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Abstract. Let R be a Noetherian local ring. For an endomorphism ϕ : RÑ R with zero-dimensional closed
fiber, the total derived inverse image functor Lϕ› induces an exact (triangulated) functor from the category

of perfect complexes over R with cohomology of finite length, to itself. The triangulated entropy of this

endofunctor, as defined in [3], exists. We show that when R is regular, the triangulated entropy of the total
derived inverse image functor Lϕ› is equal to the local entropy of ϕ, as defined in [7]. We also compute the

triangulated entropy of the the total derived inverse image functor of the Frobenius endomorphism over a

complete local ring of equal characteristic p, and show that this entropy is equal to d ¨ logppq, where d is the
dimension of the ring.

1. Introduction

Recently in [3] a notion of entropy was defined and studied for an exact (triangulated) endofunctor of
a triangulated category with generator. In this note we will specialize to a specific triangulated category,
namely the category of perfect complexes with cohomology of finite length over a Noetherian local ring R, and
will study the entropy of the total derived inverse image functor Lϕ›, where ϕ : RÑ R is an endomorphism
with zero-dimensional closed fiber. Our goal is to compute the triangulated entropy of the functor Lϕ› in
terms of the local entropy (cf. [7]) of the endomorphism ϕ. We find that local entropy is always less than
or equal to triangulated entropy. When R is regular we are able to show that the two entropies are equal.
We use this result to compute the triangulated entropy of the the total derived inverse image functor of the
Frobenius endomorphism over a complete local ring of equal characteristic p, and show that this entropy is
equal to d ¨ logppq, where d is the dimension of the ring.

The organization of the content of this paper is as follows: In Sections 2 and 3 we recall the definitions of
triangulated and local entropies. In Section 4 we review the definition of the category of perfect complexes
with cohomology of finite length over a Noetherian local ring R and show that in this category every nonzero
object is a generator. We also explain why the total derived inverse image functor Lϕ› : DpRq Ñ DpRq,
where ϕ : R Ñ R is an endomorphism with zero-dimensional closed fiber, induces an exact (triangulated)
functor from the category of perfect complexes with cohomology of finite length over R, to itself. The aim
of Section 4 is to show that it makes sense to speak of the triangulated entropy of the functor Lϕ›, viewed
as an endofunctor of the category of perfect complexes with cohomology of finite length over R. Finally,
Section 5 contains our main results, as described above.

2. Entropy of exact (triangulated) endofunctors

Let D be a triangulated category. Recall that a subcategory of D is called thick if it is triangulated,
contains every object isomorphic to any of its objects, and contains all direct summands of its objects ([11,
Definition 2.1.6, p. 74]). An object G of D is called a (classical) generator if the smallest thick subcategory
of D containing G is equal to D itself (cf. [2, Section 2.1]). Let D be a triangulated category with a generator
G. To say that G is a generator is equivalent to saying that for every object E of D there is an object E1

Date: January 4, 2016.
Key words and phrases. Entropy, Local entropy, Triangulated categories, Perfect complexes, Exact endofunctors, Derived
categories.

1

ar
X

iv
:1

60
1.

01
06

4v
1 

 [
m

at
h.

A
C

] 
 6

 J
an

 2
01

6



2 MAHDI MAJIDI-ZOLBANIN AND NIKITA MIASNIKOV

and a tower of (distinguished) triangles

with k ě 0 and ni P Z.

Definition 2.1 ([3, Definition 2.1]). Let E1 and E2 be objects in a triangulated category D. The complexity
of E2 with respect to E1 is the function δtpE1, E2q : RÑ r0,8s given by

Note that δtpE1, E2q “ `8 if and only if E2 does not lie in the thick subcategory generated by E1. The
complexity function δtp´,´q has the following properties:

Proposition 2.2 ([3, Proposition 2.3]). Let E1, E2 and E3 be objects in a triangulated category D. Then

(a) (Triangle Inequality) δtpE1, E3q ď δtpE1, E2q ¨ δtpE2, E3q.
(b) (Retraction) δt pF pE1q, F pE2qq ď δtpE1, E2q for any exact (triangulated) functor F : D Ñ D1.

