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Abstract

In this paper, a polynomial-time algorithm is given to contgthe generalized Hermite normal form for a
matrix F overZ[x], or equivalently, the reduced Grébner basis ofZid-module generated by the column
vectors ofF. The algorithm is also shown to be practically more efficigwain existing algorithms. The
algorithm is based on three key ingredients. First, an Fi& stigorithm to compute the Grobner basis
is adopted, where a novel prolongation is designed suchhbatoefficient matrices under consideration
have polynomial sizes. Second, fast algorithms to competeniie normal forms of matrices ov&rare
used. Third, the complexity of the algorithm are guarant®ed nice estimation for the degree and height
bounds of the polynomials in the generalized Hermite noiforah.

Keywords: Z[x] module, Grébner basis, generalized Hermite normal formitite normal form, polynomial-
time algorithm.

1 Introduction

The Hermite normal form (abbr. HNF) is a standard representdor matrices over principal ideal do-
main(abbr. PID) such @ andQ]x], which has a wide range of applications [4]. In this papenegalized
Hermite normal form (abbr. GHNF) for matrices ov&lx| are studied. This is motivated by the recent work
on Laurent binomial difference ideals and toric differemadeties|[11], where properties of Laurent binomial
difference ideals and toric difference varieties are reduo that of GHNFs for matrices ov&ix|.

Note thatZ[x] is not a PID and a matrix ovét[x] cannot be reduced to an HNF in the general casé. In [11],
the concept of GHNF is introduced and it is shown that any imatrer Z[x] can be reduced to a GHNF.
Furthermore, it is shown that a matix = [f1,...,fs] € Z[x]"* is a GHNF if and only if its columng =
{f1,...,fs} form a reduced Grobner basis of thé&|-module generated Win Z[x]" under certain monomial
order. Similar to the concept of latticel [4]Zax]-module inZ[x|" is called aZ[x]-lattice which plays the same
role as lattice does in the study of toric varieties [6]. ®iere, computing the GHNF of matrices ov&jx|
is equivalent to computing the reduced Grdbner basis fbxglattice, which can be done with the Grébner
basis methods for modules over rings [5, 14].

The main contribution of this paper is to give an algorithneoéonpute the GHNF of a matrik € Z[x]"*®
or the reduced Grdbner basis of thix-lattice generated by the column vectorg-ofvhich is both practically
efficient and has polynomial bit computational complexijote that the complexity of computing Grébner
bases inQ[xs,...,Xy) is double exponential [17]. As far as we know, there is noystol the complexity of
Grobner bases computation #6jx]-modules inZ[x|". The algorithm consists of three main ingredients which
will be explained below.

The firstingredient comes from the powerful idea in Faugdrd’ algorithm([10] and the XL algorithml[7]
to compute Grébner bases. To compute the Grébner basis idiglegenerated bgs, ..., pm € Q[X1, ..., %],
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these algorithms apply efficient elimination algorithmenfr linear algebra to the coefficient matrix xﬁ‘fpi
for certaink. Although the F4 algorithm can not improve the worst case fierity, it is generally faster
than the classical Buchberger algoritim [3]. In this pafecompute the GHNF of = [f4,...,f] € Z[x]™®
with columnsf;, due to the special structure of the Grobner basegxh we design a novel method to do
certain prolongationgf; such that the sizes of the coefficient matrices of all thdeunder consideration
are bounded by a polynomial mandd, whered is the degree of the polynomials

The second ingredient is to use efficient algorithms to camphe HNF for matrices ovet. The compu-
tationally dominant step of our algorithm is to compute tHeFHof the coefficient matrix of those prolonga-
tionsx/f; obtained in the first ingredient. Due to its importance, Hmputation is extensively studied and
there exist many efficient algorithms to compute HNFs forrivas overZ [4,[15)19 20] and matrices over
Q[x] [2,/8/13/18]. Note that it is difficult to recover the GHNF famatrix overZ[x| from its HNF overQ|x].

In the complexity analysis, we use the HNF algorithm withltest bit complexity bound [19].

The third ingredient is a nice estimation for the degree amigtt bounds of the polynomials in the GHNF
G e Z[X™* of F € Z[x]™™. We show that the degrees and the heights of the key elemieGtsu@ bounded
by nd and 63d?(h+ 1+ log(n?d)), respectively, wherd andh are the maximal degree and maximal height
of the polynomials inF, respectively. Furthermore, we show tiat= FU for a matrixU € Z[x]™* and
the degrees of the polynomialslihare bounded by a polynomial md, h. These polynomial bounds along
already lead to a polynomial-time algorithm to compute théNE. But, in order to have an algorithm which
is both polynomial-time and practically efficient, the fitato ingredients are needed. The bounds about the
GHNF are obtained based on powerful methods introduced loh&wrenner in 1], where the first double
exponential algorithm for the ideal membership problenZiry,...,xy] is given. The key to the bound
estimation for GHNF is to find solutions to linear equationsrd.|x], whose degree and height are bounded.
Due to the special structure of the Grobner basi&|ij, we can give better bounds than [1] for this problem.

The algorithm is implemented in Magma and Maple and theiadleHNF commands are used in our
implementation. In the case @[x|, our algorithm is shown to be more efficient than the Grobresid
algorithm in Magma and Maple, which are also based on HNfergeneral case, the proposed algorithm is
also very efficient in practice that quite large problems loaisolved.

The rest of this paper is organized as follows. In Section  jmroduce several notations of Grobner
bases fofZ[x| lattices. In Section 3, we give degree and height boundsh®d@HNF. In Section 4, we give
the algorithm to compute the GHNFs. Experimental resuktssAown in Section 5. Finally, conclusions are
presented in Section 6.

2 Preliminaries

In this section, some basic notations and properties akduted Grobner bases }x| lattices will be given.
For more details, please refer to([l, 51114, 16].

For brevity, aZ[x] module inZ[x" is called aZ|x] lattice. Any Z[X| latticeL has a finite set of generators
{f1,...,fs} C Z[X" and this fact is denoted as

L = Span{f1,....fs} = (f1,....fs).

If fi = [fyi,..., fni]", then we calM = [f; j]n«sapolynomial matridof L = (f1,...,fs) or the sequench, ... ,fs.
Note thatf; is thei-th column ofM. For convenience, we also wriké = [f1,...,fs]. If n=1,M is called the
polynomial vectoof (fq,...,fs) orfy,... fs.

A monomialm in Z[X]" is an element of the form‘e € Z[x]", wherek € N, ande is the canonicai-th
unit vector inZ[xX|". A termm in Z[x]" is a multiplication of an integea € Z and a monomiain, that isam.



The admissible ordex on monomials irZ[x" can be defined naturallx’e < xPe; if

i<j,or
{i:janda<B @)
The order< can be naturally extended to termax®g < bxﬁej if and only if xX%¢g < xﬁej ori=j, a=

B and|al < |b|.
With the admissible ordex defined by[(IL)f € Z[x|" can be written in a unique way a¥Zalinear combi-
nation of monomials,

f=3%.ami,

wherec; # 0 andm; < m» < --- < mg. We define thdeading coefficient, leading monomiaindleading term
of f asLC (f) = ¢, LM (f) = mg, andLT (f) = csms, respectively.

The order< can be extended to elementsZji|" in a natural way: foff,g € Z[x]",f < g if and only if
LT (f) < LT (g). We will use the ordex throughout this paper.

For two termsax?e andbxfe; in Z[X", if i = j, a > B and|a| > |b], leta = gb+r, where 0<r < |b|.
Thenrx®e = (ax® — gx¥* P x bxP)g is said to beeduced with respect to Be; or {bxPe; }-reduced denoted

byrx%eg = axO’e,beej . The quotient igx® . Otherwiseax’ g is {bXP e; }-reduced, and in this case we denote

axig = ax“equBej and the quotient is zero. We u@@abxﬁej,qx“*ﬁ;) = Reducé¢ax?e, bxfe;) to denote this

procedure.

This concept can be extended to the elemen[xf": for anyf € Z[x|" andg € Z[x]", leth =f, q= 0.
While there exists a terrm of h which is not{LT (g)}-reduced, lety; be the quotient om reduced by
LT (g), h=h—019, =g+ 1. This procedure will terminate in finite steps by the welllening given
before. When the above procedure erids, {g}-reduced and is denoted hy= o andqis the corresponding
quotient, denoted bgh,q) = Reducéf,g). Note thath andq satisfyh = f — qg. Moreover, forf € Z[x" and
G=[01,...,0m] € ZX™™with g; < ... < gm, lethy.1 =fand fori=mm—1,...,1, set

(hi,u) = Reducéhi1,0;).

