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STRATIFYING ENDOMORPHISM ALGEBRAS USING EXACT CATEGORIES
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We dedicate this paper to the memory of J.A. Green

1. INTRODUCTION

This paper is the second in a series aimed at proving versiasonjecture made by the authors
in 1996. The conjecture concerns the enlargement, in a fs@nkenvolving Kazhdan-Lusztig cell
theory, of those Hecke endomorphism algebras which occurraily in the cross characteristic
representation theory of finite groups of Lie type. SB&$£98a| for the original version of the
conjecture, andPS15a| for a reformulation.

The DPS98a] conjecture is set in the context of a Hecke algeBrdor a finite Weyl group,
using the dual left cell moduleS,,, w € €, in the sense olJu03|. (Thus, eachS, is a right
H-module.) The base ring (ifDPS15al) is Z[v,v~!], wherev is an indeterminate. One of the
conjecture’s implications is that there is a faithful rigiitmodule, filtered by variousS,,, such
that the module®\ (w) := Homy (S, T'T), with w € §, form a stratifying system (in the sense of
[DPS98a4]) for the endomorphism algebrd’ := Endg (7). Using exact category methods, we
are able to prove this statement. See Theorem 4.8 below.

A strength of the “stratifying system” construction is tliats well-behaved under base change,
so that the resulting algebra’ ® k inherits a stratification from that o’ over any commutative
ring or fieldk in which v is specialized to an invertible element.

The endomorphism algebra constructed here have other good properties. In particodesed
changed versiond’, 7T can be shown to satisfy the particular “cyclotomic" locaisiens of the
conjecture which were treated iDPS15a, Theorem 5.6], using results o&6GOR03| on the
module categorie® for rational Cherednik algebras. The present paper rasepdssibility that
the DPS98a] conjecture can be proved directly within the global fraroekaof Z[v, v~1]-algebras
and modules, perhaps even with the present versiors .of

The authors began developing a general theorilbin398a) for constructing the required en-
larged algebras, centered around a set of requirementsaicedtin what we call the “stratification
hypothesis.” The most difficult condition to verify in thigpothesis is an Extvanishing require-
ment for some of the modules involved. The present papes @kevel approach to this problem by
building new exact categories containing the relevant esgeffectively making the Extgroups
involved smaller and better behaved. While there are Spackiules and analogues for all finite
Weyl groups, there are no troublesome self-extensionsgtensions in the “wrong order,” because
of the exact structure we construct. As a result, many isstidsad characteristic" do not arise.

The present paper also contains new results on exact categostructions. In particular, the
main Lemmd_311 gives a new, very general construction in atradi setting. It very quickly
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leads to new exact module categorieg, &) for algebrasB over domains’” such that thek-
algebraBg obtained by base change fraff to its quotient fieldK is semisimple. The underlying
additive category is the full subcategory oBB-mod consisting of all modules which are finitely
generated and torsion-free ov#f. The “exact sequences” ii are required to be exact on certain
filtrations. Both this construction and that of Lemmal 3.1lgpp all standard axiom systems for
exact categories. However, a further construction, eafigaiseful for the cell module setting,
focuses on the Quillen axiom®F3], [K90] [i

2. STRATIFIED AND HIGHEST WEIGHT MODULE CATEGORIES

Throughout this section, le#” be a fixed Noetherian commutative ring. Oftefi will be the
ring 2 := Z[t,t~'] of Laurent polynomials in a variablg or the ring2’# obtained by localizing
% at a multiplicative set generated by a finite number of ratigmime integers irZ”. (The primes
will be the set of bad primes for a fixed root system.y#A-moduleV is called finite if it is finitely
generated as .2 -module. In particularA will often be a finite.# -algebra.

By a quasi-poset, we mean a (usually finite) &atith a transitive and reflexive relatiod. An
equivalence relation- is defined on\ by putting A ~ . if and only if A < g andp < M. Let ) be
the equivalence class containing= A. Of course A inherits a poset structure itself.

2.1 Stratifying systems. We will briefly review the notion of astratifying systeﬁﬁor a finite
& -algebrad and a quasi-poset. Assume thatd is projective over#”. For A € A, we require
a finitely generatedi-module A(\), and a finitely generated, projectiiemodule P()), together
with an epimorphisnP(\) — A()\). The following conditions are assumed to hold:

(SS1) For\, i € A,
Homy (P(A), A(p)) #0 = A< p.

(SS2) Every irreduciblel-moduleL is a homomorphic image of sona&(\).
(SS3) For\ € A, the A-module P()) has a finite filtration byA-submodules with top section
A(X) and other sections of the fort(u) with i > A.

When these conditions all hold, the data consisting ofAlia), P()), etc. forms (by definition)

a stratifying systenfor the categoryA—mod of finitely generatedi-modules. It is also clear that
A(N) 1, P(N) v, ... is a stratifying system for ,--mod for any base changez” — %", pro-
vided.#” is a Noetherian commutative ring. (Notice that conditio82%is redundant, if it is known
that the direct sum of the projective modules in (SS3) is @@nerator—a property preserved by
base change.)

