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Here we make an attempt to extend the idea of generalized Hawking temperature and

modified Bekenstein entropy at event horizon in fractal universe. The modified Hawking

temperature and Bekenstein entropy is considered in the governing Friedmann equations,

which is modified in the background of a fractal universe. The validity of the Generalised

second law of thermodynamics (GSLT) and Thermodynamic Equilibrium (TE) have been

examined in a fractal universe filled with perfect fluid having constant equation of state in

four different generalized Bekenstein system. Finally both laws are examined and compared

numerically in all four cases.
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I. INTRODUCTION

In 1970s Hawking and Bekenstein started the discovery of Black holes (BH) thermodynamics.

Since then there is a general opinion that there is a deep connection between gravity and ther-

modynamics [1–5]. Eventually the BH are regarded as a black body emitting thermal radiations

known as Hawking radiation [4, 5]. It was realized that laws of BH physics and thermodynam-

ical laws are equivalent. Furthermore, Jacobson and Padmanabhan did a pioneer work in this

direction by establishing a relationship between first law of thermodynamics and Einstein field
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equations [6, 7].

Subsequently these results are generalized in the cosmological system and there have been

lot of studies dealing with universe as a thermodynamical system [9].

The cosmological event horizon usually does not exist in standard Big Bang Cosmology.

Due to the recent observations [10–15], the universe is in an accelerating phase dominated by

dark energy. So the event horizon is assured to exist in this phase and is distinct from the

apparent horizon [16–18]. In this context Wang et al [19, 20] in 2006 investigated the laws of

thermodynamics in an accelerating universe with a time dependent equation of state. They

showed that the first and second laws of thermodynamics are satisfied on apparent horizon

while the thermodynamical laws break down on cosmological event horizon. As a result, they

concluded that the universe bounded by apparent horizon as a Bekenstein system (perfect

thermodynamical system) and termed the universe bounded by event horizon as a non Bekenstein

system (an unphysical system).

Later it has been shown that the generalized second law of thermodynamics holds (GSLT) (in

any gravity theory) with some reasonable restrictions for the Universe bounded by an event

horizon under the assumption that the first law holds for Einstein gravity [21, 22] and in other

gravity theories [21–23] and for different fluid systems [21, 22, 24] (including dark energy [22, 24]).

Subsequently by generalizing the Hawking temperature or modifying the Bekenstein entropy

[25, 26] it has been possible to show the validity of both the first and GSLT for the Universe

bounded by an event horizon in the Einstein gravity [27].

In the modern era, new observational data [16–18] have suggested that modified theories

of gravity may be relevant in order to explain, for instance, the accelerated expansion of the

Universe and certain instabilities observed in galaxies. Among all these theories, the brane

cosmology received lot of attention in recent years [28–33]. Another theoretical approach was

made by Calcagni [34, 35] for a power-counting renormalizable field theory living in a fractal

space-time and consequently fractal cosmology was developed. Historically the first appearance

of fractal cosmology was in Andrei Linde’s paper [36]. For an overview of fractal cosmology one

can see the ref [37]. The action in this model is Lorentz covariant and the metric space-time

(M, ̺) is equipped with a Stieltjes measure ̺ . Very recently it was shown that in a fractal

universe, the Friedmann equations can be transformed to Clausius relation, but a treatment

with non-equilibrium thermodynamics of space-time is needed [39]. Furthermore, Sheykhi et

al examined GSLT in a fractal universe on apparent horizon and found that GSLT is valid for

particular choice of fractal parameter [38].
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In this paper, we shall make an attempt to see the validity of thermodynamical laws in fractal

universe filled with perfect fluid having constant equation of state, using modified entropy and

temperature. In a sense our main focus is to extend the idea of generalized Hawking temperature

and modified Bekenstein entropy in fractal universe. The paper is organized as follows : Section

II deals with basic concepts related to earlier works. Brief review and basic equations of fractal

cosmology are presented in section III while section IV deals with thermodynamical analysis in

this context. Finally, summary of the work and possible conclusions are presented in section V.

II. BASIC EQUATIONS OF UNIVERSAL THERMODYNAMICS

Let us consider the homogeneous and isotropic FRW model of universe expressed by the

metric

ds2 = hij(x
i)dxidxj +R2dΩ2

2 (1)

where hij = diag
(

−1, a2

1−kr2

)

is the two-dimensional metric tensor, known as normal metric.

Here x0 = t, x1 = r i.e. i, j can take values 0 and 1, R = ar being the area radius considered

in the normal 2-D space. On this normal space another relevant scalar quantity is defined as

χ(x) = hij∂iR∂jR = 1−
(

H2 +
k

a2

)

R2 (2)

where k = 0,+1,−1 stands for flat, closed or open model, and H = ȧ
a is the Hubble parameter.

