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THE VLASOV-POISSON-BOLTZMANN SYSTEM FOR A DISPARATE MASS

BINARY MIXTURE

RENJUN DUAN AND SHUANGQIAN LIU

ABSTRACT. The Vlasov-Poisson-Boltzmann system is often used to govern the motion of plasmas
consisting of electrons and ions with disparate masses when collisions of charged particles are described
by the two-component Boltzmann collision operator. The perturbation theory of the system around
global Maxwellians recently has been well established in [42]. It should be more interesting to further
study the existence and stability of nontrivial large time asymptotic profiles for the system even with
slab symmetry in space, particularly understanding the effect of the self-consistent potential on the
non-trivial long-term dynamics of the binary system. In the paper, we consider the problem in the
setting of rarefaction waves. The analytical tool is based on the macro-micro decomposition introduced
in [59] that we can be able to develop into the case for the two-component Boltzmann equations around
local bi-Maxwellians. Our focus is to explore how the disparate masses and charges of particles play a
role in the analysis of the approach of the complex coupling system time-asymptotically toward a non-
constant equilibrium state whose macroscopic quantities satisfy the quasineutral nonisentropic Euler
system.
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1. INTRODUCTION

1.1. Presentation of the problem. In the paper we are concerned with the nontrivial long-time
dynamics of the Vlasov-Poisson-Boltzmann (VPB for short) system used for describing the motion
of charged particles in plasma (e.g., ions and electrons) when collisions between particles are taken
into account, cf. [I5, 56]. Compared to the close-to-constant-equilibrium framework (cf. [42]), the
perturbation theory around the non-constant equilibrium state would be more interesting and difficult
due to the appearance of disparate masses and charges for gas mixtures, cf. [I} 2 [73], [74]. In the case
of three space dimensions with slab symmetry, the governing equations take the form of

O F; + £10.F; — %&cqbaglFi = Qui(Fi, Fi) + Qie(Fi, Fo),

(1.1)
8tFe + gla:cFe - %8x¢a§1Fe - QE@(F67 Fe) + Qei(Fmﬂ)-

The self-consistent potential function ¢ = ¢(t, x) satisfies the Poisson equation

—aiqza:qi/Ra Fids+qe/RS F dt. (1.2)

Here F;(t,x,&) and Fj(t,z,§) stand for the nonnegative number distribution functions for ions and
electrons which have position € R and velocity & = (£1,&2,¢&3) € R? at time ¢ > 0. Ions and electrons
are assumed to have masses m; > 0, m, > 0 and charges ¢; > 0, ¢. < 0, respectively. Without loss of
generality we suppose m; > m. which is consistent with the physical situation where ions are much
heavier than electrons.

Regarding the binary collisions between like or unlike particles on the right-hand side of ([L1I), we
assume that they are described by the Boltzmann operator for the hard-sphere model whose exact
form reads

Qas(Fa, Fp) = /

R3 x

. Bas(|§ — &l w)[Fa(§) Fs(&L) — Fa(§)Fp(8:)] désdw, (1.3)

for A,B € {i,e}. Here S? is the unit sphere of R3. The collision kernel is given by

2
Bas="TA1 0 e ),

with o4 > 0 denoting the dimeter of particles of A species, and through the paper we always take
o4 = op = o without loss of generality. The pre-collisional velocity pair (&, &) and the post-collisional
velocity pair (£/,€.) corresponding to the integrand of (L3]) satisfy the relationship

P %mB o
€=€ - P |(6-6) wlw
, 2my Y
g* - g* + _mA + mB [(g g*) w]w,

which follows from conversation of momentum and energy
ma& 4+ mpée = ma&’ + mpél,
mal¢? + mp|&]? = mal¢' [P+ mslEl),
for two colliding particles A and B. Note that collisions between particles in plasma physics are often
modelled by the long-range collision operator, for instance, the Boltzmann operator for soft potentials
or the Landau operator for the Coulomb potential, cf. [80]. One may expect that the techniques of
analysis developed in the paper together with the ones in [24] 31, 32} [44] could also be applied to those

more physical situations.
For notational convenience, as in [41], we denote in the sequel

Fi(t7x7£) ]

F(t,z,¢&) = Flt,2.€)
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The system (L)), (I2) is supplemented with initial data

Foi(z,€)
F(0,z,8) =Fo(z,§) = ; (1.4)
F()E(Z',g)
and with boundary data at far fields
im Fo(z, ) = Foxoo (§), (1.5)
and
T 6(t,7) = 6 (1.6)

Through the paper, due to the basic property of the two-component Boltzmann collision operator as
discussed in the next section, we assume that Foio(€) are the spatially homogeneous bi-Maxwellians
whose exact definition will be introduced in (22]) and (1)), that is,

M[nii7ui,€i;mi] (f) ]
M[”e:ﬁ:v“:ﬁ:ﬂ:ﬁ:;me] €3]

where n;+ > 0, e+, utr = (Ui+,0,0), 0+ > 0 are given constants, with the quasineutral assumption

Fotoo = My = (1.7)

qini+ + geNex = 0.
For later use, for brevity we always take
de
Net+ = N4, ni+ = __.nzl:a
(2
with given constants ny > 0.

A general question is to investigate the existence, uniqueness, regularity and large-time behavior of
solutions to the Cauchy problem on the above VPB system in terms of given initial data with general
far fields. Note that the far-field data at x = oo could be distinct, and hence the long-term dynamics
could be nontrivial with spatial variation along the direction of z variable.

1.2. Literature and background. In what follows we review some relevant literature. First of all, in
general settings for large initial data, the Cauchy problem or the IBVP on the VPB system related to
its one-dimensional version (II]), (L2) has been studied by many people. Among them, we would only
mention Desvillettes-Dolbeault [22] for the long time asymptotics of the system, Bernis-Desvillettes
[] for the propagation of regularity of solutions, Mischler [66] for the initial boundary value problem,
Bostan-Gamba-Goudon-Vasseur [9] for the stationary problem on the bounded domain, and Guo
[43] for global existence of classical solutions near vacuum. Note that the existence of renormalised
solutions of the much more complex Vlasov-Maxwell-Boltzmann system with a defect measure has
been recently studied in Arsenio-Saint-Raymond [3].

In perturbation regime around global Maxwellians on the spatially periodic domain T2, a number
of progresses have been made by Guo [41] [42 [44]. His approach is based on the robust energy
method through constructing the appropriate energy functional and energy dissipation rate functional
so that the nonlinear collision terms can be controlled along the linearised dynamics under smallness
assumption, where the mathematical analysis strongly relies on both the structure of the system and
the dissipative property of the linearised operator. A general technique in the proof is to design
good velocity weight functions for closing the a priori estimates. In the case of the whole space, the
Poincaré inequality fails to capture the dissipation of solutions over the low-frequency domain, and
hence the energy method is also extent to further study the local stability and convergence rates of
solutions around global Maxwellians in R3, for instance, Strain [70], Duan-Strain [29], Strain-Zhu [71],
Wang [76], Duan-Liu [27], Duan-Lei- Yang-Zhao [24], and many references therein. Recently, the decay
structure of the linearized system is characterized by the spectral analysis in Li-Yang-Zhong [57] and
Huang [51] following the classical works by Ellis-Pinsky [33] and Ukai [75]; see also Glassey-Struass
[36] for an early study of spectrum of the VPB system. We should point out that the appearance of
the self-consistent electric field or the magnetic field makes the dissipative structure of system more
complicated.
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A common feature in most of works in perturbative regime mentioned above is that the large-time
behavior of solutions to the VPB system is trivial, namely, Fj.(t,z,&) are global Maxwellians and
¢(t,x) is a constant. Unfortunately, this property may not be true in the general situation where
regarding the VPB system ([I)) and (L2), either initial data Fp,(x,€&) with a = i,e tend to two
distinct global Maxwellians

My, 04:ma) (§) = Naxt <7ma >3/2 exp {—ma(’& el 4Gl + ‘53’2)}

okt 05l @ 2wkl 2kp0y ’

for a binary gas-mixture or ¢(t,z) tends to two distinct constant states ¢4, as x goes to +oo, where
kp > 0 is the Boltzmann constant. Here, as pointed out before, the fact that two Maxwellians have
the same bulk velocities and the same temperatures is due to the Boltzmann’s H-theorem in the two-
component situation; see details in the next section. In such cases, from the local macroscopic balance
laws, F,(t,x,&) and ¢(t,x) are no longer global Maxwellians and constant in large time, respectively.
This is the situation considered in the paper, and our main objective is to construct the non-trivial
rarefaction wave profile under certain compatibility conditions on far-field data, and further show the
local time-asymptotic stability. As a byproduct, those results in the case of the constant-equilibrium
state (cf. [42]) can be recovered when the strength of rarefaction wave reduces to zero.

We further recall a few literatures for the existence and stability of wave patterns in the content of
the pure Boltzmann equation without any force as one may expect to extend them to the VPB system
under consideration. These include the shock wave (cf., Caflisch-Nicolaenko [12], Liu-Yu [61], Yu [79],
Liu-Yu [62]), rarefaction wave (cf., Liu-Yang-Yu-Zhao [60], Xin-Yang-Yu [77]), contact discontinuity
(cf., Huang-Xin-Yang [53]); see also many other references therein. Note that the construction of
solutions with a general BV data corresponding to the celebrated work Bianchini-Bressan [6] on the
finite-dimensional conservation laws at the fluid level is a big open problem, cf. [67]. Regarding the
rarefaction wave of the pure Boltzmann equation, one can take it as a local Maxwellian with the
macroscopic fluid quantities solving the Riemann problem on the corresponding Euler system with
initial data given by both far-field global Maxwellians. For (ILI]), (L.2]) we will explain later on how to
construct the rarefaction wave through the quasineutral Euler equations. To study the local stability
of such local Maxwellian, another type of energy method is proposed in Liu-Yu [61] and developed
by Liu-Yang-Yu [59]. Here, different from the previous approach by setting perturbations around
global Maxwellians, the key idea in [61], 59] is to make the macro-micro decomposition for the single-
component Boltzmann equation

F(t7 x? g) = M(t7 x? g) + G(t7 x? 6)7

with the local Maxwellian M (¢, x, &) determined by the solution F'(¢,x,&) itself through conservation
laws of mass, momentum and energy, and hence write the Boltzmann equation in the form of the com-
pressible Navier-Stokes equations coupling to high-order moments of the microscopic part G(¢,z,&).
A priori estimates can be made by a combination of the stability analysis of fluid dynamic equations
and the kinetic dissipation of G(t,z,£) from the H-theorem. We note that the nonlinear stability in
large time of wave patterns for the viscous compressible fluid on the whole line has been well studied,
for instance, Goodman [39], Matsumura-Nishihara [63] 64, [65], Huang-Xin-Yang [53], see also the
monograph [I9] for the general theory. Moreover, hydrodynamic limits of the Boltzmann equation
to the classical Euler or Navier-Stokes equations have been also extensively studied by many people
in different settings, for instance, see the recent works [46], [52] in perturbation framework and the
monograph [67] in non perturbation framework.

When there is a self-consistent force, few results are known on the stability of wave patterns for the
kinetic equation. A natural starting point is to look at the corresponding fluid dynamic approximate
equations. In what follows, let us mainly focus on the rarefaction wave; the issue on the shock wave
or contact discontinuity, even only regarding the existence, should be a completely different problem:;
see the Sone’s book [68] and reference therein. In [30], Duan-Yang proposed to study the following
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two-fluid system in the isothermal case

One + 0z (nauy) =0,
mana(atua + uaaxua) + Taa:cna + QOcnocax¢ = ,U*oaaguom o = i, €, (18)
—92¢ = qini + qene,

which is called the Navier-Stokes-Poisson system due to the appearance of diffusion terms. Here
T, > 0, e > 0 are constant temperatures and viscosity coeflicients, respectively. Note, as pointed
out in [I7], that for a collisionless fluid plasma, the Euler-Poisson system is enough to describe the
monition of charged particles, and the global existence of classical solutions close to constant steady
state has been recently proved in Guo-Ionescu-Pausader [45] in the case of the whole space R3. Since
we are interested in the study of (IL1l), (2] in the context of collisional plasma, it could be a good way
to make use of the theory of the viscous compressible fluid with self-consistent forces. We established
in [30] the global-in-time stability of the rarefaction wave and the boundary layer for the outflow
problem on (L) on the half line. A drawback of the result is that the large-time behavior of the
electric field is zero, due to an artificial choice of physical constants, namely,

m; = Me, Ty =Te, phi = ple, qi +qe =0,

and hence the dynamics of the two-fluid NSP system is the same as the one of the single NS system.
However, we recovered a good dissipative property of the electric field, that is, although 0,¢ is not
time-space integrable, it can be true for (Gxur)l/ 20,¢ by using the two-fluid coupling property, where
0;u” > 0 has a good sign.

Recently, we removed in [25] the restrictions on those physical constants. Particularly, it is found
that as long as initial data satisfy some compatibility conditions related to the construction of the
rarefaction wave, the dynamics of system (L&) can be described in large time by the corresponding
quasineutral Euler system

g + Ox(Naue) =0,
MaNa (Ot + udpu) + ToO0rng + qanaded =0, o =i, e,

qini + gene = 0,

by formally assuming u; = u = u. and ignoring all the second-order derivative terms. Note that by
letting n. = n and n; = —%n, the above quasineutral Euler system can further reduce to the form of

on + Oy (nu) =0,

Tilge| + Telqi

n(Oyu + udyu) +
Ot ubow) 4 e F el

=0,
with the potential function ¢ given by

¢ = —miTe —mely Inn.
milgel + melqil

The similar result has been also extent to the non-isentropic two-fluid case in [28] with some technical
restriction on the ratio of masses of two fluids. Furthermore, in a parallel work [26] we also make use
of the same idea to further have studied the stability of the rarefaction wave of the VPB system for
ions’ dynamics governed by the model of the form

OF; + 610, F; — %ama&ﬂ = Qu(F, Fy),
—8%@ = Qi/ Fi df + gene,
]R3

where compared to the two-component VPB system (I.T]), the dynamical equation of electrons and the
ions-electrons collisions have been omitted, and the number density n. = fRS fe d€ has been replaced
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by an analogue of the classical Boltzmann relation

ne = exp{op/T.},

or a general function depending on the potential function ¢. We remark that the Boltzmann relation
has been recently extensively visited in a lot of studies of kinetic and related fluid dynamic equations,
for instance, [16], 47, 48] [49] (0} [72].

Inspired by our previous works [25], 26l 28], we expect in the paper to further consider the much
more physical two-component VPB system, particularly extending the results in [42] [44] to the case
of perturbations of the non-constant equilibrium state. In fact, besides its own importance in physics,
the two-component collisional kinetic system enjoys more complex dissipation structure compared to
either the modelling system studied in [28] or the single-component kinetic system, cf. [I, 18], 20, 21|
34 35 37, 69]. For the numerical and mathematical investigations on non-trivial profiles of a gas
mixture with the Boltzmann collision, we would mention [2] 8] [IT], 55| [73] [74] and reference therein;
see also discussions in [B [7, 23] 54] on the limit of the gas mixture kinetic equations to the fluid
dynamical equations.

For the two-component VPB system (LI]), (I2) under consideration, disparate masses and charges
play a key role in the stability analysis of non-constant time-asymptotic profiles, which is different from
the one for considering perturbations around constant equilibrium states where all physical constants
can be normalised to be one without loss of generality, cf. [41]. Moreover, as discussed in [37], the
dissipation by the two-component Boltzmann collisions behaves in a complex way, and the approach
to equilibrium can be divided roughly into two processes: one is called the Maxwellization which
occurs due to either self-collisions alone, or cross-collisions, or a combination of both, and the other is
called equilibration of two species, i.e., the vanishing of differences in velocity and temperature in the
species. In the paper, we expect to provide an analytical view to this issue by further developing the
macro-micro decomposition in the two-component case.

1.3. Main result. We now begin to state the main result of the paper. Before doing that, we
first introduce some notations. Let [nf(z/t),uf'(z/t),0%(x/t)] and [n"(t,x),u"(t, ), 0" (t,z)] with
uft = (uf,0,0) and u" = (u},0,0), where the far-field data at z = oo are given by [n+,u1+,60+], be
the 3-family centred rarefaction wave and the corresponding smooth rarefaction wave, respectively, in
connection with the quasineutral Euler system

On + Oz (nuy) =0,
2(|Qi| + |Qe|) 1
—0y(nd) =0, 1.9
(el = malge) n o) (1.9)
040 + u10,0 + g@@xul =0.

Oyu + w1 0,u1 + 3

See Section [3 for more details to the derivation of the system ([L9). As in [78], we define

M. M[n*e,u*,t‘)*;me](g) ’

with constants ., Nye, Ux = [us1,0,0], 0, satisfying

1
- sup O"(t,x)<b.< sup 0" (t,x),
2 (tu)eR, xR (t,2)€R 4 xR
(1.11)
sup {'—%n’"(t,x) — M| + [0 (t, ) — nue| + [u"(E, ) — us| + 107 (¢, 2) — 9*|} < 1o,
(t,x)ERL xR q;

for a constant 7y > 0 which is suitably small.
Then the main result of this paper can be stated as follows. More notations will be explained later
on.
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Theorem 1.1. Consider the Cauchy problem on the VPB system (1)), (L2)), (T4), (TT), (T6), (7).
Assume [ny,uiy,04] € R3(n_,u1—,0_), ¢4 = ¢—, and ¢; < 9|q.|, where R3(n_,ui_,0_) is defined
in B4) denoting the set of right constant states connected with the left constant state n_,uq_,0_]
through the 3-family rarefaction wave of the quasineutral Euler system (L3). Let

67~ = ‘n+—n_’+"u1+—Ul_’+’9+—6_’, (112)

be the wave strength which is suitably small. There are constants eg > 0, 0 < ng < 9, and Cy > 0,
such that if Fy;(z, 5) >0, Foe(z,&) >0, and

Haaaﬁ (Fm(x &) = Mi—serrar grami) 0, Ng)) ‘ 2

iz (%)
“ B T 0" ma1 (0. ?
+ ggél? Ha 0 (Foe(,€) — Myr ur r:m.) 0, )(S))‘ Lz(Lg(m))
+ 3 10°0:6(0,2) |31 + 9,
|| <1
< 6(2),

then the Cauchy problem admits a unique global solution [Fi(t,z,£§) > 0, F.(t,xz,§) > 0,0(t,x)] satis-
fying
2

sup Y Haaaﬁ< i(t,z,8) — ﬂnr7ur,97-;mi}(t,x)(§)>‘

: )
2
+Sup aaaﬂ (t x 5) n’,u”", Time|(t,x (5)
e frovts L T B
Sap<
+§213|Z<:1II8“ Dud(t, )| 70
< 006(2).

