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Network growth is ubiquitous in nature (e.g., biological networks) and technological systems (e.g., modern
infrastructures). To understand how certain dynamical behaviors can or cannot persist as the underlying network
grows is a problem of increasing importance in complex dynamical systems as well as sustainability science and
engineering. We address the question of whether a complex network of nonlinear oscillators can maintain its
synchronization stability as it expands or grows. A networkin the real world can never be completely synchro-
nized due to noise and/or external disturbances. This is especially the case when, mathematically, the transient
synchronous state during the growth process becomes marginally stable, as a local perturbation can trigger a
rapid deviation of the system from the vicinity of the synchronous state. In terms of the nodal dynamics, a large
scale avalanche over the entire network can be triggered in the sense that the individual nodal dynamics diverge
from the synchronous state in a cascading manner within a short time period. Because of the high dimension-
ality of the networked system, the transient process for thesystem to recover to the synchronous state can be
extremely long. Introducing a tolerance threshold to identify the desynchronized nodes, we find that, after an
initial stage of linear growth, the network typically evolves into a critical state where the addition of a single
new node can cause a group of nodes to lose synchronization, leading to synchronization collapse for the entire
network. A statistical analysis indicates that, the distribution of the size of the collapse is approximately alge-
braic (power law), regardless of the fluctuations in the system parameters. This is indication of the emergence of
self-organized criticality. We demonstrate the generality of the phenomenon of synchronization collapse using a
variety of complex network models, and uncover the underlying dynamical mechanism through an eigenvector
analysis.

PACS numbers: 05.45.Xt,89.75.Hc

I. INTRODUCTION

Growth is a ubiquitous phenomenon in complex systems.
Consider, for example, a modern infrastructure in a large
metropolitan area. Due to the influx of population, the essen-
tial facilities such as the electrical power grids, the roads, wa-
ter supply, and all kinds of services need to grow accordingly.
The issue of how to maintain the performance of the grow-
ing systems under certain constraints (e.g., quality of living)
becomes critically important from the standpoint of sustain-
ability. To develop a comprehensive theoretical frameworkto
understand, at a quantitative level, the fundamental dynam-
ics of sustainability in complex systems subject to continuous
growth is a challenging and open problem at the present. In
this paper, to shed light on how a complex network can main-
tain its function and how such a function may be lost during
growth, we focus on the dynamics of synchronization. In par-
ticular, if a small network is synchronizable, as it grows in
size the synchronous state may collapse. The main purpose of
the paper is to uncover and understand the dynamical features
of synchronization collapse as the network grows. As will be
explained, our main result is that the collapse is essentially a
self-organizing dynamical process towards criticality with an
algebraic scaling behavior.

From the beginning of modern network science, growth
has been recognized and treated as an intrinsic property of
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complex networks [1, 2]. For example, the pioneering model
of scale free networks [3] had growth as a fundamental in-
gredient to generate the algebraic degree distribution. The
growth aspect of this model is, however, somewhat simplistic
as it stipulates a monotonic increasing behavior in the network
size, whereas the growth behavior in real world networks can
be highly non-monotonic. For example, in technological net-
works such as the electric power grid, introducing a new node
(e.g., a power station) will increase the load on the existing
nodes in the network, which can trigger a cascade of failures
when overload occurs [4–24]. In this case, the addition of a
new node does not increase the network size but instead re-
sults in a network collapse [5, 24]. A similar phenomenon
was also observed in ecological networks, where the intro-
duction of a new species may result in the extinction of many
existing species [25, 26]. In an economic crisis, the failure of
one financial institute can result in failures of many othersin
a cascading manner [21, 27]. To take into account the phe-
nomenon of non-monotonic network growth to avoid network
collapse, an earlier approach was to constrain the growth ac-
cording to certain functional requirement such as the system
stability with respect to certain performance, i.e., to impose
the criterion that the system must be stable at all times [25].
It was revealed that network growth subject to a global sta-
bility constraint can lead to a non-monotonic network growth
without collapse [28]. Constraint based on network synchro-
nization was proposed [29], where it was demonstrated that
imposing synchronization stability can result in a highly se-
lective and dynamic growth process [29] in the sense that it
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often takes many time steps for a new node to be successfully
“absorbed” into the existing network.