1Con’[rary to popular beliefs, the notion of an “exact catglj@s not exactly well-defined. There are at least three
axiom systems, all quite useful. The weakest set of axiortsisof Quillen [Q73], as reduced to a smaller set by Keller
[K9Q]. See our Appendix 1, 85. Then there is the axiom system ofi€aRoiter GRI7]. Keller shows in the appendix
to [DRSS99] that this set is equivalent to that of Quillen after addihg tdditional condition that retractions have
kernels. This axiom set is generally easier to use for priogurew exact sequences from others, but the retractiomaxio
may be hard to verify in integral settings, or simply is notr It is implied by the stronger, yet simpler requirememf t
all idempotents split. The latter has several applicatiomsuding a six term “long exact sequence” for Hom and'Ext
in [DRSS99], and itis used by NeemalNE90] to build derived categories. But in the context of the probTheorem
[4:8 below, our main result, idempotents do not split. Forsauksion of derived categories in the Quillen frameworg, se
[K96].

2n [DPS98a], these systems were callsttict stratifying systems. In this paper, we drop the word “stréetd do not
consider more general systems. (The more general strafifjistems inDPS98a] allowed 2 > X in condition (SS3).)



STRATIFYING ENDOMORPHISM ALGEBRAS USING EXACT CATEGORIES 3

An ideal J in the ¢ -algebraA above is called atratifying idealprovided that the inclusion
J — Ais . -split (or, equivalently,A/J is ¢ -projective), and, fod/, N € A/J-mod, inflation
from A/J to A defines an isomorphism

(2.1.1) Ext; (M, N) — Extj(M,N), Vn>0

of Ext-groups. (In particular, the = 1 case implies that/? = .J, see [CPS90].) A standard
stratificationof lengthn of A is a sequencé = J, C J; C --- C J, = A of stratifying ideal€ of
A such that eacly;/J;_1 is a projectiveA/J;_;-module. If A-mod has a stratifying system with
quasi-posef\, then it has a standard stratification of lengtk= |A|; see DPS98a, Thm. 1.2.8].

Lemma 2.1. Suppose thatl has a stratifying system. Thé&xt, (A()), A(u)) = 0 unlessi < .

Proof. Assume that\ £ p, and letQ(\) be the kernel of the given epimorphisR(\) — A(\).
Then Ext,(A()), A(u)) is homomorphic image of Hop{Q(\), A(u)). But@Q()) has a filtration
with sections of the form\(7) for 7 > X, so that Hom (A(7), A(p))) = 0 sincer £ u. O

Given a finite quasi-poset, a height functionon A is a mapping ht A — Z with the property
thatA < u = ht(\) < ht(u). Given\ € A, asequenca = A\, > \; > --- > )\gis called a
chain of lengthn starting at\ = \,,. Then the standard height function:hiA — N is defined by
setting ht)\) to be the maximal length of a chain beginning\at

Given A-modulesX, Y, recall that the trace module trag€Y’) of Y in X is the submodule ok
generated by the images of all morphiskis— X.

Proposition 2.2. Suppose thatl has a stratifying system. Then thesections arising from the
filtration (SS3) ofP(\) can be reordered with respect to any height function. Mogeafwe set

P()); =traces(( D P(w)),

ht(p) >4
thenP(\);4+1 € P(X);, forj € Z, and
PA);/P(A)j+1
is a direct sum of module& () satisfyinght(u) = .

Proof. First, fix j maximal with a sectiom\(x) appearing inP(\) such that htu) = j. Apply
Lemmd 2.1 to construct a submoduté\)(j) which is filtered by moduled\ (v) with ht(v) > j,
andP(\)/P(X)(y) filtered by moduleg\ (v) with ht(v) < j. Axiom (SS1) clearly give®(\)(j) =
P(X\)j,andP(\)j4+1 = 0. Clearly, P(\);/P());+1 is the direct sum as equipped by the proposition.
We have not used projectivity @t(\), only its filtration properties. Induction applied to theotjent
moduleP(\)/P()); completes the proof. O

Remark 2.3. The proposition above shows that the projective modules h@anonically described
filtration, given any height function ht. This suggests tifatl is to be realized as an endomorphism
algebra of a given module, that module might also reflectfiliggttion in a canonical way. In 883,4,
this is successfully approached using semisimple basegehamd exact categories. The latter also
builds in a height function version of the vanishing coraitin Lemmd 2.11.

3if @LT) is not assumed, but projectivity of eadly J;_1 is assumed, thef (2.1.1) for all = J; follows for each
n from then = 1 case (idempotence of the idealg. See Appendix II. This is the more usual definition of a stadd
stratification|DPS98a], but not our focus here.
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The proposition can also be used, in conjunction with Lerhmdab2low, to build stratifying
ideals in an algebra Morita equivalent g and then ind. See DPS98a, Lem. 1.2.7, Thm. 1.2.8].
We will not need to return to this in this paper.

Lemma 2.4. A has a stratifying system. Then

P:=PO

AEA
is a projective generator fod-mod.

Proof. Obvious from (SS2) and (SS3). O

2.2 Exact categories and the stratification hypothesislhis section provides a way to construct-
ing stratifying systems in an endomorphism ring settingviwusly, the construction was based on
assuming a “stratification hypothesis" DPS98a, Hyp. 1.2.9, Thm. 1.2.10]. The method required
a difficult Ext'-vanishing condition (seéddPS98a, Thm. 2.3.9, 2.4.4]). This subsection gives an
important generalization using exact categories. Theradga of this approach is that the relevant
Ext!-vanishing conditions involve smaller spaces (and so apefudy easier to make vanish).