Moreover, it holds that

F,(t,a:,f) M[ qenR auft QR}(x/t)(g)‘

sup sup ) )
t—+o00 zeR L5 VT G)

|

Lg(\/ﬁ) } =0. (1.14)

We give a few remarks on the above theorem. The estimate (LI4]) indeed shows the convergence
of the two-component VPB system (I.1I), (I2)) to the quasineural Euler system (34]) in the setting of
rarefaction waves for well-prepared small and smooth initial data. Thus, the long-term dynamcis of the
VPB system can be a non-trivial time-asymptotic profile connecting two distinct constant equilibrium
states. As seen in ([9]), disparate masses and charges of particles also enter into the asymptotic
profile and hence they can take the effect on the nontrivial large time behavior of the complex VPB
system. The obtained result may be regarded as a generalisation of the existing perturbation theory
for the VPB system in the cases either for initial data around constant equilibrium states in [42] or
for the single-component Boltzmann collision in [60] and [26]. More importantly, although we may
only provide a preliminary understanding of the stability of the rarefaction wave profile for the VPB
system, it is expected that the analysis developed in the paper could be adopted to treat many other
relevant problems in connection with those fluid-type systems derived in Section 2 cf. [40].

In the end we point out that the condition ¢; < 9|¢.| is only a technical assumption used in the
proof of the zero-order energy estimate; see (G.4]) for its positivity in Section On the other hand,

Fe(ta €T, 5) - M[nR,uR,GR}(m/t) (5)‘
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the condition ¢ = ¢_ is essentially required in the proof of the theorem, and it is indeed unknown
how to construct a non-trivial large-time profile of the potential function ¢ associated with ¢. # ¢_

as we did in [25] 26, 2§].

1.4. Outline and key points of the proof. The proof of Theorem [[1] is based on the two-
component decomposition as well as the refined energy method. First of all, H-theorem of the two-
component Boltzmann equations implies that the large-time behavior of the VPB system should be
in connection with a bi-Maxwellian M determined by six local fluid quantities n;, ne, v = (u1, ug, u3),
and #. This induces one to define M in terms of F such that they have the same average values with
respect to all six two-component collision invariants, namely,

/w(stds:/ () MdE, j=1,2,..6.
R3 R3

Therefore, the energy dissipation of the non-fluid part G := F — M can be obtained by the linearised
H-theorem. See the coercivity estimate (£3]) in Lemma whose proof is based on the compactness
argument as in [4I]. In most applications of ([@H]), one has to vary the weight function such that the
modified macroscopic quantities are sufficiently close to those of the background bi-Maxwellian, and
this has been done in Lemma Moreover, as in [78], it can not be direct to make the zero-order
energy estimate on G, because M~Y/2G is not integrable in L?,x,ﬁ' To treat this trouble, one has to

construct a background non-fluid function G in terms of the time-asymptotic fluid profile, see (5.8]) for
the exact formula. We would emphasise that as the large-time profile of ¢(¢,x) under the assumption
¢4 = ¢_ is expected to be constant, G does not involve any term of the potential function, which
is quite different from the previous work [26] in the single-component case. Due to this technique, it
seems impossible for us to construct a non-trivial large-time potential function ¢" (¢, x) accounting for
some distinct far-field data ¢4 similar to the two-fluid models considered in [25] 2§].

The a priori estimates on the fluid part M of the solution F is much more technical. The key
point is to find out the appropriate viscous fluid-type equations of the macroscopic quantities of M
such that the energy estimates on the fluid part can be controled in terms of the non-fluid part in a
good way; see Proposition (.1l Considering the two-component moment equations with respect to all
collision invariants, cf. (Z8]) and ([23)), and using the two-component macro-micro decomposition, it
is straightforward to obtain the two-fluid Euler-Poisson type system (2I0)), (ZI1]), (Z12]). To capture
the diffusion and heat-conductivity, we essentially have used the dissipation effect of like-particle
collisions. In fact, using the decomposition, one can rewrite Q 4(F,F) in the way on the right-hand
side of (ZI%]), and hence get the representation (ZI0]), where we note that the right-hand first term
is exactly responsible for diffusion and heat-conductivity and the remaining term R 4 does not involve
any linear term in ¢(t, z). Therefore, by plugging ([2.I6]) into the two-fluid Euler-Poisson type system,
one can further obtain the two-fluid Navier-Stokes-Poisson type system (2ZI8]), (2.19) and (2.12]), which
becomes the key step for making the energy estimates on the fluid part as in [2§].

The rest of the paper is arranged as follows. In the following three sections we make some prepa-
rations for the proof of the main result. Particularly, in Section 2, we introduce the macro-micro
decomposition for the two-component Boltzmann equation with disparate masses. In terms of the
decomposition, we derive the zero-order and first-order approximate fluid-type systems, which is a
crucial step for both the construction of large-time rarefaction wave profiles and the energy estimates
on the stability of profiles. Note that we also make use of the single-component projections to find
out the diffusion and heat-conductivity of the fluid part. In Section Bl we deduce the quasineutral
Fuler system as the time-asympotic equations of the VPB system, and further construct the cor-
responding rarefaction wave profile and study the basic properties of the profile. In Section M, we
consider the two-component Boltzmann collision operator and provide estimates on dissipation of the
linearised operator and also upper bound estimates on the nonlinear term both with respect to some
local bi-Maxwellians. In Section Bl we give a sketch of the proof of Theorem [T basing on two main
propositions whose proofs are postponed to Section [6]l and Section [7 respectively.
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Notations. Throughout the paper, C' denotes some generic positive (generally large) constant and
A denotes some generic positive (generally small) constant, where both C' and A\ may take different
values in different places. D < F means that there is a generic constant C' > 0 such that D < CE.
D~ Emeans D S Fand E S D. || ||zr (1 <p < +o0) stands for the LE—norm. Sometimes, for
convenience, we use || - || to denote L2-norm, and use (-,-) to denote the inner product in L2 or L:2(:7§'
We also use H* (k > 0) to denote the usual Sobolev space with respect to x variable. We denote
0°0% = 07002107 and 9, = 0710202, with |a| = ag+ay and | = B1+By+Bs. We call f < B if each
component of 4’ is not greater than that of 3. We also call 3/ < g if 8/ < g and |5'| < |B|. For 8’ < 8,
we also use C2, to denote the usual binomial coefficient. The same notations also apply to o and .
For the notational simplicity, we use M, ! to denote the 2 x 2 diagonal matrix diag(1/M,;, 1/M..).
Similarly, the 2 x 2 diagonal matrix diag(1/v/M.;, 1/v/ M) is denoted by M, /2

also apply to all bi-Maxwellians used in the paper, for instance, M, M} and M, ete.

. The same notations

2. TWO-COMPONENT MACRO-MICRO DECOMPOSITION

In this section we introduce the two-component macro-micro decomposition. First of all, we list
the elementary properties of the collision operator, including the local equilibrium state, an identity,
collision invariants, and the entropy inequality. An important and interesting concept is the bi-
Maxwellian, cf. [2]. After that, we introduce the fluid quantities for a disparate mass binary mixture,
define the macro-micro decomposition of the solution, and derive the zero-order macroscopic balance
laws. In the end, we discuss how to capture the velocity diffusion and heat conductivity.

2.1. Elementary properties of collisions. In what follows we list a few elementary properties of
the two-component Boltzmann collision operator without any proof. Interested readers may refer to
[2, 15]. To the end, we always denote

M © = ntte) (=) exp (e —ult2)? (2.1)
n(ta)utta)otaym (&) =02 5 oo gy | exp 2pl(t,z) )’ ’

to be a local Maxwellian with the fluid density n(¢,x), bulk velocity u(t,z), and temperature 6(t, )
as well as the particle mass m > 0.

[P1]. For the like-particles collision (A =1 or e),
Qaa(Fa, Fa) =0 iff Fa=Ma,
where

M.A = M[nA(t,x),uA(t,x)ﬂA(t»x)§mA] (g)’

is a general local Maxwellian of A-species. For later use it is also convenient to rewrite M 4 as

M — n.A(tax) {_‘f—’U,A(t,‘T)’z}
A (27TkA9A(t, x))3/2 P 2kA04(t,z) |’

kp
my’

with k4 = and for brevity we always take kp = % For the unlike-particles collision (A # B),

Qas(M 4, Mp) =0, provided that us = ug and 64 = 0.
[P2]. For F = [F;, F.]", we set
Q;(F.F)
Q.(F.F)

Qii(Fy, Fi) + Qie(Fy, Fr)
Qee(Fey Fe) + Qei(Fea Fz)

Q(F.,F) :=

Then, for G = [G;,G.]T, one has

1 1 1
(Q(F7 F)7 G)LEXLE = _ZIZZ(FM Gz) - §Iie(E7 F67 Gi7 Ge) - Zlee(Fea G6)7
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with
Lii(F3, Gi) = /RBxR3x§2 [F(E)Fi(E) = Fi(&) Fi(6)]
X[Gi(€1) + Gi(€) = Gi(6) — Gil@B(€ — &l w) dedlg o,
LFuG) = [ [FERE) - IR
X[Ge(El) + Gol€)) ~ Gel6s) ~ GelOBE — &l ) dedsds
TelFuFaGuG = [ [REF(E) ~ REIR)

x[Gi(&) + Ge(€) = Gi(&) — Ge(§)]B(I€ — &, w) dédEvdw.
[P3]. Two-component Boltzmann collision operator Q has six collision invariants:
| my 10 | m; . B %m,\ﬂz]
Y1 = [ 0 ]7 Y2 = [mJ by = [meéj] , J=3,4,5, g = [%melilz ;
satisfying
/ Y- QF,F)d¢ =0, j=1,2,..,6.
Specifically, it holds that ©

[, #1:Qus(Fa Fi)de = [ Qun(Fa. Fe d§ =0, for A€ {ive),

[ #aQualEa Fayds =0, j=3.4,5.6 for AB € {i.e)
R3
and
|, #34Qun(Pa Fi) d + | ,5Qa(Fo. Fa)dg = 0. for A #B.
Here for 1 < j <6, j; and ;. stand for the first and second component of the vector-valued function
Y;.
[P4]. For any F = [F}, F.]7,
In F;
(Q(F,F),InF),, .= <Q(F,F), [ ! D =y / QA(F,F)In Fyd¢ <0,
£7e In Fe LEXLE Are /RE

and “=" holds iff F = M is a bi-Maxwellian defined by

[Mz ] [ M[ni,uﬂ;mi} (g) ]
M = - . (2.2)
M, M[ne,u,e;me](f)

Particularly, if Q(F,F) = 0 then F is a bi-Maxwellian. Here, we emphasise that for A =i or e, M4 is
different from M 4. In fact, the bi-Maxwellian M is a two-component equilibrium state, with M;, M,
being the first and second component of M, and M;, M, are Maxwellians of i-species and e-species,
respectively, which are single-species equilibrium states.

2.2. Decomposition around local bi-Maxwellian. As in the single-component case [59)], we in-
troduce the two-component macro-micro decomposition around local bi-Maxwellians in the following
way. Let F = F(t,x,£) be a function satisfying the two-component VPB system (L.I]). We decompose
it as

F(t, 2, &) = M(t,z,£) + G(, z,§). (2.3)
Here M = M(t, z, &) is the macroscopic (or fluid) part represented by the local bi-Maxwellian

M7 M, (t,2) u(t,2),0(t2)ma) (€)
M.

M =

M, (t,2),u(t,2),0(t,2)me] (§)
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such that for all fix collision invariants,
/ P (&) - [F(t,z,8) — M(t,z,€)]d¢ =0, j=1,2,..,6.
Note that M(t, z, ) involves the exact six macroscopic quantities
(it @), me(t, @), ult, @) = (i (t,2), us(t, @), us (2, 2), Ot )|,

which can be determined by
(

min; = /]R3 1 - F(t,z,§)dE,

mene = [ va-Plt,n,)de,
(myn; + mene)u; = /]R3 v -F(t,z,§)ds, j=3,4,5,
& <9 + %mi|u(t,x)|2> e (9 + %me|u(t,:p)|2> - /Ra Ve - Ft, 2, €) d.

Therefore, M is well defined, and then G := F — M is the microscopic (or non-fluid) part denoted by

Gi(t,,€) ]
Ge(t7 x’ g) ‘

We remark that F also enjoys another kind of the decomposition with each component being around
the single-species local equilibrium state

G =G(t,§) =

MY+ a
F— , (2.4)
MM G

where for A =i or e, MS) = My, (t0),ua(t2),04(t2)m ) (§) 18 the local equilibrium state of collisions
of like-particles with the fluid quantities determined by

nalt.o)i= [ Patta.§) e
UA](t,ZE) = #/ ngA(t7$7£) dg) J = 172737
| Oalti) = g [ 16— walt )P Fata, ) e

It should be pointed out that ([24]) is different from (23]). One can also obtain the link of the two-
component fluid quantities [n;, ne, u, 8] and the single-component fluid quantities [n4,u4,0.4] (A =i, e)
in the way that

MU MeNele

u =
mM;N; + MeNe
n;0; + nebe M MeNiNe 9
0 = + |u; — uel”.
n; + Ne 3/?3(774' + ne)(mmi + mene)

We further remark that though the single-component fluid quantities u;, u., 6;, f. are not macroscopic
in the two-component sense, the differences of them with the corresponding two-component fluid quan-
tities u, # turn out to be microscopic in the two-component sense. Namely, after direct computations,
for A =1i,e,

ug —u=— [ §Gadg,
nA Jr
1 2
= —|y— — d
== glu—ual + 50— [ Je—uGade.
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This observation is a key point for understanding the dissipation of macroscopic quantities of the
two-component system.

We begin to introduce the two-component projection operators Pl(}/l and PM. For this purpose, one
has to first introduce an orthonormal basis related to an arbitrary bi-Maxwellian

__ M;
M =

—

M.

Associated with ﬁ, we define an inner product in £ variable as
Fi($H, Fe(§)He
g = [ PO e [ RO
R3 M; R3 e
for functions F = [F}, F.]T and H = [H;, H.]T such that the integrals above is well defined. Using the

inner product with respect to the bi-Maxwellian M, the following functions spanning the macroscopic
subspace are pairwise orthogonal:

_ " M.
XIIVI <§7 ﬁiu aa 9) = ﬁl ‘ 3
i 0
- i 0
B (ERemd) =] L.

[ Ve
/., ._a.,\_
~ 5 L M;
— VIin; + MeNe ké\
M(g-ﬁ-ﬁ a§>z vV j=3,4,5
XJ ) Ty Toey oy \/7'76 g‘]_ujj/\j ) ) Ey Yy
= = e
Vg + Mene /keé\

_ 1 2 .
()

M /(e ~ ~7 i + Ne i

X6 (ganianev,LLve) 1 |£_a|2 PR
— (=L a)m
6(1; + ne) k.0

<X§\/I7X£/I>ﬁ: k> for j,k=1,2,---,6,

where ¢;, is the Kronecker delta. With the above orthonormal basis, the two-component macroscopic

projection Pl(}/[ and the two-component microscopic projection PllvI can be defined as

— 6 — —
Mp — M M
PO F= j;l <F7 X] >K/I\ X] ;
PMF =F - PMF.

Notice that the operators Pl(}/[ and PllvI are orthogonal (and thus self-adjoint) projections with respect
to the inner product (-,-)g;, i-e.,
MpM M MpM M MpM MpM
Py Py =Py, PPy =P, PyPy =P Py =0.
Moreover, it is straightforward to check that
<P34F, P11VIF>

—

= <P0ﬁF,P1ﬁF>A =0
- —

M
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for any two bi-Maxwellians M and M. Finally we remark that due to the definitions of P(/)l\Z and Pﬁ,
one has

PYF =M, PMF =g,

whenever the bi-Maxwellian M = M is the macroscopic part of F.