To be concrete, we study the growth of complex networks
under the constraint of synchronization stability. Synchro-
nization of coupled nonlinear oscillators has been an active
area of research in nonlinear science [30–34], and it is an im-
portant type of collective dynamics on complex networks [35].
Earlier studies focused on systems of regular coupling struc-
tures, e.g., lattices or globally coupled networks. The dis-
covery of the small world [36] and scale free [3] network
topologies in realistic systems generated a great deal of in-
terest in studying the interplay between complex network
structure and synchronization [37–51]. Since the structures
of many realistic networks are not static but evolve with
time [52, 53], synchronization in time-varying complex net-
works was also studied [54–56] to reveal the dynamical inter-
play between the time-dependent network structure and syn-
chronization [39, 57, 58]. We note that there was a line of
works that addressed the effect on synchronization of different
ways that the network structure evolves with time, such as link
rewiring [59, 60], adjustment of coupling weights [61, 62],
change in the coupling scheme [63, 64], but in these works
the network size is assumed to be fixed.

To investigate the growth of stability-constrained complex
networks, a key issue is the different time scales involved in
the dynamical evolution [28, 29, 65]. For network growth con-
strained by synchronization, there are two key time scales:
one associated with the transient synchronization dynamics
occurred in a static network, denoted asTs, and another char-
acterizing the speed of network growth, e.g., the time interval
between two successive nodal additions,Tg. The interplay be-
tween the two time scales can result in distinct network evo-
lution dynamics. For example, forTs ≫ Tg, the stability
constraint would have little effect on the network evolution
and, in an approximate sense, the network grows as if no con-
straint were imposed. However, forTs ≪ Tg, the network
remains synchronized at all times. In particular, since thesta-
bility is determined by the network structure, e.g., through the
eigenvalues of the coupling matrix, the dynamics of network
evolution is effectively decoupled from that of synchroniza-
tion. ForTs ≈ Tg, complicated network evolution dynamics
can arise [65], where the two types of dynamical processes,
i.e., growth and synchronization, are entangled. Depending
on the instant network structure and synchronization behavior,
the addition of a new node may either increase or decrease the
network size. For example, if the new node induces a desyn-
chronization avalanche, a number of nodes will be removed
if their synchronization errors exceed some threshold values,
resulting in a sudden decrease of the network size and poten-
tially a large scale collapse.

In this paper, we focus on the regime ofTs ≈ Tg and intro-
duce a tolerance threshold to determine if a node has become
desynchronized. Specifically, after each transient periodof
evolution, we remove all nodes with synchronization error ex-
ceeding this threshold. During the course of evolution, the
network can collapse at random times. Strikingly, we find
that the size of the collapses follows an algebraic scaling law,
indicating that the network growth dynamics under the syn-

chronization constraint can be regarded as a process towards
self-organized criticality (SOC).

In Sec. II, we describe our network growth model subject to
synchronization constraint and demonstrate the phenomenon
of network collapse. In Sec. III, we analyze the dynamical
and statistical properties of the collapses. In Sec. IV, we
use the method of eigenvector analysis to explain the numer-
ically observed collapse phenomenon. In Sec. V, we study
continuous time dynamics on randomly growing networks to
demonstrate the generality of the synchronization based col-
lapse phenomenon and its SOC characteristics. In Sec. VI, we
present conclusions and discuss the implications of the main
results.

II. MODEL OF NETWORK GROWTH SUBJECT TO
SYNCHRONIZATION CONSTRAINT

We consider the standard scale-free growth model [3] but
impose a synchronization-based constraint for nodal removal.
Specifically, starting from a small, synchronizable core ofm0

coupled nonlinear oscillators (nodes), at each time stepng of
network growth, we add a new node with random initial con-
dition into the network. The new node is connected tom exist-
ing nodes according to the preferential attachment probability
Πi = ki/

∑
j kj , wherei, j = 1, 2, . . . , n are the nodal in-

dices andki is the degree of theith node. We then monitor the
system evolution for a fixed time period (Tg) and calculate the
nodal synchronization errorδri (to be defined below). Defin-
ingδrc as the tolerance threshold for nodal desynchronization,
if all nodes in the network meet the conditionδri < δrc, the
network size will be increased by one. Otherwise, the nodes
with δri > δrc will be removed from the network, together
with the links attached to them. For convenience, we use the
term “collapse” to describe the process of nodal removal and
the number of removed nodes,∆n, is the collapse size.

For simplicity, we set the nodal dynamics to be identical
and adopt the normalized coupling scheme [66, 67], where
the dynamical evolution of theith oscillator in the network is
governed by

ẋi = F(xi) +
ε

ki

n∑

j=1

aij [H(xj)−H(xi)], (1)

with F and H representing, respectively, the dynamics of
the isolated oscillator and the coupling function. The net-
work structure is characterized by the adjacency matrix{aij},
whereaij = 1 if oscillators i andj are directly connected,
and aij = 0 otherwise. The parameterε > 0 is the uni-
form coupling strength. Note that the coupling strength from
nodej to nodei, cij = (εaij)/ki, in general is different from
that for the opposite direction, so the network is weighted
and directed [67]. The class of models of linearly coupled
nonlinear oscillators with variants are commonly used in the
literature of network synchronization [68]. While Eq. (1) is
for continuous-time dynamical systems, networks of coupled
nonlinear maps can be formulated in a similar way.

