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STRATIFYING ENDOMORPHISM ALGEBRAS USING EXACT CATEGORIES

JIE DU, BRIAN J. PARSHALL, AND LEONARD L. SCOTT

We dedicate this paper to the memory of J.A. Green

1. INTRODUCTION

This paper is the second in a series aimed at proving versionsof a conjecture made by the authors
in 1996. The conjecture concerns the enlargement, in a framework involving Kazhdan-Lusztig cell
theory, of those Hecke endomorphism algebras which occur naturally in the cross characteristic
representation theory of finite groups of Lie type. See [DPS98a] for the original version of the
conjecture, and [DPS15a] for a reformulation.

The [DPS98a] conjecture is set in the context of a Hecke algebraH for a finite Weyl group,
using the dual left cell modulesSω, ω ∈ Ω, in the sense of [Lu03]. (Thus, eachSω is a right
H-module.) The base ring (in [DPS15a]) is Z[v, v−1], wherev is an indeterminate. One of the
conjecture’s implications is that there is a faithful rightH-moduleT †, filtered by variousSω, such
that the modules∆(ω) := HomH(Sω, T

†), with ω ∈ Ω, form a stratifying system (in the sense of
[DPS98a]) for the endomorphism algebraA† := EndH(T

†). Using exact category methods, we
are able to prove this statement. See Theorem 4.8 below.

A strength of the “stratifying system” construction is thatit is well-behaved under base change,
so that the resulting algebraA† ⊗ k inherits a stratification from that ofA† over any commutative
ring or fieldk in which v is specialized to an invertible element.

The endomorphism algebrasA† constructed here have other good properties. In particular, based
changed versions̃A†, T̃ † can be shown to satisfy the particular “cyclotomic" local versions of the
conjecture which were treated in [DPS15a, Theorem 5.6], using results of [GGOR03] on the
module categoriesO for rational Cherednik algebras. The present paper raises the possibility that
the [DPS98a] conjecture can be proved directly within the global framework ofZ[v, v−1]-algebras
and modules, perhaps even with the present versions ofA†.

The authors began developing a general theory in [DPS98a] for constructing the required en-
larged algebras, centered around a set of requirements contained in what we call the “stratification
hypothesis.” The most difficult condition to verify in this hypothesis is an Ext1-vanishing require-
ment for some of the modules involved. The present paper takes a novel approach to this problem by
building new exact categories containing the relevant modules, effectively making the Ext1-groups
involved smaller and better behaved. While there are Spechtmodules and analogues for all finite
Weyl groups, there are no troublesome self-extensions, or extensions in the “wrong order,” because
of the exact structure we construct. As a result, many issuesof “bad characteristic" do not arise.

The present paper also contains new results on exact category constructions. In particular, the
main Lemma 3.1 gives a new, very general construction in an abstract setting. It very quickly
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leads to new exact module categories(A ,E ) for algebrasB over domainsK such that theK-
algebraBK obtained by base change fromK to its quotient fieldK is semisimple. The underlying
additive categoryA is the full subcategory ofB-mod consisting of all modules which are finitely
generated and torsion-free overK . The “exact sequences” inE are required to be exact on certain
filtrations. Both this construction and that of Lemma 3.1 apply to all standard axiom systems for
exact categories. However, a further construction, especially useful for the cell module setting,
focuses on the Quillen axioms [Q73], [K90].1

2. STRATIFIED AND HIGHEST WEIGHT MODULE CATEGORIES.

Throughout this section, letK be a fixed Noetherian commutative ring. OftenK will be the
ring Z := Z[t, t−1] of Laurent polynomials in a variablet, or the ringZ # obtained by localizing
Z at a multiplicative set generated by a finite number of rational prime integers inZ . (The primes
will be the set of bad primes for a fixed root system.) AK -moduleV is called finite if it is finitely
generated as aK -module. In particular,A will often be a finiteK -algebra.

By a quasi-poset, we mean a (usually finite) setΛ with a transitive and reflexive relation≤. An
equivalence relation∼ is defined onΛ by puttingλ ∼ µ if and only if λ ≤ µ andµ ≤ λ. Let λ̄ be
the equivalence class containingλ ∈ Λ. Of course,̄Λ inherits a poset structure itself.

2.1 Stratifying systems. We will briefly review the notion of astratifying system2 for a finite
K -algebraA and a quasi-posetΛ. Assume thatA is projective overK . Forλ ∈ Λ, we require
a finitely generatedA-module∆(λ), and a finitely generated, projectiveA-moduleP (λ), together
with an epimorphismP (λ) ։ ∆(λ). The following conditions are assumed to hold:

(SS1) Forλ, µ ∈ Λ,
HomA(P (λ),∆(µ)) 6= 0 =⇒ λ ≤ µ.

(SS2) Every irreducibleA-moduleL is a homomorphic image of some∆(λ).
(SS3) Forλ ∈ Λ, theA-moduleP (λ) has a finite filtration byA-submodules with top section

∆(λ) and other sections of the form∆(µ) with µ̄ > λ̄.

When these conditions all hold, the data consisting of the∆(λ), P (λ), etc. forms (by definition)
a stratifying systemfor the categoryA–mod of finitely generatedA-modules. It is also clear that
∆(λ)K ′ , P (λ)K ′ , . . . is a stratifying system forAK ′-mod for any base changeK → K ′, pro-
videdK ′ is a Noetherian commutative ring. (Notice that condition (SS2) is redundant, if it is known
that the direct sum of the projective modules in (SS3) is a progenerator—a property preserved by
base change.)

1Contrary to popular beliefs, the notion of an “exact category” is not exactly well-defined. There are at least three
axiom systems, all quite useful. The weakest set of axioms isthat of Quillen [Q73], as reduced to a smaller set by Keller
[K90]. See our Appendix 1, §5. Then there is the axiom system of Gabriel-Roiter [GR97]. Keller shows in the appendix
to [DRSS99] that this set is equivalent to that of Quillen after adding the additional condition that retractions have
kernels. This axiom set is generally easier to use for producing new exact sequences from others, but the retraction axiom
may be hard to verify in integral settings, or simply is not true. It is implied by the stronger, yet simpler requirement, that
all idempotents split. The latter has several applications, including a six term “long exact sequence” for Hom and Ext1

in [DRSS99], and it is used by Neeman [Ne90] to build derived categories. But in the context of the proofof Theorem
4.8 below, our main result, idempotents do not split. For a discussion of derived categories in the Quillen framework, see
[K96].

