximal absolute value of a rendered point reaches 1), then one can observe that the meaningful
fine structures of the dynamic patterns tend to persist indefinitely (in some cases the main motive is
preserved, in other cases the pattern is shifting and evolving unpredictably).

See the Fluid repository for further details.
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4.1 An Example with Properly Higher-order Matrix Elements

Theaug 24 15 experiment implements the same example using fully higher-order elements (all but
two matrix elements in that experiment are fully higher-order, while two of its elements are not properly
higher-order, and their change is controlled from the outside).

This experiment also features pause/resume facility controlled by the mouse key and the space bar,
improved brightness amplification, and an adjustment mechanism to stabilize the values and prevent
their relaxation to zero.

We recommend that the reader uses this experiment to furtherexplore the system.

5 Conclusion

This architecture allows us to evolve dataflow programs in continuous fashion while those evolving
programs are running. This makes it possible to sample continuous trajectories in the space of dataflow
programs, in addition to the usual practices of sampling thesyntax trees of programs.

The representation of programs as matrices of real numbers makes the task of program learning
more similar to the task of machine learning for more narrow and conventional classes of models.

One way to introduce some higher-order mechanisms in dataflow programming (and in neural net-
works) is via letting any particular data stream to propagate along multiple directions in the graph, and to
dynamically control the actual directions of propagation by setting the multipliers along some of those
paths to zero.

A somewhat unexpected result of the present preprint is thatthis particular higher-order mechanism
seems to be universal: all higher-order programming for a given class of dataflow graphs over datas-
treams with linear combinations of execution runs built on top of a fixed signature of template operations
seems to be expressible via setting multipliers along the paths of data propagation (in particular, setting
all but the finite number of them to zero).

Acknowledgments.We would like to thank Ralph Kopperman, Lena Nekludova, and Josh Tenen-
baum for helpful discussions and to acknowledge collaboration with Lena Nekludova on software ex-
periments.
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