Let (<7, &) be exact category in the sense of Quill&n/B], as discussed in Appendix 1, 86
using axioms of KellerK90Q]. In particular,</ is an additive category anfl is a class of sequences
X — Y — Z satisfying certain properties. In the hypotheses below weassume the more
explicit setup in whichA is an additive full subcategory of mo&whereB is a finite and projective
¢ -algebra. The sequenceés — Y — Z € & are among the short exact sequentes X —

Y — Z — 0in mod-B. Thus,« is an “exact subcategory" of moé- Note, however, we doot
assume that all exact sequences in nidavhose object terms lie in/ necessarily belong t§.

Next, we discuss the variation of the stratification hypsthdased on the notion of an exact
category. First, thee are several preliminary assumptions

Assume there is given a collection of objedts € < indexed by the elements of a finite
quasi-posef\. For each)\ € A, S, is a subobject of), € «7. Write

T:=PTheo.
AEA
With this notation, the following statements make up the trstsightforward version of the “strat-
ification hypothesis":
Hypothesis 2.5. The stratification hypothesis holds provided the followstatements hold.

(1) For A € A, there is a fixed sequenag o, ,v) n) wherel(\) > 0, vyo = A, and
vy > Afor eachi > 0. Also, there is an increasing filtration
_ I
O=F'CFc...cFrY=m
such that each inclusiof’; * C F} is an inflatiort] such that
Fy/F =8,

for0 < i <I(\).

4t an abstract exact category settitigf, ' C F§ may be taken as a notation for a monomorphi&tn* — F3. In
this case, it has a cokernel isomorphicitd/ F;~*.
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(2) For A\, u € A, Homd(S“,TA) #0 = A< pu.
(3) Forall A € A, ExtL(Ty\/Fi,T) =0, Vi>0.(See Appendix | for a definition Bikt..)

The proof of the following result parallels the analogousutein [DPS98a, Thm. 1.2.10].
Theorem 2.6. Let.«7, B, T be as above. Assume that Hypothesi$ 2.5 holds. Put
A =Endp(T)

and, for\ € A, defineA(\) := Homg(S),T) € A-mod. Assume that each(\) is # -projective.
Then{A(\)}.ea is a stratifying system fadA—mod.

Remark 2.7. The main function of condition (3) in Hypothegis P.5 in pmayiTheoreni_2J6 is to
ensure the existence of various exact sequences wheny Herf) is applied. This exactness still
works and Theoreiin 2.6 still holds § is used in place of, /F}, at least for the exact categories
we use. For one precise formulation, see Lerhmal3.10. Thisigk®on is necessary when using
the Quillen axiom system. In the idempotent split contextiid in DRSS99], the functor Exj?

is half-exact in each variable; seBRSS99, Thm. 1.3], who quote arguments @H61, Thm.
1.1]. In this case, the original version of condition (3)dwhs written when all the Eé;(ty)(sx, T)
vanish. Finally, another useful modification of HypothéZi§ (1) is obtained by replacing,, .,

1 > 1, by the direct sum of such objects, all with> 1. Again, Theorenh 216 holds with essenytially
the same arguments.

3. A CONSTRUCTION OF EXACT CATEGORIES

Let (<7, &) be an exact category in the sense of Quille7 8], see Appendix 1, 85. Suppose that
% is a given abelian category, and Iét: o — % be an additive functor. TheR is called&-exact
(resp., left&-exact) if given any X — Y — Z) € &, the sequencé — F(X) — F(Y) —
F(Z) - 0(resp.,0 » F(X) —» F(Y) = F(Z)) is exact in%.

Lemma 3.1. Let% be an abelian category. Also, let/, &’) be an exact category and 1&t: </ —
¢ be an left4”-exact, additive functor. Defing to be the class of thodeX — Y — Z) € &’ such
that0 — F(X) — F(Y) — F(Z) — Ois exact in¢. Then(</, &) is an exact category.

Proof. First, sincef’ is left £’-exact,& can also be described as the class of &ll— Y — Z € &’
such thatF'(X) — F(Z) an epimorphism irg. Axioms 0, 1 in Appendix 85 are immediate.
Consider Axiom 2 and the following commutative diagrameih

d

X Y VA
—_— |+
X y — 4,z

in which the bottom row belongs 6 (so that the sequenced8-exact andF'(d) : F(Y) — F(Z)
is an epimorphism), and the top row is the pullback of thedmttow (through the mag). The
objectY” is identified as the kernel of the epimorphismf,d) : Z’ &Y — Z in the bottom row
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of the commutative diagram

y 4.7

(2)] |

(_fvd) Z
(7)
, , (=fd) . . . AN i , (f,d) L
The bottom rowy” — Z'®Y —5’ Zisisomorphic toy’ —" Z'®@Y ~—— Z, which is shown
in [K90, p. 406] to belong te5’. (See also Remaik5.1(d) in Appendix | below for an alternate

argument.) Now apply the functdf, and use the natural isomorphiditZ’ ¢Y) = F(Z') & F(Y)
to obtain the following commutative diagram

Y —— Z'aY

F(Y) D pz) —— 0
| |
(—F(£),F(d)

0 —— FY') —— F(Z)eoFY) ————— F(Z) —— 0.

As noted above, the morphisf(d) is an epimorphism. Thus, sindeis left exact, the bottom row
is exact, and it identifie$’(Y”) as the the pullback in the abelian categ@fyof F'(f) and F'(d).
SinceF(d) is an epimorphism, so is its pullbadk(d’). This verifies Axiom 2.