To be concrete, we assume that the individual nodal dy-
namical process is described by the chaotic logistic map,
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FIG. 1. (Color online) Evolution of a network of coupled chaotic logistic maps subject to synchronization constraint. The transient period for
network to be synchronized isTg = 300, and the tolerance threshold for desynchronization at the nodal level isδrc = 10−10. (a) Variation
of the network size,n, with the time step of node addition,ng . The (red) filled circles are the results forTg = 300 andδrc = 10−10, and
the (blue) open squares are forTg = 300 andδrc = 10−9. (b) Time evolution of the network averaged synchronization error,〈δr〉. Inset:
the corresponding semi-logarithmic plot. (c) Time evolution of the synchronization error,δri, for three typical nodes in the network. (d-f)
Snapshots of the nodal synchronization errors,δri, for three different time instants: (d)t = 123Tg +1, (e)t = 123Tg +5, and (f)t = 124Tg .
Nodes withδr > δrc are represented by filled circles.

x(t + 1) = F [x(t)] = 4x(t)[1 − x(t)], and chooseH(x) =
F (x) as the coupling function. The coupling strength is fixed
at ε = 1. The initial network consists ofm0 = 8 globally
coupled nodes, which is synchronizable for the given cou-
pling strength. For a fixed time intervalTg = 300, we in-
troduce a new node (map) into the network with a randomly
chosen initial condition in the interval(0, 1) by attaching it
to the existing nodes according to the preferential attachment
rule. The synchronization error is defined asδri = |xi −〈x〉 |
with 〈x〉 =

∑
i xi/n being the network-averaged state, which

is calculated at the end of each time intervalTg. We set the
tolerance threshold to beδrc = 10−10 (somewhat arbitrar-
ily). The growing process is terminated either if the network
has completely collapsed (n ≈ 0) or when its size reaches a
preset upper bound (e.g, 1000).

Figure 1 shows the network sizen versus the time stepng.
We see that, after an initial period of linear growth (ng ≤
123), the network size is suddenly decreased fromn = 128 to
103, signifying that a collapse event of size∆n = 25 has oc-
curred after the addition of the124th oscillator. After the col-
lapse, the network begins to expand again. In the subsequent
time evolution, collapse of different sizes occurs at random
times, e.g.,∆n = 22 atng = 379 and∆n = 10 atng = 418.
For relatively small network size, when a collapse event oc-
curs, the removed nodes account for only a small fraction of
the nodes in the entire network (e.g.,∆n/n < 10%), with
growth followed immediately after the collapse. However, as
the network size exceeds a critical value, saynmax = 400,

this scenario of small-scale collapse followed by growth is
changed dramatically. As shown in Fig. 1(a), forng = 471, a
catastrophic collapse event occurs, which removes over75%
of the nodes in the network (from471 to 111). More strik-
ingly, there is no growth after the event - the network contin-
ues to collapse. At the end ofng = 472, not a single node
remains in the network, i.e., the network has collapsedcom-
pletely.

To gain more insights into the dynamics of network col-
lapse, we monitor the system evolution for the time period
123Tg < t < 124Tg, i.e., the response of the network dynam-
ics to the addition of the124th node. Figure 1(b) shows the
time evolution of the averaged network synchronization error,
〈δr〉 =

∑
i δri/n, where its value approaches zero rapid with

time. A semi-logarithmic plot reveals an exponentially de-
creasing behavior for〈δr〉 [inset of Fig. 1(b)], indicating that
the network is able to restore synchronization for relatively
large values ofTg. However, forTg = 300, at the end of the
time intervalt = 124Tg, the synchronization errors of certain
nodes exceed the threshold, leading to their removal from the
network. The synchronization errors for three typical nodes
are shown in Fig. 1(c). Examining the individual nodal syn-
chronization errorsδri, we find that, the “disturbance” trig-
gered by the addition of a new node spreads quickly over the
network, as shown in Fig. 1(d). After the disturbance reaches
the maximal dynamical range att ≈ 123Tg + 5 [Fig. 1(e)],
it begins to shrink and, at the end of this time interval, there
are still a few nodes withδr > δrc, as shown in Fig. 1(f).
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Based on their dynamical responses, the nodes can be roughly
divided into three categories, as shown in Fig. 1(c). Specifi-
cally, for most nodes, as time increasesδr first increases and
then decreases, e.g., the126th node. There are also nodes for
which the values ofδr decrease monotonically with time, e.g.,
the125th node. Finally, there are a few nodes for which the
values ofδr remain about0, e.g., the129th node. We also ob-
serve that, sometimes, the new node, whose introduction into
the network triggers a network collapse, in fact remains in the
network.