The apparent horizon is given by the vanishing of the scalar χ(x) as

RA =
1

√

H2 + k
a2

(3)

which becomes 1
H for a flat space (i.e. k = 0). Again, the definition for event horizon (EH) is

RE = a
∫∞

t
dt
a(t) which exists only in the present accelerating era.

According to the generalized second law of thermodynamics (GSLT), the entropy of an iso-

lated macroscopic physical system should be a non-decreasing function. Also such a system

always evolves towards thermodynamic equilibrium (TE). So the following inequalities can be

used to verify the validity of GSLT and TE :

for GSLT :
dST

dt
≥ 0

and for TE :
d2ST

dt2
< 0 (4)
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where ST = Sh + Sf , with Sh and Sf denoting respectively the horizon entropy and the

entropy of the fluid bounded by the horizon. One can use Gibb’s relation to calculate Sf ,

TfdSf = dEf + pdVh (5)

where Vh is the volume of the fluid, Ef = ρVh is the total energy of the fluid and Tf is the

temperature of the fluid.

In the present context, it is assumed that the temperature Tf of the cosmic fluid inside the

horizon is same as that of the bounding horizon, unless there is a spontaneous flow of energy

between the horizon and the fluid which is not consistent with FRW model. So it is assumed

that Tf ∝ T h or Tf = bT h, which is widely taken as Tf = T h to avoid mathematical complexity

of non-equilibrium thermodynamics.

III. ANALYSIS IN A FRACTAL UNIVERSE

The fractal properties of quantum gravity theories in n-dimensions have been explored in

several contexts. Assuming that matter is minimally coupled with gravity, the total action of

Einstein gravity in a fractal space-time is given by,

S = SG + Sm (6)

where

SG =
M2

P

2

∫

dnx
√
−g (R− 2Λ− w ∂µv ∂

µv) (7)

is the gravitational part of the action and

Sm =

∫

dnx
√
−gLm (8)

is the matter part of this action. Here g is the determinant of the metric gµν , MP = (8πG)−1/2

is reduced Planck mass, Λ is the cosmological constant and R is the Ricci scalar. Also v and w

respectively denote the fractional function (plays the role of a weight function of the integral in

eq. (8)) and the fractal parameter respectively.

The standard measure in the action is replaced by a nontrivial measure which appears in

Lebesgue-Stieltjes integral

dnx = d̺(x).

The scaling dimension of ̺ is [̺] = −nα 6= −n, where α > 0 is a positive parameter.
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Taking the variation of the action (6) with respect to the FRW metric gµν , the Friedmann

equations can be obtained in a fractal universe as

3

(

H2 +
k

a2

)

= 8πGρ − 3H
v̇

v
+

w

2
v̇2 + Λ (9)

and

6(Ḣ +H2) = −8πG(ρ + 3p) + 6H
v̇

v
− 2wv̇2 + 3

�v

v
+ 2Λ (10)

where k is the curvature constant mentioned as before. Here we evaluate the quantity �v by

simple tensorial calculation as

�v = gµνv;µν = −v̈ − 3Hv̇

For a flat FRW metric and non-static universe we consider k = 0 and Λ = 0. Also to avoid

mathematical complexity we assume 8πG to be unity, which yields the following equations

3H2 = ρ+ ρe (11)

and

2Ḣ = −(ρ+ p)− (ρe + pe) (12)

where ρe and pe denote the effective energy density and the effective pressure respectively. These

are given by

ρe =
w

2
v̇2 − 3H

v̇

v
(13)

and

pe =
w

2
v̇2 + 2H

v̇

v
+

v̈

v
(14)

To proceed further we need to specify fractional function v. In what follows in order to

remain general, we choose following two types of fractional functions [38].

Type I:

First we assume a power law form of the fractional function v as,

v = v0t
−β (15)



6

where v0 is an arbitrary constant and β is the fractal dimension. The parameters α and β are

related as β = n(1− α). Note that for an ultraviolet nontrivial fixed point α = 2
n while α = 4

n

for infraded fixed point [34]. So, in a four-dimensional space (n = 4), α ranges as 0 < α ≤ 1.

Subsequently the equations (13) and (14) take the forms

ρe =
w

2
β2v20t

−2(β+1) + 3H
β

t
(16)

and

pe =
w

2
β2v20t

−2(β+1) − 2H
β

t
+

β(β + 1)

t2
(17)

Type II:

Here we have considered an exponential form to the fractional function v given by

v = v0e
−βt (18)

Hence equations (13) and (14) become

ρe =
w

2
β2v20e

−2βt + 3Hβ (19)

and

pe =
w

2
β2v20e

−2βt − 2Hβ + β2 (20)

IV. THERMODYNAMICAL ANALYSIS

In this section we extend the idea of generalized Hawking temperature and modified entropy

to fractal universe at event horizon. In what follows we study the four different generalized

Bekenstein formulation at event horizon.