Finally, we must check that Axiom°zholds. Consider a commutative pushout diagram

d

0 —s X —" 4 vy A 0
(3.0.1) gl hl H
0 — s x/ oy ¥, 7 0

in which the top row belongs t&. We must prove thak’ — Y’ — Z also belongs t&. But the
diagram[[3.0.11) gives the following commutative diagram

Y — Y
(3.0.2) hl dl
0 x Ly v,z 0

After applying F', we get the following commutative diagram

FY) —— F(Y)

F(h)l F(d)l

0 —— rx) 29 piyy 29 pz) —— 0

in which F'(d) is an epimorphism, since the top row bf (3]10.1) belong$ td his implies that?’(d’)
is an epimorphism, and, hence, the bottom row_of (3.0.2) &tk 4. Thus, the bottom row of
(3.0.1) belongs t&’, and Axiom 2 holds, completing the proof of the lemma. O

We now make some assumptions which will often be in forceHerrest of this paper.
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Assumptions 3.2.Let #" be a fixed Noetherian integral domain with fraction figld Let H be
¢ -algebra which is finite and torsion-free as’&@-module. Assume thdfx is semisimple. The
isomorphism classes of irreducible rightix-modules are indexed by a finite et Given\ € A,
let £, denote a representative from the corresponding irredegcidbhss. Fix a functioft : A — Z,
taking, for convenience, non-negative values. (We laall height function, though there is no
immediate assumption thatis a quasi-poset.)

Let mod-H be the category af# -finite right H-modules, and let mod# be category of finite
dimensional rightH x-modules. Let be the full subcategory of mo#i-which consists of# -
torsion-free7Z-modules.

For N € mod-+# i, the height function ht induces a natural increasing (fjriteation
O:N—lgNOg”'gNZgNZ“l‘lg”'gN’

defining V? to be the sum of all irreducible righif ;. -submodules isomorphic 6, with ht(\) < i.
Then if M € o7, there is an induced filtration

OZM—].gMOg...gMZgMZ“l‘lg...gM

on M defined by setting

M'=Mn (Mg)", i>0.
Observe that each/! ¢ o7, as are the modulel//M* and M /M=, Also, (M?/M~1) is a
direct sum ofH x-modulesE, with ht(\) = i.

Our goal is to show that the above data define the structura ekact category on the additive
category«’ of . -torsion-free rightf-modules, once an appropriate fam#fyof conflationsX —
Y — Z has been defined.

First, we require more preliminaries, including the prapos below. Note that ifX Lovis
amap ingZ, thenf induces a mag; : X’ — Y% and amapf; : X'/X"! — Y?/Y?~! for each
integeri. In addition, ifg : Y — Z is another morphism in7, then(gf); = g:f; andgi f; = gi f;
for eachi. Finally, if f : X — Y is aninclusionX C Y, then

(3.0.3) XN(Yg)=Xn(Xg) =X, Vi
In the following proposition, we continue to assume thatuksptiond 3.2 are in force.

Proposition 3.3. SupposeX,Y,Z € & and0 — X Ly 4% 7 0 is an exact sequence in
mod-H. Then for each € Z, the following statements hold.

(a) The sequende — X — Y — Z'is exact in modH.

(b) The sequencé — X" — Y — Z" — 0 is a short exact sequence in mdd-for each
h < if and only if

0— XI/Xx371 5 yijyi=t — 73 /7i71 0

is exact for eachy < i.

(c) The sequence — X7/ X7/~ — Yi/yi-t — 7i/7i=1 — (0is a short exact sequence for
all j <iifandonly ifY9/Y9—! — 7Z9/79-1is an epimorphism for aly < i.

Proof. Throughout this proof, the word “exact" means exact in thealisense in the category of
right H— (or possiblyH x—) modules.

Without loss, we can assume that the nfapX — Y is an inclusion of a submodule. Clearly,
eachf; is an inclusion. Alsog; f; = (gf): = 0, so that the image of; is contained in the kernel
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of g;. To prove the reverse inclusion, lgt € kerg;. Thus,y € kerg, soy € X. But also
y €Y' C (Yi). Soy € X N (Yk)" = X, as per[(3.013). This proves (a).
We next prove (b). For every integgrwe have & x 3 diagram

xXi-t oy yitt .y gi-l

| | !

(3.0.4) X7 —s Y -z

| | |

XI/Xi=t — 5 yi)yit —— 73771

in which the columns are short exact sequences. Then askateath) — X" — Y" — Zh — 0
is exact for eacth < j. Then the3 x 3 Lemma [Mac94, p. 49] implies that — X//X/~! —
YI/)Yi=t — 77)7Zi=1 — 0is exact for allj < i.

Conversely, assume that, for an i, the sequence — X7 /X7i~1 - YJ/yi—l — 7i/7i-1
0 is exact. By induction, we can assume that X~ — Yi~1 — Z~1 _ 0is exact. In addition,
the composition magX’ — Y* — Z° is zero. Since the top and bottom rows [0f (3.0.4) are short
exact sequencedvac94l Ex. 2, p. 51] implies the middle horizonal line is a shortesequence,
as required.

As for (c), the = direction is obvious. Conversely, it is easy to see that & thaps
Y9/Y9~1 — 79/79~" are epimorphisms for alj < i, then each map™” — Z" h < i, is
an epimorphism. Now apply (a). d

In the context of Propositidn 3.3(b), it is easy to give exiswhere) — X" — Y* - 7" - 0
is not a short exact sequence.