III. STATISTICAL PROPERTIES OF COLLAPSE AND
SELF-ORGANIZED CRITICALITY

In terms of practical significance, the following questions
about network collapse are of interest: (1) what kind of nodes
are more likely to be removed? (2) what is the size distri-
bution of the collapse? (3) how frequent is the network col-
lapsed? and (4) what are the effects of the tolerance threshold
δrc and growing intervalTg on the collapse? In this section
we address these questions numerically.

A simple way to identify the removed nodes is to examine
their degrees. With the same parameters as in Fig. 1, we plot in
Fig. 2(a) the normalized degree distribution,pdel(k), of the re-
moved nodes collected from a large number of collapse events
(except the catastrophic one that totally destroys the network).
We see that the distribution contains approximately three dis-
tinct segments with different scaling behaviors. Specifically,
for k ∈ [1,m], pdel(k) increases withk exponentially. For
k ∈ [m, 40], pdel(k) decreases withk algebraically with the
exponentγ ≈ −2.83. For k ∈ [40, 120], pdel(k) decreases
with k exponentially. Since, in our model each new node has
m = 8 links, it is somewhat surprising to see from Fig. 2(a)
that some nodes have their degrees smaller thanm. This phe-
nomenon can be attributed to the node removal mechanism:
when a node is removed, all links associated to it are also re-
moved. Another phenomenon is thatpdel(k) reaches its max-
imum atk = 8, which seems to contradict the previous result
that nodes of large degrees are more stable with respect to
synchronization than those of small degrees [61, 66–68].

Sincepdel(k) is obtained from a large number of collapses,
to uncover the interplay between nodal stability and degree,
we need to take into account the degree distributionp(k) of the
generated network. To findp(k), we use the largest network
emerged in the growth process (the network formed immedi-
ately before the catastrophic collapse) and obtain the degree
distribution for an ensemble of such networks. The results
are also shown in Fig. 2(a). We see that the two distributions,
pdel(k) andp(k), coincide with each other well, wherep(k)
also contains three distinct segments and reaches its maximum
atk = m. The consistency betweenpdel(k) andp(k) suggests
that the nodal stability is independent of the degree. Statisti-
cally, we thus expect that the small and large degree nodes to
have equal probability to be removed.

Figure 2(b) shows the collapse size distribution, where the
catastrophic network sizenmax is not included. We see that,
in the interval∆n ∈ [1, 100], the distribution follows an al-
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FIG. 2. (Color online) Statistical properties of collapse and SOC. (a)
Degree distributionpdel(k) of the removed nodes (filled circles). For
k ∈ [m, 40], the scaling behavior ispdel(k) ∼ kγ , with γ ≈ −2.83.
For k ≤ m andk ≥ 40, pdel(k) increases and decreases withk

exponentially, respectively. Open squares are for the degree distribu-
tionp(k) of the generated network. (b) Size distributionpcol(∆n) of
the collapse event for parametersTg = 300 andδrc = 10−10. For
∆n ∈ [1, 100], the scaling ispcol(∆n) ∼ ∆nγ with γ ≈ −0.85.
Open squares are for the size distribution of the collapse events for
Tg = 200 andδrc = 10−10. The algebraic scaling of the collapse
size signifies SOC. The results are averaged over100 network real-
izations.

gebraic scaling:pcol(∆n) ∼ ∆nγ , with γ ≈ −0.85. For
∆n > 100, an exponential tail is observed. To test whether the
exponential tail is a result of the finite size effect, we decrease
the transient period toTg = 200 and plot the distribution of
the collapse size again. (As we will demonstrate later, asTg

is decreased, the maximum network sizenmax will decrease
monotonically.) Figure 2(b) indicates that, comparing with the
case ofTg = 300, the regime of algebraic scaling is shifted
toward the left forTg = 200. Specifically, forTg = 200, we
havepcol(∆n) ∼ ∆nγ in the interval∆n ∈ [1, 50], where the
fitted exponent is about−0.79.

The emergence of algebraic scaling in the size distribu-
tion of network collapse is interesting from the viewpoint of
SOC that occurs in many real-world complex systems. For
a dynamical system subject to continuous external perturba-
tions, during its evolution towards SOC, it can appear stable
for a long period of time before a catastrophic event occurs,
and the probability for the catastrophe can be markedly larger
than intuitively expected (algebraic versus exponential scal-
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ing) [69, 70]. In our case, there is a long time period of syn-
chronization stability in spite of the small-size collapses, but
catastrophic collapses that remove all or most of the nodes
in the network can occur, albeit rarely. There are a variety
of models for SOC, but the unique feature of our model is
that it exploits network synchronization stability as a mecha-
nism for catastrophic failures. Since synchronization is ubiq-
uitous in natural and man-made complex systems, the find-
ing of SOC in synchronization-stability-constrained network
may have broad implications. For instance, synchronization is
commonly regarded as the dynamical basis for normal func-
tioning of the power grids [71], and there is empirical evi-
dence that the size of the blackouts follows roughly an alge-
braic distribution [72].