From the equations (13) and (14) we found

∂

∂t
(ρe + pe) =

v̇

v2
(Hv̇ − v̈)− 1

v
(Ḣv̇ +Hv̈) + 2wv̇v̈ +

...
v

v
(21)

using which in eq. (12), one can get

∂

∂t
(ρ+ p) = 2fAH

2 + 4vAHḢ − v̇

v2
(Hv̇ − v̈) +

1

v
(Ḣv̇ +Hv̈)−

(

2wv̇v̈ +

...
v

v

)

(22)

where vA = ṘA, fA = v̇A .
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Case-1

Here we consider Bekenstein entropy and the generalized Hawking temperature at the event

horizon [27] i.e.,

Sh =
πR2

E

G
(23)

T h = Tm =
αRE

2πR2
A

(24)

where α = ṘA/RA

ṘE/RE

is the reciprocal of the relative growth rate of the radius of the event horizon

to that of the apparent horizon.

We now use the equation of continuity but in a modified form due to a fractal universe [38]

as

ρ̇+

(

3H +
v̇

v

)

(ρ+ p) = 0 (25)

Clearly we can see, for v = 1, the equations (9) and (10) reduces to the standard Friedmann

equations and eq. (25) to the standard equation of continuity. Here the fractal is taken to

be time-like only, so that the fractional function v = v(t) depends only on time. Therefore,

considering the Gibb’s relation (5), we obtain

dSf =
1

Tm
4πR2

E(ρ+ p)

(

1 +
v̇RE

3v

)

dt (26)

where we have considered the bounded fluid distribution with spherical volume Vh = 4
3πR

3
E.

Using the equations (25) and (26), the time variation of the total entropy is given by

ṠT =
2πREṘE

G
− 8π2vE(ρ+ p)

vAH3

(

1 +
v̇RE

3v

)

(27)

and thus the second time derivative of the total entropy is given by

S̈T =
2π

G
(REfE + v2E)−

8π

(vAH3)2

[{

(vAH
3)

(

fE(ρ+ p) + vE
∂

∂t
(ρ+ p)

)

− vE(ρ+ p)(fAH
3 + 3vAH

2Ḣ)
}

(

1 +
v̇RE

3v

)

+
vAvEH

3(ρ+ p)

3v2
{

v(v̈RE + v̇vE)− v̇2RE

}

]

(28)

where vE = ṘE and fE = v̇E .
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Case-2

In this case the horizon entropy is modified as [27]

Sh = β
πR2

E

G
(29)

where,

β =
2

R2
E

∫

R2
EdRA

RA

and Hawking temperature (= T h) is taken to be [25]

T h =
RE

2πR2
A

. (30)

Here we can write β as

β =
2

R2
E

∫

R2
EdRA

RA
=

2

R2
E

∫

R2
EvA

RA
dt

and from Gibb’s relation (5) we have

Ṡf = −8π2RE(ρ+ p)

H2

(

1 +
v̇RE

3v

)

(31)

Hence the first order time variation of the total entropy is

ṠT =
2πR2

EvA

GRA
− 8π2RE(ρ+ p)

H2

(

1 +
v̇RE

3v

)

, (32)

and the second time derivative of the total entropy is

S̈T =
2π

GR2
A

[

RAR
2
EfA + 2RAREvAvE −R2

Ev
2
A

]

− 8π2

H4

[{

H2

(

vE(ρ+ p) +RE
∂(ρ+ p)

∂t

)

− 2RE(ρ+ p)HḢ
}

(

1 +
v̇RE

3v

)

+
H2RE(ρ+ p)

3v2
{

v(v̈RE + v̇vE)− v2RE

}

]

. (33)

Case-3

Here we consider horizon entropy as the Bekenstien entropy and temperature as Hawking

temperature [26] i.e.,

Sh =
πR2

E

G
(34)

and

T h =
RE

2πR2
A

. (35)
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In this case the first derivative of the total entropy is

ṠT =
2πREvE

G
− 8π2RE(ρ+ p)

H2

(

1 +
v̇RE

3v

)

. (36)

The second derivative of the total entropy is given by

S̈T =
2π

G

(

REfE + v2E
)

− 8π2

H4

[{

H2

(

vE(ρ+ p) +RE
∂(ρ+ p)

∂t

)

− 2RE(ρ+ p)HḢ
}

(

1 +
v̇RE

3v

)

+
H2RE(ρ+ p)

3v2
{

v(v̈RE + v̇vE)− v2RE

}

]

. (37)

Case-4

Finally, in this case we take the horizon entropy as [27]