Denote(h,U) = Reducéf,G), whereh = h; = ¢ andu = [u,...,un|" the corresponding quotient vector.
Thenh =f—GU.

ForF =[f1,...,fm] € ZX™™,G = [01,...,0m,] € Z[X™*™ with g1 < ... < Om,, let [h;,U;] = Reducéf;,
G),i=1,...,m. Then defined =FC = [hy,...,hy,] and[H,U] = ReducéF, G), whereU = [Uy, ...,Um,] €
Z[XM*M™ We haveH = F — GU.

Definition 2.1. Letf,g € Z[X", LT (f) = aXe, LT (g) = bx°ej, s< k. Then the S-vector 6fandg is defined
as follows: if i# j then Sf,g) = O; otherwise

f—2xk-sg, ifbla;
bf _xk-sg, if alb; (2)
uf +vX<Sg, ifatband bfa, where gcda,b) = ua+ vb.

If n =1, the S-vector can also be called S-polynomial, which is #&meeswith the definition iri_[14].

Definition 2.2. A finite set GC Z[x|" is called a Grébner basis for th&[x] lattice L generated by G if for
anyf € L, there existg € G, such thal.T (g)|LT (f). A Grobner basis G is called reduced if for ag¥ G, g
is G\ {g}-reduced. A Grobner basis G is called minimal if for agy¥ G, LT (g) is G\ {g}-reduced. By
Theorem 3.5 of [11], G is a Grébner basis if and onlﬂf,g)G =O0forall f,ge G.



Clearly, a reduced Grobner basis must be a minimal one. Welatain the reduced Grobner basis from
a minimal one by reducing the non-leading terms of every efdrim it with every other element.

Grobner bases in this paper are assumed to be ranked in aasimg order with respect to the admissible
order<. Thatis, ifG = {0g,...,0s} is a Grobner basis, thep < ... < gs.

We first consider Grobner bases’ifx]. The following proposition shows the properties of the @u
Grobner basis of ideals IA[x].

Proposmon 2.3( [11]). Let B= {bs,...,bx} be the reduced Grobner basis ofZax] module inZ[x], by <
- < by, andLT (by) = X% € N[X. Then

0<dy <+ < k.
&|---lcaand g # ¢y forl <i<k-1.

S |y for 1 < i < k. Moreover ifby is the primitive part of b, thenby|by, for 1 <i <k.

Eal A

The S-polynomial (8, b;) can be reduced to zero by B for any.i

This proposition also applies to the minimal Grobner babkse are three Grobner baseijx): {2,x},
{12,6x+ 6,3%% 4 3%, x4+ x°}, {9x+ 3,3x* 4 4x + 1}.

Now, we give a refined description of Grobner bases for ideal&[x]. For a polynomial seF =
{f1,..., fm} INn Z[x], we denote by Conte(f ) the GCD of the contents df as a polynomial ix, PrimpartF ) =
gcd(F)/ContentF) the primitive part ofF.

The following proposition is mentioned in_[16]. Now we givesanple proof for it which help us to
understand the structure of the Grébner bases of ided&jn

Proposition 2.4 ( [16]). G = {d1,...,0.} with dedg;) < --- < dedg,) is the minimal Grébner basis of
(f1,..., fm) In Z[x] if and only if

gr=aby...bp_101, On=ahgd, (3
g=ab..bhpihd,2<i<n-1

such that
i) a=Contentfy,..., fm);

ii) §1=Primparfy,..., fm);

iii) h; € Z[X] is monic with degree;dand0 < dp < -+ < dy;

iv) bjeZ,b #+1,and hyq € (hi,bi_1hi_1,...,bp...bi_1hp,b;...bj_1),for1 <i<n—1,where h = 1.
Proof. By Propositioi 2.3, ilG = {g1,...,0n} is @ minimal Grébner basis, we can wrieas:

{aci§,atg, . .., ath-10,atg},
wherea = Contentgs,...,0n) € Z, § = Primpartgs,...,0n) € Z[X],
t=cx +gg @ 4 gux+go€Zx, 2<i<n

with ¢,_1|Ch—2|...|C2|c1 and O0< dy < d3 < --- < d. Since{fy,..., fn} and{gs,...,gn} are theZ[x] linear
combinations of each other, they have the same content andipe part. So, i) and ii) follow easily. Without
loss of generality, we assuna§ = 1 in the rest of the proof.



To prove iii), we claimgi|g;; for 2<i<n,0< j <d —1. We prove this claim by induction an If n=2,
G = [cg,to].

C1 _
Stz,¢1) = C—Z(CzXOI2 + Gody X271 4 - 4 GoaX+ Qo) — Cx®2
C1 - %1 C1
= —Clz.dzledz b Zopx 4 —go
Co Co Co

SinceG is a Grobner basis3(ty,c1) can be reduced to zero loy. So we obtairc,|gp; for 0 < j <dp — 1.
Suppose the claim is valid for< k— 1. Forn = k we haveG = {c,ty,...,t}. Let

Ck—1 _ _ _
St tk-1) = o (0 + G g DXL - 4 o) — XTI (gt 4 1.9, X% T Ok 10)
Ck—1 - Ck—1 -
= (C—kCIK,dkfl — G110 (C—ka,dkfdk,l — Qk_1,0)X0 G2y

Ck—1 de—0h_1—1
—— Ok dhe—dy_g—1X " <?
Ck

Ck—1

+oet C—I(Qk,o-
SinceS(t, tk—1) can be reduced to zero Ky, to, ..., t_1} andcg|ck_1] . .. |C1, Ck—1 must divide the coefficient
of every term ofS(ty,tx—1). Consideringcc_1|gk—1,j for 0 < j < dk_1 — 1, we can easily obtaing|qgy ; for
0< j<dk—1. The claim is proved.

We can writeG as{b;...bn_1,b2...bn_1hy, ..., bh_1hn_1,hn}, whereh; =t; /¢ is monic of degreel; and
bi =ci/ciy1for 1 <i<n-—1. SinceG is minimal, we havdy # 1 for 1 <i < n— 1. iii) is proved.

We prove iv) by induction o Sinceh; = 1, we haveh, € (h;) = Z[x] and iv) is valid fori = 1. Suppose
iv) is valid fori < j. G= {ty,to,...,tn}, wheret; = b;...by_1h; for 1 <i <n—1, ty, = hy. Stj,tj_1) =
bj_1...bn-1(hj —x&~%-1h;_;). SinceS(t;,tj_1) can be reduced to zero by

G={by...bn_1,bp...0n_1h,....0j_1...by_1hj_1},
it is easy to see that
hj S (hjfl,bjfzhjfz, .. .,bz...bjfzhz,bl...bjfz).

That is, if G is a minimal Groebner basi§ satisfies all the above conditions.

To prove the other direction, let us assume tBabas the above form and we takdke= {c1,cohy, ...,
Cn-1hn-1,hn}, wheregi =b;...b,_1 fori=1,... ,n—1. To proveG is a Grébner basis, it suffices to prove
that S(c;h;j,cihi) can be reduced to zero bicy,cohy,...,cj—1hj_1} for 1 <i < j < n. Clearly, this is
valid when j = 2. Suppose it is valid foj < k. ThenH = {c;,chy,...,ck_1hk_1} is a Grébner basis
for the Z[X lattice (H). For anyi = 1,...,k, S(ckhk,cihi) = &eh — xk—digh = ¢(he — x%%h;). Since
hy € (hkfl, bkfzhkfz, ey bi... bkfz) andck,1|ci,

S(ekhi, cihi) € (Gihe-1,Cibk_2hk_2,...,ciby...bk_2) C (c1,C0hy, ..., C-1hk_1).

So S(ckhg, cihy) can be reduced to zero Hgi,Cohy, ..., ck-1hk-1}. Sinceb; # +1, for 1 <i<n-1 and
deghy) < --- < dedghp), G is also a minimal Grébner basis. O



Next, we introduce the concept of generalized Hermite nbfanm. Let

Ci1 ... Ci; Cii+1
Cot oo Gy Gyl
0 0 Cri+11 -+ Cryy1l,
ol e e o DT @
0 .. 0 0 .. 0 .. 0 Giair - G
0 .. 0 0 .. 0 .0 &ui .. o ).

whose elements are IA[X]. Itis clear thah =r; < mandm= ZLl'i- We denote byy = ¢, j to be thek-th
column of the matrixs’, wherek =11+ ---+1li_1+ j, 1 < j <Il;. Assume

Then the leading term @, j is ¢, j ox%iiey,.