With the two-component macro-micro decomposition of the solution F to the VPB system (L),
([L2]), one may derive the dynamical equations of the fluid part M and the non-fluid part G. For this,
in the sequel we denote

Q:(F, H) Qii(Fy, Hy) + Qie(Fi, He)
Qe(FyH) Qee(FeyHe) +Qei(F67Hi)

For convenience, we rewrite (LI as the following vector form

Q(F,H) =

WF + §10:F + 900,90, F = Q(F, F), (2.5)

where go denotes the 2 x 2 diagonal matrix diag(—g;/m;, —ge/m.). Upon using the macro-micro
decomposition (2.3]), the VPB system (2.5]) can be further rewritten as

AM+ G) +£0,(M+ G) + ¢ ¢(M + G) = LmG + Q(G, G).
Here, Lyg is the two-component linearized Boltzmann collision operator given by
QiM, G) + Qi(G, M)

Qe(M, G) + Q.(G, M)]

B Qii(M;, Gi) + Qii(Gi, M;) + Qie(M;, Ge) + Qic(Gi, Me)

R [%(Me, Ge) + Qee(Ge, M) + Qei(Me, Gi) + Qui(Ge, Mn]
and the nonlinear part Q(G, G) is defined as

Qi(G.G)|

Q.(G. G)] R

LMG:[

Qii(Gi, Gi) + Qi (G, Ge)
Qee(Gey Ge) + Qei(Gea Gz)

Applying PY! and PM to (Z3]) respectively, one has

Q(Gv G) = [

M + PM (£,0,M) + PM (£,0,G) + PM (q00,60e, M) + P (q00,$0¢, G) = 0,
and
0,G + P (60, M) + PM (£10,G) + PV (g00,60c, M)
+ PM (900,09, G) = LmG + Q(G, G). (2.7)

Moreover, one also may derive the fluid-type system of the macroscopic quantities of the fluid part
M by using six two-component collision invariants ;(§) (1 < j < 6). For later use, we start from two
component equations of (II]). Taking the inner product of equations of A =i and A = e with ;4
over ¢ € R3 respectively, it follows that

qi m

/ Vi <atFi + 610 F; — 051 >d§ / $3iQi(F, F)dg,  j=1,3,4,5,6, (2.8)
R3

and

/ e <atFe+§1axFe e “"f‘bagl )ds / VieQ(F.F) 6, j=2,3,4,5,6.  (29)
]R3
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Applying the component forms Fyu = M4 + G4 (A = i,e) of the macro-micro decomposition F =
M + G as well as the definition of the bi-Maxwellian M, one further deduces

and

7

Drmi + Do (niur) = — / €10,G de,
]RIS
m;n;Opuy + myn;uyOyug + gazv (ni0) + qiniOy
__ / sy Gl dE — / Vi€10, Gl d + / :Qu(F, F) dé + uy / €10, G dE
R3 R3 R3 R3
min;Opuj + miniuiOpu; = — /3 V(j+2)iOGi d€ — /3 V(j+2)i€10:Gi d€
R R

+ | ¥10Qi(F F d§+u-/ mi€10,Gy dE, = 2.3,
) /£3 2 Qi(F F) T Jas (2.10)
2’1’Li

3
—— [ vaonGide [ vng0,Gide+ [ dui(F.F)de
R3 R3 R3

3 3 3
1
w Yoy [ gaa€0:Gidg = 5300 [ mi0iGudg+ Y us [ vigindiGe
j=1 j=1 j=1

n;0:0 + n;u10,0 + Orpuq

m

3
“Sou [ Qe E) 40 [ 0.Gude+ B [ Gnog Gude,
o URe R3 i Jrs

Dine + O (nety) = — / €10,G, d,
R3
MOy + MeNet Oz + gam (nee) + Qeneax¢
__ / e 0,Go dE — / Vo€10, G dE + / e Q(F, F) df +uy / o610, G dE,
R3 R3 R3 R3
meneatuj + meneulaxuj = - /3 sz(j+2)eatGe d§ — /3 w(j+2)eélamGe dg§
R R

+ [ 2 Q(FF ds+u-/ me610,Gle dE, = 2,3,
9 [, 90eQulF Y+ [ ety o
2ne

3
—— [ G- [ vesi0.Gode+ [ v QuE s
R3 R3 R3

3 3 3
1
# Yoy [ vp0iGede =530k [ meio,Gedgt Y u, [ by G de
=1 =1 =1

Ne010 + neuy 0,0 +

8acul

3
ea"ﬂ
=S [ b QuE P a0 [ 60,Gode+ 120 [ 0,6
o URe R3 e Jrs

m
\

Here the self-consistent potential ¢ satisfies the Poisson equation

— 02¢) = qin; + qene. (2.12)

Note that if one only considers the macroscopic balance laws of ([Z.3]) in terms of six collision invariants,
one can obtain six dynamical equations of fluid quantities n;, ne, u1, uo, ug, # which correspond to the
above two systems (2.I0) and (ZII)) after both the equations of momentums and the equations of
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temperatures are taken summation, respectively. Namely, one has

( 2
(min; + mene)(Opuy + uidpuy) + §8x [(ni + ne)0] + (gini + gene )0z 0

_ —am/Rgaws-Gdg,

(min; +mene) (Opu; + u10pu;) = —0y /3 112y - GdE, §=2,3,
R-

2 2.13
(n; + ne) (00 + u10,0) + g(ni + ne)00uy (2.13)

3
— -0, [ ey Gc+ > | €t - G

1,&1]" - 0.GdE + 0,0 (@i, qe)” - O, G dE.
R3 R3 2

Moreover, if one further ignores those terms involving the non-fluid part G, one has the closed fluid-
type system of six knowns n;, ne, u1, uo, us, 0:

(O + Ox(njur) = 0,

\

One + Oz (neuy) =0,

2
(min; +mene) (Opur + u10zur) + gax [(n; + ne)0] + (gin; + gene)Opd = 0, 214
2.14
=0

(mini + mene)(Opu; + u10,u;) , J=2,3,

2
(n; + ne) (000 + u10,0) + g(ni + ne)00u; = 0,

\ _ag(b = N + geNe.
Note that ([ZI4) could be thought to be the zero-order fluid dynamic approximation of the VPB

system (L)), (L.2).

2.3. Diffusion and heat-conductivity. As in [59], in order to further consider the first-order fluid
dynamic approximation of the VPB system, one has to find out diffusion and heat-conductivity cor-
responding to velocity function u and temperature function 6, respectively. One way for that is to
formally solve G through the microscopic equation (7)) as

G =Ly {PY (©0.M)} + R,
with
R =Ly {0,G + PM (£10,G) + P (400,60, G) — Q(G, G)}
+ Lyt {PM (000,00, M)},

Ry

and then plug it into (ZI3]) so that those terms related to diffusion and heat-conductivity could be
obtained by computing

o, /]R €10 - Lt {(PM (6,0,M)) de, 3 <) <G.

We remark that such treatment may not be a good way because it is unknown whether or not the
above integrals with Li/[l {Pll\/[ (518501\/[)} replaced by Ry are vanishing, and thus the right-hand terms
of ([ZI3) could involve ¢ in a linear way which should give much trouble to estimates on ¢.
Therefore we turn to another way for obtaining the effect of diffusion and heat-conductivity on
the basis of two single-component equations of the VPB system (LT]). The key point is to introduce

single-component projection operators P(fw A and PlM A for A = i and e, where we recall that M;,
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M. are the component functions of the bi-Maxwellian M defined in the two-component macro-micro
decomposition ([2.3)).
To do so, similarly as before, for any given local Maxwellian
Ma= M[ﬁAvﬁAng]’

we define an inner product in ¢ € R? as
f(&)g(8)
Q)= = 22,
903, /]R3 My ¢

for two scalar functions f and g such that the integral on the right is well defined. Applying the
above inner product with respect to the single Maxwellian M 4, the following five functions are also
orthonormal:
34 (00, 04) = =01
XO 67 A, WA, UA \/;'L\__A A
— I R ‘
XiwA (gﬂ n.Auufbe.A) = 6] ]A MA7 J= 172737

\/ kana 04

Talo o A 1 (le—a] >A
M 4 .
X gan.Avu./be.A - = < ~ -3 M.Av
* < ) V64 kA0

<x§”"‘,x£“>m — 85, for j,k=0,1,2,3,4.

With the above orthonormal set, we can also define the macroscopic projection Péw A and the micro-
scopic projection PlMA as follows
_ 4 _ A
Py n= 3 (hog™) g™,
0 ]EO ST
PMAR = h — P4h.

Note that the operators POM A and PlM A enjoy the similar properties as Pl(}/[ and Pll\/[ given in the
previous subsection.
Using notations above and recalling the decomposition (2.3]), the solution F4(t,z,€&) (A = i,e) of

(1) satisfies
PéVIAFA:MA—i-POMAGA, PlMAFAzleAGA.
Noticing that

O
pMA {qA ¢8§1MA} =0.
ma
Acting PlMi and PlM"i to two equations of (LT]) respectively, one has that for A =i, e,
Oz
PMAG,G 4+ PMA {60, M4} + PM4 {¢,0,G.4} — PMA {MZ?&GA}
mA (2.15)

= Ly PMAGA + PMAQ 4(G, G),

where for the A-component, we have defined the linearized Boltzmann collision operator around the
local Maxwellian M 4 by

Ly PG A = Ly, Ga = Qaa(Ma, Ga) + Qaa(Ga, Ma),

and the remaining term by

QA(G,G) = Qus(Ma, Gp) + Qan(Ga, Mg) + Qaa(Ga,Ga) + Qas(Ga,Gg),
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with A # B. Moreover, from (23)), it follows that
PMAG A = L3, { P {610, Ma} } + Ra, (2.16)

with

_ O
Ra=1Ly,, {P1MA3tGA + P4 {€0,G 4} — P {qfnjsa&GA}}

~L3t A PMAuG, G} (2.17)

Back to (2.10) and (ZI1]), we rewrite G 4 in the right-hand second terms of momentum and temperature
equations as

(;A>ZZF%MA(;A<+-f¥wA(;A,

and then use (2.16]) to replace PlM 4G 4 so as to obtain by some further calculations:

On; + Oz (njuy) = —/ £10,G; d€,
R3
2
min;(Opuy + u1dpuq) + gax(nie) + qiniOy ¢
— 30, (1s(0)Dyur) — / UG de - / a0, (PYCy) de
R R
+ / U5iQi(F,F) de + / 10, dE, — / i1, T de,
R3 R3 R3
mm,-((‘)tuj + ulﬁxu]—)
= 0, (1:(0)Dyty) — /R s hC de /R Uiau (PG de

Jr/R3 V(j42)iQi(F, F) d§ + u; /]R3 mi10:Gi d&—/Ra V261 Ride, § =23, (9 g)
3
3 3 _
= O (Ki(0)020) + 31 () (ur)® + > () (Dpuj)* — /R &(Wei - > it y2))On Ri dE

Jj=2 J=1

3
- /R G de - /R 0P G dE+ Yy /R Ve Ca0u (PG de
i=1

nzate + nzulame + amul

3 3
1
5 [ meoGids+ Y u [ vpen0Gide+ | nQuEF)de
j=1 j=1

3 2
=Y [ g @E P s+ 0 [ aoGide+aoio [ Eocide
o e R3 R3
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and

8tne + 832(”6“1) = _/ glamGe d&,
R?)
2
mene(Opur + u1dyuy) + gf?x(nﬁ) + GeneOypd
— 30, (1c(0)Dpur) — / DG de / UsCa0u(PG) de
R R

+ /R seQu(FF)d /R 10, de, /]R sla0,Re de,

MenNe(Opuj + w1 0puj)
=0, (ue(0,15) ~ [ g DG ds ~ [ gm0 (R de

+ /RS T;Z)(j+2)eQe(Fv F) d§ + Uj /[R3 mi&lawGe d§, — /[RS ¢(j+2)e£18xﬁe g, j =2,3, (219)

neate + neulame + 27,;698:2'&1
3 3 .
- a:c (He(e)a:ce) + 3”6(9)(81‘“/1)2 + Z Ne(e)(a:cuj)2 - /]R3 61(1/}66 - Z ujw(j+2)e)a:cRe df
j=2 j=1

3
- [ padiGeds = [ vadn(FYGo e + > |, vsanadn(P-Go de

3 3
_% Z u? fRB meflaxGe df + Zl Uj fRB w(j+2)eatGe df + fRB wﬁeQe(Fa F) d§
J= )=

3

2
=S [ @B F) 40 [ G0,Gede a0 [ L 0,0 e
Pl R R3

where for A = i and e the viscosity coefficient p4(f) and heat-conductivity coefficient x4(6) are
represented by

L 27 -1 2
pA(f) = _W s mA§1LM[M’9;MA] (mA&M[l,u,e;mA}) dg
1

=70 s mai&ilag, o (MaG€ Mo ) 46 >0, j = 2,3,
and

1 _ .
HA(H) = _W /RS m.A‘é. - u‘2§jLMl[17u79;mA] (m.A’§ - u’2§jM[1,u,9;mA]) dé. > 07 J = 172737

respectively. Here L7} is defined in the same way as L7, .
y M[l, M 4

u,0;m 4]
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Similarly for obtaining (2I3]), from (2ZI8) and (2I9]), one has the equations of momentum for
u = (’LLl,’LLQ,'LLg):

2
(min; + mene) (Opur + w1 0zur) + gam[(ni +ne)0] + (gini + gene) O
= 30; [(11:(0) + 1e(0))Orur]

- [ oo (RG) de [ wnadn (PG de— [ -0,
R R R (2.20)
(myn; + mene) (Opuj + u10,u;)
= 0:00) + eO)0) — [ igemition (PG) e

—/ V(j+2)e§10s (PéweGe> dE—/ &1 - O, RdE, j=2,3,
R3 R3

and the equation of temperature for 6:

2
(n; +ne) (040 + u10,0) + 3 (ni + ne) 00,u;

w

= Oz ((ki(0) + Ke(0))020) + 3(1i(0) + p1e(0))(Ozur) 2 + Z ) + e (0 (8wuj)2

Jj=2

[ (wGZu]wﬁz) 0, R de — / Vi1,

7j=1

(7"
- [ vection (PG de + ; w [ vormeion (R1GL) de

3
+j§::1uj /R3 P(j+2)e€10k (P(f‘/[EGe> d¢ +9/Ra €, 61" - 9,G de

1
+8x¢/ 5’5‘2 [qia Qe]T : aﬁlGdfv
R3

Gy) d
(2.21)

where we have denoted R = [Ei,RG]T. Note that n;, n. satisfy equations of mass conservation:

Oni + Oz (njuy) = / £10,G; dE,

(2.22)
One + Oz (neuy) / £10,G. dE.

Moreover, as for considering (2.I4)), if one further ignores those terms involving the non-fluid part G,
one has the closed viscous fluid-type system of six knowns n;, ne, w1, us, us, 0:

( Oyn; + Op(nyuy) =0,
dne + Oz(neur) = 0,
(min; +mene)(Opug + u10pup) + %@E [(n; + ne)b]
+(qini + gene)0xd = 30, [(1i(0) + 1e(0))0zua]
(mans + mene) (Op; + wndsty) = D [(12(0) + 1(8))Pris], = 2,3, (2:23)
(i + 1) (0,0 + 110,0) + 2(n; + 1e)00,u1 = O ((ri(0) + Ke(0))0,0)

E3014(60) + 1o (0)) @) + 3 (13(6) + 10(0)) (D)2,

i=2

\ —83(25 = qini + geNe-



20 R.-J. DUAN AND S.-Q. LIU

Note that (2.23]) could be thought to be the first-order fluid dynamic approximation of the VPB system
1), @2).

For later use, we also introduce the entropy quantity and the corresponding equation. For given
densities n;, n. and temperature 0, we define the entropy S by

S = —g In(n; +ne) +In <4§9> + 1 (2.24)

According to (220) and (22I) as well as ([2.22]), one deduces that S satisfies

, ((52(6) + 56(0))8959) + 3(wi(0) + pe(6)) (axuj)Q + 23: M(axuj)2

S + 110, —— -
n no

6

2 1 - R
+ <1_3_ﬁ> /Rg[glvgl]T'amGdg_ﬁ/Rg 61 TXJG—;UJ%H 8de£

-5 | o (RG) a = =5 [ vasion (RYG.) ae

1< _ 13
+— ;w /RS V(j+2)i€10z (POMZGi) dé + — ;uj /RS (120610 (POMEGG> dé

8x¢ ’5‘2 ) T
ﬂ@ R3 2 [QUQG] aﬁlGd§7

where we have denoted 7 = n; + n.. For later use, we also introduce the pressure function P by

2

Note that from (2.24]), one has

2
= gkesﬁ2/3, P =2 = ke“md/3,

with the constant k given by k := .

2me

3. QUASINEUTRAL EULER EQUATIONS AND RAREFACTION WAVES

Recall that (2I4]) and ([223]) are thought to be the zero-order and first-order fluid dynamic ap-
proximation of the VPB system (L.II), (I2]), respectively, if the two-component non-fluid part G is
ignored. Inspired by this, one may expect to justify in a rigorous way the large-time asymptotics of the
VPB system (L1, (L2)) toward (214]) or ([2:23]). The goal of this paper is to treat this in the setting
of rarefaction waves. Instead of directly using (ZI4)) and (2.23]), the expected large-time asymptotic
system is the quasineutral Euler system in the form of

Oni + Oz (njur) =0,
One + 0z (neuy) = 0,

2
(min; +mene)(Opur + u10pup) + g@w [(n; +mne)0] =0, (3.1)

2
(n; 4+ ne) (040 + u10,.0) + g(nl + ne)00,u; =0,

qini + qeNe = 0.
For simplicity, by letting
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in terms of the quasineutral assumption, ([BI]) reduces to
on + 0y (nuy) =0,
1
Opuq + u10,u1 + —0, P(n,S) =0 (3.2)
n
S 4+ u10,5 =0,

where

o 2(qi — qe) 2 (gi—qe 47R
P(n,S)—g(meqi_miqe)nH, S = 3ln . n | +In 5 0)+1.

To construct the large-time asymptotic rarefaction wave of the VPB system through B3I or (8:2),
one has to assign some appropriate far-field data from (L5]), (L0) and (7). Recall that we have set
Net+ = n4+ and hence n;4 = —%ni. In terms of ny and 04, recalling (Z.24]), we define constants Sy
by

2 4
Sy = —3 In (Nt + ne+) +In (%R9i> +1,
that is,

3

To the end, we assume S = S_ or equivalently

O+ 0 3 s (4—¢ge 2/3 o
2/3 T "2/3 ke = A
ny n_ 2 di

2 i — Qe 4
St =—=1In <uni> + In <7TTR9:|:> + 1,
4qi

Under the above settings on the far-field values of initial data (4]) for the VPB system (1), (L2),
we then expect that the solution F(¢,z,{) to the Cauchy problem tends time-asymptotically to the

local bi-Maxwellian
MRZ(&)] [M[—g‘;nR,uR,GR;mi} (5)]
Mg (6) M[nR,uR,GR;mE] (g)

where [nf, uf, 08] with uf* = [uf?,0,0] is the rarefaction wave solution of the Riemann problem on
the quasi-neutral Euler system (B8.2]) with Riemann initial data given by

{ n_,ui—,0_], x <0,

[n+7u1+79+]7 x> 0.