We proceed to study the frequency of network collapse.
Let ∆n′ be the period of continuous network growth, i.e.,
the number of nodes successively added into the network
between two adjacent collapses. The collapse frequency is
f = 1/ 〈∆n′〉, where〈∆n′〉 is the averaged period. For the
same parameters in Fig. 1, we findf ≈ 1/21. That is, on av-
erage the network collapses every21 new additions. Since
the synchronization errors are evaluated at the end of each
transient interval and nodes are removed according to a pre-
defined tolerance threshold, we expect the collapse frequency
to depend on the parametersTg and δrc. This is apparent
in Fig. 1(a), where the network growth under the parameters
Tg = 300 andδrc = 10−9 is also shown. We see that, com-
paring with the case ofδrc = 10−10, the catastrophic collapse
is postponed. To assess the influence ofTg andδrc on f , we
show in Fig. 3(a)f versusTg for different values ofδrc. It
can be seen that, with the increase ofTg or δrc, f decreases
monotonically.

For the process of network growth, two particularly relevant
quantities are: (1) the critical network sizen1 at which the
first collapse occurs and (2) the maximum network sizenmax

beyond which a catastrophic collapse occurs. Similar to the
collapse frequency, these two quantities depend on the param-
etersTg andδrc. Figure 3(b) showsn1 (nmax) versusTg for
different values ofδrc. We see that, asTg or δrc is increased,
n1 (nmax) increases monotonically. That is, by increasingTg

or δrc, one can postpone the first and the catastrophic network
collapse but eventually it will occur.

IV. PHYSICAL THEORY OF SYNCHRONIZATION BASED
NETWORK COLLAPSE

Say at stepn′ of the growth, the network containsn − 1
synchronized oscillators and a new oscillator of random ini-
tial condition is introduced. Due to the new oscillator, the
trajectories of the existing oscillators leave, at least temporar-
ily, the synchronous manifoldxs. Let δxi = xi − xs be the
distance of theith oscillator from the manifold, which is the
synchronization error. The evolution ofδxi is governed by the
following variational equation:

δẋi = DF(xs) · δxi+
ε

ki

n∑

j=1

aijDH(xs) · [δxj − δxi], (2)
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FIG. 3. (Color online) Behavior of the collapse frequency. (a) The
collapse frequencyf as a function of the transient intervalTg for
different values of the tolerance thresholdδrc. (b) The first critical
network sizen1 versusTg for different values ofδrc. Inset: depen-
dence of the maximum network sizenmax on Tg. The results are
averaged over100 network realizations.

whereDF(xs) andDH(xs) are the Jacobian matrices of the
local dynamics and the coupling function evaluated onxs,
respectively. Equation (2) is obtained by linearizing Eq. (1)
about the synchronous manifoldxs, which characterizes its
local stability [73]. To keep the expanded network synchro-
nizable, a necessary condition is that all the synchronization
errors,{δxi} approach zero exponentially with time. Project-
ing δxi into the eigenspace spanned by the eigenvectorei of
the network coupling matrixC = {cij} = {εaij/ki}, we can
diagonalize then coupled variational equations inton decou-
pled modes in the blocked form

ξ̇l = [DF(xs) + σDH(xs] · ξl, l = 1, . . . , n, (3)

whereξl is thelth mode transverse to the synchronous mani-
fold xs, and0 = σ1 > σ2 > . . . > σn are the eigenvalues of
the coupling matrixC. Among then modes, the one associ-
ated withσ = 0 represents the motion within the synchronous
manifold. The network is synchronizable only when all the
transverse modes (ξj, j = 2, . . . , n) are stable, i.e., the largest
Lyapunov exponent among these modes should be negative:
Λ(σ) < 0. For typical nonlinear oscillators and smooth cou-
pling functions, previous works [73–75] showed thatΛ(σ) can
be negative within a bounded region in the parameter space of
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σ, i.e.,Λ(σ) < 0 for σ ∈ (σl, σr). Thus, the necessary condi-
tion to make the synchronous state stable isσl < σj < σr for
all the transverse modes (j = 2, . . . , n). For the chaotic logis-
tic map used in our numerical simulations, we haveσl = 0.5
andσr = 1.5.