Definition 2.5. The matrix# is called a generalized Hermite normal forfHNF) if it satisfies the following
conditions:

1) 0<dy1<dy2<---<d foranyi.

2) Cfi7|i70‘ e ’Cri727o‘cri71»0'

Ca Cri. | .
3) S(Cr, iy, Cr.jp) = X2~ iy, 5, — Crh—J.l’OCri.jz can be reduced to zero by the column vectors of the matrix

. . . Tid2,0
foranyl<i<t, 1<ji<j2<l.

4) ¢,,j is reduced with respect to the column vectors of the mathzrthanc;, j, foranyl <i <t,1<j <I;.

Theorem 2.6( [11]). {f1,...,fs} C Z[X|" is areduced Grobner basis with ordersuch thatf; < f, < ... <fs
if and only if the polynomial matris,...,fs] is a GHNF.

3 Degree and height bounds for the GHNF

In this section, we give the degree and height bounds for tH&G.

Firstly, we give some notations which will be used in thisteet Let f € R[x], whereRis a subring ofC.
Denote by f| the maximal absolute value of the coefficientsf ot et height f) = log| f|, with heigh{0) = 0.
ForF = {f1,..., fm} C R]X], let dedF ) = max<i<mdeq f;) and heightF ) = max<i<mheight f;).

For a primep € Z, let Z;, be the local ring ofZ at (p). Fora= upg € Z whereu is a unit iNZp), let
Vp(a) =t be thep-adic valuation. LeZ be the completion [1/9] o, andZp [X] the polynomial ring
with coefficients inZ ;. Denote byZ ) (x) the completion ofZ ) [x].

3.1 Degree and height bounds ifZ|x]

In this section, we will give the degree and height boundséeeral basic algorithms, such as gcd and GHNF,
in Z[x]. These results will be used to give degree and height bowrded GHNF inZ|[x]".



Lemma 3.1. Let k be a field, 4,..., fm € k[X], and d= max<i<mded fi). Then there existyg...,gm € K[X]
with deg(gi) < d for any i, satisfyingycd(fy,..., fn) = fi01+ - + fmQm.

Proof. The bound can be obtained easily by the extended Euclidgantaim. O

In the following, we specializ& = Q andk = Z/pZ in the above lemma, whereis a prime inZ. The
following lemma will be used to bound the height of the GHNF.

Lemma 3.2. Supposef..., fm € Z[X], d = max<i<mded fi). If 1 € (f1,..., fn)Q[X], thend = f1g1 +--- +
fmOm for some g,...,gm € Z[x] with degree< d and some < Z\ {0} with heigh{d) <d(2h+log(d+1)),
where h= heigh{(fy,..., fy).

Proof. By Lemma[3.1, we have £ fiu; + - - + fum, whereu; € Q[x] of degree< d. Assumef; = ajp +
-+ aaxd, uj = bjo+ -+ +bjg-1x4"1. Then we have the matrix equatiéxb = [1,0,...,0]", whereA =
(Ag,. .., Am,

dio

d1  do

A= ag aio ®)

8id / 24xd

fori=1,...,m andb = [byo,...,b1d 1,.--,bmo, - .,bma_1]* € Q. Let rankA) =t < 2d. By the Cramer’s
rule, & can be bounded by the nonzdre t minors of A. By the Hadamard’s inequality, we have<0d <
((d+1)a?)4, wherea = max j |a;j|. So heightd) < d(2h+log(d + 1)). O

The following lemma is given by Gel'fond [12] and a simpleppf can be found in[22, p178].

Lemma 3.3. Let R and B be two monic polynomials i6i[x], such thatleg Py ) +degP,) = d. ThenPy||P| <
(d+1)Y/224|Pypy|.

The following lemma gives a height bound for the gcdZin|.

Lemma3.4.Let fi,..., fn€ Z[X and g=gcd( f1,..., fm) in Z[X]. Then the height of g is bounded blpg(d +
1) +dlog2+ h, where d= max<j<mded f;) and h= heigh{fy,..., fm).

Proof. Sinceg = gcd(fy,..., fm) is in Z[x], for eachi = 1,...,m, there exists @ € Z[x| such thagg = f;.
Letg' =g/LC(g) andg = gi/LC(g). Thenf/ = fi/LC(f;) = f;/LC(g)LC(gi) and|fi| = |f/||[LC(fi)|. Let
di = deg f;). By Lemmd3.B, we havig/||g/| < (di +1)1/22%| f/| for each 1< i < m, whered; = degd ;). Then
l9llgil = ILC(g)LC (g)I¢/|Igi| < (ch +1)*/22%[LC(g)LC (a)|If{| = (di +1)*/?2%|fi|. We have

height(g) < height(g) + height(g)
< % log(dh + 1) + dilog 2+ height ) for anyi (6)
< %Iog(d +1)+dlog2+h.
0

Remark 3.5. In the proof of Lemmia 3.4, by the equatibh (6), we Hasight f; /g) < % log(d+1)+dlog2+h
for any .



We now give the degree and height bounds for the GHNE[K). Obviously, the degree bound of the
GHNFinZ[x] isd = dedF) by the procedure of the Grobner basiscomputation.

Lemma 3.6. For the polynomial vector == [f1,..., fy] overZ[x], the degree of itsSSHNFcan be bounded by
d =dedF).

The height bound is given in the following lemma.

Lemma3.7.Let fi,..., fm€ Z[X], d = max<i<mded fi), h=max<i<mheigh( f;), and|g, . . ., gs] the GHNFof
[f1,..., fm]. Thenheigh{g;) < (2d +1)(h+dlog2+log(d +1)).

Proof. Letdedg;) <--- <dedgs). By the properties of the GHNF, we have heigh) = max<i<sheigh{g;).
Letg=gcd(fi,..., fm) in Z]x]. By Lemmd 3.4 and Remalk 3.5, we have hefghand heightfi/g) both are<
$log(d+ 1) +dlog 2+ h. Moreover, 1€ (f1/g, ..., fn/9)Q[X. By Lemmd3.2, heigtiti /g) < d(2(3log(d +
1) +dlog2+h)+log(d+ 1)) = 2d(h+dlog 2+log(d + 1). So, heightg;) < 2d(h+dlog2+log(d+1)) +
log(d+ 1) +dlog2+h < (2d+ 1)(h+dlog 2+ log(d + 1)). O

Finally, we consider a special effective NullstellensatZ.ix], which based on the proof of Lemma 6.4
in [1].

Lemma3.8.1f 1€ (fi,..., fm)Z(p[X], then there existd). .., hy € Z;,) [X] of degree at mos3d?(2h+log(d +
1))/log p such that

Proof. Suppose k (f1,..., fm)Zp) (X, then 1c (fy,..., fm)Q[x]. By Lemmd3.2, there exigt € Z\ {0} with
height< d(2h+log(d+ 1)) andgs, . ..,gm € Z[X] with degrees< d satisfying

0= fgr+- -+ fmQm. (7)
Here and belovh = height(fy, ..., fm). If 3 is a unitinZ ), then
1=f1(92/3)+" 4 fm(Im/d).

Let hy = g/d for i =1,...,m, then we have the required properties. Suppose dhiat not a unit. Let
p=vp(d) > 1. Clearly we have E (fy,..., fm)(Zp)/PZp)[X]. Then by the Extended Euclidean Algorithm,
there existy,...,rm € Z[x] with

1—(rifi+--+rmfm) € (P)Z(p) ¥
and degrj) <dforall j=1,...,m Sothere exists;,...,sn € Zp[x] ands € (p*)Zp[x] such that
1—(fi1s1+--+ fmSm) =s. (8)
We have de(s;) < p(2d — 1) —d for all j; hence defs) < u(2d —1). By equations[{[7) and(8), we have
1="fiss+- -+ fmSmts= fihy + - + fphm
with hj = sj 4 (s/0)gj € Zp)[X]. We have
degsg) < p(2d —1)+d < 3ud.

Since ulogp < heightd) < d(2h+ log(d + 1)), it follows that degh;) is bounded by 8%(2h + log(d +
1))/logp. O

Then we can give the degree bound for the global case:
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Lemma 3.9. If 1 € (fq,..., fm)Z[x], then there exist... hy € Z[x] such thatl = fihy +--- + fphm, with
deghi) < 3d?(2h+log(d+1)) fori=1,...,m.