[n,u1,0](0,2) = [né%,uﬁoﬁo] (x) = (3.3)

The Riemann problem can be solved in the usual way (cf. [58]). Indeed, the quasineutral Euler system
([B2) has three characteristics

)\1 = )\1(77,,11,1,5) = Uy — V(%P(n, S),

)\2 = )\g(n,ul, S) = ui,

A3 = )\3(71,’&1,5) = ul + V@nP(’I’L, S)

In terms of two Riemann invariants of the third eigenvalue Ag(n,uq,S), we define the set of right
constant states [n4,uiy,04] to which a given left constant state [n_,u;_,0_] withn_ >0 and 6_ >0
is connected through the 3-rarefaction wave to be

n2/3 23
R3(n—,u1—,0_) = {[nvulae] € Ry xRxRy ‘ 5 = 9;7

" SO PS5
:/ de, n>n_, u >u1_}. (3.4)

Uy — uUp—
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Now, letting [n4,ui4,04] € Rg(n_,u1 ,0_), the Riemann problem (3.2)), (33)) admits a self-similar
solution, the 3-rarefaction wave [n Uy ,HR] (z) with z = 2/t € R, explicitly defined by

As(n_,uy—,S_) for z < Ag(n_,u1—,S_),
Az (nf(2),ufl(2),5-) = ¢ = for Ag(n—,u1—,S_) < z < A3(ny,ur4+,5-),

)\3(7'L+,U1+,S_) for z > A3(’I’L+,’LL1+,S_),

n(2) /8, P(n, S_
uB(2) = u_ + / %dn,

2/3
HR(Z) = A('I’LR(Z))2/3, A — %kfe‘SL (‘hq;]e) )

Since [n®, uft, %] is a weak solution of the Riemann problem ([32]) and (B3] and lack of regularity,
one has establish a smooth approximation to the rarefaction wave [nR,ul ,HR]. To do this, in the
usual way, the smooth rarefaction wave [n",u", 0"](¢,x) with u" (¢, z) = [u](t,2),0,0] is defined by

Ag(n"(t,z),ul, S-) = w(t,z),
n"(t2) /0, P(n, S—
uq(t7x) = Ui— +/ wdnv

: 0 (3.5)
er(t’ :E) = A(’I’Lr(t, l‘))2/3,

L xEI:Il:loo[n ulaeT](t .Z') [n:l:7u1:|:79:|:]7 [n+7u1+79+] S R3(n—7ul—76—)7

with w = w(t, z) being the solution to the Burgers’ equation

Oyw + woyw = 0,
(3.6)
w(0,2) = wo(x) = §(wy +w_) + F(wy —w_)tanhz, wi = A3(nx, urx, S-).
We remark that by letting n] = n, and n] = ‘éen
rarefaction wave above, [nl,nl,u],0"] satisfies
( Ol + Oy (niul) =0,
on; + 0 (njul) =0,

", in view of the construction of the smooth

2
(min; + menl)(Opu] + ufo ul) + gam((n +nl)o") =

(giming + gemeny)(Opuy + u{c‘) uy) (3.7)
_ 20" gimin + gemen 8 (n? +n7) — 28 or qimin; + qeMeny,
= n’ .

3 min; + meny, 3 m;n; + meny,

(ni +ne),

L (0] 4+ nD) (8,07 + u}9,0") + PTdu} = 0.

Here P" = (n + )0 = %Aqil;qe (nr)5/3'
The next lemma is devoted to the study of the properties of the smooth rarefaction wave [n", uf, 0"]

constructed in (B.5]) and ([B.6).

Lemma 3.1. It holds that
(1) Opul(t,x) >0 and n_ < n'(t,x) < ny, ui— < uj(t,z) < uiy forx € R andt > 0.
(1) For any 1 < p < 400, there exists a constant C, such that fort >0,

10 [0 i, 070l < Cpmin {3, 017711/

10 [n", uf,07]|| ,, < Cpmin {6,,t 7'}, j>2,

where we recall that 6, = |ny —n_| + |uiy —ui—| + |04+ — 0_| is the wave strength.
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(7i7) t—li?ooiﬁ‘ n" ui, 07 (¢, z) — [n®, ufl, 0% (z/t) ‘ =0.

4. PRELIMINARY ESTIMATES ON TWO-COMPONENT COLLISION OPERATOR

In this section, we list some basic inequalities on the two-component collision operator for later
use. The first lemma is concerned with the nonlinear collision operators @ 45(-, -), whose proof can be
found in [38] when masses of the particles are normalised to be one.

Lemma 4.1. Let A, B € {i,e}. There exists a positive constant C' > 0 such that

/ (14 1€) " |Qas(Fa, Fp)l” de
R3 M 4
(4.1)
1 A F3 F? (1 F,
§C{/(+|£| Ad{/ Bd§+/ A ge / +|£|)Bd§}
R3 Rr3 Mp R3 M 4 R3 Mp
where we have defined
—~ 1T T
ML) = (M 500 M 250m0(©)]
to be any bi-Mazwellian such that the above integrals are well defined.
Proof. Note that one can rewrite (L3)) as
Qui(Fa, Fg) = Q%5 (Fa, Fi) + Q'3 (Fa, Fi), (4.2)

with the normal meaning for the gain part and the loss part. To prove (4.1]), we first consider the gain
part and thus compute

(- 1) Qs |
L g

M4

2
_ 2 —177-1 _ W / / .
=0 [l T ([ 16— ) wlrara(eds. ) as

We now set

Fa=\Mafa, Fs=1/Mzfs, (4.3)
and use the identity

MA(&) M (&) = Ma(€)Ma(&),

so as to derive
_ 2
[a+iem T ([ -6 wlramaeas. ) ac
]R3 R3
2
= / (1+ )~ Mgt ( / MA<5>MB<§*>\<5—§*>-w\fA@’)fB(f;)dg*) 3
éc/ = s*HfA (€D de. de,
RS
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where we have used the Holder’s inequality to obtain the first inequality above. In view of |£ — &, | =
|¢" — &| and by a change of variables (£,&,) — (&/,&L), one further has

/]R3 € - S*HJCA )5 f*)‘ dé.d§
¢/, R3(1+!£\+!&!)!fA(i)fB(g*)Pd&dg (4.4)

<C /R A+ ENIfA) P dg /R fsle)P d. +C /R Fa) dg /R (6Dl )

where the fact that

I

'a@', &)l _
has been used. Rewriting (4.4]) in terms of (£3]) gives ([@.I) for the contribution from the gain part in

([£2). As to the loss part in (£.2]), the proof is similar and details are omitted for brevity. This then
completes the proof of Lemma [4.1] O

In order to obtain the energy estimates for the Boltzmann equation (23], for PMF which means
the microscopic projection of its solution F(¢,x, &) with respect to a given bi-Maxwellian

M = [My, Me]" = [Min,(1.0) u(t,2),00.2)m:) (€)s Min (6.2),u(t.2),002)5me] (E)] T

one need to find out its dissipative effect through the microscopic H-theorem. Like the single-
component case, the microscopic H-theorem states that the linearized collision operator Lps around
a fixed bi-Mawellian M is also negative definite on the non-fluid element PMF, cf. [10].

Lemma 4.2. It holds that

- [ PME M (LaPME) s> 5 [ (14 JelMOPYE e (45)
R3 R3

for a positive constant § > 0 depending on [n;,ne,u,8]. In fact, 6 also depends on m; and me, and in
what follows we shall omit pointing out such dependence for brevity.

Proof. Recall ([23]). We denote

Gi(€)
Ge(§)
Further recall the definitions (26]) and (L3]). Let us decompose LG as

PMF =G = G(t,z,¢) =

LmG = — G + KG,

with
v;G; VMK, G VM K;(M~1/2G)
_I/G — 5 KG’ — —
nes VM.K.G VMK, (M™1/2G)
and

Z QIOSS 1, Mp) = / , BAAMA(f*)dg*dW+/ ) BapMp (&) d€wdw,
Be{A,B} REXSS s

Ka=Kj+Kj+ K+ K (4.6)
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and

_1
K}4G :MA2 Z Qloss (M4,Gp)
Be{A,B}

[, Bas/F@VAAE] ) (6 e

Gs
— B Mu( Mp(&.
/Rsxs2 4BY M4 (€)/ Mp(&s) < P

_1
K3G =M > {anm(MA, Ga) + Q%N (Ga, MA}

-/ s, P4 D VA () € + VI () €] e
K3G MA2anm(MA,GB)

= / , BAWMB(@NMA(&')( O ><£L>d£*dw, A#B,
R3 ><S2

5

) (&) déudw, A # B,

e

5

K4G =M * Q53 (G4, My)
G
:/RS o BAB\/MB(f*)\/MB(&) A

\/M—A(S') d€vdw, A F# B.

One one hand, by performing the similar calculations as [10], one can see that K; and K, defined by

(6] and ([471) are compact from
1 , 1

L} (——) x L2 (——
) A
to itself. One the other hand, as Bag = Bpa = 02|(£ — &) - wl, one can be able to show
vi~ (L+1ED),  ve~ (1+1€)).

Then the coercivity estimate (£I]) follows from the standard argument as [13| [14] [42]; see also [2].
This ends the proof of Lemma O

Furthermore, one can vary the background for the linearisation and the weight function. In fact,
basing on Lemma [£.]] as well as its proof, we also have the following result, cf. [60].

~

Lemma 4.3. Let g < 0. Then there ewist two positive constants 6 = §(n;, ne, u,0;n;,ne, u,0) and
Mo = 1o (N4, Ne, w, 0515, Ne, w, 0) such that if

In; — A + ne — Ae| + |u— @l + 10 — ] < no,
it holds that for H(€) = [Hy(€), H, ()] e Nt

RSH LMH)}d§>5/ (1+1¢)) ‘M WH( de, (4.8)

where we have denoted

M = [Min, 0.0 (€)s Ming i) (€)]
[]\Z,M} [ Ag‘.m.}(f)vM[ﬁe@é‘;me}(f)]Ta

:{ /zpj dé =0, j=1,2,- 6}.
Proof. We first write

- /]RB H- {M~'LyH | g = - /RB H- {M~'LgH | d¢ - /RB H- MLy gHpd — (49)

M
N+
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In light of Lemma , one has
— ~ . 2
—/ H. {M_lLﬁH} de > 6(i, e, 1, 9)/ (1+|¢] ‘M_l/zH‘ de. (4.10)
R3 R3
For the second term on the right hand side of (3], noticing

0 - Qii(M; — M;, H;) + Qui(H;, M; — J\Z) + Qie(M; — ]/\Zine) + Qie(H;, M, — ]\/4\6)
M—ﬁ = — — —~ o~ Y
Qee(Me - M67 He) + Qee(Hea Me - Me) + Qei(Me - M67 Hz) + Qei(Hey Mi - Mz)

it follows from Cauchy-Schwarz inequality and Lemma [4.1] that

—/RS H- MLy, yH} dg'

5(ni7n67u7

[ avienFen] de

= 4
4
+— | a+ M~ Y2L, oH| d ,
5(%%”6)/( €)™ ‘ ‘ 3 (4.11)
o(n;, ne,u, 0 —~_ 2
s%/ (1 + feh [Mm ae
Cq

/ 1+ [¢)) (M 1/2H‘ dg/ 1+ [¢)) (M 20m — )| de.

3(Rii, Tie, 1, )

To treat the integral
—~ 2
| arlen[seeon- [ ae,
R3

we use g < 0 and choose a large positive constant Co = Cy(n;, ne, u, 0; n;, ne, u, 0) such that

MP+ N M2+ D2
/ (1 +1¢]) [M1/2 (v - )| dsscg/ <1+|s|)< = = | d¢
|§|ZC2 ‘5‘202 - i e (412)
62(ﬁ’i7ﬁ67679)
<2 Re, W, 7)
- 16C4

For the integral in the remaining domain, it follows that
N\ 2
/ (1+ ) M2 (M~ M)( dg < o= (!m Al + e = el + [u— @ +10-8) ", (4.13)
[€]<Cx 4C

for some constant Cy = Cy(n;, ne, u, 0; 0, Ne, U, 5) Finally, by letting
3(i, e, T, 6)
204(”727 Ne, U, 9) ﬁia ﬁea av 0)

and inserting ([@I0), (A1), (AI2) and (@I3)) into [EJ), one sees that ([A]]) holds true. This completes

the proof of Lemma O

No =

A direct consequence of Lemma [£3] with the help of the Cauchy inequality is the following corollary,

cf. [60].
Corollary 4.1. Under the assumptions in Lemma [f-3, it holds that for H(¢) € N'*,

Lo |Fiengn] o <572 [ 0l M mE G de
R3 R3
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5. PROOF OF THE MAIN RESULT

With preparations in the previous sections, we begin to give the proof of Theorem [[LIl For later
use we first introduce some notations. Recall that [n”,u], "] is the smooth 3-family rarefaction wave
to the quasineutral Euler system ([B:2)) with far-field data [n4, w14, 0+] connected by [ny,ui4+,04] €
R3(n_,ui_,0_). We define the local bi-Maxwellian:

Mm' MnT t,x),u” (t,x),07 (t,x); 1(5)
Mr—[ ]_[m)()()} |

M. M[ng(t,x),ur(t,x),@r(t,x);me](g)
with ng(t,z) = n"(t,x) and nj(t,z) = —Lni(t,z) = —En"(t,2). In terms of (LI0) and (LI, we
also define the global bi-Maxwellian:

[M*i ] [ M[n*i,u*ﬂ*;mi} (5) ]
hd*:: = .
M*e M[n*57u*79*§me] (g)

For a vector-valued function H = [H;, H.]", we write that
1 . H; 2 H. 2
, if € L and — € L;.
\Y4 M* ) \Y4 M*z ¢ \Y4 M*e ¢
Now we define the function space in which we seek the solutions of the VPB system (1I), (LZ). For
given T' € (0, 4o00], we set

_ o b .
E(l0.1)) = (¥ (t,,0)| 22 Z"‘f(’g)’@

H e L¥(

€ C([0,T); L3 ¢(R x R?))

for |OZ|+|5| SZ,O&O Sl) A:’L',E},

associated with the norm &p(-) defined by

z OOP H, (¢ 2 908 . (t 2

Er(H) = Z sup / | (t.2,9) dédxz + sup / | (t.2,9) dédx 3 .
la+18l<2 (OSEST JRXRS M, 0<t<T JRxR3 M.
0<ap<1

The proof of Theorem [[1]is based on the energy estimates on both the fluid and non-fluid part of
the solution F(¢,x,£). We first consider the fluid part. Recall that the macro quantities [n;, ne, u, 0]
of the fluid part M(¢, z, ) satisfy the two-fluid Navier-Stokes-Poisson-type system (2I8]) and (219)),
and the macro quantities [n],n,,u",0"] of the corresponding smooth approximate profile M" (¢, z, &)
satisfy ([B3.7]). We now define the perturbation

19

[ﬁiaﬁeaﬂa fé} (t,ﬂl‘) = [nz —nj Ne — ng,u - [u{7070] 79 - HT] (t,.’,l')

Then one can deduce the perturbed equations for [ﬁi, Tle, 6,5] through 2I8)), 2I19), @I3) and @7

in the following way. For number densities 7; and 7., one has

Ohii + Oy (miun — nlul) = — / €10,G de, (5.1)
RS

One + Oy (Neuy —nluy) = — /3 £0.G. dE. (5.2)
R
For the momentum u = [y, ug, ug), one has
(mmi + mene)(atﬂl + u10,u1 + ﬂ18xug) + 896(P — Pr)
MM + MeNe
+ <1 — W) O P" + (Qini + Qene)am¢

= 3890 ((Nz(e) + Ne(e))axal) + 81‘ ((Nz(e) + ,ue(e))a:cuq)
n M; o~ - e
- [ ave-aRas— [ won (PG s~ [ wmtion (BFG)de 63)
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and

(mmi + mene)(a{dj + ulﬁxﬂj) =0, ((,u,(@) + ue(H))Gxﬂj) — /RS §1¢j+2 . 8xﬁd§

- [ burmgion (RG) de— [ bianon (RG) ds, G=23. ()
R3 R3

For the equation of temperature 5, one has

ni"i’”e
T T
n; + ng

(ni + ne)(atg‘i‘ U18x§+ alaxer) + Paxul - Prawur + <1 - ) Prawur

= 0, ((k:(6) + e(6))2:0) + 0y ((i(0) + 1o (6))06")

3
+3(1i(0) + 126(0)) (Bzur)? + Y (i (B) + p1e(6))(9)?
=2

J

- [ (wﬁjilumH) O~ [ vetion (BUG) ds - [ nerdn (Ri"G.) de

3 3
#3000 [ gt (BUG) de+ Y ou [ vgnidn (RG.) de
j=1 R =1 /R
2
+9/ &, 6] 0,G de + 8x¢/ % (i, qe]T - 0¢, G d§. (5.5)
R3 R3
Note that ¢ is coupled to the Poisson equation

— 03¢ = qini + Gene = QN + qeMe. (5.6)

The above reformulated Cauchy problem on [ﬁi, Ne, U, 5} is supplemented with initial data

[ﬁi,ﬁe,ﬂ, 5} (0,2) = |:ﬁi07ﬁ607607§0} ()

= [nio(z) — nip(x), neo(x) — ngo(x), uo(x) — [ui o(x),0,0], 00 (x) — O5(x)]. (5.7)

Here we recall that R. is defined in (ZI7)). We also note that uj = u; for j =2,3. As ¢4 = ¢_, we
further assume ¢, = 0 = ¢_ without loss of generality and let ¢(¢,x) be determined by the elliptic
equation (5.06)) under the boundary condition that ¢(t,z) — 0 as x — +oc.

For the non-fluid part G(¢, z,£), as in [78], we note that

2

|
M4

2
L ¢

is not integrable with respect to the time variable, and hence it is necessary to consider the following
perturbation

G = [éi,ée]T =[G, - G;,G. —ae}T,
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where
G=[G.G]"
_ 3 — Ly, {PllvI |:[miMi7meMe]T§1 <§15xu7£ + €~ u’28x07’>]}
Y 20
+ L {PYM [ [0 Miun? n M., sl} b iy (M [ M 0,7 )
20t { (i m AT ey~ — (€ uf? — ) 04,047 65s)

— ul? 5 ] e
+ 0Lt {6 ) [t moa* (B b3 _ttre )

3Mmin; + Mmene

) 0yt + 1)
T Y'Yy €
+ Ly {(51 — w) {[ M0, MoOenl] ' — [miMi meM.] m]}

s 0utLagd {6 — ) [ 136 M = it g e

% min; + MeNe

Now, to prove Theorem [I.T] the key point is to deduce the a priori energy estimates on the macro-
scopic part |n;, e, u, 0, qﬁ} and the microscopic part G and G based on the following a priori assump-
tion:

NYT) +6, <, (5.9)

for an arbitrary positive time T > 0, where ¢, is the wave strength of the rarefaction wave given in
(CI2), and N(T) is defined by

N2(T) ;zoi%u[ﬁi,ﬁe,a,é} (t,az)H +031;5T Z 180,14, ne, u, 0](¢, )|

+osup > / M;l/zc‘)O‘F(t,x,f)‘ dedz + sup / MIV2G(t, 2, 6)| deda
0<I<T | S, JRxRS 0<t<T JRxR3
ap<1

+ sup Z / 1/280‘85G(t x 5)‘ dfdm+ sup Z 0“0, 0151 -
OIS e SRS =

Here we first claim that the a priori bound of N(7') immediately yields

sup 3 18%0 nesw, B2 + sup 3 /R .