2In [DPS98a], these systems were calledstrict stratifying systems. In this paper, we drop the word “strict" and do not
consider more general systems. (The more general stratifying systems in [DPS98a] allowed µ̄ ≥ λ̄ in condition (SS3).)
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An ideal J in the K -algebraA above is called astratifying idealprovided that the inclusion
J →֒ A is K -split (or, equivalently,A/J is K -projective), and, forM,N ∈ A/J-mod, inflation
fromA/J toA defines an isomorphism

(2.1.1) ExtnA/J(M,N)
∼
−→ ExtnA(M,N), ∀n ≥ 0

of Ext-groups. (In particular, then = 1 case implies thatJ2 = J , see [CPS90].) A standard
stratificationof lengthn of A is a sequence0 = J0 ( J1 ⊆ · · · ( Jn = A of stratifying ideals3 of
A such that eachJi/Ji−1 is a projectiveA/Ji−1-module. IfA–mod has a stratifying system with
quasi-posetΛ, then it has a standard stratification of lengthn = |Λ̄|; see [DPS98a, Thm. 1.2.8].

Lemma 2.1. Suppose thatA has a stratifying system. ThenExt1A(∆(λ),∆(µ)) = 0 unlessλ < µ.

Proof. Assume thatλ 6< µ, and letQ(λ) be the kernel of the given epimorphismP (λ) ։ ∆(λ).
Then Ext1A(∆(λ),∆(µ)) is homomorphic image of HomA(Q(λ),∆(µ)). ButQ(λ) has a filtration
with sections of the form∆(τ) for τ̄ > λ̄, so that HomA(∆(τ),∆(µ))) = 0 sinceτ 6≤ µ. �

Given a finite quasi-posetΛ, a height functiononΛ is a mapping ht: Λ → Z with the property
thatλ < µ =⇒ ht(λ) < ht(µ). Givenλ ∈ Λ, a sequenceλ = λn > λ1 > · · · > λ0 is called a
chain of lengthn starting atλ = λn. Then the standard height function ht: Λ → N is defined by
setting ht(λ) to be the maximal length of a chain beginning atλ.

GivenA-modulesX,Y, recall that the trace module traceX(Y ) of Y in X is the submodule ofX
generated by the images of all morphismsY → X.

Proposition 2.2. Suppose thatA has a stratifying system. Then the∆-sections arising from the
filtration (SS3) ofP (λ) can be reordered with respect to any height function. Moreover, if we set

P (λ)j = traceP (λ)(
⊕

ht(µ)≥j

P (µ)),

thenP (λ)j+1 ⊆ P (λ)j , for j ∈ Z, and

P (λ)j/P (λ)j+1

is a direct sum of modules∆(µ) satisfyinght(µ) = j.

Proof. First, fix j maximal with a section∆(µ) appearing inP (λ) such that ht(µ) = j. Apply
Lemma 2.1 to construct a submoduleP (λ)(j) which is filtered by modules∆(ν) with ht(ν) ≥ j,
andP (λ)/P (λ)(j) filtered by modules∆(ν) with ht(ν) < j. Axiom (SS1) clearly givesP (λ)(j) =
P (λ)j , andP (λ)j+1 = 0. Clearly,P (λ)j/P (λ)j+1 is the direct sum as equipped by the proposition.
We have not used projectivity ofP (λ), only its filtration properties. Induction applied to the quotient
moduleP (λ)/P (λ)j completes the proof. �

Remark 2.3. The proposition above shows that the projective modules have a canonically described
filtration, given any height function ht. This suggests that, if A is to be realized as an endomorphism
algebra of a given module, that module might also reflect thatfiltration in a canonical way. In §§3,4,
this is successfully approached using semisimple base change and exact categories. The latter also
builds in a height function version of the vanishing condition in Lemma 2.1.

3If (2.1.1) is not assumed, but projectivity of eachJi/Ji−1 is assumed, then (2.1.1) for allJ = Ji follows for each
n from then = 1 case (idempotence of the idealsJi). See Appendix II. This is the more usual definition of a standard
stratification [DPS98a], but not our focus here.
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The proposition can also be used, in conjunction with Lemma 2.4 below, to build stratifying
ideals in an algebra Morita equivalent toA, and then inA. See [DPS98a, Lem. 1.2.7, Thm. 1.2.8].
We will not need to return to this in this paper.

Lemma 2.4. A has a stratifying system. Then

P :=
⊕

λ∈Λ

P (λ)

is a projective generator forA-mod.

Proof. Obvious from (SS2) and (SS3). �

2.2 Exact categories and the stratification hypothesis.This section provides a way to construct-
ing stratifying systems in an endomorphism ring setting. Previously, the construction was based on
assuming a “stratification hypothesis" in [DPS98a, Hyp. 1.2.9, Thm. 1.2.10]. The method required
a difficult Ext1-vanishing condition (see [DPS98a, Thm. 2.3.9, 2.4.4]). This subsection gives an
important generalization using exact categories. The advantage of this approach is that the relevant
Ext1-vanishing conditions involve smaller spaces (and so are hopefully easier to make vanish).

Let (A ,E ) be exact category in the sense of Quillen [Q73], as discussed in Appendix 1, §6
using axioms of Keller [K90]. In particular,A is an additive category andE is a class of sequences
X → Y → Z satisfying certain properties. In the hypotheses below we will assume the more
explicit setup in whichA is an additive full subcategory of mod–B whereB is a finite and projective
K -algebra. The sequencesX → Y → Z ∈ E are among the short exact sequences0 → X →
Y → Z → 0 in mod–B. Thus,A is an “exact subcategory" of mod–B. Note, however, we donot
assume that all exact sequences in mod–B whose object terms lie inA necessarily belong toE .

Next, we discuss the variation of the stratification hypothesis based on the notion of an exact
category. First, thee are several preliminary assumptions.