Example 3.4. Let %" = Z, and letH = ZC5, whereCy, = {1, s} is the cyclic group of order 2.
Let Sy be the trivial module forZ. It is free of rank 1 ovefZ with basis vectod. Let S; be the
sign module forH, also free of rank 1 with basis vector denote(o thats - ¢ := —¢). Consider

the short exact sequenbe— X N i> Z — 0 of torsion-free H-modules whereX = S,
Y = H,andZ = S;. Herea(1) = 1+ s, andf(1) = —f(s) = —e. AssignSs g height 1 andS g
height 2, then

Xl =8l=0;
yl=H!=7(1-s)
A

ThenB(Y'!) = 2Ze, sothaty'! — Z!is not surjective. Thus, taking = 1, the short exact sequence
0 — X" - Yh - Zh = 0is not exact. However, assignirf to have height 2 and; to have

height 1, and interchanging the rolesXfandY’, the short exact sequenge— Z A% X 50
(Whereg(e) = 1 — s, andy(1) = +(s) = 1) has the property that — Z" — Y = X" — 0is
short exact for alh.

Construction 3.5. Keep Assumptioris 3.2 withf as described theréAn exact pair(z,d), X = Y
andy % z belongs, by definition, te& provided that, for each integér the sequencé —
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Xt/ X1 5 yijyict o 7i/7i=1 5 0 is a short exact sequence of right-modules. By
Propositiori 3.8, each sequerttes X' — Y — Z — 0 is also short exact.

Theorem 3.6. The pair(«7, &) is an exact category.

Proof. First observe that there is the standard exact categatys”). Here&” consists of all exact
triples X — Y — Z in mod-H with XY, Z objects in (i.e., X,Y, Z are_# -torsion-free). Let
% be the abelian category of right-modules (not necessarily finitely generated), ahds? — €
the functorFX = @;-, X’. ThenF is left &’-exact, and¢ (as defined in Constructidn_3.5)
consists of precisely thoge&X — Y — Z) € &' for which0 — F(X) — F(Y) — F(Z) — 0

is a short exact sequence@ (Apply Propositior 3.3(d).) Thug,«7, &) is an exact category by
Lemmd3.1. O

Remark 3.7. Though the construction dfe7, &) requires the tools of exact category theory, they
can all be interpreted here in the larger (and more famiiat@gory mod# . Similar remarks apply
to the second construction below.

Construction 3.8. Keep Assumptioris 3.2. For each integelet.~; be a full, additive subcategory
of & such that ifS € ., then Sk is a direct sum of irreducible irreducible rightf x--modules
having heightz‘ﬁ (If 7 is not in the image of the height function, then p4t := [0].) Let.” be
the set-theoretic union of the;. Let.o7 (.#) be the full subcategory af/ above having objects/
satisfyingM/’ /M7~1 € .; for all j (or, equivalently M7 /M7~ is in . for all integersy).

Define&’ () to be the class of those conflatioAs— Y — Z in & such thatX,Y, Z € &/ (%)
and with the additional property that, for each integer

0— XY/X" 5 Yh) Yyt 207 0
is a split short exact sequence in maéfl«Thus, by definitiong’ () C &.)
Theorem 3.9. (#7 (), &(.%)) is an exact category.

Proof. The first two axioms are easily verified. (Note again #i&t”) C &.) To check Axiom 2,
consider the diagram

X Y’ 7
[
X y Z

where the bottom row is i#’(.”) and the top row is a pullback (in mo#h with 7’ € 7/ (.%).
However, since the bottom row lies ifi, we have thatX’ — Y’ — Z’ also belongs te®. The
issue is whether it splits section by section (which, inipatar, would imply thatY” € o/ (.%)).
This splitting at the section level follows easily from tlaef that the pullback of a split short exact
sequence is split. A similar argument gives Axiofn 2 d

The following lemma shows a common vanishing condition $efadexpected exact sequences.

SWe think of.#; as a special class of objects.di; the stated condition 06k is necessary, but not always sufficient
for membership in¥;.
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Lemma 3.10. Suppose thak ¢ o7 () satisfiesExt}g(y)(S,X) =0foral S € .. LetE —
F — G belong to&'(.#). Forany S € .7,

0— Hom@/(y)(G,X) — Homy/(y)(F,X) — Hom@/(y)(E,X) — 0.
is a short exact sequence.gf -modules.

Proof. The lemma is obvious wheR = F" for someh € Z andE = F"~!, sinceF"/Fh—! ¢
T

This special case applies to all columns of the commutatizgrdm, upon applying the functor
Hom,, (s (—, X) to the diagram

Eh—l ; Fh—l ; Gh—l

| | |

FE —_ F —_— G

l l l
EMERY —— Fh/FhL —— GhGML

Here, h is chosen so thaF = F", and it follows thatE = E" andG = G". Moreover, we can
assume the top row of the resulting diagram is exact by imolu¢bn, say, the number of indicgs
for which F7/FJ=1 = (). Finally, the bottom split row, of course, remains spliaekin the new
3 x 3 diagram. Since the middle row of the latter satisfies the thggis of[Mac94, Ex. 2, p. 51],
it defines a short exact sequence. This proves the lemma. d

4. SOME FURTHER RESULTS FOR%/(.%), &(.#)) AND CONSTRUCTION OFTf

In this section, we consider further the exact catedery(.), &(.#)) introduced in Construc-
tion[3.8.