The eigenvalue analysis, also known as the master stabil-
ity function (MSF) analysis, is standard in synchronization
analysis [73, 74]. It not only indicates whether a network is
synchronizable, but also quantifies the degree of synchroniza-
tion stability as well as the synchronization speed in certain
situations [76–78]. Specifically, by examining the Lyapunov
exponents associated with the two extreme modes,Λ(σ2) and
Λ(σn), one can predict whether the network is synchroniz-
able and how stable (unstable) the synchronous state is. In
general, the smallerΛ(σ2) andΛ(σn) are, the more stable
the synchronous state is [73–75]. Because of the relation
Λ(σ2,n) ∝ σ2,n, near the critical pointsσl andσr , the net-
work synchronizability can be characterized by the stability
distancesdl = σ2 − σl anddr = σr − σn. For a synchroniz-
able network, we havedl,r > 0. Moreover, the largerdl and
dr are, the more stable the synchronous state will be. Other-
wise, if one of the distances is negative, the synchronous state
will be unstable. In the asynchronous case, the smallerdl and
dr are, the more unstable the synchronous state will be.

As the network synchronizability can be characterized by
the stability distancesdl,r, we calculate the evolution ofdl,r
during the course of network growth, as shown in Fig. 4(a). In
accordance with the process of network growth (Fig. 1), the
time evolution ofdl,r also consists of distinct regimes. Firstly,
asng increase from 1 to123, dl,r approaches zero quickly.
Secondly, in the intervalng ∈ (123, 470), dl,r remains about
zero. A magnification of this interval reveals that, whiledl,r
tend to reach zero, the process is occasionally interruptedby
some small increments. Checking the points at whichdl,r in-
crease suddenly [inset of Fig. 4(a)], we find that these points
correspond to exactly the time instants of network collapses.
For example, forng = 379, dl increases from0.032 to 0.041
[Fig. 4(a)], while at the same time there is a collapse event
in which the network size changes fromn = 344 to 322
[Fig. 1(a)]. Finally, at the critical instantng = 472 where
the catastrophic collapse occurs,dl anddr change suddenly
to 0.21 and0.22, respectively.

Figure 4 thus indicates that, for the entire process of net-
work growth, the stability distancesdl,r remain positive so
that the network is synchronizable at all time. That is, evenat
the time when a collapse occurs, no node would be removed
if the transient timeTg is sufficiently long. It may then be said
that, with respect to the impact of the network synchronizabil-
ity (as determined by the network structure), network collapse
is equally influenced by the transient synchronization dynam-
ics. IncreasingTg can thus effectively postpone the collapses
as the network grows, a manifestation of which is a further
decrease indl,r at the collapses. Letdmin be the minimum of
dl,r during the process of network growth. Figure 4(b) shows
dmin versusTg for different values ofδrc. As anticipated,
increasing the value ofTg or δrc results in a monotonic de-
crease in the value ofdmin, which agrees with the results of
direct simulations in Fig. 3(b) where a postponement of the
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FIG. 4. (Color online) Behavior of synchronization distances. (a)
Time evolution of the stability distancesdl,r. Inset: a magnifica-
tion of part of the evolution. (b) The smallest stability distancedmin

versus the transient intervalTg for different values of the tolerance
thresholdδrc. The results are averaged over100 network realiza-
tions.

catastrophic collapse is explicitly demonstrated.
The fact thatdl,r become approximately zero prior to

a catastrophic collapse implies that the network becomes
marginally stable during the growing process, i.e., the oscil-
lator trajectories deviate only slightly from the synchronous
manifold. In this case, desynchronization is determined bythe
two extreme modes,σ2 andσn, as the corresponding trans-
verse Lyapunov exponentsΛ(σ2,n) are larger than those asso-
ciated with other transverse modes [79]. This feature makes
possible a theoretical analysis of the collapse phenomenon.
In particular, assumingdl,r ≈ 0 andΛ(σ2) > Λ(σn) (so
that the2nd transverse mode is more unstable), we have that
desynchronization is mainly determined by the2nd mode,
with ξ2(t) ∼ exp[Λ(σ2)t]. SinceΛ(σ2) ≈ 0, we have
ξ2(t) ∼ Λ(σ2)t. Transforming this mode back to the nodal
space, we obtainδri = |e2,iξ2| ∼ |e2,iΛ(σ2)t|, wheree2,i is
the ith component of the eigenvectore2 associated withσ2.
For the given network structure, the value ofΛ(σ2) is fixed.
We thus have

δri ∝ |e2,i|, (4)

which establishes a connection between the network structure
and the oscillator stability. It is only necessary to calculate the
eigenvector associated with the most unstable mode to iden-
tify the unstable oscillators,
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FIG. 5. (Color online) Relation between key eigenvector andsyn-
chronization error. (a) The linear relationship between the absolute
eigenvector elements|e2,n(i)| and the oscillator synchronization er-
rors δri at different steps of the network growth. Filled circles are
for the case ofng = 418, Λ(σ2) > Λ(σn), where the relation
|e2(i)| ∼ δri holds. Open squares specify the case ofng = 379 and
Λ(σ2) < Λ(σn) where we have|en(i)| ∼ δri. (b) Size distribution
of network collapse predicted from the eigenvector analysis. The dis-
tribution follows an algebraic scaling law:p′col(∆n) ∼ ∆nγ′

, with
the fitted exponent beingγ′ ≈ −0.91.