Assume there is given a collection of objectsSλ ∈ A indexed by the elementsλ of a finite
quasi-posetΛ. For eachλ ∈ Λ, Sλ is a subobject ofTλ ∈ A . Write

T :=
⊕

λ∈Λ

Tλ ∈ A .

With this notation, the following statements make up the most straightforward version of the “strat-
ification hypothesis":

Hypothesis 2.5.The stratification hypothesis holds provided the followingstatements hold.

(1) For λ ∈ Λ, there is a fixed sequenceνλ,0, · · · , νλ,l(λ) where l(λ) ≥ 0, νλ,0 = λ, and
νλ,i > λ for eachi > 0. Also, there is an increasing filtration

0 = F−1
λ ⊆ F 0

λ ⊆ · · · ⊆ F
l(λ)
λ = Tλ

such that each inclusionF i−1
λ ⊆ F iλ is an inflation,4 such that

F iλ/F
i−1
λ
∼= Sνλ,i

for 0 ≤ i ≤ l(λ).

4It an abstract exact category setting,F i−1

λ ⊆ F i
λ may be taken as a notation for a monomorphismF i−1

λ → F i
λ. In

this case, it has a cokernel isomorphic toF i
λ/F

i−1

λ .
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(2) For λ, µ ∈ Λ, HomA (Sµ, Tλ) 6= 0 =⇒ λ ≤ µ.
(3) For all λ ∈ Λ, Ext1

E
(Tλ/F

i
λ, T ) = 0, ∀i ≥ 0. (See Appendix I for a definition ofExt1

E
.)

The proof of the following result parallels the analogous result in [DPS98a, Thm. 1.2.10].

Theorem 2.6. LetA , B, T be as above. Assume that Hypothesis 2.5 holds. Put

A = EndB(T )

and, forλ ∈ Λ, define∆(λ) := HomB(Sλ, T ) ∈ A-mod. Assume that each∆(λ) is K -projective.
Then{∆(λ)}λ∈Λ is a stratifying system forA–mod.

Remark 2.7. The main function of condition (3) in Hypothesis 2.5 in proving Theorem 2.6 is to
ensure the existence of various exact sequences when HomA(−, T ) is applied. This exactness still
works and Theorem 2.6 still holds ifSλ is used in place ofTλ/F iλ, at least for the exact categories
we use. For one precise formulation, see Lemma 3.10. This discussion is necessary when using
the Quillen axiom system. In the idempotent split context studied in [DRSS99], the functor Ext1

E

is half-exact in each variable; see [DRSS99, Thm. 1.3], who quote arguments of [BH61, Thm.
1.1]. In this case, the original version of condition (3) holds as written when all the Ext1

E (S )(Sλ, T )

vanish. Finally, another useful modification of Hypothesis2.5 (1) is obtained by replacingSνλ,i,
i ≥ 1, by the direct sum of such objects, all withi ≥ 1. Again, Theorem 2.6 holds with essentially
the same arguments.

3. A CONSTRUCTION OF EXACT CATEGORIES.

Let (A ,E ) be an exact category in the sense of Quillen [Q73], see Appendix 1, §5. Suppose that
C is a given abelian category, and letF : A → C be an additive functor. ThenF is calledE -exact
(resp., leftE -exact) if given any(X → Y → Z) ∈ E , the sequence0 → F (X) → F (Y ) →
F (Z)→ 0 (resp.,0→ F (X)→ F (Y )→ F (Z)) is exact inC .

Lemma 3.1. LetC be an abelian category. Also, let(A ,E ′) be an exact category and letF : A →
C be an leftE ′-exact, additive functor. DefineE to be the class of those(X → Y → Z) ∈ E ′ such
that0→ F (X)→ F (Y )→ F (Z)→ 0 is exact inC . Then(A ,E ) is an exact category.

Proof. First, sinceF is left E ′-exact,E can also be described as the class of all(X → Y → Z ∈ E ′

such thatF (X) → F (Z) an epimorphism inC . Axioms 0, 1 in Appendix §5 are immediate.
Consider Axiom 2 and the following commutative diagram inA

X −−−−→ Y ′ d′
−−−−→ Z ′

∥∥∥ f ′
y

yf

X −−−−→ Y
d

−−−−→ Z

in which the bottom row belongs toE (so that the sequence isE ′-exact andF (d) : F (Y )→ F (Z)
is an epimorphism), and the top row is the pullback of the bottom row (through the mapf ). The
objectY ′ is identified as the kernel of the epimorphism(−f, d) : Z ′ ⊕ Y → Z in the bottom row
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of the commutative diagram

Y
d

−−−−→ Z
(

0
1Y

)

y
∥∥∥

Y ′ −−−−→ Z ′ ⊕ Y
(−f,d)
−−−−→ Z

The bottom rowY ′ −→ Z ′⊕Y
(−f,d)
−→ Z is isomorphic toY ′

(

−d′

f ′

)

−→ Z ′⊕Y
(f,d)
−→ Z, which is shown

in [K90, p. 406] to belong toE ′. (See also Remark 5.1(d) in Appendix I below for an alternate
argument.) Now apply the functorF , and use the natural isomorphismF (Z ′⊕Y ) ∼= F (Z ′)⊕F (Y )
to obtain the following commutative diagram

F (Y )
F (d)
−−−−→ F (Z) −−−−→ 0

y
∥∥∥

0 −−−−→ F (Y ′) −−−−→ F (Z ′)⊕ F (Y )
(−F (f),F (d))
−−−−−−−−→ F (Z) −−−−→ 0.

As noted above, the morphismF (d) is an epimorphism. Thus, sinceF is left exact, the bottom row
is exact, and it identifiesF (Y ′) as the the pullback in the abelian categoryC of F (f) andF (d).
SinceF (d) is an epimorphism, so is its pullbackF (d′). This verifies Axiom 2.

Finally, we must check that Axiom 2◦ holds. Consider a commutative pushout diagram

(3.0.1)

0 −−−−→ X
i

−−−−→ Y
d

−−−−→ Z −−−−→ 0

g

y h

y
∥∥∥

0 −−−−→ X ′ i′
−−−−→ Y ′ d′

−−−−→ Z −−−−→ 0

in which the top row belongs toE . We must prove thatX ′ → Y ′ → Z also belongs toE . But the
diagram (3.0.1) gives the following commutative diagram

(3.0.2)

Y
=

−−−−→ Y

h

y d

y

0 −−−−→ X ′ i′
−−−−→ Y ′ d′

−−−−→ Z −−−−→ 0

.