0<t<T 57, 0<t<T 57,
ap<1 ap<1

2
M;1/28QG(t,:E,£)‘ dede < Ce2,

(5.10)
for a generic constant C' > 0. Indeed, due to the decomposition F = M + G, one may notice

2
120G ded
su X
Oﬁth Z /RXRS ‘ £

2
M—1/2aaM( dédz + sup > / M-~
RxR3

lal=2 0<t<T |12
ap<1 ap<1
2
<2 sup Z / (M~19°M) - 9°G dédzx| + sup Z/ M_1/28°‘F‘ dédzx,
0<t<T 5= |/RrxR3 0<t<T =, JRxRS
ap<1 ap<1

where the right-hand first term is further bounded by

; ) 1/2 1/2
Cswp Y (/ 0" u,0) dx) 3 </ |M_1/28°‘G(t,x,£)|2d£d:n> .
0SIST | qarj=1 VR RxR3

la]=2
ap<1

, 2
9% [u, 0] (
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2 2
sup Z/ M—1/2aa1v1( dédx 4+ sup Z/ ‘1/28‘1G‘ déda
0<t<T 725 JRXRS 0<t<T 5=, JRXR3
ap<1 a0<1
<Ceo sup S 0% 6]|2 + Ceo Z/ IM—1/20°G|2dé da
0<t<T ;5 <2 =2
ap<1 ap<1
2
+ sup Z/ *_1/280‘F‘ dédx. (5.11)
0<t<T 5=, JRXR3
aofl
Moreover,
sup 0%[ni,ne, u, 0
0<t<T Zz | ]H
ap<1
2 , 2
< C sup Z/ M_1/28°‘M(t,x,§)‘ dédx + C sup H((‘)a [ni,ne,u,e])2H
0<t<T 5=, JRXR3 0<t<T | 17, (5.12)
ap<1
< C sup Z/ M~/25°M(t, x 5)‘ dédx + Cek sup Z 10 [14, e, w, 0] .
0<t<T 5725 JRXRS 0<t<T 1 <jai<o
ap<1 ap<1

Therefore (5.12) together with (5.I1]) give (5.I0). In addition, one can also see that the following a
priori bound holds true:

sup D02p(t)]| < C sup 10%(gins + gene)||* < Cel.
0<t<T ;2 | ol 0<t<T ;2 e 0
ap<1 ap<1

This directly follows from the Poisson equation (5.0 as well as (5.9) and (G.10]).

The a priori energy estimates under the assumption (5.9]) are divided into two steps. The first step
is concerned with the estimates on [ﬁi, Tle, W, 0, aﬂz)} (t,z) basing on equations (5.1)), (5.2)), (5.3), (5.4),
(&3], and (5.6).

Proposition 5.1. Assume that all the conditions in Theorem [T hold, and F € £([0,T]) for T > 0.

Let [ﬁi,ﬁe,ﬁ, 9, ¢] (t,x) be a smooth solution to the Cauchy problem (1), (52), (3), G4), (G5,
B and B) on 0 <t <T and satz’sfy (E9). Then the following energy estimate holds:

%%H@“[m,ﬁe,w] O+ 5 200 +Hojtg;l(aamxaa(mﬁe))
| [ .9 (t)HQ #A7 |lo [e e, 6] (t>H2 + A giTs + gefie |
1< <2

A [0 [e0,020] |+ 2 3 [lordis|”

|a|<1 |a|=2

s fureadof +gee e £ [
EE:(A;XRS M

lo|<1

(5.13)

(1+€)) (M—Waac;f ded

1252
+ € (1+|5|)‘Mti G‘ dede,

~ 12
1/265160‘61‘ dédz + /R .
X

for all 0 <t < T, where ko is a small positive constant. Here and in the sequel we also use My to
denote M, or M for brevity, whenever there is no confusion.
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The second step is to deduce the energy estimates on the microscopic part G. Our method for that
is much similar to the one of [26].
Proposition 5.2. Under the conditions listed in Proposition [51), it holds that

> o e o + Z 16°0,6(1)]|? + /Ma 2G| dgda

lo|<1

aogl
2 ~ |2
+ / M. 200F| dede + / M;l/zaaaﬁc;( déda
1<[aj<2 Y RXR lal+1pl<2 Y RXR3
ap<1 18]>1
~ 12
+ / / 1+ €]) (M‘Wa‘l(}( d{dmdt+/ / 1+\§])(M;1/2G( de dzdt
1<]a]<2 RxR? RxR3
n / / (1+€)) ‘M‘l/zaaaﬁc;( dgdde—/ / Tiy e, 9] Oyl dadt
al1g1<2 RxR3
+ Z / Ha i, e, W, 9”‘ dt+/ |gis + qemiel||*dt + Z/ Haa x¢732¢]H dt
1<|a|<2 lo|<1
< CoN?(0) + CpoL/S, (5.14)

forall 0 <t <T.

The proof of Proposition .1l and Proposition will be given in Section [l and Section [ respec-
tively. Assuming these two propositions, we are now in a position to complete

The proof of Theorem [I1. The local existence of the solution [ﬁi,ﬁe,ﬂ, 5, o, G} of the system (B.1]),

E2), BE3), (4), E3) and ([@6) can be obtained by the standard iteration method, cf. [26], and its
proof is omitted for brevity.

The existence of the solution of (L)), (L)), (L5 and (L6) then follows from the standard contin-
uation argument based on the local existence and the a priori estimate in Proposition Moreover,
one sees that

3‘2“8 3y Ha‘laﬁ < i(t,z,8) — _g—jnnuf'ﬂﬂ(m(f)) ‘ L2 (Lg(ﬁ))

ap<1

+il>11(:)> ‘6"85( e(t,x,8) — M[nr,urﬂr](t@)(g))‘ L (L2( . )) +stgg) Z 10%0,p(t, ) || %1
= \a\;owgwlgz T\ TE\VMe(©) la|<1
~ 2 2
<o Y [0 e8] o)l 4 3 / / M 20 R (t,,6)| deda
20 1 Symo<t >0 130(2‘%2 R JR3
+Sup// 1/2 G(t,x {)‘ dédz + sup // _1/280‘85(}(75 T {)‘ dédx
t>0 R3 120 |11 81<2 R3
[B1=1
+01/6, (5.15)

Then ([I3) follows from (B.I5) provided that § < €.
In order to obtain the large time behavior of solutions as in (LI4]), one sees

2
d a:c <F.A(t7 xz, g) - M[HTA7UT79TQmA] (§)>

2
Lz,&

= 2 (MZ{0:00 (Fa(t,2.€) = Mips,ur grm (©)) 02 (Falt,,€) = Mgy ar 1)) )
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and thus it follows from the Cauchy-Schwarz inequality that

2

too | g 8x <FA(t7 €z, g) - M[ng,uT,GT;mA] (£)> gt
/o dt Mia

2
Lr,&

g/ HM‘l/zata ( a(t,x, &) — M[n;‘,m,er;mA](f))‘

2

L dt
Lr,&
2

+/ | M0, (Fatt, ) ~ Mg i)

dt
12

2.
dt

<C Z/ Ha [nAue]H dt +C Z/ HOQGA .

1<|a|<2 1<|a|<2 z,{
lagl<1 lag|<1

< +00. (5.16)
From (5I5)) and (5I6]), one sees that

]|0e (Fatt 2, = Mg ()
lim
t—+o00 M*.A

2

= 0. (5.17)

2
Lm’5

Then (II4) follows from Sobolev’s inequality, (5.I7) and Lemma Bl This completes the proof of
Theorem [[1] O

6. A PRIORI ESTIMATES ON THE FLUID PART

This section is devoted to the proof of Proposition 5.1l on the energy estimates of the fluid part
M(t,z,£). The proof is divided by three subsections.

6.1. Estimate on zero-order energy. We set ®(y) =y — 1 — Iny, and define

mMiN; + Men 3 2 nr 2 n’ 0
~ i1l elle ~2 nr ) = r € . r _
7]—_#;:1%"‘5”19 (I)<n> 37169 CI)<n > (ni +ne)d (I)<0r>'

(2 €

By using (220), 221), 222), B1), (3), (54) and (G3), direct computations give

i + 3(1(0) + p1e(0)) (911)? + Z i (0) + 1e(0)) (D) + M (2.6)"

(6.1)
+ O M+N| = ZM,

where

0,00
9 Y

3
M =wuyij+ (P — Py — Y p1(0)11;0,11; — k(0)

=1

4 ny nr 2 0
— r . . ~2 iy L . _* _€
N1 =0 ul | (myn; + mene)uy + 90 <n1<1> <m> +n.d <ne>> + 3(71Z +ne)0"® (9")}

x T~ Y 2
8—fu10 — g@mﬁr

0 min; + menyg

m;n; + Mene

+ (n; + ne) (n; 4+ n,)uy,
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2 ~ nt n’ ~ 0
No ==0,0"01 |ni® | = | +ne® [ =2 )| + (n; +ne)00"u1® | — ),
3 o Ne or
» mi(nine —nin;) -
u

2 » Me(nomn; — n’;ne) 8
) ZB e 1
nt(min] + ment)

N =05 ((113(0) + e (0))0puf )iy + Z(uiw) + He

<
Il
-

~ >, na N9 or
AT )+ e 0) G+ 0, () + (00,07

N4 = —u (Qini + Qene)8x¢a

N —97” ("—) €10,G, dé + 20" In <"—> £,8,G. dg+§/ €1, 60" - 9,G de
n; R3 3 Ne R3 R3

3
) JZ_; g /RS Vi+2)i610: (P(%GO dc - Z Uj /3 V(j+2)e€10z (PoMEGe) d¢

— g/ﬂ@ V6i€105 (Po 5_ _/ V6e£10z (PO e) “

~ 6 | |
+ ; % /}R3 P(j+2)i€10z (P(flei) d§ + ; % /}R3 V(i 1210 <Pé\/leGe) d,

3 B 5 ; B
_;ﬂj/RS&%Jrz-@deé—g/Rgﬁl wﬁ—;uﬁﬁjﬁ -9, R e,

0 ¢J? T
N7 = 3 :E¢ 2 [qi7qe] : aflGdé
RS
We now get by integrating (6.1) respect to = over R that

G Lo +3 [ @) + o) @) dx+§j / (0) + 10(0)) (0,77)° d

_|_/RM<8$§>2 dx—|—/R/\/'1d:17:l§:;/R/\/}dx.

To compute fR Nidx, we first note that

n’ n> 0 62 ~
(24) = 2ot a=ie. () = g + O, 62)
and from (B, it follows that
2A 10A ¢ —q
07 = 1/3 B = LT .
0 3B( ) 8 \/ 9 Meq; — Mige (6 3)
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With ([6.2) and (6.3]) in hand, we now write N7 as

r r r 1 1 2 (’I’L: + ng)N
Nl :8xu1 [(mml + Men ) + 99 <n7" 22_|_ n_gng> + §T02:|

2 /3~ G o AA s o e Qi Qe = ~
+ %, (n; +nl)(n") u100,u] o8 (n") 2y 0pu] R — (m;n; + mene)
. A e 2 (N + 7e) 7
+ 8xu1 [(mml + mene) - —0 <7’LZ @) + gTe :|

T

+ (71 + ﬁe)agf @0+ 0.uf [0 + 017 + 017
= [ﬁi,ﬁe,ﬂl,é} M [ﬁi,ﬁe,ﬂl,éf
~3

: e 2
o [(mn Foneie it g8 <W " nn> T3

r [0(1)%? T O3 + 0(1)53} ,

00"~
+(ni+ne)

or
where M is a 4 x 4 symmetric matrix given by
M 4 4G [ r\—i 24 mi(gi—qe) ¢, 7T\% 7
9Aqe (n )7 0 9B meqi—mige (n")s 0
4 ry— % _2A Me(qi—ge) <
0 gA(n")7s 9B meqi—mige (n")3 0
e o , |- (6.4)
edi—Mife T (3 e 3
* * qi n 3¢iB (n )3
2(qi—qe) (.7 1
i 0 0 * A (n")s |

We claim that M is positive-definite provided that ZZ < 9 and m; > me. To see this, we compute its

four leading principal minors as follows:

Ay >0,
16 5Gi, .2
Agy = ——A2 r
2= "3y ( )73 >0,
16 1 (gim? — gem?)
Az = g — 11 A2 3—’ .
N 81 ()3 (s = ) + 810¢e (n") Megi — Mige (@~ )
T @em (q- —) miq [ S0 (et +mia;) — gymamedide + oo (mi +m )QZQe:| :
€ ed? 1Ye
16 5 9(q; — .
Bt = oo A (0~ a0)meas — ) — LI )i gy
g —qe A" [16 x5 29 32 2 1.
— Do e — e 310 ( eQZ +mz e) S1 X (3 10)m2m6q2q6
16 2

One sees that whenever one has |ql| <9 and m; > me, it holds that Azz > 0 and A4y > 0 and hence
M is positive-definite. As M is positive definite, we immediately get from (5.9]) that there exists A > 0
such that

/Nl de > A/axuq [ﬁﬁmo} de,
R R
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where we have also used the Cauchy-Schwarz inequality and Sobolev’s inequality
k]| L < V2[|R||Y2(|0:h]Y2, for h € H'(R). (6.5)
Next, by applying (G3]) the a priori assumption ([B9) and Lemma Bl we obtain

/N2d$
R

Likewise, one can see that
S [ laii + aciel0.0] i1 ds
R

/N4 dx
R
S €0 [10:07 + (o + 1) llaimi + geniel|* + Co(1+ )7 [l ||*.
Utilizing Lemma Bl Cauchy-Schwarz inequality with 1 > 0 and Sobolev’s inequality (G.5]) repeatedly,

we compute
< [ |[ovtot. o0, [fvine 807 9]

/Ngda:
R
/( a%l,a?ef ul,g]‘dx+/R [axa,axé]z [al,é]

1/2
Sleo+012) |0 [ 7, 0.0 |

] o)
"

<(eo + 6% ||0y |4, Pie, U, O

~2
Seo [ Dut [ s 0,8] o+ 82+ | + 87 2o e
R

42
geo/ Opul [ni,ne,ul, 9} dx + (5%/2qui + qeneH2 +(1+ t)_3/2|]u1|]2.
R

dx

+(1+1)73/2 [a’lﬁ: H2

q(1/2
0 [, 8] | {021, 071 1 + 1025, 0710 07,071l }

(1 4t)732 [’dlﬁi H2 4 5L/0(1 4 )T/,

We now turn to estimate the terms involving N5, Ng and N7. Let us first consider [p Nsdx and

fR N7 dx. Recalling G = G + G with G given by (5.8]), we get from integration by parts, Cauchy-
Schwarz inequality and Lemma [3.1] that

~1112
[ Ase| <t oo ]+
R R

+/R|am [n’",ug,m]ﬁHﬁi,ﬁeﬁ”dﬂ/ﬂﬁ [n’“,u’i,@’“”“ﬁi,ﬁeﬁ]‘dx

17252
+C, (1+|5|)‘Mﬁ G‘ ded
RxR3

N [ﬁﬁﬂ 5} ‘ 10, [n", 07| ‘ [ﬁﬁé] ( da

Oy [ﬁi,ﬁe,aﬁ] H2 +C,(1+1)72 H [ﬁi,ﬁeﬁ] H2 +01/6(1 4 ¢)7T/6

<(eo+n)|
—1/2~ 2
+C, (1+]§\)‘Mﬁ G‘ déda.
RxR3

Next, by Cauchy-Schwarz inequality, one has

/N7dx
R

It now remains to consider fR Ng dz. Notice that

Steo+ ) 10:01 + Cy(1+1)72 ] + <o

~ |2
# 0 T ) [ (1eD [M20 G dsda
X

a+|B|
0°0° {Lif b} = Lif @°0°h) = >0 > C Ly Mag, (6.6)

J=1 o |48 =5
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where M,z is given by
Mag = Quan (0°7'0°F (L3l n) 0707 Ma) + Qua (8707 Ma,0°=07~7 (L3l 1)) .

Utilizing (66), Lemma 1] Lemma Bl and Corollary ] again, we now arrive at

/Nﬁdzn <
R

3
Z </]R3 SUZEE 8$LX41A@A(G7 G)d¢, ﬂj)
j=1 :

(/ &1 (%Zu] w]+2) 0Ly, QA(G G)d¢, 0 16)

+CZ/

Ae{ise}

M0, 4| déd
+nj§:jl/RxR3|s|| 10, g

~\ (2
0
M||0: | =
0 [ e o <9>
b,
o [ el o, <5u1>

which further gives

/N@dx

_ 2
1/2 . LJT/}AQA(G,G))‘ dedz

xR3

dédx

fé 2
), <§aj>

3
dédx + 1 / M
;Rxwlll |

2
dédx,

B, [ﬁﬁa 5} H2 YO+ 1) H [ﬁﬁa 5} H2

7’]+60)

+ €0]|0u0||? + C, Y0 (1 +£)77/6
+ 0, Z/ (14 |€)IM~/25° G| deda

|laf=1

e / 0, 62M 120, (G + ) Pdeda

+C, / (/ (1+ leh M, G d§> (/ M, G d{)

It then follows that

/Ngda:

X [az 5] H2 + Cydy |020]% + C(1+ )72 H [ﬁ B, 5} H2 + 0 0Y/8(1 4 1)/

7’]+60)

+Cneo/ M2, G 2dgda + C, Z/ (1+ |E) M~ 20°G|2déd
RxR3
a1

17252
+C, (1+|g|)(1v1ti G‘ deda.
RxR3
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Here the following estimate has been used:

[ ([t eapa) ([ vg P apd) do
SC/R /RS(1+|£|)\M;”2(€; +§)(2ds> </R M; 4G +a)(2d5> i

- ~1/26 r oo
<[ i | MG dedu - © [ joulur, 0] do
RxR3 R

(6.7)

1722 9
< (1+]§\)‘Mti G‘ déda + C5,(1+t)
RxR3

Moreover, Corollary 1] and Lemma [I.T] as well as similar calculations for obtaining the formula (G.0])
are also applied to deduce

J.

2
<cy / (1+1¢) ‘M;”Qngaﬁ {PM [mZMZ,me & <§1axu’1‘ L 2;' aw")”

I8I<1

_ 2
M,/ 2a&c:.‘ de

2

dg

+CZ/ 1+ 1¢)) (M‘W 1aﬁ{P11\4[[ CUM 0,7, ng M.0,n?] glmzdg

IBI<1

w0 Y [ aslen M ngor (P [T 0.0 | ae

|B]<1
< C 9, [n",uf,0"]|2.