Proof. By Lemmd 3.2, we havgy,...,0n € Z[X] with degrees< d andd € Z satisfying
0= fg1+- -+ fmQm.

Letpy,..., px be all the prime factors a¥. Since 1c (fy,..., fm)Z[X], 1€ (f1,..., fm)Zp)[X]. By Lemmd3.8,
there existh(lpi), ., hP) e 7Z[X] with degrees< 3d?(2h+log(d + 1))/logpi and6P) € 7\ (p)Z satisfying

oP) = flh(lpi) T4 fh'P). Then there exist, ay, .. ., & € 7 satisfying

1=ad+a 0P ...+ a6/,
Hence lettingh; = ag; +a1h§p1) +~-+akh§pk) € Z[x for j=1,...,m, we get

From this, we can easily get dég) < 3d%(2h+log(d+1)) fori=1,...,m. O

3.2 Degree and height bounds for solutions to linear equatits overZx|

In this section, we show that the solutions to linear equatimverZ x| has bases whose degree and height can
be nicely bounded.

Throughout this section, I€t = (fjj) € Z[x"™*™. Denote byd = deg F) the maximal degree of elements
in F andh = heigh(F) the maximal height of elements . Let Soky (F) be the solution module of the
homogeneous linear systday = 0, whereR is a subring ofC.

Let r be the rank ofF. Without loss of generality, we may assume that itith principal minor ofF
is non-zero. Then the last—r rows of F are Q(x) linear combinations of the firstrows. SoFy =0 is
equivalent to

fir - fr o fim Y1 0

fri o fr o fm Ym 0
S0, we may assunte= n unless we mention in particular.
For a primep, f =S o fx' € 200) (x) is calledregular of degree s with respect tqg @r simply, regular
of degree svhen there is no confusion, if its reductiére Z ) (X) / pZ(p) (X) is unit-monic of degres, that is,

(1) fs#0, and
(2) vp(fi) > Oforalli > s, wherev, is the p-valuation.
Now we describe the Weierstrass Division Theorerrfifg;; (X):

Theorem 3.10( [1,[21]). Letge Z(p) (X) be regular of degree s. Then for eack i(p) (x) there are uniquely
determined elementsa@Zp, (x) and r € Z x| with degr) < s such that = qg-+r.

Lemma 3.11. Solz )<X>(F) has a set of generators [x|™ with degrees< nd.
p

Proof. Let A be ann x n-submatrix ofF with 6 = det(A) # 0 having the leasp-valuation among all the
nonzeron x n minors of F. After permutating the unknowns @f,--- ,ym in Fy = 0, we may assumg\ =



(fij)1<i,j<n. Multiplying both sides oFy = 0 on the left by the adjoint of\, the systeny = 0 turns into the
system

o Cintl1 + Cim Y1 0
: : S e )
0 Chnel -0 Cam Ym 0

whered and all theg;; are inZ[x] with degrees< nd. Note that,v,(Gij) > vp(0) for all i, j, by the choice of
A. Let

—C1nt+1 —Cim
—Cnn+1 —Chm
vib = ) LM — 0 . (10)
0 .
: 0
0 o

Then, Fv() = 0 fori = 1,...,m—nandvi),...,v(™" are in theZ, (x)-module S%pm(F). Let u =

Vp(8),ul) = p~#) for i = 1,...,m—n. Thenu® ... .u™" are also in S%p)w(F). Multiplying the
£ diper -0 Oim

equation [(P) byp~H, we haveBy = 0, whereB = : : ande is regular of
€ Ohntr oo+ Onm

degrees for some integes < nd. Clearly, the(n+i)-th element ol is £. Moreover,s and all thed;; are in
Z[x] with degrees< nd

In the systenty =0, let
fij = fijo+ -+ fijaxd,
Yi =VYjo+  +Yjna-1X"t

for 1<i<n, 1<j<m wherefjx € Z(p) andyjc are the new unknowns iﬁ(p) (x). Thei-th equation in
Fy = 0 may then be written as

k m
zzfljlyjkl— 0<k< (n+1)d,
=0{=1

where we putfj; =0 for | > d andy; = 0 for | > nd. Then we obtain a new systeRly = 0, where
Fe Zgg;’(”“))x(m”d), Y = [Y10,- -, Y1nd_1; - - .A,ymo, -.+,Ymnd_1]7, whose solutions iti(p) are one to one cor-
respondence with the solutions I = 0 in Zp, [x] of degrees< nd. We have a set of finite generators for
F'y =0, thus we have finitely many solutiog"),....y™") € Z, [X™ of Fy = 0 such that each solution to
Fy = 0 of degree< nd is aZ, linear combination oY, ...,yM".

We claim thatu™,...,u™" y@ _ yM) generate thé ) (x)-module Sof o (F). So Sop ., (F)
can be generated by elementsZg, (x| of degrees< nd.

Now we prove the claim. Let/ = [wy,...,Wy|" € Z(p) (x)™ be any solution td~y = 0. Sinces is regular
of degreesfor some integes < nd, by Theoreni 3.10, there exis®,1,...,Qm € Z(p) (X) andRn1,...,Rn €
2( p) [X] whose degrees are less thssuch thaR; =w; — Qjefor j=n+1,...,m. Letz=w— QniuM —-o—
Q u(m=n) =[hy,.. hn, Rn+1,- .-, Rm], which is obvious a solution By = 0. So we haveh; = —d; n+1Rh11—

~-—dimRmfori=1,...,n. Sincee,d;; are inZ(m [X] with degrees< nd andR; € i(p) [X] are of degrees s, we
have deghj) < ndfori=1,...,n. Hence defg) < nd, therefore it can be expressed ashg x| combination
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of y,...,y™). Now it is clear thaw is theZy (x| combination oful,...,u™ M 1 M) Hence
Sol; | (F) as o, (X)-module can be generated by ..., uM" yD . yM), O
p

In the proof of Lemm&3.11, if we choogeto be anyn x n-submatrix ofF whose determinant is nonzero,
let u = 0 and do the computations @[x|, we can easily give the following lemma:

Lemma 3.12. Soly (F) can be generated by elementsZijx|™ of degrees< nd.

Now we describe Corollary 2.7 ¢f|[1] in our notations:

Lemma 3.13([1]). Let F be an nx m matrix overZ g [x]. If V), ... y1) € Z ;) [)™ generate th&[x]-module
Soly (F) and 2Y,...,ZM € 7, [X™ generate thé (x)-moduleSol; . (F). Then
p

yO oy A A
generate theZ. g [x]-moduleSok, | 1 (F).

By Lemmd 3. 11 3.72 arid 3113, we have the following coroilary

Corollary 3.14. Sol, |  (F) can be generated by element<fx|™ of degrees< nd.

We describe Lemma 4.2 ofl[1] in our notations as follows:

Lemma 3.15. Let M be aZ[x]-submodule oZ[x|™. For each maximal idea(p) of Z, let u%l),...,ug(p) eM
generate theZ,,) [X]-submodule NL ) [x] of Z ) [x]™. Then lﬁ)l),...,u(pK">, where(p) ranges over all maximal

ideals ofZ, generate th&.[x]-module M.

We now give a degree bound for the solutions of linear eqoataverZx].

Corollary 3.16. Let F = (fj;) € Z[x"™*™ and d= degF). ThenSol,, (F) can be generated by a finite set of
elements whose degrees atend.

Proof. By Corollary[3.14 and Lemnia 3.5, we can easily know thag30F ) can be generated by elements
whose degrees ar€ nd. Since So} (F) C Z[X™ andZ[x|™ is Noetherian, the set of generators must be
finite. O

Remark 3.17. In Lemmd_3.11[, 3.12 and Corollafy 3114, 3.16, if F is of rankhen the generators can be
bounded by rd.

In the rest of this section, we give height bounds for,BdF ). By Lemma 5.1 and Remarks of Corollary
1.5in [1], we have the following result.

Lemma 3.18([1]). Let Ac Z™™, r =rank(A). ThenSol;(A) can be generated by mr many vectors whose
heights are bounded [8r (h+logr + 1), where h= height(A).