After applyingF , we get the following commutative diagram

F (Y )
=

−−−−→ F (Y )

F (h)

y F (d)

y

0 −−−−→ F (X ′)
F (i′)
−−−−→ F (Y ′)

F (d′)
−−−−→ F (Z) −−−−→ 0

in whichF (d) is an epimorphism, since the top row of (3.0.1) belongs toE . This implies thatF (d′)
is an epimorphism, and, hence, the bottom row of (3.0.2) is exact inC . Thus, the bottom row of
(3.0.1) belongs toE , and Axiom 2◦ holds, completing the proof of the lemma. �

We now make some assumptions which will often be in force for the rest of this paper.
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Assumptions 3.2.Let K be a fixed Noetherian integral domain with fraction fieldK. LetH be
K -algebra which is finite and torsion-free as aK -module. Assume thatHK is semisimple. The
isomorphism classes of irreducible rightHK-modules are indexed by a finite setΛ. Givenλ ∈ Λ,
letEλ denote a representative from the corresponding irreducible class. Fix a functionht : Λ→ Z,
taking, for convenience, non-negative values. (We callht a height function, though there is no
immediate assumption thatΛ is a quasi-poset.)

Let mod–H be the category ofK -finite rightH-modules, and let mod–HK be category of finite
dimensional rightHK-modules. LetA be the full subcategory of mod–H which consists ofK -
torsion-freeH -modules.

ForN ∈ mod–HK , the height function ht induces a natural increasing (finite) filtration

0 = N−1 ⊆ N0 ⊆ · · · ⊆ N i ⊆ N i+1 ⊆ · · · ⊆ N,

definingN i to be the sum of all irreducible rightHK-submodules isomorphic toEλ with ht(λ) ≤ i.
Then ifM ∈ A , there is an induced filtration

0 =M−1 ⊆M0 ⊆ · · · ⊆M i ⊆M i+1 ⊆ · · · ⊆M

onM defined by setting
M i =M ∩ (MK)i, i ≥ 0.

Observe that eachM i ∈ A , as are the modulesM/M i andM i/M i−1. Also, (M i/M i−1)K is a
direct sum ofHK-modulesEλ with ht(λ) = i.

Our goal is to show that the above data define the structure of an exact category on the additive
categoryA of K -torsion-free rightH-modules, once an appropriate familyE of conflationsX →
Y → Z has been defined.

First, we require more preliminaries, including the proposition below. Note that ifX
f
−→ Y is

a map inA , thenf induces a mapfi : Xi → Y i and a mapfi : Xi/Xi−1 → Y i/Y i−1 for each
integeri. In addition, ifg : Y → Z is another morphism inA , then(gf)i = gifi andgifi = gifi
for eachi. Finally, if f : X → Y is an inclusionX ⊆ Y , then

(3.0.3) X ∩ (YK)
i = X ∩ (XK)i = Xi, ∀i.

In the following proposition, we continue to assume that Assumptions 3.2 are in force.

Proposition 3.3. SupposeX,Y,Z ∈ A and 0 → X
f
→ Y

g
→ Z → 0 is an exact sequence in

mod–H. Then for eachi ∈ Z, the following statements hold.
(a) The sequence0→ Xi → Y i → Zi is exact in mod–H.
(b) The sequence0 → Xh → Y h → Zh → 0 is a short exact sequence in mod–H for each

h ≤ i if and only if
0→ Xj/Xj−1 → Y j/Y j−1 → Zj/Zj−1 → 0

is exact for eachj ≤ i.
(c) The sequence0 → Xj/Xj−1 → Y j/Y j−1 → Zj/Zj−1 → 0 is a short exact sequence for

all j ≤ i if and only ifY g/Y g−1 → Zg/Zg−1 is an epimorphism for allg ≤ i.

Proof. Throughout this proof, the word “exact" means exact in the usual sense in the category of
rightH– (or possiblyHK–) modules.

Without loss, we can assume that the mapf : X → Y is an inclusion of a submodule. Clearly,
eachfi is an inclusion. Also,gifi = (gf)i = 0, so that the image offi is contained in the kernel
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of gi. To prove the reverse inclusion, lety ∈ ker gi. Thus, y ∈ ker g, so y ∈ X. But also
y ∈ Y i ⊆ (YK)i. Soy ∈ X ∩ (YK)i = Xi, as per (3.0.3). This proves (a).

We next prove (b). For every integerj, we have a3× 3 diagram

(3.0.4)

Xj−1 −−−−→ Y j−1 −−−−→ Zj−1

y
y

y

Xj −−−−→ Y j −−−−→ Zj
y

y
y

Xj/Xj−1 −−−−→ Y j/Y j−1 −−−−→ Zj/Zj−1

in which the columns are short exact sequences. Then assume that each0→ Xh → Y h → Zh → 0
is exact for eachh ≤ j. Then the3 × 3 Lemma [Mac94, p. 49] implies that0 → Xj/Xj−1 →
Y j/Y j−1 → Zj/Zj−1 → 0 is exact for allj ≤ i.

Conversely, assume that, for anyj ≤ i, the sequence0→ Xj/Xj−1 → Y j/Y j−1 → Zj/Zj−1 →
0 is exact. By induction, we can assume that0→ Xi−1 → Y i−1 → Zi−1 → 0 is exact. In addition,
the composition mapXi → Y i → Zi is zero. Since the top and bottom rows of (3.0.4) are short
exact sequences, [Mac94, Ex. 2, p. 51] implies the middle horizonal line is a short exact sequence,
as required.

As for (c), the =⇒ direction is obvious. Conversely, it is easy to see that if the maps
Y g/Y g−1 → Zg/Zg−1 are epimorphisms for allg ≤ i, then each mapY h → Zh, h ≤ i, is
an epimorphism. Now apply (a). �

In the context of Proposition 3.3(b), it is easy to give examples where0→ Xh → Y h → Zh → 0
is not a short exact sequence.