Finally, by substituting the above estimates for [z Njdz (1 <1< 7) into (BI)), we conclude that

By [a 5] HQ v A/ dpul ( [ﬁi,ﬁe,ﬂlﬁ] (2 dz
R

<+ o) [0 [@.0] |+ 0+ co) 10w s e 011 + (o ) i + i

6.8
+C,7(1+t)_2H[nZ,ne,u9]H 851+ 4 0, Z/R . (14 M 200G ded )
X
+ C, (1+1€]) (M‘WG( dédz + Cy, 60/ IM~/20;, G|d¢da.
RxR3 RxR3

6.2. Estimate on first-order dissipation. One has to further consider the dissipation terms in-

volving 0y [, T, ¢, Ox¢] and 0O, [ﬁi, Ne, U, 5] The computations are divided into three steps.

Step 1. Dissipation of 0,(n;+ne): We first differentiate (5.I]) and (5.2)) with respect to x, respectively,
to obtain

0; 0y 14 +8 (njuy —njul) = 8 / &G dE, (6.9)
and

OBTie + 02 (netts — nTu) = —02 /R &G de (6.10)
Then taking the inner products of (5:3), (63) and (EI0) with terms
3(ui(0) +Me(9))axﬁi, and SWi0) tue(G))a ~

po zTe;
n; n’

Oz (M + M),
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with respect to x over R, respectively, one has
((mmz + mene) (Ortiy + w10y + wpOzut) , 0z (0 )) + (0, P — 0, P", 05 (n; + Me))
m;Nn; + Men ~ -
+ <<1 - m) a:cPT nz + ne > Qan + QEne) x(b: 890(712 + ne))

=3 (((0) + p1e(0)) 030, 0 (713 + 7ie)) + 3 ((1i(0) + pe(6)) 03y, 0 (7 + 7ie))

+ 3 (O (1i(0) + pe(0))0rur, 0z (1 + ne)) (/ &3 - O, R dE, 0, (0 —|—ne)>

- < /]R 10, (B Gy) de, 0. (7 +ﬁe>> - ( /R cads (P3G ) d€, 0. +ﬁe)> :

and

a
K3

<8t8xﬁi 02 (s + Mgl + 0Pl + Oynl Oty + nl Oy,

— <a§ /RS fle dg, 3(/“(0)”—1; Me(e))axﬁz> ’

7

Slt) 10

and

T
€

<8t8mﬁe + 8§(ﬁeﬂ1 + neuy) + 8%712%1 + Ozn_ 01 + nga:%al,
_ (53/ €1G de. 3(1s(0) J:ue(H))axﬁe> ‘
R3 n

e

3(:“2(9) + MG(Q))axﬁe>

Notice that
2, -~ -
PP =2 <(ni F71e)0 + (7o + 70)0" + (0] + ng)e) .
We get from the summation of (6.I1]), (6.12) and (G.I3) that

— 9 (g + men )i, O (7 + 7)) + 2 (axn, Maﬁ)

2.dt n!
3d <a ~ pi(0) + pe(6)

T
ne

(2

896%6) + g (era:c(ﬁz + ﬁe)a a:c (ﬁz + ﬁe))

with
I, = ((mlnl + mene)(ula w1 + U0, u ) Oy (nz + ne)) ,
2 ~ ~
I2:__(89(n2+n6) n2+ne g( < n2+ne>aam(ni+ne)>a
2 ~ ~
13 =3 ( ( n; + ng (i + ) > » Ty = ((qimi + qene)0pd, 0 (M + 7))

Is = ((mznz + mene)uly 8t8 (nz + ne)) (( O + meatne)uly Oz (ﬁz + ﬁe)) s

Zs :g <6t <M> Oz, Oz g (8 (M) amﬁe,amﬁe> ,

7 e

\ I7 =3 ((u,(@) + Ne(e))aiuh (nz + ne)) 3( ( (9) + Ne(e))axulv aﬂv(ﬁl + ﬁe)) )

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)
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and

8 (njuy + ngul) +8§nzu1 + Oy Oz Uy,

T

3(pi(0) + ”6(6))&5%)

<8 NeU1 + Neuy) + agneul + OxnL0z 1 3(’%(0)7; Mew))@%) )

e

/ &3 - O, R dE, 0y (N + T > - (/3%&1@ (Pév[iGi> d€, 0. (n; -l-ﬁe))
/ Usofr0 PMEG> 0€. 0, (7 +ne)> B (ag / €1G, d. 3(ui(9)tue(9)) am-)
R3 n

i

_ (85 /RS €.G, de. (M2(9)n4; “6(9))&0%6) .

e

We now turn to estimate Z; (1 <1 < 9) term by term. It follows from Lemma[B.Il Sobolev’s inequality
and Cauchy-Schwarz inequality with 0 < 7 < 1 that

2

)

T, 1Zs] S o @i + ) P+ Cy(1+ 72| [72,8) |+ G|

o [

~112
I Zo| S (1 + €0) 102 (7 + Tie)|* + €0 | 0a0|| + Cy(1+ )72 [[7, me] 1%,

IZ4] S €ollaimii + getiel|* + eol| 0 (7i + 7ae) |-

By integration by parts and the a priori estimates (5.9]), we see that
1T S0+ €0)|0a i, ]I + (0 + €)[|0:[s, Tl + Cy (1 + )72 |[an|* + Cy (|00 |
For the estimate on Zg, from (5.9]), it follows that
1Zs| < €ollOu [, e[|
For Z7, Lemma [B.I] and Cauchy-Schwarz inequality imply

~1112
Zo) S 01100 i + I + Color + €0) || [fis e, @, 8] ||+ Coat/2(1 4+ 172,

As to Ig, one has
IZs| < (eo+ ) 10 [7ss e, D] [|* + (|00 [T, 7] |2 + Cop(1+ )2 (|7, e[|

according to Lemma Bl Sobolev’s inequality and Cauchy-Schwarz inequality with 0 < n < 1 again.
Finally, for Zy, by performing the similar calculations as for fR Ng dz in the previous step, we have

1 Zo| <(eo + 1)

[n,,ne,u 0o, m]“ +6.(1+1)72+C, Z / (1+¢hIM29° G2 deda

1<]al<2

+0/ (1+€)) (M‘WG( dgdx+oeoz/R N IM~1/29°0,, G |2deda.
o<1 78X
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We insert the above estimations for Z; (1 < < 9) into ([6.I5]), choose ¢y and 7 to be suitably small
and then obtain that

d . .3d
— ((min; + mene)uy, Oz (N + ne)) + 5 <

O, M@gﬁ)
dt

T
n;

424 (MG, Maﬁ) A+ 7))

<y [ [0+ (o 0) 100 . i, 6. B0, )|+ 5121+ 1)

+ (eo+ ) |0 [ e, 0,0) H2 T (eo + 1) || 82 [, el (6.16)

+COp(1+ 1) H[m,ﬁe,mﬁ](|2+on 3 /RR3(1+|£|)|M_1/280‘G|2d§d;p

1<|a|<2

~ 12 ~
+C"/R R3(1+|g|)‘1v1;1/2c;‘ dgdz + Cyeg Z/R M12000,, G|2dedz.
X

3
lal<1 xR

Step 2. Dissipation of 0, [¢,0,¢]: To do this, we shall make use of the equations 2I0), (ZII) and
BI0). Specifically, we get from the summation of the second equation of (ZI0) multiplied by ¢; and
the second equation of ([2.I1]) multiplied by g, that

2
(gimin; + gemene)(Opur + w10,u1) + gaw ((gimi + gene)l) + (%‘27% + qgne)@m
i [ 00Gids i [ n0.Grde i [ n@(F PV g [ i6diGide (6an
R3 R3 R3 R3
. / o 0,G dE — g, / €0 G dE + g / Qo (F, F) de + qoun / Vo105 G dE
R3 R3 R3 R3

Then the difference of (6I7) and the third equation of ([B.7) yields

(Qimini + Qemene)(atﬂl + ula:cﬂl + ala:cug) + (q:mzﬁz + Qemeﬁe)(atug + ugaxug)

2
+ gagc (%nze + Qenee) + (qgnz + qsne)amgb

= —q /[RS V300G dE — q; /RS 3;£0, Gy dE + q; /RS ¥3:Q;(F, F) d¢ + qiuq /RS 11;£10, G, d€ (6.18)

- e eaGed - e e a:cGed e e eFaF d e e 8xGed
o [ vadGeds—ac [ da0.Gede+a | ineQuFF)de +an [ tn6i0,Gede

T T T T
20" gimin; + geme min; + qeMmen

T
2 .
<0, (n] + ) + 20,672 (n} + ).

3 myn; + meng min; + menyg
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Taking the inner product of (6I8]) with d,¢ with respect to x over R, one has

((QZmznz + QEmene)(atal + ulaxal + ﬂlaxug)a a:c¢)
+ ((%mzﬁz + Qemeﬁe)(atug + Uf%%% 896(25) + ((%27742 + qzne)8x¢7 8x¢)

(6 (Qini + QEne) ) ai(b)

" / P0G dE + . / VoG d, am)

" / U0, G dE + g, / e£0,Go de, am)
(6.19)

gt / ns105 Gy dE + g / w%slaxGeds,am)
R3 R3

_|_

s [ QU B+ / Q) s, 0,0

20" gimin; + gemeny
Oy n.),0
min; + meny, ( ) 00

+

[\

9" QZmzni + gemen

T
C(n; +nl),0 .
min; + men?, (ni +7e) x(b)

Thanks to (2.10)), (ZI1I)) and @), we have

(mmi + mene)(atﬂl + u10,u1 + ﬂlﬁxu’i)

_|_

+
/\/\/\/—\/—\/\wu\?

Wi

&

MM + MeNe

+ 0, P — 895PT + <1 — > 890PT + (Qini + QGne) 8ﬂc¢ (6 20)

min; + meng
[ s 0,
R3
In view of (6.20) and (5.9]), we get from Cauchy-Schwarz inequality with 7 > 0 that

|((gimini + gemene) Oty , Oz @)

< (eo+ 6, + ) 1020]1% + (co + 6, [lgimi + qenel® + Cyp(1 + £)~2 H [ﬁﬁala] HQ

ey

+C, Z/ (14 |¢)|M~29°G|dedu.

laf=1

+c, {H@c(ﬁi

Next, by Cauchy-Schwarz inequality with 1 > 0 and Lemma [B.I] one has
|(gimini + gemene) (w0t + @10,u7), 0:9)| S nl|edll* + Cop(1+ )7 [@a]|* + Cy 10,70 |17,
and
|(gimitis + gemenie) (O + uidpul), 0:0)| S 0 l|00¢l|* + Cp(1+ )2 (|7, 7]

For the terms on the right-hand side of (6:19]), we only present the exact computations of those terms
involving Q 4(F,F). Note that

QA(F,F) = (LmG)a + Qu(G, G) = (LmG)4 + (LmG) 4 + Qa(G, G).
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With this we write

<qi [ n@@® By a. [ Q) dé,am)
R3 R3
= (%/ Vi (L G); d£+QG/ V3 (L G).e df,8x¢>
R ke (6.21)
+ <%/ ¢3i(LM§)id§+Qe/ V3. (LmG)e d§75x¢>
R3 R3

+ <Qi /]R3 ¥3iQi(G, G) d§ + qe /]Rg wseQe(G,G)d&@xfb) :

Substituting (5.8]) into the second term on the right-hand side of (621I]), we find

<q2- / U5 (Lag @), dE + . / (LG am)

+ <20 %mzn + gemen ea ( ) x¢> <3 HT qim;n; + gemen, (n: + nz)j ax(b)

3 myn; +men] m;n; + meny,

_ ({_20 gmini + gemene | 207 giming + gemeng
3 myn; + mene 3 myn; +meng

} Oz (n} +nl), 8x¢>

2 qiming + geMeMle 2 qim;nt + gemen?
__8 97” . _8 97” 1 e r r ’a ,
i ( 37 ming + mene (ni - me) + 37 munl + ment (ni +ne), 009

whose absolute value can be bounded by
M0:0l + Oyt +6)2 | 78] |

The remaining terms on the right-hand side of ([6.19) and (6:21]) are bounded by

~ |2
(0 +1) Hamu?+eo|yq,~ﬁi+qeﬁeu2+cnar<1+t)—2+c,7/ 1+ lel) [ 2@ dgaa

+ 0, Z/ (14 €)M ~25°G|2deda + € Z/ IM~/29°0,, G|2dédx,

la|=1 o<1/ RXR?

according to Cauchy-Schwarz inequality and the estimate (G.7]). Finally, substituting the above esti-
mates into ([6.19) and applying (5.6]), we arrive at

A (020, 000) + X (920, 920)

S o ) it + @il + Oyt + )7 | [ e, ]|+ 6120+

[uh } }+C’ Z /X]R3 1+ €)M~ 1/28aG| déda (6.22)

+C, {||6m(ﬁi
|af=1

17242
+C, (1+|g|)(1v1ti G( dedz.
RxR3
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Step 3. Dissipation of Oy (q;n; + gene): To deduce this, we take the inner product of (6I8]) with
Oz (¢in; + gene) with respect to = over R to obtain

((giming + gemene) (Ortn + w1 0xU1 + U1 0zuY), Oz (qini + genie))
+ ((%2”1 + qzne) 0z, 0 (Qan + Qene))

2 ~ ~ _ ~ 2 - - ~ ~
+ g (985(: (Qini + Qene) 785(: (Qini + Qene)) + g (a:ce (Qini + QEne) 785(: (Qini + Qene))
+ (gimin; + gemene) (Qput + uy0zut), Oz (¢ini + genie))

" / G dE + g / Ve OhCo dE, D, <qmz+qene>>

o [ in&0:Gude +a. [ ne6i0.Geds.o, (qmmqene)) (6.23)

+ %ul/ ¢1i§13xGid§+Qeu1/ 126610, Ge dE, Oy (qz'ﬁi-i-qeﬁe))

20" gimin} 4 gemen,,

+

€ 0 (1] >aw%m+qﬁa>

3 myn; +men]

a r qlm’ln + Qeme
IE

2
+ —
3 min; + meny,

-~
-(
(
" <qz [, QP F)de +a. / 02 Qu(F.F) de. 0, (qm2+qene)>
(
(

(0 4 10,0 (0 + i) )
With ([6.23]) in hand, by performing the similar calculations as for obtaining ([6.22]), one has

A (890 (%ﬁz + Qeﬁe) 76m (%ﬁz + Qeﬁe)) +A ((%ﬁz + Qeﬁe) 5 (%ﬁz + Qeﬁe))
~1 112
< eo + 1) 192 s e, 01> + (1 + )72 | [0, 76, 0] |+ € {Hax(ﬁi + )| +

ey

+C, Z/ (1+ €)M ~Y29°G 2deda + O, / (1+1€]) ‘M_WG‘ dédx

ja=1
+OM2(1 4 1)73/2, (6.24)

We now get from ([G.10)), (6:22]) and ([6.24]) that

d ., 3d

dat ((min; + mene)uy, 0z (N + ne)) + S <
3d i (0) + pe(9)

+2 dt <8x © T

BT, Mﬁxﬁl)

T
n;

8xﬁe> + A Hax [ﬁu ﬁea (ba ax¢]|’2 + A ”%ﬁz + QEﬁeH2

e

< ¢yjor [aﬁ]”ﬁ (e + MA@ |7 + 8Y2(1 4+ 6)3/2 + Cy (1 + 1) H[ﬁﬁaléﬂf

o, / (1+ |Eh M 20° G2 dgd:z:+0/ (1+ &) ‘M_WG‘ dedz

1<a<2

+Cheo Z/ IM~Y29%0;, G|*dedzr. (6.25)
lal<1 RxR3
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Having obtained (G.27]), one can see that 0, [ﬁi,ﬁe,ﬂ, 5} also enjoys the similar estimate. In fact,

we get from (2.I0), 2I1) and B.7) that
O47i; + Oy — nluf) = /iﬁGd&

Oyfic + On(neus — nlar}) /éﬁGd&
(min; + mene) Oy + (myng + mene) (u10,01 + U1 0pul) + 0 P — 0, P" + (qini + qenie) 01 ¢

+<Lf@¥iﬁﬁ>mﬂz—/swy@eﬁ
R3

m;n; + Meng

(mmi + mene)&gﬁj + (mmz + mene)ulax'dj = — / 511/1]-+28de§, 7 =2, 3, (6.26)
R3
(i + 1) + (s + 1e) (w19,0 + 119,07) + Pyuy — PTdyuf + (1 - ni i Zi) Proyu’

/51 (%Z% 1/1]+2) 3Gd€+9/ (€1, 6]" - 0,G d¢

7j=1

2
+ am¢/ % [q27 qe]T : a§1G dg
R3

\

This yields that
112
|0 [, e .6 |

< la, {ﬁi,ﬁe,ﬂ,g,gb]“er(lth)_ZH[ﬁi,ﬁe,ﬁﬁ]H2+5T(1+t)‘2

~

+Cn/ (1+\§D’M_1/28xG\2d§dx+Cn/ (1+\€!)(M;”2(~;(2d§dx (6.27)
RxR3

+Cheo Y / IM~Y29°9,, G |2 déda.

o<1/ RXR?

Letting 1 > k1 > k2 > 0 and taking the summation of (G.8]), ([6.25) x x1 and ([627) X k2, one has
that for suitably small constants ¢y > 0, §, > 0 and n > 0,

d

d - -~ -
dtn +h1o ((min; + mene)ur, Op(n; + ne))

+/€1;% { <8x~ia MZ(H) _‘;Me(e) a:cﬁz> <a:c~ey MZ(H) t”e(e) 8xﬁe> }

+A Z H@ [nl,ne,u 0}

lal=

< (eo ) 02 ]|* + Co1 + )72 | [y e 5”‘2—1—51/6(1—1—t)_7/6

+CZ/

1<[a]<2 / RXR?