Sh = β
πR2

E

G
(38)

and the modified Hawking temperature as [27]

T h =
αRE

2πR2
A

. (39)

Then the first time derivative of the total entropy is

ṠT =
2πR2

EvA

GRA
− 8π2vE(ρ+ p)

vAH3

(

1 +
v̇RE

3v

)

. (40)

The second time derivative of the total entropy is given by

S̈T =
2π

GR2
A

[

RAR
2
EfA + 2RAREvAvE −R2

Ev
2
A

]

− 8π

(vAH3)2

[{

(vAH
3)

(

fE(ρ+ p) + vE
∂

∂t
(ρ+ p)

)

− vE(ρ+ p)(fAH
3 + 3vAH

2Ḣ)
}

(

1 +
v̇RE

3v

)

+
vAvEH

3(ρ+ p)

3v2

{

v(v̈RE + v̇vE)− v̇2ṘE

}

]

(41)

As in all four cases the time variation of the total entropy are very complicated, so we

cannot definitely conclude about their sign analytically. Hence we plot these time variation of

entropies ṠT and S̈T . For simplicity we consider the universe filled with perfect fluid having a

constant equation of state i.e. p = ωρ.
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Fig.1 : The time derivative of the total

entropy is plotted against t for Type-I in

Case-1, considering v0 = 5 , β = 3 and

w = 10.

Fig.2 : The second order time derivative

of the total entropy is plotted against t

for Type-I in Case-1, considering v0 = 5 ,

β = 3 and w = 10.

Fig.3 : The time derivative of the total

entropy is plotted against t for Type-II in

Case-1, considering v0 = 5 , β = 3 and

w = 10.

Fig.4 : The second order time derivative

of the total entropy is plotted against t

for Type-II in Case-1, considering v0 = 5

, β = 3 and w = 10.

V. DISCUSSION

In the present work we have considered two different types of fractional function v and we

have examined GSLT and TE for both cases taking four different combinations of (modified)

Hawking temperature and (modified) Bekenstein entropy. Due to complicated expressions of

the time variation of the total entopy we cannot definitely conclude about validity of GSLT
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Fig.5 : The time derivative of the total

entropy is plotted against t for Type-I in

Case-2, considering v0 = 5 , β = 3 and

w = 10.

Fig.6 : The second order time derivative

of the total entropy is plotted against t

for Type-I in Case-2, considering v0 = 5 ,

β = 3 and w = 10.

Fig.7 : The time derivative of the total

entropy is plotted against t for Type-II in

Case-2, considering v0 = 5 , β = 3 and

w = 10.

Fig.8 : The second order time derivative

of the total entropy is plotted against t

for Type-II in Case-2, considering v0 = 5

, β = 3 and w = 10.

and TE. However, we have drawn some inferences only from graphical analysis considering

8π = 1 = G, H = 1 and RE = 3.

From the above figures (1−16), we have the following observations:

1) Both GSLT and TE hold for a wider range when the fractional function is an exponential

function of time (i.e. Type-I) rather than power law form (i.e. Type-II).

2) In most of the cases, GSLT and TE hold good when the values of equation of state
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Fig.9 : The time derivative of the total

entropy is plotted against t for Type-I in

Case-3, considering v0 = 5 , β = 3 and

w = 10.

Fig.10 : The second order time derivative

of the total entropy is plotted against t

for Type-I in Case-3, considering v0 = 5 ,

β = 3 and w = 10.

Fig.11 : The time derivative of the total

entropy is plotted against t for Type-II in

Case-3, considering v0 = 5 , β = 3 and

w = 10.

Fig.12 : The second order time derivative

of the total entropy is plotted against t

for Type-II in Case-3, considering v0 = 5

, β = 3 and w = 10.

parameter is taken to be negative, i.e. ω < 0.

3) Among all the four cases presented above, we have observed that case 2 is better than all

other cases.

Therefore from the above comparative study we may conclude that the exponential form

for the fractional function v is better then power law form. Finally, we may conclude that
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Fig.13 : The time derivative of the total

entropy is plotted against t for Type-I in

Case-4, considering v0 = 5 , β = 3 and

w = 10.

Fig.14 : The second order time derivative

of the total entropy is plotted against t

for Type-I in Case-4, considering v0 = 5 ,

β = 3 and w = 10.

Fig.15 : The time derivative of the total

entropy is plotted against t for Type-II in

Case-4, considering v0 = 5 , β = 3 and

w = 10.

Fig.16 : The second order time derivative

of the total entropy is plotted against t

for Type-II in Case-4, considering v0 = 5

, β = 3 and w = 10.

modified bekenstien entropy and modified Hawking temperature can be considered as realistic

thermodynamical parameters on the event horizon.
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