Example 3.4. Let K = Z, and letH = ZC2, whereC2 = {1, s} is the cyclic group of order 2.
Let S2 be the trivial module forH. It is free of rank 1 overZ with basis vector1. Let S1 be the
sign module forH, also free of rank 1 with basis vector denotedǫ (so thats · ǫ := −ǫ). Consider

the short exact sequence0 → X
α
−→ Y

β
−→ Z → 0 of torsion-freeH-modules whereX = S2,

Y = H, andZ = S1. Hereα(1) = 1+ s, andβ(1) = −β(s) = −ǫ. AssignS2,Q height 1 andS1,Q
height 2, then 




X1 = S1
2 = 0;

Y 1 = H1 = Z(1− s);

Z1 = Z.

Thenβ(Y 1) = 2Zǫ, so thatY 1 → Z1 is not surjective. Thus, takingh = 1, the short exact sequence
0 → Xh → Y h → Zh → 0 is not exact. However, assigningS2 to have height 2 andS1 to have

height 1, and interchanging the roles ofX andY , the short exact sequence0→ Z
φ
→ H

ψ
→ X → 0

(whereφ(ǫ) = 1 − s, andψ(1) = ψ(s) = 1) has the property that0 → Zh → Y h → Xh → 0 is
short exact for allh.

Construction 3.5. Keep Assumptions 3.2 withA as described there.An exact pair(ι, d), X
ι
→ Y

and Y
d
→ Z belongs, by definition, toE provided that, for each integeri, the sequence0 →
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Xi/Xi−1 → Y i/Y i−1 → Zi/Zi−1 → 0 is a short exact sequence of rightH-modules. By
Proposition 3.3, each sequence0→ Xi → Y i → Zi → 0 is also short exact.

Theorem 3.6. The pair(A ,E ) is an exact category.

Proof. First observe that there is the standard exact category(A ,E ′). HereE ′ consists of all exact
triplesX → Y → Z in mod–H with X,Y,Z objects inA (i.e.,X,Y,Z areK -torsion-free). Let
C be the abelian category of rightH-modules (not necessarily finitely generated), andF : A → C

the functorFX =
⊕

i≥0X
i. ThenF is left E ′-exact, andE (as defined in Construction 3.5)

consists of precisely those(X → Y → Z) ∈ E ′ for which 0 → F (X) → F (Y ) → F (Z) → 0
is a short exact sequence inC . (Apply Proposition 3.3(d).) Thus,(A ,E ) is an exact category by
Lemma 3.1. �

Remark 3.7. Though the construction of(A ,E ) requires the tools of exact category theory, they
can all be interpreted here in the larger (and more familiar)category mod–H. Similar remarks apply
to the second construction below.

Construction 3.8. Keep Assumptions 3.2. For each integeri, let Si be a full, additive subcategory
of A such that ifS ∈ Si, thenSK is a direct sum of irreducible irreducible rightHK-modules
having heighti.5 (If i is not in the image of the height function, then putSi := [0].) Let S be
the set-theoretic union of theSi. LetA (S ) be the full subcategory ofA above having objectsM
satisfyingM j/M j−1 ∈ Sj for all j (or, equivalently,M j/M j−1 is in S for all integersj).

DefineE (S ) to be the class of those conflationsX → Y → Z in E such thatX,Y,Z ∈ A (S )
and with the additional property that, for each integeri,

0→ Xi/Xi−1 → Y k/Y i−1 → Zi/Zi−1 → 0

is a split short exact sequence in mod–H. (Thus, by definition,E (S ) ⊆ E .)

Theorem 3.9. (A (S ),E (S )) is an exact category.

Proof. The first two axioms are easily verified. (Note again thatE (S ) ⊆ E .) To check Axiom 2,
consider the diagram

X −−−−→ Y ′ −−−−→ Z ′

y
y f

y

X −−−−→ Y −−−−→ Z

where the bottom row is inE (S ) and the top row is a pullback (in mod–H) with Z ′ ∈ A (S ).
However, since the bottom row lies inE , we have thatX ′ → Y ′ → Z ′ also belongs toE . The
issue is whether it splits section by section (which, in particular, would imply thatY ′ ∈ A (S )).
This splitting at the section level follows easily from the fact that the pullback of a split short exact
sequence is split. A similar argument gives Axiom 2◦. �

The following lemma shows a common vanishing condition leads to expected exact sequences.

5We think ofSi as a special class of objects inA ; the stated condition onSK is necessary, but not always sufficient
for membership inSi.
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Lemma 3.10. Suppose thatX ∈ A (S ) satisfiesExt1
E (S )(S,X) = 0 for all S ∈ S . LetE →

F → G belong toE (S ). For anyS ∈ S ,

0→ HomA (S )(G,X) → HomA (S )(F,X)→ HomA (S )(E,X)→ 0.

is a short exact sequence ofK -modules.

Proof. The lemma is obvious whenF = F h for someh ∈ Z andE = F h−1, sinceF h/F h−1 ∈
Sh.

This special case applies to all columns of the commutative diagram, upon applying the functor
HomA (S )(−,X) to the diagram

Eh−1 −−−−→ F h−1 −−−−→ Gh−1

y
y

y

E −−−−→ F −−−−→ G
y

y
y

Eh/Eh−1 −−−−→ F h/F h−1 −−−−→ Gh/Gh−1.

Here,h is chosen so thatF = F h, and it follows thatE = Eh andG = Gh. Moreover, we can
assume the top row of the resulting diagram is exact by induction (on, say, the number of indicesj
for which F j/F j−1 6= 0). Finally, the bottom split row, of course, remains split exact in the new
3× 3 diagram. Since the middle row of the latter satisfies the hypothesis of [Mac94, Ex. 2, p. 51],
it defines a short exact sequence. This proves the lemma. �

4. SOME FURTHER RESULTS FOR(A (S ),E (S )) AND CONSTRUCTION OFT †

In this section, we consider further the exact category(A (S ),E (S )) introduced in Construc-
tion 3.8.

Proposition 4.1. LetM,N ∈ A (S ), and leth be any integer.
(a) There is a natural isomorphismExt1

E (S )(N
h,M) ∼= Ext1

E (S )(N
h,Mh).