2
" M+ il + X102 6050117 + A [ Dy [ e, 0,8] o

(1+ €)M 20°GPdeda + C, / (1+€]) (M‘”QG( deda
+Cyeo / M120,, G 2dg da. (6.28)
RxR3

6.3. Estimate on first-order energy. Let |a| = 1. Taking the inner product of 9*([E1l), 0*([G.2)),
0*([B3), 0*([EB4) and 0“([E.A) with 09n;, 0%ne, 0%u1, 0%u; (2 < j < 3) and 0“0, respectively, and then
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J

3
+ 3 ((1i(8) + 11e(0))0:0%T1, 0:0%T1) + > ((1:(0) + 1e(8)) 80U, ,0°T;) (6.29)

taking the summation of the resulting equations, one has

1d o o 3 - -
S {8 mil* + [0 mH%Z}\WW@ |7 + Hm(f) 7

+ ((ra(6) + 1:(00)0,0°9,0,0°0) = > i,

where the right-hand terms are given by

(J1 = — (0%0x(nsuy — niul), 0%N;) + (0“0p (neur — nlul), 0“n,),
3

1 [o%nd (0% 1 g 5eg
Jo = 3 Jzz:l (Oc(min; + mene) 0%z, 0%uy) + ) (at(ni + ne)0%6,0 9) )
3
— (0% {(mini + mene) (urdptin + W dpu)}, %) — (9 {(min + mene)urdiiy} , 0°;)

Jj=2

Ji = — (0" (il + gefic) ) , 0U1) ,
= (aa(P o Pr)vaaamﬂl) B <8a { <1 - w) 8xPT} ’aaﬂ1> ’

min; + Mmeny,

Jo == (0" { (ni + n) (@ 0,0+ 10,07 },0°0) — (9 (POus — Proyut),0°8)

_ <aa { (1 — n; +ne> P’"E?xu’"} ,8“5) ,
L n; +ng

7

Jr = =3 ((1:(0) + 11e(0))0Opad}, 90,101 ) — ((H,( ) + re (6 ))aaaxe’“,aaaxé) :
3
Js = =3(9" (i) + pe(0))0ui, 0°0pi1) — Y (9 (1il(6) + pe(8)) 0y, 0 0y )
7j=2

- (aa(m(e)) + ke(6))0:8, 940, 5)

3
Jo =3 (0% ((1a(0) + 1e(0) @ )?) ,0°0) + 3 (0 ((14(6) + pel0)) (0:0,)%) , 0°0) .

\ Jj=2

Jio = — ( / £,0°0,G; dg,aa’ﬁi> - < / £10°0,G. dg,aa’ﬁe>
3 R3

/3 V(j+2)i§10%0y (Pév[iGi> dé.vaaamﬂj>
/3 w(j+2)e£18aam <P(fweGe) dgyaaaxﬂj>
e M; apn
0 {ug/ V(j+2)i€10z <P0 Gi) di},a 9>
R3
o {uj/ w(j+2)e£18x (P(fweGe> d&} ’aa§> )
R3

3
+
7j=1

_|_

-3 (
]1<
> (
3

J=1
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and

3 3
Ju = Z </3 §1j42 - aaﬁdﬁyaaamﬂj> + (/3 &1 (TZJG — Zuj¢j+2) -8O‘Rd£,6m8°‘0) ,
j=1 R R =
3 o B 3 B R
To==3 </3 §10:ujYjv2 - ao‘Rdé,@a@) +> </RS §10%ujthjta - &Rdéﬁ%)
Jj=1 R j=1

. 2 .
v (o (0 [ el nae) 009) + (0 (00 [ 00l 0 Gac) ).

We now turn to estimate J; (1 <1 < 12) term by term. For brevity, we give straightforward calculations
as follows:

I S )0 10:0% [l |+ Cy D 110 [ e, @l + C (1 + )72 || [0, e w12
|a|=1 |a|=1

Bl e X o [0.0]] L 1l <0 X 100l + 0y 3 10 + Cy1 4+ 1)

laf=1 laf=1 laf=1

[al Seo D 10%@ + 0 D 107 (aimi + geiie) I,

|a|=1 || <1

0 3 0t 0, X o o[ v ]|

|a|=1 |a|=1

0 [, 9”‘ + 0, ZH@ (i, e i, 9]” + Gyl 8) 2| [ i, 9]” :

|af=1

il S 0]+ ez,

|laf=1

.0 [, 9”‘ +C, Z Haa [iis e, 0] 00 [ﬁﬂHercn 3 Haa[n",e"]ax [ﬁé”f

|al=1 lal=

+Cy > |0 [Fiss e, 0] 0l 07 H +Cy 3 110% 07,070, [, 07])2

|af=1 laf=1

[u 9”‘ +C,72H3a [ﬁ e uew + A Cy 02 (1 + )2

|laf=1

|Jo| S

(aa [ﬁ e, 5} (9,u)?, aaé) n

(aa (", 07)(8,0)2, aa§) v

(aa ", 07 (9uu?)2, aaé)

+ ( (aaaxaaxa, a@) ( + ( (aaaxu{axuq, aa'é) ‘

<3 [o e md) [+ oo 3 oo + 520+ 02

lof=1 |a|=1
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and

o (1.8 + ¢, 3 Jor [ i8] |

|laf=1 laf=

o, 30 / (1+ |€)[M1/20°G|2déda

1<al<2 / R¥R®

+ € Z/ IM~Y/29,, 0G| dédx

lal<1 RxR3

Plugging the above estimates for J; (1 <1 < 12) into (6.29]), one thus has

+eo/ (1—1—\5!)‘M;l/zé‘zdgda:—i—é}p(l—i—t)_3/2.

RxR3

pr |Z {8"%@24-80‘ 6H2—|—ZH\/mmZ+men68 u]H +H\/nz—|—n68‘”9‘ }
a=1

el

< Z Haa (75,7, 0, H2 + [lgifis + gemiel|* + (1 + )72 H i i, 0] H2 S22 (6.30)

lal=

+ > / (14 €)M~ 252 G? d£d$+/
xR3 R

3
1<]a|<2 <R

—|—€02/ |M_1/28§18aé|2d§d33.

<1

|a|=1

~ 12
(14 I¢) [ v VG dgd

Let us now deduce the second-order dissipation of n; and n.. As it has been shown in the previous
subsection, it may not be direct to obtain the second-order dissipation of n; and n. in a separate way,
and instead one has to consider 9“0, (n; + n.) and 0%0y (¢ini + gene) (|a| = 1) in an equivalent way.
In what follows, we shall turn to derive these two kinds of dissipations by using different equations.
In fact, one can first take the inner product of 9% ([6.20) with 0“0, (n; + ne) (|a] = 1) to obtain

((myn; + mene)0;0%uy, 0%0, (N + ne)) + (0% (myn; + mene) gy, 0“0, (N + M)
+ (8a {(m,nz + mene)(ulaxﬂl + 'dlaxu{)} , 8"896 (ﬁz + ﬁe))
+ (0%0, P — 0%0, P",0%0, (1; 4+ 1ie)) + (0% ((¢imi + gene) Or @) , 0“0y (M; + Me))
- </ &3 - 090, G dE,0%0, (n; + ﬁe)) :
R3
from which as well as (6.14]), it follows that
((myn; + mene) 0%y, 0“0, (n; + 1ie)) + 2 (efaaax (15 4 Te) , 0“0 (N5 + 7))
((myn; + mene) 0%y, 0p {0% 0, (; + ne)}) + (0 (min; + mene)0%uy, {00, (i + Me) })

| &=

(8% (ming + mene)Bytiy, 08y (7; +Tie)) — % (%07 0y (i + Dyfie), 0°0y (s + 7o)
2 _ _ . . 2 ~ _ _ _ 6.31
= 2 (OO0 (s + )}, 070, (i + ) — 5 (0°0, {0 +70) | 070, (i + i) ) (631)
3 3
_ (aaax (é(n;f n ng)) , 890, (7; + ﬁe)> — (0% (i + qefie) Bud) , 80y (s + 7))

_ </ E11hs - 070, G dE, 00, (7 + ﬁe)> :
R3
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Using integration by parts and applying (B.I)) and (5.2)), one can deduce

|((myn; + mene)0%ur, 0,0% 0y (N + 1))
= (9 {(mini +mene)0%un } , 0,0% (7 + 7e))|
S0z {(myng + mene)0%uy }, 0%0, (njur — njuy + neup — niut))|

" ' (ax (mani -+ men o), [ €0°0,(Gi+ Ge>d£) ' o

SCy Y 10wl +0 3 10°0, @+ TP + Y (000 [ e, ]|

|a|=1 lal=1 lal=1

+ (L) 2 [ T @I+ / (1+ [€)|M™Y25° G| d¢d.

1<|al<2

Furthermore, it is straightforward to show that the remaining terms on the right-hand side of (6.31])
are bounded by

(co + 1) 19°0, (i +71c) |* + € Z o [fe. e8] |+ 0 Z |

lal=

+ (1172 | [, e, 1, 0] H +eo Y 110 (qiti + o) |2 + oncsi”(l +1)7%2 (6.33)
|| <1
o, 30 / (1+ |E)[M20°G|2de .
1<al<2 / RXR®

Substituting (6.32)) and (6.33)) into ([6.3)), we arrive at

d _ o I I
pr > ((maing + mene)0™Tiy, 00, (7o + 7)) + A D (90 (7l + Tie) , 0%0x (M + 7))
|a|=1 |a|=1

S Z I il s o il oo rnmdlf

(6.34)
+ 3 110%(qifis + qefie) |2 + 6121 + 1)/
la|<1
b3 [ i G
1<]a|<2

One the other hand, taking the inner product of 0%([GI8]) with 0“0, (¢;n; + gene) with respect to x
over R, one has that

((QZmznz + QEmene)ataaala aaax (%ﬁz + Qeﬁe)) + ((qunz + qgne)aaax(ba aaaﬂc (QZﬁz + QEﬁe))
2 - - - - ~ ~
+§ (00%0; (qini + gene) , 0“0y (qiT; + gene)) + (aa (%2”@ + qsne) 020, 0% 0y (qimi + Qene))

2 - - - ~ 2 - - - -
+§ (8a98$ (qmi + qene) 78aaw (Qini + Qene)) + g (aa (ame (Qini + Qene)) 78aam (Qini + Qene))
+ (0% (gimin; + gemene ) (Opuy + ut0zuy)) , 0% 0r (¢iTti + getie))
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is equal to

0 / V3i0°0,Gy dE + e / V300Gl dE, 0%, (qmmqene))
]R3

" / 1070, G dE + g, / U610, G d, 070, (qmﬂrqene))

+ QZ/ 7/}328an F F df""Qe/ wi’)eaaQe(F F) df aa (q:nz +QEne)>

aa (29 Q’Lmzn + Qeme ea ( )) ,8a8w (qlﬁl + qeﬁe)>

m,n + men?

+

+ <qzaa <u1 / bi€10,Gy d&) e <u1 / 10,6 d&) 59, (qm2+qene))

+ <aa <§ax97" qlmlni Tt emmene (nz + Tlg)) ,8aax (%ﬁz + Qeﬁe)> '

T
m;n; + menyg,

Therefore, by the similar argument as for obtaining (IB:ZZI) it follows that

A Z 8a %nz + QGne) 0~ 8 (%nz + Qene + A Z %nz + QGne) ’aa (%ﬁz + Qeﬁe))
lov|=1 la|=1

Z o7 [fi.7e.3. 9”‘ + Z oo, [a, ]H e Z 10%(qifi; + geie)|?

lal<

L (6.35)
e D 107001 +6%/2<1+t>‘3/2+<1+t>— | [ e 1. ] |
|| <1
+ Y / (1 + €)M~ 200G 2 dgd:z:+0/ (1+€)) (M‘”%}( déda.
1<|a|<2

We are now in a position to derive the dissipation of 9¢ [(%(b, 8%(15] with |a| = 1. For this, we take the
inner product of 9%([G.I8]) with 9“0,¢ with respect to x over R to obtain that

((%mznz + Qemene)ataaaly 8aam¢) + ((qgnz + qzne)aaamQSa aaax¢)
2 - ~
+ g (eaaax (Qini + Qene) 7aaax¢) + (8a (qfnz + qsne) 8x¢7 aaax¢)

2 - - 2 ~ ~
+ g (8a98x (Qini + Qene) 7aaax¢) + g (8a (8906 (Qini + QEne)) 7aaax¢)
+ (aa (QZmzﬁz + Qemeﬁe)(atug + Uqax?/l‘)) ,8a8x¢)

is equal to

0 / P50 0,G dE + g / P 0°OG, dE, O m)
0 / Ui610°0,G dE + o / 30610, dE, O m)

+ | @:0” (Ul/ V1:€10:G; df) + qc0” <u1 / V2§10, Ge d§> ,aa5m¢>

+(a /R U QU F) de + g, / V3o 0° Qo (F, F) dt, 0° m)

20" qlmm + gemeny, e o
< 3 mynl +meny Oa(ni )> 0 8:0(;5)

9,6 qumzn + gemeny, ( :_‘_ng)) ’aaam(ﬁ) )

2
§ mm + menl

8&

_l’_

+ (0

3
3
(
(
(
(
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In almost the same way as for obtaining ([6.22]), one can further derive that

A (070:6,0%0:0) + X > (07029, 0059)

loo|=1 lo|=1
S 3 lats +adiel*+ Y o0an [m. 0]+ Z o [ 78] |+ owo?
o<1 |laf=1 (6.36)

4 (141)2 H [ﬁﬁale} H 46201 +t)_3/2

+/ (1+€]) ‘M WG‘ dedz + Y / 1+|£|)‘M‘1/2G‘2d£d:n.
RxR3 RxR3

1<|a|<2

Taking the suitable linear combination of (6.34]), (635]) and (6.36]), we conclude that

d N I I
- D ((maing + mene)0™Tiy, 0:0%(f; +7e)) + A Y 1070z [7i, e, ¢, 0x]||°

=1 jal=1
Z H@ [nl,ne,u 9} H + 1001 + Z H5a8 [ul, }H + Z lqimii + gerre|?

o=t ol <

+(1+1)” H iy e 1, 0] H +51/2(1 +t)—3/2 (6.37)

+Cy Z/ (1+ €)M~ Y252 G| deda

1<]al<2

2
4 cn/ (1 + lel) [ /26 deae
RxR3
As to the second-order time derivative of [ﬁi, Ne, W, 5}, one has by ([6.20]) that

Jo [ e8]

< Z |00, [ 7ies 1,60 H2 (U 1) 2| [ e, 1, ] Hz +OM2(1 4 1)/

lal=

+z/

1<]al<2 /RXE®

(6.38)

(1+ €)M 20°G[*dédz + e Z/ IM~/20,, 0 G|?d¢ da.
lal<1 RxR3

In addition, in light of (B.6]), one can see that ¢ enjoys much higher order dissipative property, namely,

S lloa26]” $ S 107 lgits + qeel|?. (6.39)

|a|=2 || =2
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Finally, letting ko > k3 > k4 > K5 > kg > 0, we get from the summation of ([G.28), (G.30) X k3,

6317) x k4, (638) x k5 and (639) X ke that

d_  d (0) + 1.(0) -
P {((mm,- - mene )i, 8y (7 + Tie)) + g (ax'ﬁ,-, Lf‘()a@

Y CENCUETROPEAY

T
ne

+,€3i Z 097 ||* + 1|0%7||* + Z H mn; + meneaau]H + H\/m + neaaeu

dt
lal=1
d - -~
+Ii4% |§_:1 ((min; + mene)0“uy, 0,0%(N; + 7))
112
Y Haa [ﬁﬁﬂew + A gt + a2+ A Y [0 [0.0,024] |
1<|al<2 lal<1
+A Z Haaa2¢H +)\/8 uy |1, N, , 6] dx
|a|=2

SC(l—Ft)_QH{m,ne,u e]H + 051+, Y / (1+ €)M ~Y20° G 2de d

1<|a|<2
~1/25? —1/2 2
+C 1+ €]) (Mﬁ G( dedz + Ceg IM~1/29,, G|2dédx. (6.40)
RxR3 RXxR3
Noticing that
~ . — <
i |[Fde @] | | Z10:607) S @100, 0:0)].

we see that (5.I3]) follows from ([6.40]). This concludes the proof of Proposition (.11 O

7. A PRIORI ESTIMATES ON THE NON-FLUID PART

With estimates on the fluid part in Proposition [5.1] this section is further devoted to the proof of
Proposition on the non-fluid part. In a way similar to the previous section, the proof is divided
by three subsections.

7.1. Estimate on zero-order dissipation. The goal of this subsection is to obtain the dissipation
of M*_l/ 2G. Notice that G solves

~ 38x¢(§1 - ul)(Qime - QEmi) . ) T ~

oG + 200 + mens) [neM;, —n; M| LG
2
= —%Pllvl {51 [mi My, me M) " (5 - Op + i Hu\ 0 9>} - P} {fl [”z’_lMiaxﬁi,ne_lMeamﬁe]T}
3 ~ _
o7 PV {105,061} 0,6 - P (610,G) — PY (00,00, @) + Q(G, G) — G, (7.1)
where we have used the fact that
2 20
PIIVI (glaﬂcM) LMG _239 {51 [szZame e]T (f <Oz + |£ 0’LL| 0, 9>}

3

+pM {gl [ M;iByiis, 0 M,y } + 5P {gl [M;, M,] }a g,

and

30:9(&§1 — u1)(gime — gem;) [

M;, —n;M,)" .
29(mln2+m6ne) e (3 2 5]

PM (08,00, M) =
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Let g = 0 or 1. Taking the inner product of 92 (ZI) with (n”) " 0(min; + mene) M2 G over
R x R3, one has

10
il / ()7 0(min + men )G - (M;lafoci) déde + T+ T =Y T, (7.2)
RxR* =3

where J; (1 < J < 10) are given by

T = —/ (n")~10(mn; + mene)(‘)f‘oé . (MQILME??‘)(A§> dédzx,
RxR3

3 ~
J=3 (@eaoaxﬁb(é’l — u1)(gime — gem;) [neM;, —n; M) ", (nr)_lM*_laf‘OG> ,

J3 = —Xao <6t(~3}8f0 ((nr)_le(mmi + mene)) ,M*_lafoé>

—i—l <8fo(~}8t (n")~0(min; +mene)) ,M*_lc‘)foé) ,

2
_ 3 e —aemoeo Sz et 150G
Ty = B <8x¢(%me Qemz)at {mznz e [neMu nzMe] } ST (mznz + mene)M* 8t G,
3 « 1 M T ~ |£ - u|2 n 0 —1 aap ¢~
j5 = —5 8t 0 §P1 gl [miMi7 meMe] f : 896“ + 20 8909 ) F(mznl + mene)M* at 'G )

M; —1 ~ * 3 T n 0 —1 a0 ¢~
&1 Famniyne M0 +2_9[MiaMe] glaxe 7F(mini+mene)M* 81&0(; >

J6 = <8ta° {Pllvl

j7 T (82101311\/[ [q08x¢a§1 G] ’ (nT)_le(mini + mene)M;la?Oé) 5

T = — <8f°8té, (nr)_19(mini + mene)Mllafoé”)
— (0 PY [60,G] (07) 7 Bmims + mene)MI 006
J9 = Xao (Q(atM, G) + Q(G,oM), (nr)_le(mini + mene)M*_laté> ’

Jio = (8?0Q(G, G), (n’")_lﬂ(mmi + mene)M*_laf‘oé> .
Here we have used the notation

o 07 Qo = 07
Xao = 1, ag>0.