Definition 2.3 ([3, Definition 2.5]). Let F : D Ñ D be an exact (triangulated) endofunctor of a triangulated
category D with a generator G. The entropy of F is the function htpF q : RÑ r´8,`8q of t given by

htpF q “ lim
nÑ8

1

n
log δt pG,F

npGqq .

It is shown in [3, Lemma 2.5] that htpF q is well-defined, i.e., the limit exists and is independent of the
choice of generator G.

3. Entropy of local endomorphisms

The notion of local entropy associated with an endomorphism of finite length of a Noetherian local ring
was introduced in [7]. We recall its definition.

Definition 3.1 ([7, Definition 1]). A local homomorphism f : pR,mq Ñ pS, nq of Noetherian local rings
is said to be of finite length if the ideal fpmqS is n-primary, or equivalently, if the closed fiber of f is of
dimension zero. These conditions are also equivalent to the statement that if p is a prime ideal of S such
that f´1ppq “ m, then p “ n.

Definition 3.2 ([7, Theorem 1]). Let pR,mq be a Noetherian local ring and ϕ : RÑ R an endomorphism of
finite length. Let lengthRp´q denote the length of an R-module. The local entropy of ϕ is given by

hlocpϕq “ lim
nÑ8

1

n
log plengthRpR{ϕ

npmqRqq .

It is shown in [7, Theorem 1] that hlocpϕq is well-defined, i.e., the limit exists. Furthermore, it is shown that
local entropy is non-negative and can be calculated using any module of finite length ([7, Proposition 18]).
In particular, any ideal of definition of R can be used to calculate local entropy:

Lemma 3.3 (cf. [7, Proposition 18]). Let pR,mq be a Noetherian local ring and ϕ : RÑ R an endomorphism
of finite length. If q is an m-primary ideal of R, then

hlocpϕq “ lim
nÑ8

1

n
log plengthRpR{ϕ

npqqRqq .
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Remark 3.4. In a Cohen-Macaulay Noetherian local ring of dimension d, a sequence of d elements in the
maximal ideal form a system of parameters if and only if they form a (maximal) regular sequence. The
reader can find a proof of this fact in [9, Theorem 17.4].

4. Perfect complexes with cohomology of finite length

In Section 5 we will work in the category of perfect complexes with finite length cohomology over a
Noetherian local ring R and for an endomorphism of finite length ϕ : RÑ R we will study relations between
hlocpϕq and htpLϕ›q, where Lϕ› is the total derived inverse image functor. Our goal in this section is to
show that it makes sense to speak of htpLϕ›q. We have also collected a number of definitions and standard
facts about the category of perfect complexes. The main references for this section are [1, 14, 15].

Definition 4.1. Let R be a commutative ring and let DpRq denote the derived category of the category of
R-modules. A strictly perfect complex on R is a bounded complex of projective R-modules of finite type.
The category of perfect complexes over R, which we will denote by DpRqperf , is the full subcategory of DpRq
consisting of all complexes that are quasi-isomorphic to a strictly perfect complex on R.

The category DpRqperf is a thick subcategory of DpRq, by [1, Exposé I, Propositions 4.10, 4.17] or [15,
Proposition 2.2.13].

Remark 4.2. For definitions of strictly perfect complexes and perfect complexes on schemes see [1, Exposé I,
Definitions 2.1 and 4.7] or [15, Definitions 2.2.2 and 2.2.10].

Let f : S Ñ R be a homomorphism of commutative rings. Denote the homotopy category of complexes
of S-modules (respectively R-modules) by KpSq (respectively KpRq). Let f› : KpSq Ñ KpRq be the inverse
image functor, that is, the functor that sends a complex of S-modules E‚ to the complex of R-modules
E‚ bS R. Let Lf› : DpSq Ñ DpRq denote the total derived inverse image functor. Recall that Lf› is an
exact (triangulated) functor.