LetF € Z[x™™, d = degF) andF is of full rank. Then, we have the following theorem:

Theorem 3.19. Sol,, (F) can be generated by vectors whose degrees are bounded bydnideahts are
bounded byY(n(n+ 1)d +n)(h+log(n(n+ 1)d + n) + 1), where h= heightF).
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Proof. By the Corollary 3.16, Sely (F) can be generated by elements of degree®. Let[ys,...,ym|" €
Sok (F). Assumefij = ajjo+ajjix+ -+ ajaX%, Yj = Yjo+ YjiX+ - +Yj.nax"?, wheregjj € Z, yj are the
unknowns ranging ovef. Then,Fy = 0 can be written as the following matrix equation

A
Ly =0, (11)
An
wherey = [y10,...,Y1d; - > Ym0, -+, Ymdl s A = [Ai1, -+, Aim](n+2)d+1) x (m(nd+-1))» @Nd
dijo
dij1  4jo
A = dijd dijo
&jd / ((n+1)d+1)x (nd+1)
Aq
fori=1,...,n.So| : | gzMmhdinx(mindl) By | emmd3.IB, we have the equation system (11) can
An
be generated by vectors whose heights are boundedrgg 2 1)d + n)(h+log(n(n+ 1)d +n) + 1), where
h = heigh{F). O

Remark 3.20. In [1], Aschenbrenner gave the following degree bound angdhtdound for the generators of
the solutions to the equations Ay0, where A is a polynomial matrix over  Z|[xy,...,xy] and Ac D™™,
Let Ac D™™. ThenSob(A) as a D module has a set of generators with degree at rffmst)2(N+1" -1
and height at most £2n(d + 1))(N+1)°<N)(h+ 1). Here G is a constant only depending on A=ddegA),
h = heigh{A). Setting N= 1 in these bounds, we obtain the degree and height bo(#m$? and G (2n(d +

l))gom (h+1), respectively, where & deg A), h=heightA). Our results are much better than that of [1] in
Z[X| case.

LetF € Z[X™™, b € Z[X]™. We denote dedr,b) = maxdegF),degb)), heightF,b) = maxheightF),
heightb)). Based on the proof of Theorem 6.5 in [1], we have the follondegree bound:

Theorem 3.21.Let F € Z[X™™, be Z[X", d = degF,b), and h= heightF,b). If the system Fy-b has a
solution inZ[x]™, then it has such a solution of degree3n?d?(h, +log(nd+ 1)) + nd, where b = 2(n(n+
1)d+n)(h+log(n(n+1)d+n)+1).

Proof. By Theoreni3.19, there exist generatgfs, ..., ZX) for the Z[x]-module of solutions to the system of
(F,—b)z=0, wherez®¥ = 2" ... ,zfr'f)ﬂ]r is a vector ofn+ 1 unknowns, with
degz¥) < nd,
heigh(z¥) < 2(n(n+1)d + n)(h+log(n(n+1)d +n) + 1) = hy.
forall k=1,...,K. For eaclk, let zﬂf)+1 € Z[x] be the last component af¥. Clearly,Fy = bis solvable in

Z[x] ifand only if 1€ (zﬁil,...,zﬁl). Moreover, ifhy, ..., hg are elements dZ[x] such that 1= hlz,ﬂﬁ-
e hK;ﬁl. theny,1]* = h;zZY + ... + hZX) is a solution toFy = b. By Lemmd 3.9, we have

deghy) < 3n?d?(2h, +log(nd + 1)),
whereh, = 2(n(n+ 1)d +n)(h+log(n(n+ 1)d+n) +1). It follows that dedy) < 3n?d?(2h, +log(nd+ 1))+
nd. O
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Remark 3.22. By Theorem 6.5 of [1], if the system Fyb has a solution inZ[xy,...,xy], where Fe
Z[xa,...,xn)™™, then it has such a solution of degree at md&ndedqF, b))('\'“)O(N) - (heigh{F,b) 4+ 1).

If we specialize N to 1 in these bounds, we obta(lﬁrﬂ)2°<l) h). While our degree bound in Theorém 3.21 is
equivalent to Qn*d3h).

3.3 Degree and height bounds for GHNF

In this section, we will give degree and height bounds for GHINZ|[x]".

In the whole section, we assurfrec Z[x]"™™, d = degF ), h = height{F), andF is of full rank. Denote
by dedc;, ;) and heightc;, 1) the degree and the height of therow of the GHNF# in (4) respectively.
Note that, max<j<|; deg(c;, j) = ded(c;, ), and by Propositioh 214, max;<|, heigh{(c;, ;) = heightc;, 1) for
eachi. The degree of the GHNF can be defined as madeg(c;, ;) and the height of it is defined to be
max height(c;, 1).

We first give the degree bound of the GHNF. The following teeorgives the degree bound for the
GHNF of F.

Theorem 3.23. Let F = (fij) € Z[x™™ with d = degF), and ¢, as described in_{4), be th&HNFof F.
Thendegcy, ;) < (n—ri+1)dfor1<i<t.

Proof. Itis obvious that de@;, ;) < degd(c;, ) foranyi=1,...,t, j=1,...,l;. Itsuffices to prove the theorem
for ry =1, in which case we should prove deg;,) < nd.

Foranyla,0,---,0]" € (F), which is theZ[x| lattice generated by the columnsfofthere existi, ... ,un €
Z[X such that
a=uyfir+---+Unfim
O=uifor+---+unf
1121 nl2m (12)

O:ulfn1++Unfn7m

Then, [u,...,uy]" is a solution to Sely (Fn-1), whereF,_; is the matrix formed by the last— 1 rows of
F. By Corollary[3.16, Sl (Fn-1) can be generated by elements of degreds — 1)d, say{v¥,... ,v9}.
Then,[us,...,un]" is aZ[x linear combination of vV, ... V(91 C Z[X™. Hencela,0,...,0]" is aZ[X| linear
combination of( FvV ... Fv(9}. Since de¢Fvi¥) < nd andFv(¥ has the fornib,0,...,0]" for any 1< k <
s, by Lemmd 3.6, we have d€g;,,0,...,0]") <nd, i.e. degc1),) < nd. O

Remark 3.24. Note that, since the last-ar; + 1 rows of F have rank +i + 1, by the above proof, we can
easily seedeqgc;, ;) < (t—i+1)dfor1<i<t.

Now we can give the height bounds for the GHNH-of

Theorem 3.25. Let ¢ be the GHNFof F, as described if{4). Themeightc,, ;) < 6(n—r; +1)3d?(h+ 1+
log((n—ri+1)2d)) foranyi=1,....,t, j=1,...,1l.

Proof. It is obvious that heiglity, ;) < heightc;, 1) for anyi =1,....t, j =1,...,l;. Following the proof
of Theoreni-3.23, we need only to prove the theorentfet 1, in which case height;;) < 6n°d?(h+ 1+
log(r?d)).

We know that(a,0,...,0]” € (F) can be generated vV, ... Fv(9}, where degv!)) < (n—1)d and
heightv)) < h{Y whereh(!Y) = 2(n(n— 1)d+ (n— 1)) (h+log(n(n— 1)d + (n— 1))+ 1). Hence degFvi)) <
nd and heightFv()) < h+h{Y. Let (Fv)Y = Fv(D/gecdFv¥, ... FV). By Lemma3% and Remark
3.3, we have heighgcdFv\Y, ... ,Fvi¥)) and height(Fv\))’) for j = 1,...,s are both< 3log(nd+ 1) +
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ndlog2+ h+ h{’. Moreover, the first elememtof the GHNF of{(FV()Y',..., (FV(¥)'} is in Z, by Lemma
[3.2, we have heiglit) < nd(2h+ 2h(11) + 2log(nd+ 1) + 2ndlog 2). Then, we can easily get

height(cyy) < nd(2h+ 2h{Y + 2log(nd + 1) + 2ndlog 2) + % log(nd+ 1) + ndlog 2+ h+ h{"

(2nd+1)(h+h{") + (2nd+ %) log(nd+ 1) + nd(2nd+ 1) log 2

< (2nd+ 1)(h+2(nd+ 1)(n— 1)(h+log(n— 1)(nd+ 1) + 1) + log(nd + 1) + nd)
< 2n(2nd + 1)(nd + 1)(h+ log(n — 1)(nd+ 1) + 1)
< 6n°d?(h+ 1+ log(nd)) foranyn>4,d> 1. (13)
It easily to verify heightcy1) < 6nd?(h+ 1+ log(n?d)) is also valid fom = 1,2,3 andd > 1. O

Remark 3.26. Note that, since the last-Ar; + 1 rows of F have rank + i+ 1, by the above proof, we have
heigh{(c;, 1) < 6(t —i +1)3d?(h+ 1+ log((t — i+ 1)2d)) where h= heigh{F).