Proposition 4.1. Let M, N € </(.¥), and leth be any integer.
(a) There is a natural isomorphisexty, ., (N", M) = Exty ,\ (N", M").
(b) In particular, if S € .}, we have

(c) Assume tha$ € .#},. Suppose that/ = M" and M1 = 0. ThenExt}Q/(y)(S, M) =0.
Proof. Without loss, takeéV = N" in (a). Obviously, there is a natural transformation
(N, M) : Exty (N, M) — Extl ) (N", M")

which send§M — Y — N) € &(.%) to (M" — Y" — N") € &£(.#). The inverse is obtained
by pushout. This proves (a), and (b) follows. Finally, (d)ders immediately from the definition of
E(S). O

We also have the following result. It is immediate from thémgons.

Lemma 4.2. LetM € o/ (7). If S € 7}, thenExty (S, M1 = Extl (S, M1,
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Proposition 4.3. Let S € ., let M € «/(.), and letj be a non-negative integer. There is a
6-term exact sequence

0 — Homy, () (S, M7) —Homy, () (S, M) — Homy( (S, M/M?)
LEXth ) (S, M7) % EXty ) (S, M) = Exth (S, M/MY).

It is compatible with first 6 terms of the long exact sequemeetie functorHom,,(S,—) =
Homy (S, —) applied to the short exact sequerites M7 — M — M/M7 — 0.

Proof. All the maps are standard: the connecting map uses pullpankisthe other E%J(y)—maps
arise from functorality (and use pushouts). The compositibany two consecutive maps is zero.
All Ext}g( —groups are contained in (and are compatible with) theit,Eodunterparts. Now an

object in the kernel of; is also in the kernel of is classical counterpart, so lieha&image off,
since the first three terms of the long exact sequence argddketo those in the classical case.
Now consider exactness at the 5th node Mf= M7, theng is clearly an isomorphism and
exactness at the 5th node follows. glfis not an isomorphism, thejis smaller tham, so that
(M7)P=1 = M7, so Lemma4l]2 can be applied. O

Remark 4.4. Observe that exactness of the first 5 terms of the propoditdds for anyS € o/ (.%),
not just in.”. Also, as noted in Propositidn 5.2, the gggﬂ)—groups above are all naturallg” -

modules. The proof of that proposition shows they .sfesubmodules of the correspondig -
modules Ex};. All maps in the above proposition ar&-module maps.

Corollary 4.5. LetS € . have height, and letM € o7 (.%).
(@) The mapExt(lg( (S, Mh=1) — Ext;( (S, M") = Extl

o) (5, M) is surjective.
(b) We haveExt}g(y)(S, M) = 0if and only if the map
Hom,, () (S, M" /M" ™) — Exti (S, M" 1)

is surjective.
(c) Suppose th&xt}g(y)(s, M"=1) is generated as & -module byey, - - - ,e,. LetM 1 —

N — S®" represent the element of
Exty ) (57, M1y = Extl (8%, M"Y (see Lemmad4]2)

corresponding to¢ := €1 @ - - - @ €,. Finally, suppose there is a commutative diagram

Mh—l N SéBn
H | 1|
Mh—l Mh Mh/Mh— 1

wheref is a morphism ine/ (). ThenExt}ga(y)(S, M) =0.

Proof. (a) follows from the 6-term exact sequence and the fact tha(;(;)(s, S) = 0. (The
equality follows from Lemma_412.) The proof of (b) is simijlarsing Propositio 411. Next, if
Mh=1 — N; corresponds te;, there is a pullback with the top row. Thus,e; is a pullback
of M1 — M" — M"/M" ! under the evident composite : S — S L AP /AP
Consequently, the image of € Hom,, (S, M"/M"~1) under the connecting homomorphism to
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Ext})@(y) (S, M"~1) is¢;. Sincei was arbitrary, the connecting homomaorphigrim (b) is surjective.
Hence, Exj(tﬂ (8, M) =0. O

Remark 4.6. The argument above has already appeared in a module thefmreti in [DPS154a].
However, the argument given there required stronger hyset e.g., that E};(S, S)=0.

Theorem 4.7. Assume that eacly; is strictly generated as an additive category by finitely ynan
objects, i.e., every object i#r; is isomorphic to a finite direct sum of a given finite set of otgjén
;. LetM € o/(.%). Then there exists an objedt in o7 (.#) and an inflation)/ > X such that

Ext})@(y)(S,X) = O forall S €.7. In addition if 4 is chosen minimal such thar"—! # 0, it may

be assumed that the inflation induces an isomorphighrt = X/—1,

Proof. Without loss, we can assume thaf # 0, and also that E%I(y)(s, M) # 0 for some
S € .. Choose an integér minimal with such a non-vanishing occurring for sosie .#;,. Note
that M"~1 £ 0 by Propositior. 4J1(c). We will next enlargef to an objectX, closer to theX
required in the theorem.

Let Sy,---,S,, be generators for},. For each index, lete;q,--- €., be a finite set of
generators for EX4(S;, M~ 1) = Ext}g(y)(si,Mh—l). Form an extensiof — M"~! — Y; —
SP™ — 0 corresponding ta; := €1 ® -+ @ €, € EXt (ST, M L), Puty i=x1 @ -+ @
Xm, and lety’ € Extl, (M"/M" =1 Mh—1) correspond to the extensién— M"~! — M" —
Mh/MPY 0. PUtZ = @;S7™ @ M"/M"', and letM"~! — X" — Z correspond to
X @ x’. Observe there is a commutative diagram

Mh—l Y; Sz@m
| | |
M1 xh Z,

in which the top row corresponds tg and the bottom row to & x' . Comparison with Corol-
lary [4.5(c), allowing for the differences in notation, srmﬁxt})@(y)(si,Xh) = 0 for all ;. Thus,

Ext}ga(y)(s, XM =0, forall S'in.#,. Note we have the same vanishing < with j < h, by
our choice ofh. In all cases, we can repladg® with any X’ containing it with(X’)" = X",

So far, we have not constructed an objéGtonly X”. However, the latter may be viewed as
the middle term of an exact sequence of righitmodules0 — M" — X" — S’ — 0, where
S = @S € #,. This sequence clearly corresponds to a conflatiofi(ii¥’). (Note howZ
above is split.) Applying a pushout construction usitif — M (see Propostion 4.1(b) and its
proof), we obtain an objeck in <7 (.#’) which contains a copy af/ under an inflation, and has
our constructeds” as its image under the funct6r-)". In addition X7 = M7 for j < h — 1.