Remark 4.3. For a morphism f : Y Ñ X of schemes, the total inverse image functor Lf› was generally only
defined as a functor D´pXq Ñ D´pY q in [1] and [4, p. 99]. Spaltenstein extended the definition of Lf› to
a functor DpXq Ñ DpY q in [13, Proposition 6.7]. Over an affine scheme, however, this will not make any
difference because the category of perfect complexes over an affine scheme is equivalent to the triangulated
category obtained from the category of bounded chain complexes of finitely generated projective modules by
inverting the quasi-isomorphisms.

Proposition 4.4 (cf. [1, Exposé I, Corollaire 4.19.1] or [15, p. 303, 2.5.1]). Let f : S Ñ R be a homomorphism
of commutative rings and Lf› : DpSq Ñ DpRq the total derived inverse image functor. Then Lf› induces a
functor DpSqperf Ñ DpRqperf .

Proof. For E‚ a strictly perfect complex of S-modules, f›E‚ is clearly a strictly perfect complex of R-
modules and this complex represents Lf›E‚. Since (over an affine scheme) any perfect complex is (globally)
quasi-isomorphic to a strictly perfect complex, the result follows immediately. �

Definition 4.5 (cf. [14, Definition 3.2]). Let R be a commutative ring and E‚ a complex of R-modules. The
cohomological support of E‚ is the subspace SupphpE‚q Ď SpecR of those prime ideals p P SpecR at which
the complex E‚p of Rp-modules is not acyclic.

Thus SupphpE‚q “
Ť

nPZ SuppHnpE‚q is the union of the supports in the classic sense of the cohomology
modules of E‚.

Suppose now that pR,mq is a Noetherian local ring and denote by DmpRqperf the full subcategory of
DpRqperf consisting of perfect complexes E‚ with SupphE‚ Ď tmu. Clearly a perfect complex E‚ is in
DmpRqperf if and only if HnpE‚q is an R-module of finite length for every n P Z. The proof of the next
proposition is straightforward.

Proposition 4.6 (cf. [14, Example 3.9.1]). Let pR,mq be a Noetherian local ring. Then DmpRqperf is a
thick subcategory of DpRqperf .
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Proposition 4.7. Let f : pS, nq Ñ pR,mq be a homomorphism of finite length of Noetherian local rings.
Then the total derived inverse image functor Lf› : DpSqperf Ñ DpRqperf (cf. Proposition 4.4) induces an
exact (triangulated) functor DnpSqperf Ñ DmpRqperf .

Proof. This statement quickly follows from the following more general fact proved in [14, Lemma 3.3]:
“Let X be a quasi-compact and quasi-separated scheme (e.g., an affine scheme). Let E‚ be a perfect
complex on X. If Y is a quasi-compact and quasi-separated scheme and f : Y Ñ X is a morphism of
schemes, then SupphpLf›E‚q “ f´1pSupphpE‚qq.” Note that denoting by af the morphism SpecRÑ SpecS
corresponding to the given homomorphism f : S Ñ R, we have pafq´1ptnuq “ tmu, as f is assumed to be of
finite length. �

Finally, we show that the category DmpRqperf has generators:

Lemma 4.8. Let pR,mq be a Noetherian local ring. Then every nonzero object in DmpRqperf is a generator,
in the sense defined in Section 2.

Proof. This statement quickly follows from Proposition 4.6 and the following more general fact that was
first proved in [5, Proof of Theorem 11]. Also see [10, Lemma 1.2] or [14, Lemma 3.14]: “Let R be a
commutative Noetherian ring and let E‚, F ‚ P DpRqperf be two perfect complexes on R. Suppose that
SupphpE‚q Ď SupphpF ‚q. Then E‚ is in the smallest thick subcategory of DpRqperf containing F ‚.” �

In this section we have shown that the category DmpRqperf of perfect complexes with cohomology of
finite length on a Noetherian local ring pR,mq is a triangulated category in which every nonzero object is a
generator. Moreover, given an endomorphism of finite length ϕ : R Ñ R, the exact (triangulated) functor
Lϕ› : DpRq Ñ DpRq induces an exact (triangulated) functor Lϕ› : DmpRqperf Ñ DmpRqperf . Therefore, it
makes sense to speak of htpLϕ›q as defined in Definition 2.3.