Combining Theoremis_3.2[[, 3123, and 3.25, we have the faligwiegree bound for the transformation
matrixU, which satisfyingg’ = FU:

Theorem 3.27. Let F € Z[x]™™ and ¥ its GHNF. U € Z[x]™* is the transformation matrix satisfying
¢ = FU. ThendegU) < D, where D= 73n®d®(h+ 1+ log(n?d)).

Proof. By Theorem$-3.23 arld 325, we have g) < (n—r; + 1)d, heightc,, j) < 6(n—r;+ 1)3d?(h+
1+log((n—ri+1)2d)) foranyi=1,...,t, j=1,...,l;. Denote byJy, j the column vector obl, satisfying
FUrj = [*,...,%,C j,0,...,0". ThenUy, ; is determined by +1Ur, j = [Cr,.j,0,...,0]", whereF,_r, 1
is the lastn —r; + 1 rows of F. In Theoren 3.21, let d¢§,b) = max jdegF,c; ;) < nd, heightF,b) =
max ; heightF,c;, ;) < 6nd?(h+ 1+ log(n?d)). Then we have déty) < 3n?d?(h; + log(nd + 1)) + nd,
wherehy = 2(n(n+ 1) deg(F, b) + n)(height F,b) +log(n(n+ 1)deg F,b) +n) + 1). First, we have the fol-
lowing inequality:

h, =2(n(n+ 1)degF,b) + n)(heigh{F,b) + log(n(n+ 1)degF,b) +n) + 1)
< 2(n(n+1)d + n)(6n*d?(h+ 1+ log(n’d)) 4 log(n?(n+ 1)d + n) + 1)
< 24n°%d3(h+1+logn?d) for anyn > 2. (14)

One can verify that the above inequality is still valid for 1, in which case deF, b) < d and heightF,b) <
d(2h+log(d+ 1)) + 3log(d -+ 1) 4+ dlogd -+ h. So we have

degU) < 3n?d®h, 4 3n?d?log(nd + 1) + nd
< 73n8d®(h+ 1+ logn?d). (15)

We give an example to illustrate the main idea of the proof.

1 X

Example 3.28. Let F = < 63+1 8l

logarithm with2 as a base.

If a = [a,a,]" with & # 0 as a column vector of G, then & an element of th&HNFof [6x% + 1, 8x?].
Thus,degay) < max(deg 6x3+ 1),deg8x?)) = 3 and by LemmBa3leigh(ay) < 4log2+h=7.

If b = [by,0]" with by # Ois a column of G, there exists a¥ [u, Up]* € Z[x]? satisfying

>. Let h= 3log2= 3 be the height of F, where we choose the
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by =u; +x
b=FU, ie { - TN ,
0= (6x°+ 1)uy + 8x%uy

Letg,...,ds be the generators of the solutionse- (6x3 + 1)u; + 8x°U,. By Theoreri 3.19jeqg) < 3and
heightgi) < 14(h+log7+1). Thus, h is an element of th&HNFof [1,X] - [91,...,9s] = [h1, ..., hs], where
degh;) < 4, andheighih;) < 28(h+log7+ 1) < 196 Hence, by Theorein 328eqd;) < 4, by Theorem
[3.25,height(d;) < 432(h+ 1+ log12) < 3456 Moreover, by Theorein 3.27, we know that the degree bound
for the transformation matrix is B- 4478976h+ 1+ log 12) < 35831808

Actually, the solution t® = (6x3 + 1)u; + 8x%u, can be generated bigx?, —(6x3 +1)]7. Thus, R is an
element of theGHNFof [1,X] - [8x2, — (6x® + 1)]T = [-6x* + 8x? — x]. The GHNF

( Xt —8x2+x BB+ —6x3+1 )
G= 0 1 ’

_8x¢ _ a3
with transformation matrix U= < 8x A -6+ 1 >

6+ 1 X’ +5x*

From the above example, we can see that, although the degued lm Theorerh 3.27 is polynomial, it is
far from optimal.

4  GHNF Algorithm in matrix form

There exist efficient algorithms to compute the HNF of a mattier Z [4]. The main idea of our algorithm

is to convert the computation of GHNF fér{x] lattice into the computation of HNF ovér. In [10], Faugere
gave the famous F4 algorithm which converts the computaifoBrobner bases of polynomial systems to
matrix computation of their coefficients. The F4 algorithomputes successive truncated Grobner bases
and it replaces the classical successive reduction in Barghb algorithm by the Gauss elimination of the
coefficient matrix. Our algorithm could be considered &d-lattice variant of the F4 algorithm, which is
specifically designed so that its complexity can be estichate

Complexity cost In this section, we measure the cost of our algorithms inlmemof bit operations. To
this end, we assign a functidn(k) : N+— R, which shows that the cost of basic operations of multipilices
and quotients of two integems andb with |a],|b| < 2¥, can be computed i®(M(k)) bit operations. The
currently fastest algorithms allowd (k) = klogkloglogk. In the sequel we will give complexity results
in terms of the functiorB(k) = M(k)logk = O(k(logk)?(loglogk)). We use a parametet such that the
multiplication of twon x n integer matrices need3(n?) basic operations. The currently best known upper
bound for8 is about 2.376.

4.1 HNF-based algorithm-theZ|[x] case

Given a polynomial seffy,..., fm} C Z[x], with d; = deq fi), d = maxi<i<mdi. F = [f1,..., fm] iS itS corre-
sponding polynomial vector. Denote by= #(F ) the number of elements . H € 74+ xMis called theco-
efficient matrixof F if its columns represent the polynomialshrsatisfyingX H = F, whereX = [1,x,...,x9].
Let H, be the Hermite normal form dfi andF’ = XH,; be the polynomial vector correspondingHie. We
call F’ the polynomial Hermite normal fornfPHNF) of F. For simplicity, we denote by = M(F) and
F’ = PHNHKF). Here we should notice that H1 has zero columng;’ will contain zero elements. By the
action of PHNF, we omit all the zero elements.

For any polynomial vectoF = [fq,..., f], we also denot&C (F) = [LC(f1),...,LC(fm)], LC{(F) =
LC([fi|deqd fi) =t]), wheret ranges over the degreesFof
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Example 4.1. F = [x2 + 3x+ 3,x>+ 5x% + 4x + 3]. The coefficient matrix of F is B M(F) =

Or ww
O I SN OV)

Moreover, H = is the Hermite normal form of H, sa F= X Hy = [x? 4 3x+43,x° + 5x° + 4x +

OFr Www

3
4
5
1
3] = PHNF(F). LC (Fy) = [1,1], LC(F) = 1, LC3(F) = 1.

In the following of this subsection, we always assume thgmwhials vector to be ranked in the increasing
orderw.r.t. < and for the input polynomial vector set= [fy, ..., fy], fi € Z[x], we always denotd; = deq f;)
fori=1,...,m.

Inspired by Chaptér] 3, we increase the total degree by 1 imleap of our Algorithm GHNIg.

Algorithm 1 GHNF(F)
Input:  F =[fy,..., fy], fi € Z[X].
Output:  G=[gs,...,0s), the GHNF ofF.
1. LetGy = PHNF(F) = [gl, R ,gt]
2: (loop) F1 =[Gy, X1, .., XG-1], G2 = PHNHF,).
While G; andG; do not satisfy th&ermination condition T given below, lelG; = G, = [0y, ..., 0], re-
peat Stepl2; otherwise, we get a polynomial ve@ok [gs, ..., 0] and the condition numbesatisfying
Termination condition T, go to Stef) B.
3 LetG=[gy).
For j from 2 toi, if LC(gj—1) {LC(gj), G=GU{g;}.
4: ReturnG.

Termination condition T : For two polynomial vector§& = [gs,...,a], H = [hy,...,hg],
1. s=t;

2. leti be the largest integer such that (g;) =LC(h;),j =1,...,i,andLC(gi+1) # LC (hi11), then
eitheri =t or LC (gk) = LC (hx;1) fork=i,... t — 1.

We call thei in the above conditioondition number
Now, we give two examples to illustrate our algorithm.

Example 4.2. F = [6x3 + 3x2 + 12,6x% + 3x? 4 6x, 6x3 + 15x2, 6x° + 3x?].

1-th loop: G, = PHNFF) = [12,6x, 1%, 6x3 + 3x?],

Fi = [Gy,12x,6x%,12¢,

G, = PHNFF;) = [12,6x,6x?,6x3 + 3x2].