Applying Propositiof_4J1(b) again, we find that %&)(—,X) vanishes on all objects ity’;
with 7 < h — 1 (and, thus;j < h). Now repeat the argument witk in the role of M. This requires
a biggerh, unless Ex}(y)(S,X) already vanishes for ali € .. Eventually the process stops, at

which point X satisfies all requirements of the theorem. d

For the main result, we lef be the Hecke algebra ov&fv, v—!] associated to a finite Coxeter
system(WV, S). SeelLu03, Ch. 8] for a very general “unequal parameter" versiorfiofand a
corresponding Kazhdan-Lusztig cell theory. We use duatldf modulesS,, as generators for the
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various additive categorie%;. Herew is a left cell inWW. There are also right cells, and two-sided
cells. These are all defined as equivalence classes agsbtatertain quasi-posetsiifi. We shall
make use of the opposite}", of the quasi-poset ordet,, z, defined in[Lu03, Ch. 8]. However, we
view it as an order on the sgtof left cells (rather than ofl’). Using goﬁ% for < in the discussion
above Proposition 2.2 earlier in this paper, choose a héigittion ht: Q@ — Z. Then, for each
integeri, define.; as the additive category generated by all dual left cell nesiél,, for which
ht(w) = .

For eachw € 2, constructX = X, as in the above theorem, withh = S,,. Choose positive
integersm,,, w € (2, and let

T = P xm.

The use of chosen positive integens, is a useful flexibility—all choices ofr,, > 0 lead to Morita
equivalent endomorphism algebras in the statement below.

Theorem 4.8. The Z[t,t~']-algebra AT := Endg(T") is standardly stratified. In fact, it has a
stratification system consisting of all(w) := Homg(S,,, TT), with S,, ranging over the dual left
cell modules.

Proof. The result follows by applying Theordm 2.6, as modified by Bed2.7, using Lemmnia3.1.0.
The projectived’-modules for (SS1) and (SS3) in (2.1) may be taken as thensHomy (X, TT).
We leave the straightforward details to the reader. O

We mention without proof thaf't can be choosen with the regular modileas a direct sum-
mand. We do not yet know if it is possible to do the same witleogermutation module analogs.

5. APPENDIXI: A SUMMARY OF EXACT CATEGORIES

This brief appendix summarizes, for the convenience of¢ader, some basic material concern-
ing exact categories. We closely follow Keller's treatmienthe appendix toDRSS99]. (See also
Keller's paperK90].)

Let o/ be an additive category. We do not repeat the standard definbdut refer tolMac94,
Chp. 9, 81] for a precise discussion. A péird) of composable morphisms: X — Y and
d:Y — Zin </ is called exactif : X — Y isthe kernel ofl : Y — Z andd is the cokernel of.
Let & be a class of exact pairs, which is closed under isomorphifnis d) € &, theni (resp.,d)
is called an inflation (resp., deflation), and the gairl) itself can be called a conflation. We often

just write X Y L Zor merelyX — Y — Z to denote elements (i.e., conflations)dn
The pair(«7, &) is called an exact category provided the following axiomisiho

0. 1p € Hom(0,0) is a deflation, wher® is the zero object inv.
1. The composition of two deflations is a deflation.

2. MorphismsY 4 7 I 7/in o in which d is a deflation can be completed to a pullback
diagram

vy 4z

L]

d
Y —— 7
in which d’ is a deflation.
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2°. MorphismsX’ < X ' v in o in which i is an inflation can be completed to a pushout
diagram
X =Y

A

Z'/

X — Y
in A in which i is an inflation.
Remarks 5.1. (a) The axioms above are part of Quillen’s axiol@¥ B|] for an exact category, and
they are shown inK90] to be equivalent to the full set of axioms. Since the Quilietioms are
self-dual, it follows that any exact category in the sensthefabove conditions also satisfies each
corresponding dual condition. For example, the compasiicany two inflations is an inflation.

(b) Continuing the above remark, note that the oppositegoayez °P inherits an exact category
structure from that okZ. Now assume thats is small. (If one believes in the set-theoretic phi-
losophy of universes, every’ can be regarded as small in an appropriate set-theoretiergpi)
Applying [K90, Prop. A2] to the opposite category°P, we find that there is an abelian category
2 and faithful full embeddind~ : &7 — 2, such that an exact p&if, d) belongs tag if and only

if 0 - G(X) “Q G(Y) 9 G(Z) — 0is a short exact sequencedf. Moreover, we can assume
that the strict image# of F' (which is equivalent ta) is closed under extensions 44.