5. Connections between triangulated entropy and local entropy

Let DmpRqperf be the category of perfect complexes with cohomology of finite length over a Noetherian
local ring pR,mq.

Lemma 5.1. Let ϕ : R Ñ R be an endomorphism of finite length of a Noetherian local ring pR,mq and let
Lϕ› : DmpRqperf Ñ DmpRqperf be the total derived inverse image functor. Let G P DmpRqperf be a generator.
Assume that HkpGq “ 0 for | k |ą N and let B :“ maxtlengthRpH

kpGqq | ´N ď k ď Nu. Then for any
integer n ě 1 and any real number t:

(5.1) lengthR
`

H0 pLϕn›pGqq
˘

ď BeN |t| ¨ δt pG,Lϕn›pGqq .

Proof. Fix an integer n ě 1 and consider a tower of distinguished triangles in DmpRqperf of the form:

Let S :“ ti | ´N ď ni ď Nu. Since H0p´q is a cohomological functor ([6, Definition 1.5.2, p. 39]), it quickly
follows that for any distinguished triangle X Ñ Y Ñ Z Ñ Xr1s in DmpRqperf :

lengthR
`

HkpY q
˘

ď lengthR
`

HkpXq
˘

` lengthR
`

HkpZq
˘

.

Using this inequality one can immediately check that in the above tower of distinguished triangles:

lengthR
`

HkpLϕn›pGqq
˘

ď lengthR
`

HkpGrnksq
˘

` . . .` lengthR
`

HkpGrn2sq
˘

` lengthR
`

HkpGrn1sq
˘

.

We will use this inequality, below.
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First assume that t ď 0. Then

k
ÿ

i“1

enit ě
ÿ

iPS

enit ě eNt | S |

ě
eNt

B

ÿ

iPS

lengthRpH
nipGqq

“
eNt

B

ÿ

iPS

lengthRpH
0pGrnisqq

ě
eNt

B
¨ lengthRpH

0pLϕn›pGqqq.

Hence, when t ď 0 we see that lengthpH0pLϕn›pGqqq ď Be´Nt ¨ δtpG,Lϕn›pGqq.
Next, assume that t ą 0. Then

k
ÿ

i“1

enit ě
ÿ

iPS

enit ě e´Nt | S |

ě
e´Nt

B

ÿ

iPS

lengthRpH
nipGqq

“
e´Nt

B

ÿ

iPS

lengthRpH
0pGrnisqq

ě
e´Nt

B
¨ lengthRpH

0pLϕn›pGqqq.

Hence, when t ą 0 we see again that lengthpH0pLϕn›pGqqq ď BeNt ¨ δtpG,Lϕn›pGqq. �

Corollary 5.2. Let ϕ : R Ñ R be an endomorphism of finite length of a Noetherian local ring pR,mq and
let Lϕ› : DmpRqperf Ñ DmpRqperf be the total derived inverse image functor. Then hlocpϕq ď htpLϕ›q for
any real number t.

Proof. Let tx1, . . . , xdu be a system of parameters of R and let q be the ideal of R that they generate.
Let G‚pxq be the Koszul complex over R constructed from x1, . . . , xd. Then G‚pxq is a generator for the
triangulated category DmpRqperf . Since H0pG‚pxqq “ R{q and tensor product is a right-exact functor, it
quickly follows that H0pLϕn›pG‚pxqqq “ R{ϕnpqqR. The desired inequality hlocpϕq ď htpLϕ›q follows by
taking the logarithm, dividing by n, and passing to the limit as n Ñ 8 on both sides of (5.1), and using
Lemma 3.3. �

Lemma 5.3. Let pR,mq be a regular local ring of dimension d. Suppose ϕ : R Ñ R is an endomorphism
of finite length, and let Lϕ› : DmpRqperf Ñ DmpRqperf be the total derived inverse image functor. Let
tx1, . . . , xdu be a regular system of parameters of R and let G‚pxq be the Koszul complex over R constructed
from x1, . . . , xd. The following inequality holds for any integer n ě 1 and any real number t:

δt pG
‚pxq,Lϕn› pG‚pxqqq ď lengthR pR{ϕ

npmqRq .