G; and G do not satisfy th&ermination condition T.
2-th loop: G, = Gy,

F1 =[Gy, 12x,6x2,6x3],

G, = PHNFF;) = [12,6x%,3x?,6x%];

G; and G do not satisfy th&ermination condition T.
3-th loop: G = Gy,

F]_ = [Gl, lZX, 6X2,3X3],

G, = PHNFF;) = [12,6x%,3x?,3x%];

G; and G do not satisfy th&ermination condition T.

16



4-th loop: G, = Gy,

F1 = [G1,12¢,6x2,3x,

G, = PHNFF;) = [12,6x%,3x?,3x%];

G; and G satisfy theTermination condition T .
5-th loop: G= [12,6x,3x?] is the GHNFof F.

Example 4.3. F = [30x? 4 10,30x% + 20x, 30%?].
1-th loop: G, = PHNFF) = [10,20x, 30%],
F1 =[Gy, 10x,20%%],
G, = PHNFF;) = [10,10x, 10x?],
G; and G do not satisfy th&ermination condition T.
2-th loop: G = Gy,
Fi =[Gy, 10x,10%%],
G, = PHNFF;) = [10,10x, 10x?],
G; and G satisfy theTermination condition T .
3-th loop: G=[10] is the GHNFof F.

We now show the correctness of the Algorithm GHNFirstly, we give the following lemma:

Lemma 4.4. For any two polynomial vectors F and G, and any polynomia $pan,(F), we have
LC geq ) (PHNKF))[LC ().
Moreover,

1) if Span,(F) C Span,(G), thenLC;(PHNKG))|LC{(PHNKF)), where t ranges over the degrees of
PHNKF);

2) if Span,(F) C Span,(G) andLC (PHNKF)) = LC (PHNKG)), thenPHNKF) = PHNKG);
3) if Span,(F) = Span,(G), thenPHNKF ) = PHNKG).

Proof. By the property of PHNF, we know thdtcan be written as th& linear combination of the elements
in PHNKF ), each of whom has different degree. B:bdeqf)(PHNF(F))|LC(f).

1) For anyf € PHNRF), f € Span,(F) C Span,(G). SoLC yeq ) (PHNHG))|LC(f). Hence, we have
LC{(PHNKG))|LC{(PHNKF)) for t ranging over the degrees of PHNH.

2) Let PHNKF) = [fq,..., f], PHNKG) = [g1,...,0s]. SinceLC(PHNKF)) = LC(PHNKG)), we
haves =t and degf;) = degg;) for 1 <i <t. Otherwise, since dé¢@;) < --- < deqd f;) and degg;) <
... < degq), there must be an integér: 1 <k <t, such that de(fx) # degg;) for any 1< j <t. But,
fx ¢ Span, (PHNHG)) = Span,(G), which is contrary to the condition 0 2SoLT (f;) =LT (g;) for 1 <i <t.
Supposk is the smallest integer, such thgat# fy, thengw — fx € Span, (01, ...,0k-1) = Span,(f1,..., fku1).
Let gk = fk+z!‘;11 u f; for some integersy, ..., ux_1. If there existsy; # 0, 1 <i < k-1, thengk is not
reducedw.r.t. gi = fj. But by the property of the Hermite normal form for the integeatrix, g is reduced
wir.t. g for 1 <i < k-1, hencegy = fx. By induction, we havej; = fi for 1 <i <t.

3) By 1), we havel. C (PHNFF)) = LC (PHNFG)). By 2), PHNFF) = PHNFG). O

In the Algorithm GHNF, let GV = [g,,...,0q4] be the polynomial vecto; obtained by Step 1 of the
Algorithm GHNF;, where degg;) = j for ky < j <d. We can explain the Step 2(loop) in the following chart:

joop: G WG 20l Ly pHNE o) Mgl Lo PHNE e (g
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whereF ) =g, ..., 04, X0, - - -, XGd_1], G® = [y, ..., hq], F@ = [hy,, ... . hg, XN, ..., Xhg_1].

The original idea of this algorithm is to lift the degrees dayeone,i.e. let F = [F_1,XF], whereFo = F.
This process is equivalent to substitute the Step 2 of therlgn GHNF, with the following chart:

add[xg<17m7xgd,17xgd] F(l)/ PHNE G(z)/ add[xm2 ..... xh xhy, 4] F(Z)/ PHNE G(?’)l o

loop' : G
whereF " = [gy,..., 04, X0, - -, XGa], G = [M_,... .0y 4], F@ = [ X Xy
Now, we show that the above two processes are equivalent wa@ompute the GHNF fdL[x] case.

Lemma 4.5. Let GV’ = [gk,...,0q+i] @and F' = [gk, ..., 0d+i,XCk, - - ,Xa+i], Where k< d anddeq(g;) =

j, k < j <d+i. Then,LC(g4)|LC (9d+1)|---|LC (ga+i) and for any fe Span,(F1)), if deg f) <k, d<k<
d+i+1, then, fe Span,(dk,---,0d, Xk, - - -, XGd—1,X0d, - - - ,XCk—1). That is, the above two processes, loop
and loop, are equivalent for computing the HNF.

Proof. Wheni = 1, we haveG(® = [gy,,...,dd], FY = [0k, ...,9d;XG,, - - -, Xq]. Then,k =d and the lemma
is valid.

Suppose itis valid for=1,...,s.

Wheni = s+ 1, in order to distinguisiG® andG*Y', 1et G’ = [gy, ..., 0a+s] andGE Y = [hy_,, ...,
haysia]- ThenF® =[gk,...,0d+s X0k, - - s Xqdrs)s FEY = [h, ;... haysia, XN, -, Xhg s 1]. We need
to show that.C (hg)|LC (hgs1)|--- |LC (hgys:1), and ford <k < d+s+2, if f € Span,(F(5V') and degf) <
k, we havef € Span(hg,,,,...,hda,xh,,,...,Xhg—1,Xhg, ..., xh_1).

By induction, we have fod +1 < p <d+s+1, hp = Xgp_1 + lp,hpy1 = Xgp + 41 for somel,, €
Span, Ok, - - - »0ds Xk - - - XGd—1, XA - - -, XOp—2) € Span; (hi,,,,-..,hp-1) andly;1 € Span, (0, - - -, 9d, X0k,
ooy XQd—1, XQd, - - -, X0p—1) C Span(hk,,,,...,hp). Hence,LC (hgy1)|---|LC(hg1s+1). Moreover, by induc-
tion we havehy € Span, (gk., - - -, 9d, Xk, - - - ,Xdd—1), andLC (hq)|LC (g4) = LC (hg+1) follows.

Let f = Zg:km Cphp + Y k., dpXhp wherecp,dp € Z. If g < d, thenr <k-—1, we are done. Oth-
erwise, we rewrite the expression bf SinceLC (hg)|LC (hg;1)|---|LC (hgtst1), we havehy —axhy-—1 =
X(Qg-1 — axXGy—2) + lqg — axlq—1 wherea = LLCC(,g:fi). Then deggq-1 — axgy—2) < q— 2, we havegq_1 —
axgy—2 € Span,(hy,,,,...,hq-2). Hence,hg € Span,(hy,,,,....,hq—1,Xh,,...,Xhg_2,Xy_1), that is,hq =
Z?J;LH aphp + Z?);LH bpxh, for someap, by € Z. Rewrite the expression of by the above equation,
we havef = XE;LH Cohp + ngksﬂ dpxh, for somecy,dy, € Z. Inductively, we havef = Z%:ksﬂ Cphp +
> k.., dpxhp for somecy, dy € Z. Since degf) < k, we haver” <k—1, f € Span,(h,, ..., ha, Xhe -,
xhg—1,Xhg, ..., xh_1).

Moreover, Spap(F ") = Span, (h.,,, - ., ha, X 1, - -, Xhg_1,Xhg, ..., Xhg 1 s11), that is, loop and lodp
are equivalent for computing the GHNF. O

Remark 4.6. By the way we construct; fn Step[2 of AlgorithhGHNF;, we know the maximal degree of
G; and & are always d. The#(Gy) = #(G1) must be satisfied in some loop. In this casédedG;) =
minded G;), M(G1) and M(G;) are upper triangulares with forms:

and )
a; - x c1 - *
& / (ge1)xt G/ (dr)xt
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where t=#(G;) <d+1and g,c; # 0for 1 < j <t. Note that in each loop, 1) is of size(d + 1) x s for
some integer & 2d + 1, anddeg(gj) = deggj-1)+1,2< j <t.