Relation (4) can be verified numerically. As shown in the
inset of Fig. 4(a), at the growing stepng = 379, the network
containsn = 322 oscillators and the two extreme eigenval-
ues are(σ2, σn) = (0.538, 1.468). SinceΛ(σ2) = −0.079
andΛ(σn) = −0.066, desynchronization is determined by
thenth mode. Figure 5(a) shows the synchronization errors
(measured at the end of the379th growing step)δri versus
the absolute eigenvector element|e2,i| for all the oscillators
in the network, which is obtained from the network coupling
matrixC. We see thatδri increases with|en,i| linearly. The
linear relationship is also observed when the2nd transverse
mode is more unstable. For example, at the growing step
ng = 418, the network containsn = 350 oscillators and
the two pertinent Lyapunov exponents are[Λ(σ2),Λ(σn)] =
(−0.070,−0.081). The linear variation ofδri with |e2,i| is
also shown in Fig. 5(a).

Relation (4) can also be used to interpret the size distri-
bution of the network collapses observed numerically [e.g.,
Fig. 2(b)]. Letδri(0) be the initial synchronization error of
the ith oscillator induced by the newly added oscillator. Af-
ter a transient phase of lengthTg, the error becomesδri ≈
δri(0)|ej′,i| exp [Λ(σj′ )Tg], with j′ = 2 or n (depending on
which mode is more unstable). AsΛ(σj′ ) is approximately

zero, we haveδri ≈ δri(0)|ej′,i|[1 + Λ(σj′ )Tg]. Setting
δri = δrc, we get the critical element

ec ≈ δrc/[δri(0)(1 + Λ(σj′ )Tg)].

Thus, whether theith oscillator is removed solely depends
on the elementej′,i. In particular, if |ej′,i| > ec, we have
δri > δrc so that the oscillator will be removed; otherwise
it will remain in the network. Assuming the oscillators have
the same initial errorδr(0), we can estimate the size of the
network collapse simply by counting the number of elements
satisfying the inequality|ej′,i| > ec. To verify this idea,
we generate scale-free networks, calculate the eigenvector e2,
and identify the largest elementemax of e2. Choosingec ran-
domly from the range(0, emax) [sinced(0) is dependent upon
the (random) initial condition of the newly added oscillator],
we truncate the eigenvector elements, where the number of
truncated elements is the collapse size. We repeat this trunca-
tion procedure for a large number of statistical realizations and
calculate the size distribution of the collapses. The result for a
network of sizen = 800 is shown in Fig. 5(b). We see that the
size distribution calculated from the eigenvector analysis also
follows an algebraic scaling:p′col(∆n) ∼ ∆nγ′

, where the
fitted exponent isγ′ ≈ −0.91. This is in good agreement with
the one obtained from direct simulations [Fig. 2(b)], where
the algebraic scaling exponent isγ ≈ −0.85 for the interval
∆n ∈ [1, 100].

V. ALTERNATIVE MODELS OF NETWORK DYNAMICS

To demonstrate the generality of the synchronization based
network collapse phenomenon and its SOC characteristics, we
simulate continuous time dynamics on networks that grow ac-
cording to alternative rules other than the preferential attach-
ment mechanism. In fact, in network modeling, the way by
which a new node is added to the existing network can have
a determining role in the network structure [1]. For exam-
ple, in unconstrained growing networks, random attachment
cannot lead to any scale free feature but results in an exponen-
tial degree distribution [80]. Since the network structurehas
a significant effect on synchronization, we expect the char-
acteristics of network growth dynamics following random at-
tachment to be different from those from the preferential at-
tachment rule. Besides the network structure, our eigenvector
analysis indicates that the synchronization behavior is also de-
pendent upon the nodal dynamics and the coupling function.
For example, for a different type of nodal dynamics, the MSF
curve can be dramatically different, so is the stability param-
eter region [73–75]. We are led by these considerations to
study continuous-time oscillator networks that grow accord-
ing to the random attachment rule.