(c) It is an exercise to show thatif : X’ — Y’ is an inflation with(:/,d’) € &, then the
morphismX’ — X induced by the zero compositioki’ — Y’ — Y — Z is an isomorphism,
with inverse given by the maf’ — X’ induced from the evident zero morphiskh — Y’ — Z.
Thisis allin(<7, &), but it follows that the diagram in Axiom 2 is a pullbackd# or in any abelian
category in which(.«7, &) is fully and exactly embedded. Similar remarks hold for Awi&°.

(d) The embedding in (b) can be used to prove “with elemertat tseful exact sequences

belong to&. For example, we can use Axiom 2, to obtain¥ih — Z’ @ Y 5 Z in % where
the left map sendg’ € Y’ to d'(v') @ f'(y’) and the right map send$ ¢ y to f(2') — d(y) € Z
for 2/ € Z',y € Y. This sequence is short exactds if and only if the diagram in Axiom 2 is a
pullback in4, which is the case if and only if it is a pullback . Moreover, it is short exact in
% ifand only if (i,e) € &.

(e) The abelian category® can also be used to extend the exact sequence in Propdsiflon 5
below to the right by one term, as in the argument for Promosi.3. As previously mentioned,
[DRSS99] effectively give a general 6 term version, using the “siplémpotent* hypothesis, which
we cannot assunte.

Let (<7, &) be an exact category. F&f, Z € <7, let&(Z, X) be the set of sequencés— Y —
Z in &. Define the usual equivalence relationon &(Z, X) by puttingX — YV - Z ~ X —
Y’ — Z provided there is a morphisii — Y giving a commutative diagram

Il

Y/

6An idempotent : A — A in an (additive) category is called split,dfcan be factored as= a8, a : B — A and
B :A— B,wherefa =1z, i.e.,3 is aretraction.
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The morphismY — Y’ is necessarily an isomorphism (as follows from Reniark 5.4t a
diagram chase, for example). Let EXZ, X) = &(Z,X)/ ~.

Proposition 5.2. (a) Ext}éa(Z,X) has a natural abelian group structure such that given ahy-
B — C'in & and objectZ € o7, there are exact sequences

0 — Homy (Z, A) —s Homy(Z, B) — Hom,,(Z, C) -1+ Ext.(Z, A)

where f is defined by pullback as in Axiom 2. A dual contravariant iersiolds, using the con-
travariant functorHom,, (—, Z) and pullback as in Axiom°2

(b) Let.#" be a fixed commutative, Noetheran ring.cifis a ¢ -category, therExt.(Z, A) is
naturally a.#-module.

Proof. The usual argument involving the Baer sum{ 5 = Vx(a @ 5)Az) proves (a); see
[Mac94, p. 85, (5.4)]. We next prove (b). Using standard embeddiegrems, we can reduce to
the case where? is a7 -category of.#-modules (We remark that this is the only case to which
we make applications in this paper.). Assuming this, we havat appears to be two actions.af

on Ext.(Z, X), one through the action o on Z, and one through its action on X. The first of the
two actions uses a pullback of multiplication by any giveeneént b in#" on Z, and the second
uses a pushout of th& — Y — Z action of b on X. We take part (b) as asserting, in this context
that the actions are the same, and that is (all of) what weproNe.

Suppose we are given an element ofﬁﬂ,X) represented b\ & Y 4 Z,and letb € 7.
Form the pullback and pushout objects as above, denotinguliteack byY”’ and the pushout by
Y#. The pullback object is formed by all paifs, z) with dy = bz(y € Y,z € Z). Itis an object
in & which is a subobject of” @ Z. There is an evident sequende — Y’ — Z, which we
also call a pullback. The pushout objéct is formed as a quotient ok @ Y by the subobject
W consisting of all pair —bzx,iz), with z € X. We represent an element of this quotient as
a bracketed paifz, y], with the representative pair,y) well-defined only up to addition of an
element ofi¥’. There is a corresponding pushout sequekices Y# — Z. We claim this sequence
represents the same element ofﬁﬂ,X) as the pullback sequence wilf. To prove this, all
we have to do is exhibit a mapg” — Y’ in the # -category.’ giving the expected commutative
diagram. Such a map may be defined by sending aipgirc X © Y to (by + iz, dy) € Y & Z,

a pair which is actually irY”’, sinced(by + ix) = b(dy). Moreover, the map had’ in its kernel
since, ifx € X, (b(ix) + (—bz),d(ix)) = (0,0). Thus, induces a map %6 — Y’. We leave it to
the reader to check the required commutativites. This grdve claim and completes the proof of
part (b). d

For a relatively recent survey of exact categories, s@iftiom the Quillen axioms (though with-
out any explicit discussion of E}g, seeBulQ].
6. APPENDIXIl: I DEMPOTENT IDEALS
The following result is proved indPS90]. For convenience, we indicate a short proof.

Proposition 6.1. Let.J be an idempotent ideal in a ring. Assume thay J is projective. LetM, N
be A/J-modules. For any integet > 0, inflation provides an isomorphism

Ext},, (M, N) — Ext}(M, N)



16 JIE DU, BRIAN J. PARSHALL, AND LEONARD L. SCOTT

of abelian groups. (On the right hand sid¥,, NV are regarded asi-modules through the morphism
A— AJJ)

Proof. Using the short exact sequertte> J — A — A/J — 0 of left A-modules, the projectivity
of 4.J implies that Ext (A/J, N) = 0 for n > 1. SinceJ? = J, Homy(J, N) = 0. Thus, any
projective A/.J-module is acyclic for the functor Hog{—, N). The proposition follows. O
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