Proof. The idea behind the proof is that since R is regular, every finitely generated R-module has finite
projective dimension and is therefore an object of the category DpRqperf . Hence, one can work with modules
instead of complexes. To be more precise, consider a composition series of R{ϕnpmqR over R:

(5.2) 0 “ N` Ĺ N`´1 Ĺ . . . Ĺ N1 Ĺ N0 “ R{ϕnpmqR,

with successive quotients Ni´1{Ni isomorphic to the residue field k “ R{m, for 1 ď i ď `. Now, beginning
from the left end of the composition series (5.2) we will inductively build a tower of triangles as follows: the
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Koszul complex G‚pxq provides a bounded free resolution of k – N`´1. There exists (cf. [12, Theorem 16,
p. 82]) a bounded free resolution L‚`´2 of N`´2 that completes the diagram

into a diagram with exact rows

We use the distinguished triangle G‚pxq Ñ L‚`´2 Ñ G‚pxq Ñ G‚pxqr1s in DmpRqperf associated to the first
row in (5.3) (cf. [6, Proposition 1.7.5, p. 46]) to build the beginning of our tower of triangles, as follows:

Next, there exists (cf. [12, Theorem 16, p. 82]) a bounded free resolution L‚`´3 of N`´3 completing the
diagram

into a diagram with exact rows

We use the distinguished triangle L‚`´2 Ñ L‚`´3 Ñ G‚pxq Ñ L‚`´2r1s in DmpRqperf associated to the first row
in (5.4) to build the next triangle in our tower of triangles, as follows:
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Continuing this process, we obtain a tower of triangles in DmpRqperf :

in which the quasi-isomorphism L‚0 – R{ϕnpmqR exists because L‚0 provides a bounded free resolution
L‚0 Ñ N0 – R{ϕnpmqRÑ 0. We conclude:

δt pG
‚pxq,Lϕn› pG‚pxqqq ď

ÿ̀

1

e0¨t “ ` “ lengthR pR{ϕ
npmqRq .

�

Theorem 5.4. Let pR,mq be a regular local ring of dimension d. Suppose ϕ : RÑ R is an endomorphism of
finite length, and let Lϕ› : DmpRqperf Ñ DmpRqperf be the total derived inverse image functor. Then htpLϕ›q
is constant and equal to hlocpϕq.

Proof. Let tx1, . . . , xdu be a regular system of parameters of R. Let G‚pxq be the Koszul complex over
R constructed from x1, . . . , xd. Then G‚pxq is a generator for the triangulated category DmpRqperf . By
Corollary 5.2 we have hlocpϕq ď htpLϕ›q. On the other hand by Lemma 5.3 for any integer n ě 1 and any
real number t:

(5.4) δt pG
‚pxq,Lϕn› pG‚pxqqq ď lengthR pR{ϕ

npmqRq .

Taking the logarithm, dividing by n, and passing to the limit as nÑ8 in (5.4), we obtain htpLϕ›q ď hlocpϕq.
This concludes the proof. �

Corollary 5.5. Let k be a field and R “ kJX1, . . . XdK. Suppose ξ1, . . . , ξd are positive integers and let

ϕ : RÑ R be the endomorphism that maps Xi ÞÑ Xξi
i for 1 ď i ď d. Then htpLϕ›q is constant and equal to

řd
i“1 logpξiq.

Proof. By Theorem 5.4 the entropy htpLϕ›q is constant and equal to hlocpϕq. Thus, it suffices to show that

hlocpϕq “
řd
i“1 logpξiq. This is done by induction on dimR. If dimR “ 1 then R “ kJX1K, ϕnpX1q “ X

ξn1
1

and R{ϕnpX1q has a composition series of length ξn

0 Ĺ pX
ξn´1
1

1 q{pX
ξn1
1 q Ĺ . . . Ĺ pX2

1 q{pX
ξn1
1 q Ĺ pX1q{pX

ξn1
1 q Ĺ R{pX

ξn1
1 q.