We choose the chaotic Rössler oscillator [81] described by
(dx/dt, dy/dt, dz/dt) = (−y−z, x+0.2y, 0.2+xz−9.0z).
The oscillators at different nodes are coupled through thex
variable with the coupling functionH([x, y, z]T ) = [0, y, 0]T .
We define the synchronization error asδri = |xi − 〈x〉 |. The
coupling strength is fixed atε = 0.35. The stable synchroniza-
tion region from the MSF curve is open at the right side [75],
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FIG. 6. (Color online) Synchronization based collapse in networks
of continuous-time nonlinear oscillators. For networks ofchaotic
Rössler oscillators formed according to the random link attachment
rule, the network collapse phenomenon and its SOC characteris-
tics: (a) the critical network sizen1 versus the transient timeTg

for different values of the tolerance thresholdδrc and (b) distribu-
tion of the collapse sizes for∆n ∈ [1, 40]: pcol(∆n) ∼ ∆nγ with
γ ≈ −0.58. Open squares represent the size distribution predicated
from the eigenvector analysis. Inset: the linear relation between|e2,i|
andδri as predicted [Relation (4)]. The data are averaged over100
network realizations.

i.e., the transverse modei is stable forσi > σl ≈ 0.157.
Adopting the random attachment rule, we grow the network
under the constraint of synchronization stability and find the
phenomenon of network collapse to be robust. For example,
Fig. 6(a) shows the critical network sizen1 versus the tran-
sient timeTg for different values of the tolerance threshold
δrc. We see that, whilen1 increases monotonically withTg

andδrc, the rate is somewhat smaller than that associated with
the preferential attachment rule [Fig. 3(b)], indicating that
the random attachment rule tends to make network collapses
more frequent. Figure 6(b) shows the algebraic distribution
of the collapse size:pcol(∆n) ∼ ∆nγ for ∆n ∈ [1, 50], with
γ ≈ −0.58. These results suggest that the SOC characteristics
of the network collapse phenomenon are robust, regardless of
the details of the network growth mechanism and of the nodal
dynamical processes.

For the randomly growing chaotic Rössler network, we find
that the relationship between the synchronization errorδri and
the eigenvector elemente2,i can still be described by (4) [in-
set in Fig. 6(b)]. However, when analyzing the algebraic size
distribution using the eigenvectors, we note that the agree-

ment between the theoretical predication and the direct sim-
ulation results is not as good as that for the preferential at-
tachment growth rule. For example, by truncating the eigen-
vectore2 of a random network ofn = 800 nodes, we ob-
tain p′col(∆n) ∼ ∆nγ′

with γ′ ≈ −0.94. The difference in
the value of the algebraic scaling exponent can be attributed
to the limited size of the network generated subject to the
synchronization constraint as well as to the relatively short
transient period (small values ofTg). In fact, in a computa-
tionally feasible implementation of the random growth model
with continuous-time dynamics, the largest network generated
has the sizen ≈ 50, rendering somewhat severe the finite size
effect. Nonetheless, in spite of the finite-size effect, theSOC
features of the network collapse phenomenon are robust.

VI. CONCLUSIONS

Growth or expansion is a fundamental feature of com-
plex networks in nature, society, and technological systems.
Growth, however, is often subject to constraints. Tradi-
tional models of complex networks contain certain growth
mechanism, such as one based on the preferential attachment
rule [3], but impose no constraint. Apparently, when growthis
constrained, typically the network cannot expand indefinitely,
nor can its size be a monotonous function of time. As a re-
sult, during the growth process there must be times when the
network size is reduced (collapse). But are there generic fea-
tures of the collapse events? For example, statistically what
is the distribution of the collapse size, and are there universal
characteristics in the distribution?

This paper addresses these intriguing questions using syn-
chronization as a concrete type of constraint. In particular,
taking into account the effects of desynchronization tolerance
and synchronization speed, we propose and investigate grow-
ing complex networks subject to the constraint of synchro-
nization stability. We find that, as new nodes are continuously
added into the network, it can self-organize itself into a criti-
cal state where the addition of a single node can trigger a large
scale collapse. Statistical analysis of the characteristics of the
collapse events such as the degree distribution of the collapsed
nodes, the collapse frequency, and the collapse size distribu-
tion, indicates that constraint induced network collapse can
be viewed as an evolutionary process towards self-organized
criticality. The SOC feature is especially pronounced as the
collapse size follows an algebraic scaling law. We develop an
eigenvector analysis to understand the origin of the network
collapse phenomenon and the associated scaling behaviors.

In a modern society, cities and infrastructures continue to
expand. In social media, various groups (social networks)
keep growing. When constraints are imposed, e.g., manifested
as governmental policies or online security rules, how would
the underlying network respond? Can constraints lead to large
scale, catastrophic collapse of the entire network? These are
difficult but highly pertinent questions. Our findings provide
some hints about the dynamical features of the network col-
lapse phenomenon, but much further efforts are needed in this
direction of complex systems research.
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