From Lemma [£3] we see that
12
7 25/ (1+|£|)(M;1/26§“0G‘ deda.
RxR3
For 75, if ag = 0, it is bounded by

e~ 2
o[l [MeEf de ool
RxR3
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If ag = 1, we first rewrite Jo as
3 _
To =5 (0:0u061 (qime — gem) ey, —nidd,]™, (n)'MT'0,G)
+ g (8taw¢£1(Qime — gem;) [neMy, —n M) ", (n") 7 (M - MY até>
3
2

<atam¢£1(%'me - Qemi) [(ne - nZ)Mi’ _(ni - n;'n)Me]T s (nr)_lM_laté)

T
+ g <8tax¢§l(%'me - Qemi) |:M27 %Me:| ) M_latG>

+ 5 <8taﬂc¢£1(Qime - Qemi) [neMiy _niMe]T s (nr)—l (M*_l - M_l) até)
=T+ Jo2+ J23.
Notice that

[ni(t, @) — | + [ne(t, ©) — nue| + |ul(t, ) — uy| + |0(¢, ) — 0]
<|nj(t,z) —ni(t,x)| + nl(t,x) — ne(t,z)| + |u"(t, ) — u(t,z)| + |0"(t, z) — 0(t, x)]

+ g (t, ) — ng| + [nL(E ) — nue| + |u” (8 2) — ws| + 1607 (¢, ) — 04
/S ‘ [ﬁiaﬁevﬂv §:| ‘ + To-

From this together with the Cauchy-Schwarz inequality, it follows that

1724 ~|?
Faal Sleo+ ) [0:0:01° + (o +m) [ (1+1¢l) M P0G de
RXxR
Moreover, one can see that J» 1 also enjoys the same upper bound as Js 3.

As to Ja2, from integration by parts and using the first equations of (2.10) and (2ZI1]) as well as
(B6)), one has

J— 3 . . . T =
j2,1 = - 2_% <at¢£l(%me - Qsz) [%, QG] s 8taxG)

5 (O0a(ame — aemi) 0" 010:G)

3 . B
+ 2_ql <amat¢£1((.hme - qeml) [ql, qe] , 8tG’)
3(aime — qums
‘ m2q' o (019, (Or(qini + gene) + O ((gini + gene)ur))

3 o
5o (0:0006(@ime — qom) [as. ], 0G)
3(gme — gem;) d 5 3(gime — gem;) N
4q; dt Hatasz” T 2¢; (avaﬂby (%nz + Qene)ul)

3 . '
* 2_% <axat¢§l(qime B qemi) [Qi7QE] s 8tG) .

_l’_

Thus it holds that

3(Qime - Qemi) d 2
Jo1 + 10, dt\\(?t@mH

Next, we get from (£.9) that

< 102000 |* + llgins + genel> + 6121 + ) 3/2.

~ 12
T3] < €0 2/ (1+ Jely [ 200G dae
ap<1l JRxR3
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By applying Lemma Bl together with (5.9]), one can see that J4, J5 and Jg can be bounded as follows:

- ~ |2 ~ 2
T+ 1T 416l <n S () M P0G dede + €y S |0:050 [ 60 |

ap<l1l RxR3 ap<l

ESY ‘(axaf‘wa&é,m—lafoa)‘ +y <8x8f°¢8§1§,M‘1af‘0(~}>‘

ap<1 ap<1

+ 3 (0000, G MG )| + | (0200, G M1 00 G |
ap<l

— Q) 2 fe
+> n/R e ‘M 1/2at0G‘ dedz +Cy 3 (10,0800
X

ap<1 ap<1

<tn) 3 [ vl M 6 deas o, Y .ol

ap<l ap<l

and
12 2
FAEDY / (14 |¢]) (M*—l/zagog‘ déde +Cy > / (1+1¢)) ‘M,:l/zaxago(; d¢dz
ap<1 RxR3 ap<l RxR3
+ OO 2 (1 4 1) 732,
As to Jy and Jhp, it follows from (G7), Lemma 1] and Cauchy-Schwarz’s inequality with 7 that

_ ~ 12
!jglan/ (1+!§\)‘M* 1/2@@‘ deda
ap<l1 RxR3

+C, Z/R</}Ra(1+|£|)‘M;1/28tM‘2d£> (/Rg(1+|£|)‘M§1/2é‘2d£> dz

ap<l
+C,7aoz<:l/R </R3(1+ €] (atM:l/QM(2d§> (/R3(1+ €)) ‘M;1/2§‘2d§> da
<(eo +n) a(;/lm?)(l +1€]) ‘M*—l/mgoé‘? dédz

+ Chor || O [ﬁi, Ne, U, 5] H2 + 0775;/2(1 + t)_3/2,

and

B 12
!jlolénZ/ (14 J¢) [ M 200 G dgo
RxR3

ap<1
+Cna§<:1/R</RS(1+\§])‘M;1/28§‘°G‘2d§> </RS ‘M;1/2G‘2d§> dx
+C770§S:1/R(/Rg(1+|£|‘MI1/2G‘2d§> </Rg) MI1/265‘°G‘2d£> dx

~ |2
<(eo +n) Z/R RS(le\)‘M;”QafOG‘ dédx + C6,.(1 + )72
X

ap<l1
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Now substituting all the above estimates into (7.2), we arrive at

i,
dt aoz<:1 RxR3

Iy /]Mg(l +1e)) (M;Wafoéfdgd:g

ap<l1

~ 12
M*—1/2a§coG‘ dédx + %Hatax(bw

(7.3)
1+ [¢]) 0:07° G| ~ |2
< Z / ( t dédx + Z 0% |ni, ne, u, 0
+ 3 (0% [000,826] || + 812 (1 + )72,
o<1
Furthermore, it follows from (7.I]) that
204 38x¢(§1 _ul)(Qime_Qemi) . T
atG —8t{ 29(mlnl +mene) [neMw nzMe]
—a, L2 PM e tmand, mod]" (€ - 0 + Sy
20 1 1 4iVig, TTtelVle T 20 7
o {PM &y [y My Mo} 7
3 ~
+ 0, {@P%“ {ivi, 01" 6} aze} -0 (P (€10, G) + P} (200,605 G) }
+8,(QM, G) +Q(G,M)) + 9,Q(G,G) — & G.
Then (73] and (74]) give rise to
d ~1/2 qao &5 |2 d 2
=3 /]W M, op G| dgde + 1100,
ap<l1
~ |2
+>\Z/ (1+ [el) Mz 20 @ ded
<2 RxR3 (7 5)
1+ [¢]) 0.0 G| ~ |2 '
< Z / ( t dédx + Z 0% |ni, ne, u, 0
ag<1/RxR? M. 1<|a<2H [ }H
+ > (07 [a0,020] |F + 01/2 (1 + 1)
o<1

7.2. Estimate on high-order energy. In this subsection, let us now deduce estimates on the higher
order energy of F. The desired estimates will be obtained by the interplay of two kinds of weighted
energy estimates. Let || < 1. Taking the L? x L? inner product of (ZH) with kM~ 19,0°F with
respect to z and & over R x R3, one has

1d

9
—— kp00,0°F - (M~ 10,0°F = , .
23t s 500,0°F - (M19,0°F) d&dx + Ky + Ko ;icl (7.6)

where all terms K; (1 <1 <9) are given by

Ky = — (Lpm0:0° G, kpfM ' 0,0°G) |
K2 = (qod” 920, M, kM~ 8,0°F) ,
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and

K3 = % (amaaF, kglo, (M_l) &c@O‘F) + % (&caaF’ k:BOtHM‘laxa“F) :
Ki= Y (Q0*0.M, 07 G) + Q@ G, 0 0, M), kM 0,0°F )

o/<a
K5 = (Lm0, 0% G, kgPM (M~19,0°M)) ,
Ke = — (£1020°F, kpfM 1 0,0°F),
Yy (qoaa—a’amqbaa’ama&F, k;BQM—laxaaF) ,
o/<a
Ks = — (q0“92¢0¢, G, kM ™' 0,0°F) ,
Ky = (0,0°Q(G, G), kpM '9,0°F) .
Here we have used the decomposition F = M + G. First of all, for K1, Lemma [£3] implies that

2
Ki>6 | (14 (M—Waxaa(;( dédz.
RxR3

For ICy, from the first equations of (ZI0) and (ZI1), we claim that

£ i c% oo

e Y 0% [0:0,820]|". (7.7)

|| <1

In fact, to show (L), we notice
o == (0°0201i, ge] ", (61 — w1) "0 M) — (0°0700ai, ae], (61 — 1)0°0,G)

— (09 lai, ge] ", (&1 — 1) M) — (8°03lai, qe] ", 610, G) ,
with |a| < 1. Here, by direct computations, it holds that

dup £ — € —uf? 9.0
3MA—n MA+k‘9 8M+<2kA9 2 HMA,

for A =i,e. Then, from the first equations of (ZI0) and (211, it follows that for |a| =0,
Ky = — (026, (qini + qene) 0wt + [ai, @) " - 610, G)
= (026, 0y (qini + geme) + Op(qimi + geme)ur)
— (020,0:070) — (920, D}om)
and hence one has from integration by parts and (5.9) that

< el 9297, (7.8)

d
K+ G120

for |a = 0|. Furthermore, for |a| = 1, one can also obtain from direct calculations that
Ko = — (07020, (gini + gene)0*dpur )
— (0%02¢, (¢:0"ni + qe0°ne)Oyur + (qi0zni; + qedane)0™us)
— (0°02¢,[4i, qe] " - €070, G)
— (3O‘a§¢, 0“0 (qini + gene) + (¢:0“0n; + qeaaaxne)ul)
= — (07026, 0,0°02¢ + 0" Our ) |

which implies

Ko+~ uaaa%u < e 0°029|1%, (7.9)
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for |o| = 1. Therefore (T1) follows from (Z.8)) and (Z.9). This completes the estimate on .

For the remaining terms in (Z.0)), we only give estimates in the case of |a] = 0 as the proof in the
case of |a| =1 is similar. For this, by applying Lemma [B], Sobolev’s inequality and Cauchy Schwarz
inequality, we have that for |a| =0,

2 2
1| < / 3<1+\§r>rat[ni,ne,u,e]\(\M:”@M\ +(M;1/2axe\ )dsd:c
RxR:

5/
R

+/ \ax[n",u",e"]ﬂat [ﬁi,ﬁe,aﬁ”da;Jreo/ (1+1§\)‘M;1/28xe‘2dgda;
R RxR3

~112
0, .7, ,9] | 101 [ni,ne,u,9]|d$+/ 0,0, ", 0] 2|4, 07| dx
R

~1 112
S A A s P e [P A i

+ Hat [ﬁﬁaé] HW [ﬁﬁaé] HW 18 [n", ", 7]

+60/R 3(1+|§|)‘M§1/28$G‘2d£d:n
xR
<o +5r) Z o [ﬁi,ﬁe,ﬂﬁ”r—i—eo/RXRS(l—l—|£|)‘M*_1/2azG‘2d£d:E

4854 1)TS
For IC4, one sees that for |a| = 0, K4 reduces to
(Q(2:M, G) + Q(G,8;M),M™19,G) ,

and hence we have

2
Len 577/ (1+|£|)‘M_1/26mG‘ dédx
RxR3

G / (/ (1+ [ehm20,M] d€> </ IM~Y2(G + @) d§> da
-1/ 2 -1/2¢3 4 )12
+C"/R (/R3 M~129, M| d£> (/Ra(1+|£|)|M G+ G| dg) dz

_ 12 2 122
<p (1+€]) ‘M amc;( dedz + e (1+€]) ‘M G( ded
RxR3 RxR3

+ellos [ﬁﬁaé] H2 4o (14 1)

For K5, it should vanish for |a| = 0. For Kg, by using integration by parts and performing the similar
calculations as for K3, one sees that for |a| = 0, |Kg| is bounded by

2 2
/ (1+ 1)) 1. [ni,ne,uﬁH(\M:maxM\ +(M:1/262G( >d£das
RxR3

< Z 60—|—5

lal=1

Ay H2 + eo/ (1+ ) ‘MIW&CG‘z dedz + 55 (1 4 4)~7/5.
RxR3
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For K7 with |a| = 0, using F = M + G again, one has

Kz| <] (2002¢0:0, M, M~ 0, M) | + | (00200:0¢, G, M9, G)|
+ (9002 00:0e, M,M ™10, G) |

5/ ]8x¢\]8x[ni,ne,u,9]\2da:+/ 10,0 M~20,0;, G|*dedx
R RxR3

~ 2
+/ |8x¢||M—1/2ax8§1G|2d£dx+ Z/ |8x¢|‘M_1/28xG‘ dédx
RxR3 RxR3

|a|=1

2
+Cy 3 0s00dnine w0l +0 Y [ (14 1eh [MT20,6] dsda
X

|a|=1 |a|=1
~ 112 ~ 2
S 3 (ot o [ e8] |+ o 1000l o [ (1 i) [M720,05 G deda
la|=1 RxR
2
+(eo+1) Z/ (U Jel) M0, deda + 051001 4 1)
RxR

lal=1
Likewise, for Kg with |a| = 0, it follows that

Ks| < |- (900200, G, M 0,G)| + |- (q002¢0¢, G, M9, M) |

_ 12 ~ 12
Sy [ 102 M0 G ded (ot [ (1l [M205 G de
RxR3 RxR3
2
+ (eo + 1) / (1+ 1) |M™20,G| " dgda + C, / 1021(0x [z, e, u, 6] *de
RxR3 R

T / 1020]|03 [, 1w, 0)(1 + [€1)|0e, Cldda

RxR3

—1/2 =2
(1+|g|)‘1v1 0,0¢, G| dedx

0, [ﬁi,ﬁe,a,é,am] H2 —l—eo/

RxR3

+(eo+n) /R e ‘M—lﬂach dedz + 6,1 + )2,

S(eo +1)

As to the last term g with a = 0, we get from Lemma [4.]] and Cauchy Schwarz inequality that

< —-1/2 2
Ko <n 1+ ¢]) (M axc;‘ dédz
RxR3

+/R </RB(1+’§\)‘M_1/2(‘9IG‘2d§> </R$ \M—lﬂe\zds) da
+/ </ M_l/zﬁxG‘2d£> (/ (1+|£|)‘M_1/2G‘2d£> dz
R \JR3 R3

2
Soveo) [l o6 dede v [
RxR3 RxR3

1+ €]) (M—lﬂéf deda.
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Substituting all the above estimates for K; (1 <1 < 9) into (Z.6]) and performing the similar calculation
as above for the case |a| = 1, one sees that

2
dt {;1 RxR3

M—1/2axaaF‘2d§da;+ > |aac‘9§¢|}

lo|<1

+)\Z/ (1+]§\)‘M_1/28x80‘G2d§dx
o<1 B
2 ~ |2
< (e +m) Z/ (1+|£|)(M:1/28x6“c;( dgdx+eo/ (1—|—|§|)‘M_1/2G‘ dedz  (7.10)
lal<1 RxR3 RxR3
-2 a2
+eo+m) Y. /RXR3(1+|£|)‘M V25000, G| deda+ (co+m) Y [0 [, 0, )|
|| <1 1<~v<2
+(eo+n) D [|0% [0:0,026] ||+ 8/5(1 + 1)~ T/C.
o<1

Similarly, one can obtain the following energy estimates for 0,0°F (Ja| < 1) with respect to the global
Maxwellian M.,:

d
% Z /]R><R3

lo|<1

2
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Note that one may not require the smallness of the coefficient of
2
)

Haa [ﬁh’ﬂ 0,0,0, agqb} ‘

and this implies that the derivation of (ZI1]) is much simpler than the one of (ZI0). Due to this we
would omit details of the proof of (I1l) for brevity.

With (ZI0) in hand, by letting 1 > k7 > 0, we get from the summation of (ZI0) and (5I3) x k7
that

m% {;1 H@a [ﬁi,ﬁe,ﬂ, 5] (t)H2 + &qu(t)?} - /{7/40% Z (01, 0“0y 0; + O“Oy0e)

lal=1
d
" E Z {/RXRS

lo|<1

FA|Var [ @8] 0+ 2 X [or [Fuiiesw.8] 0+ Mgt + el
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(7.12)
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On the other hand, by choosing 1 > kg > kg > 0, it follows from the summation of (Z.5]) x kg and

(TII) x ks that
i 2
K9 —
dt Z RxR3

2
Y / 1+|g|)(1v1;1/28ac;( dédz + A
1<[al<2 xR3 RxR3

S (s +rg) D || [m,m,a,ﬁ]“z+(mg+mg) S (0 [000, 026) ||
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2
M 20°F | deda
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la|<1

where we have used the fact that

3 / 1+ ¢ (M‘l/zaa(;( déda

1<]al<2
1<|%:<2/RXR3 1+¢)) ‘M—1/2aO‘G‘ déde + 5, 1<§|:<2H8 [Fis, e, . 9]” LS4 ),

7.3. Estimate on energy with mixed derivatives. In what follows, we deduce the energy esti-
mates on the mixed derivative terms 0%9°G. To do so, let |5| > 1 and |a| + |8] < 2. Acting 0*9” to
(ZI) and taking the inner product of the resulting equation with M;'0%9°G over R x R?, one has

1d /
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Similar to those calculations in the previous subsection, it holds that
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Consequently, it follows from (Z12)), (ZI3) and (ZI4) that
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where K is a positive large constant and kg is also a positive but suitably small constant. Therefore
(BI4) follows from (I5]) with the help of the Gronwall’s inequality. This completes the proof of
Proposition O
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