(b) In particular, ifS ∈ Sh, we have

Ext1
E (S )(S,M) = Ext1

E (S )(S,M
h).

(c) Assume thatS ∈ Sh. Suppose thatM =Mh andMh−1 = 0. ThenExt1
A (S )(S,M) = 0.

Proof. Without loss, takeN = Nh in (a). Obviously, there is a natural transformation

η(N,M) : Ext1
E (S )(N,M)→ Ext1

E (S )(N
h,Mh)

which sends(M → Y → N) ∈ E (S ) to (Mh → Y h → Nh) ∈ E (S ). The inverse is obtained
by pushout. This proves (a), and (b) follows. Finally, (c) follows immediately from the definition of
E (S ). �

We also have the following result. It is immediate from the definitions.

Lemma 4.2. LetM ∈ A (S ). If S ∈ Sh, thenExt1
E (S )(S,M

h−1) ∼= Ext1H(S,M
h−1).
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Proposition 4.3. Let S ∈ Sh, let M ∈ A (S ), and letj be a non-negative integer. There is a
6-term exact sequence

0→ HomA (S )(S,M
j)→HomA (S )(S,M)→ HomA (S )(S,M/M j)

f
→Ext1

E (S )(S,M
j)

g
→ Ext1

E (S )(S,M)→ Ext1
E (S )(S,M/M j).

It is compatible with first 6 terms of the long exact sequence for the functorHomA (S,−) =
HomH(S,−) applied to the short exact sequence0→M j →M →M/M j → 0.

Proof. All the maps are standard: the connecting map uses pullbacks, and the other Ext1
E (S )-maps

arise from functorality (and use pushouts). The composition of any two consecutive maps is zero.
All Ext1

E (S )–groups are contained in (and are compatible with) their Ext1
H counterparts. Now an

object in the kernel ofg is also in the kernel of is classical counterpart, so lies in the image off ,
since the first three terms of the long exact sequence are identical to those in the classical case.

Now consider exactness at the 5th node. IfM = M j , theng is clearly an isomorphism and
exactness at the 5th node follows. Ifg is not an isomorphism, thenj is smaller thanh, so that
(M j)h−1 =M j, so Lemma 4.2 can be applied. �

Remark 4.4. Observe that exactness of the first 5 terms of the propositionholds for anyS ∈ A (S ),
not just inS . Also, as noted in Proposition 5.2, the Ext1

E (S )-groups above are all naturallyK -
modules. The proof of that proposition shows they areK -submodules of the correspondingK -
modules Ext1H . All maps in the above proposition areK -module maps.

Corollary 4.5. LetS ∈ S have heighth, and letM ∈ A (S ).
(a) The mapExt1

E (S )(S,M
h−1)→ Ext1

E (S )(S,M
h) = Ext1

E (S )(S,M) is surjective.

(b) We haveExt1
E (S )(S,M) = 0 if and only if the map

HomA (S )(S,M
h/Mh−1)→ Ext1

E (S )(S,M
h−1)

is surjective.
(c) Suppose thatExt1

E (S )(S,M
h−1) is generated as aK -module byǫ1, · · · , ǫn. LetMh−1 →

N → S⊕n represent the element of

Ext1
E (S )(S

⊕n,Mh−1) ∼= Ext1H(S
⊕n,Mh−1) (see Lemma 4.2)

corresponding toχ := ǫ1 ⊕ · · · ⊕ ǫn. Finally, suppose there is a commutative diagram

Mh−1 −−−−→ N −−−−→ S⊕n

∥∥∥
y f

y

Mh−1 −−−−→ Mh −−−−→ Mh/Mh−1

wheref is a morphism inA (S ). ThenExt1
E (S )(S,M) = 0.

Proof. (a) follows from the 6-term exact sequence and the fact that Ext1
E (S )(S, S) = 0. (The

equality follows from Lemma 4.2.) The proof of (b) is similar, using Proposition 4.1. Next, if
Mh−1 → Ni corresponds toǫi, there is a pullback with the top rowǫi. Thus,ǫi is a pullback

of Mh−1 → Mh → Mh/Mh−1 under the evident compositegi : S → S⊕n f
→ Mh/Mh−1.

Consequently, the image ofgi ∈ HomA (S,Mh/Mh−1) under the connecting homomorphism to
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Ext1
E (S )(S,M

h−1) is ǫi. Sincei was arbitrary, the connecting homomorphismf in (b) is surjective.

Hence, Ext1
A (S )(S,M) = 0. �

Remark 4.6. The argument above has already appeared in a module theoretic form in [DPS15a].
However, the argument given there required stronger hypotheses, e.g., that Ext1

H(S, S) = 0.

Theorem 4.7. Assume that eachSi is strictly generated as an additive category by finitely many
objects, i.e., every object inSi is isomorphic to a finite direct sum of a given finite set of objects in

Si. LetM ∈ A (S ). Then there exists an objectX in A (S ) and an inflationM
i
→ X such that

Ext1
E (S )(S,X) = 0 for all S ∈ S . In addition ifh is chosen minimal such thatMh−1 6= 0, it may

be assumed that the inflation induces an isomorphismMh−1 ∼= Xh−1.

Proof. Without loss, we can assume thatM 6= 0, and also that Ext1
E (S )(S,M) 6= 0 for some

S ∈ S . Choose an integerh minimal with such a non-vanishing occurring for someS ∈ Sh. Note
thatMh−1 6= 0 by Proposition 4.1(c). We will next enlargeM to an objectX, closer to theX
required in the theorem.