We see by Definition 3.2 that hlocpϕq “ logpξ1q. Next, assume the result holds for the ring kJX1, . . . Xd´1K.
We want to prove it for the ring kJX1, . . . XdK. We define a homomorphism α : kJY K Ñ kJX1, . . . XdK by
mapping Y to Xd. This homomorphism is flat (cf. [9, Theorem 23.1, p. 179]). If we equip kJY K with the
endomorphism ψ : kJY K Ñ kJY K that maps Y to Y ξd , then α ˝ ψ “ ϕ ˝ α. By [8, Theorem 1] and using the

induction hypothesis we see that hlocpϕq “
řd
i“1 logpξiq. �

Proposition 5.6. Let pR,mq be an arbitrary Noetherian local ring with an endomorphism ϕ : R Ñ R of
finite length. Assume there exists a homomorphism of finite length ξ : S Ñ R, where pS, nq is a regular
local ring, and suppose there is an endomorphism ψ : S Ñ S of finite length, such that ξ ˝ ψ “ ϕ ˝ ξ. Let
Lϕ› : DmpRqperf Ñ DmpRqperf and Lψ› : DnpSqperf Ñ DnpSqperf be the corresponding total derived inverse
image functors. If hlocpϕq “ hlocpψq, then htpLϕ›q is constant and equal to hlocpϕq.

Proof. Let tx1, . . . , xdu be a regular system of parameters of S, d “ dimS, and let yi “ ξpxiq for 1 ď i ď d.
Let G‚Spxq and G‚Rpyq be the Koszul complexs over S and R, respectively, constructed from x1, . . . , xd and
y1, . . . , yd. The complexes G‚Spxq and G‚Rpyq are generators for the triangulated categories DnpSqperf and
DmpRqperf , respectively. Since ξ is a homomorphism of finite length, by Proposition 4.7 the restriction of
the total derived inverse image functor Lξ› : DpSq Ñ DpRq to DnpSqperf provides an exact (triangulated)
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functor DnpSqperf Ñ DmpRqperf . It is clear that Lξ›pG‚Spxqq “ G‚Rpyq. Since ξ ˝ ψ “ ϕ ˝ ξ, it follows that
Lξ› ˝ Lψ› “ Lϕ› ˝ Lξ›. Using Proposition 2.2, for any integer n ě 1 and any real number t we obtain:

δt
`

G‚Rpyq,Lϕn
›
`

G‚Rpyq
˘ ˘

“ δt pLξ› pG‚Spxqq ,Lϕn
›
pLξ› pG‚Spxqqqq

“ δt pLξ› pG‚Spxqq ,Lξ› pLψn
›
pG‚Spxqqqq

ď δt pG
‚
Spxq,Lψn

›
pG‚Spxqqq .

By taking the logarithm, dividing by n, and passing to the limit as n Ñ 8 we obtain htpLϕ›q ď htpLψ›q.
From Corollary 5.2 and Theorem 5.4 we get:

hlocpϕq ď htpLϕ›q ď htpLψ›q “ hlocpψq.

Hence, if hlocpϕq “ hlocpψq, then htpLϕ›q is constant and equal to hlocpϕq. �

Corollary 5.7. Let pR,mq be an arbitrary complete Noetherian local ring of prime characteristic p and of
dimension d. Suppose fR : RÑ R is the Frobenius endomorphism and let Lf›R : DmpRqperf Ñ DmpRqperf be
the total derived inverse image functor. Then htpLf›Rq is constant and equal to d ¨ logppq.

Proof. Let tx1, . . . , xdu be a system of parameters of R. We recall that R is a module-finite extension of the
regular ring S :“ kJX1, . . . , XdK via the injective ring homomorphism ξ : S Ñ R that maps Xi onto xi, for
1 ď i ď d (cf. [9, Theorem 29.4, p. 225]). Let fS be the Frobenius endomorphism of S. By [7, Theorem 1]
the local entropy of the Frobenius endomorphism of a Noetherian local ring of prime characteristic p and of
dimension d is equal to d ¨ logppq. That is, hlocpfRq “ hlocpfSq “ d ¨ log p. Since ξ ˝ fS “ fR ˝ ξ, the result
follows from Proposition 5.6. �
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