Let S1, · · · , Sm be generators forSh. For each indexi, let ǫi,1, · · · , ǫi,ni
be a finite set of

generators for Ext1H(Si,M
h−1) ∼= Ext1

E (S )(Si,M
h−1). Form an extension0 → Mh−1 → Yi →

S⊕ni

i → 0 corresponding toχi := ǫi,1 ⊕ · · · ⊕ ǫi,ni
∈ Ext1H(S

⊕ni

i ,Mh−1). Putχ := χ1 ⊕ · · · ⊕

χm, and letχ′ ∈ Ext1H(M
h/Mh−1,Mh−1) correspond to the extension0 → Mh−1 → Mh →

Mh/Mh−1 → 0. PutZ := ⊕iS
⊕ni

i ⊕ Mh/Mh−1, and letMh−1 → Xh → Z correspond to
χ⊕ χ′. Observe there is a commutative diagram

Mh−1 −−−−→ Yi −−−−→ S⊕ni

i∥∥∥
y

y

Mh−1 −−−−→ Xh −−−−→ Z,

in which the top row corresponds toχi and the bottom row toχ ⊕ χ′ . Comparison with Corol-
lary 4.5(c), allowing for the differences in notation, shows Ext1

E (S )(Si,X
h) = 0 for all i. Thus,

Ext1
E (S )(S,X

h) = 0, for all S in Sh. Note we have the same vanishing forS ∈ Sj with j < h, by

our choice ofh. In all cases, we can replaceXh with anyX ′ containing it with(X ′)h = Xh.
So far, we have not constructed an objectX, only Xh. However, the latter may be viewed as

the middle term of an exact sequence of rightH-modules0 → Mh → Xh → S′ → 0, where
S′ :=

⊕
S⊕ni

i ∈ Sh. This sequence clearly corresponds to a conflation inE (S ). (Note howZ
above is split.) Applying a pushout construction usingMh → M (see Propostion 4.1(b) and its
proof), we obtain an objectX in A (S ) which contains a copy ofM under an inflation, and has
our constructedXh as its image under the functor(−)h. In additionXj =M j for j ≤ h− 1.

Applying Proposition 4.1(b) again, we find that Ext1
E (S )(−,X) vanishes on all objects inSj

with j ≤ h− 1 (and, thus,j ≤ h). Now repeat the argument withX in the role ofM . This requires
a biggerh, unless Ext1

E (S )(S,X) already vanishes for allS ∈ S . Eventually the process stops, at
which pointX satisfies all requirements of the theorem. �

For the main result, we letH be the Hecke algebra overZ[v, v−1] associated to a finite Coxeter
system(W,S). See [Lu03, Ch. 8] for a very general “unequal parameter" version ofH, and a
corresponding Kazhdan-Lusztig cell theory. We use dual left cell modulesSω as generators for the
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various additive categoriesSi. Hereω is a left cell inW . There are also right cells, and two-sided
cells. These are all defined as equivalence classes associated to certain quasi-posets inW . We shall
make use of the opposite≤op

LR of the quasi-poset order≤LR, defined in [Lu03, Ch. 8]. However, we
view it as an order on the setΩ of left cells (rather than onW ). Using≤op

LR for ≤ in the discussion
above Proposition 2.2 earlier in this paper, choose a heightfunction ht : Ω → Z. Then, for each
integeri, defineSi as the additive category generated by all dual left cell modulesSω for which
ht(ω) = i.

For eachω ∈ Ω, constructX = Xω as in the above theorem, withM = Sω. Choose positive
integersmω, ω ∈ Ω, and let

T † =
⊕

X⊕mω
ω .

The use of chosen positive integersmω is a useful flexibility—all choices ofmω > 0 lead to Morita
equivalent endomorphism algebrasA† in the statement below.

Theorem 4.8. TheZ[t, t−1]-algebraA† := EndH(T
†) is standardly stratified. In fact, it has a

stratification system consisting of all∆(ω) := HomH(Sω, T
†), with Sω ranging over the dual left

cell modules.

Proof. The result follows by applying Theorem 2.6, as modified by Remark 2.7, using Lemma 3.10.
The projectiveA†-modules for (SS1) and (SS3) in (2.1) may be taken as the various HomH(Xω, T

†).
We leave the straightforward details to the reader. �

We mention without proof thatT † can be choosen with the regular moduleH as a direct sum-
mand. We do not yet know if it is possible to do the same with other permutation module analogs.

5. APPENDIX I: A SUMMARY OF EXACT CATEGORIES

This brief appendix summarizes, for the convenience of the reader, some basic material concern-
ing exact categories. We closely follow Keller’s treatmentin the appendix to [DRSS99]. (See also
Keller’s paper [K90].)

Let A be an additive category. We do not repeat the standard definition, but refer to [Mac94,
Chp. 9, §1] for a precise discussion. A pair(i, d) of composable morphismsi : X → Y and
d : Y → Z in A is called exact ifi : X → Y is the kernel ofd : Y → Z andd is the cokernel ofi.
Let E be a class of exact pairs, which is closed under isomorphisms. If (i, d) ∈ E , theni (resp.,d)
is called an inflation (resp., deflation), and the pair(i, d) itself can be called a conflation. We often

just writeX
i
→ Y

j
→ Z or merelyX → Y → Z to denote elements (i.e., conflations) inE .

The pair(A ,E ) is called an exact category provided the following axioms hold:

0. 10 ∈ Hom(0, 0) is a deflation, where0 is the zero object inA .

1. The composition of two deflations is a deflation.

2. MorphismsY
d
−→ Z

f
←− Z ′ in A in which d is a deflation can be completed to a pullback

diagram

Y ′ d′
−−−−→ Z ′

f ′
y f

y

Y
d

−−−−→ Z
in whichd′ is a deflation.
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2◦. MorphismsX ′ f
←− X

i
−→ Y in A in which i is an inflation can be completed to a pushout

diagram

X
i

−−−−→ Y

f

y f ′
y

X ′ i′
−−−−→ Y ′

in A in which i′ is an inflation.

Remarks 5.1. (a) The axioms above are part of Quillen’s axioms [Q73] for an exact category, and
they are shown in [K90] to be equivalent to the full set of axioms. Since the Quillenaxioms are
self-dual, it follows that any exact category in the sense ofthe above conditions also satisfies each
corresponding dual condition. For example, the composition of any two inflations is an inflation.

(b) Continuing the above remark, note that the opposite category A op inherits an exact category
structure from that ofA . Now assume thatA is small. (If one believes in the set-theoretic phi-
losophy of universes, everyA can be regarded as small in an appropriate set-theoretic universe.)
Applying [K90, Prop. A2] to the opposite categoryA op, we find that there is an abelian category
B and faithful full embeddingG : A → B, such that an exact pair(i, d) belongs toE if and only

if 0→ G(X)
G(i)
→ G(Y )

G(d)
→ G(Z)→ 0 is a short exact sequence inB. Moreover, we can assume

that the strict imageM of F (which is equivalent toA ) is closed under extensions inB.
(c) It is an exercise to show that ifi′ : X ′ → Y ′ is an inflation with(i′, d′) ∈ E , then the

morphismX ′ → X induced by the zero compositionX ′ → Y ′ → Y → Z is an isomorphism,
with inverse given by the mapX → X ′ induced from the evident zero morphismX → Y ′ → Z.
This is all in(A ,E ), but it follows that the diagram in Axiom 2 is a pullback inB or in any abelian
category in which(A ,E ) is fully and exactly embedded. Similar remarks hold for Axiom 2◦.

(d) The embedding in (b) can be used to prove “with elements" that useful exact sequences

belong toE . For example, we can use Axiom 2, to obtain inY ′ i
→ Z ′ ⊕ Y

e
→ Z in B where

the left map sendsy′ ∈ Y ′ to d′(y′) ⊕ f ′(y′) and the right map sendsz′ ⊕ y to f(z′) − d(y) ∈ Z
for z′ ∈ Z ′, y ∈ Y . This sequence is short exact inB if and only if the diagram in Axiom 2 is a
pullback inB, which is the case if and only if it is a pullback inA . Moreover, it is short exact in
B if and only if (i, e) ∈ E .

(e) The abelian categoryB can also be used to extend the exact sequence in Proposition 5.2
below to the right by one term, as in the argument for Proposition 4.3. As previously mentioned,
[DRSS99] effectively give a general 6 term version, using the “splitidempotent“ hypothesis, which
we cannot assume.6

Let (A ,E ) be an exact category. ForX,Z ∈ A , letE (Z,X) be the set of sequencesX → Y →
Z in E . Define the usual equivalence relation∼ on E (Z,X) by puttingX → Y → Z ∼ X →
Y ′ → Z provided there is a morphismY → Y ′ giving a commutative diagram

X −−−−→ Y −−−−→ Z
∥∥∥

y
∥∥∥

X −−−−→ Y ′ −−−−→ Z

6An idempotente : A → A in an (additive) category is called split, ife can be factored ase = αβ, α : B → A and
β : A → B, whereβα = 1Z , i.e.,β is a retraction.
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The morphismY → Y ′ is necessarily an isomorphism (as follows from Remark 5.1(b) and a
diagram chase, for example). Let Ext1

E
(Z,X) = E (Z,X)/ ∼.

Proposition 5.2. (a) Ext1
E
(Z,X) has a natural abelian group structure such that given anyA →

B → C in E and objectZ ∈ A , there are exact sequences

0→ HomA (Z,A) −→ HomA (Z,B) −→ HomA (Z,C)
f
−→ Ext1E (Z,A)

wheref is defined by pullback as in Axiom 2. A dual contravariant version holds, using the con-
travariant functorHomA (−, Z) and pullback as in Axiom 2◦.

(b) LetK be a fixed commutative, Noetheran ring. IfA is a K -category, thenExt1
E
(Z,A) is

naturally aK -module.

Proof. The usual argument involving the Baer sum (α + β = ∇X(α ⊕ β)∆Z ) proves (a); see
[Mac94, p. 85, (5.4)]. We next prove (b). Using standard embedding theorems, we can reduce to
the case whereA is aK -category ofK -modules (We remark that this is the only case to which
we make applications in this paper.). Assuming this, we havewhat appears to be two actions ofK

on Ext1
E
(Z,X), one through the action ofK on Z, and one through its action on X. The first of the

two actions uses a pullback of multiplication by any given element b inK on Z, and the second
uses a pushout of theX → Y → Z action of b on X. We take part (b) as asserting, in this context,
that the actions are the same, and that is (all of) what we willprove.

Suppose we are given an element of Ext1
E
(Z,X) represented byX

i
→ Y

d
→ Z, and letb ∈ K .

Form the pullback and pushout objects as above, denoting thepullback byY ′ and the pushout by
Y #. The pullback object is formed by all pairs(y, z) with dy = bz(y ∈ Y, z ∈ Z). It is an object
in A which is a subobject ofY ⊕ Z. There is an evident sequenceX → Y ′ → Z, which we
also call a pullback. The pushout objectY # is formed as a quotient ofX ⊕ Y by the subobject
W consisting of all pairs(−bx, ix), with x ∈ X. We represent an element of this quotient as
a bracketed pair[x, y], with the representative pair(x, y) well-defined only up to addition of an
element ofW . There is a corresponding pushout sequenceX → Y # → Z. We claim this sequence
represents the same element of Ext1

E
(Z,X) as the pullback sequence withY ′. To prove this, all

we have to do is exhibit a mapY # → Y ′ in theK -categoryA giving the expected commutative
diagram. Such a map may be defined by sending a pairx, y ∈ X ⊕ Y to (by + ix, dy) ∈ Y ⊕ Z,
a pair which is actually inY ′, sinced(by + ix) = b(dy). Moreover, the map hasW in its kernel
since, ifx ∈ X, (b(ix) + (−bx), d(ix)) = (0, 0). Thus, induces a map toY # → Y ′. We leave it to
the reader to check the required commutativites. This proves the claim and completes the proof of
part (b). �

For a relatively recent survey of exact categories, starting from the Quillen axioms (though with-
out any explicit discussion of Ext1

E
), see [Bü10].

6. APPENDIX II: I DEMPOTENT IDEALS

The following result is proved in [CPS90]. For convenience, we indicate a short proof.

Proposition 6.1. LetJ be an idempotent ideal in a ringA. Assume thatAJ is projective. LetM,N
beA/J-modules. For any integern ≥ 0, inflation provides an isomorphism

ExtnA/J(M,N)
∼
−→ ExtnA(M,N)
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of abelian groups. (On the right hand side,M,N are regarded asA-modules through the morphism
A→ A/J .)

Proof. Using the short exact sequence0→ J → A→ A/J → 0 of leftA-modules, the projectivity
of AJ implies that ExtnA(A/J,N) = 0 for n > 1. SinceJ2 = J , HomA(J,N) = 0. Thus, any
projectiveA/J-module is acyclic for the functor HomA(−, N). The proposition follows. �
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