To show the correctness and the termination of this algoritlve need only to consider the case tBat
andG; in the Stefl R of Algorithm GHNFhas satisfied the condition 1 of tAiermination condition T, i.e.
#(Gz) =#(Gy). In the following, we assume th&; = [g1,...,0] withLC (G1) = [as,...,&], G2 = [hy,..., ]
with LC(Gy) = [by,...,kx]. Here, degg:) =degh;) =d —t+ 1.

Lemma 4.7. For the above Gand G, if there exists i 1 <i <t satisfying @ =b; for 1 < j <i, then

1) alai-a|--laa;
2) gj=h;forl1<j<iand ¥g € Span; (g1, ...,9 k) for any positive integers k: | +k < i;

3) {01,...,0i} is a Grobner basis for th&[x] lattice (g1,...,di).

Proof. 1) Sincexg € Span,(hy,...,h,h1), by Lemma 4.4 we have 1 = LC(h1)|LC(xg) = & for
1<1<t—1. Henceaj =bjlaj_1, 2< j <ianda|ag_1|---|as follows. The first statement is proved.

2) Since Spaf(9s,...,0i) C Span,(hy,...,h) anda; =bj for j: 1< j <i, by 2) of the Lemma4}4, we
haveg; = h; for 1 < j <i.

For any positive integefisk: | +k <i

Xa < SpaQ"(hlw' '7h|+1) = Spa%(glv' .- 7g|+l)
X°g € Span(Xgr,....xa1) C Span;(hy,... . hi2) = Span,(g1,. .., 0i12)
Xg € Span(gi,.--,9ik)-
3) Foranyj, | :1<j<I<i, §0j,0) = %g —x'*jg,- € Spany,(9i,...,0). Considering that deég;) <

--- < degg), we can easily say th&g;,g) can be reduced to 0 bygs,...,q }.
]

Lemma 4.8. If G1 and G satisfy theTermination condition T, and i is the condition number, then

1) alaiaf--la;
2) h(Jrl € Spa@i(glw"7gi7ng"'>Xg(717Xg() fori<k<t-—1
3) {01,...,0i} is a Grobner basis for th&[x lattice (g1,...,0).

Proof. 1) Sinceg € Span,(hy,...,h), by Lemmd 4.4 we havla =LC (h))|LC(g|) =& foranyl : 1 <1 <t.
Fork: i <k<t, ax=bx;1]akr1. Hence we have|g 1| ---|a;.

2) It is clear thathi;1 — xg € Span,(hy,...,h) = Span,(g1,...,0). So,hi11 € Span,(91,...,0i,XG).
Assumeh, € Span,(91,...,0,XG,...,xg-1) fori+1<I| <k<t. Sincehc 1 —xg € Spar,(hy,...,h) C
Span, (91, ...,0i,Xg, ..., X%k-1), we havehy,1 € Span,(91,...,0i,XG, - - ., XCk—1,X0k)-

3) We only need to prove that for- 1 < k < t, gk can be reduced to 0 bjgs,...,qi}. Foranyk:i+1<
K<t, Okr1— %xgk € Span,(hy,...,h) = Span,(91,...,0,hiv1,.... k) € Span,(91,...,0,XG, ..., X0k_1)-
Sogk+1 € Span,(91, ---,0,Xg,...,X0%). It is obvious thaty,1 can be reduced to O bygs, ..., 0k-1,0k}, i-€
Ok+1 can be reduced to 0 b§gs,...,qgi}. Now we can say thafg;,...,qi} is a Grobner basis for thé[x]
lattice (g1,...,0). O

As a direct consequence of Lemmal4.7 4.8, we have
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Theorem 4.9. Algorithm GHNF is correct and terminated.

From the examples, we can see thatTeemination condition T may not be achieved immediately when
we obtain the Grébner basis Bf The problem is that how many extra loops we need to do aftegev¢he
Grobner basis of.

If {g1,...,0i} is already the Grobner basis Bffor some 1<i <t, we havea;|ai_1|---|a; andb; = g
for 1 < j <i. Moreover,bj;1 = & sinceb;,1|a. So, after one loop, we ha&|a_1|---|ag anda 11 = &.
After t —i loops, we havey|a_1|---|a; anda = g1 = --- = &. Until now, theTermination condition T
holds. This is to say, our algorithm may do at most ektra loops after we get the Grobner basisFofSince
degg:) =d, we have <d+1. Sowe may do at most extidoops after we get the Grobner basisFofBy the
analysis of Sectionl3, we can surely get the Grobner bases Rftth loop, whereD; = 73d°(h+ logd + 1).
Hence, thelermination condition T can be surely achieved &ith loop, wheres < D; 4 d.

Corollary 4.10. The AlgorithmGHNF; terminates in Q + d loops, where = 73d°(h+logd + 1).

To estimate the complexity of algorithm GHNRve need the complexity of computing HNF, which is
given in the following theorem.

Theorem 4.11( [19]). Let Ac Z™ ™ with rank r. Then the complexity to compute the HNF of H je@r®—2
(logB)M(loglogB)/loglogB + mnlogrB(logB)), whereB = (y/r || A])", | A|| is the maximal absolute of
A.

Theorem 4.12. The worst case bit size complexity of AlgorittRINF; is O(d”*9+¢(h+d)1*¢(h+logd) +
d’*¢(h+logd)B(d?(h+d))), where h= heighi{F) ande > 0 is any sufficiently small number.

Proof. By Lemma[3.¥, we know that the height bound for the GHNFa$ (2d + 1)(h+ dlog 2+ log(d +
1)) := h;. In each loop, we need to compute the Hermite normal form ofnéeger matrix with size
(d+1) xsfor somes<2d+1. Letk=d+1n=2d+1r=d+1, then the lo@ in Lemmal4.1l
is logB3 = r(%logr +hy) = O(d?(h+d)). To simplify the formula for the complexity bound, we repac
O(log?(s) loglog(s) logloglog(s)) by O(s?) for an sufficiently small numbeg, say & = 0.01. Hence, the
complexity for each loop is

O(knrefz(logB)M(Iog logB)/loglogp + knlogrB(logf3))
< O(d?+9+¢(h+d)1*¢ + d**¢B(d?(h+d))) for any e > 0.

So the worst complexity of the Algorithm GHNFs (D1 4 d)O(d?t9+¢(h+ d)1*+¢ + d**¢B(d?(h+ d)))
O(d™+0+¢(h-+d)*+¢ (h+ logd) + d7+¢ (h+ logd)B(d2(h + d))).

In Theoreni 412, setting = 2.376 ande = 0.004 and noticing thad "¢ (h+logd)B(d?(h+-d))) can
omitted now comparing to the first term, we have

Corollary 4.13. The worst case bit size complexity of AlgorittRINF; is O(d%38(h+ d)1%%4h+logd)).

o 1

e

Remark 4.14. The number m in the input of Algorith@HNF; is not in the complexity bound. The reason
is that the size of the polynomial vector iR Step 2 of the algorithm depends on d only. Only the contplexi
of Step 1 depends on m and by Theofem]4.11, the complexitis aft¢p is O (md®*1(h+d)) which is
comparable to the complexity bound given in Thedrem| 4.1 when m= O~ (d®). We therefore omit this
term.

Remark 4.15. In Algorithm GHNF;, to avoid the extra loops, we can check far k+ 1 < k <t, whether or
not g« can be reduced to 0 bfg,...,0i}, where i is the largest number such that-ab; for 1 < j <.
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Next, we show some properties of the syzygy modules aZfReideals. In the Algorithm GHNE for any
i > 1, denote by® =[g}", ..., g'] andF ) the G, andF; used in the-th loop of the Algorithm GHNI, re-
1 x
1 x

spectively. Here; = #(G()), then #F (1)) =2y, —1:= V. LetX() = ,

vix (2vi—1)
thenF® = GOX (). Since degn’) < -+ < deggy))) = d, we have detF ) < d. In particular, letF(© =F.
For anyi > 0, letM() be the coefficient matrix of ) and[0,H )] = MOU ) be the HNF ofM{), where
uU® = Ul ul’] satistyingd = MOUY, HO = MOUL. Then,G+Y = PHNFF () = FOU”. We can
express the loop in Algorithm GHNFn the following diagram, which is equivalent to_(16): (Déedoy
vy m)

E () U© ez G XM ezx' % E® UDez1v G2 X@ez[x'2""2
remove0 remove0

(17)

For anyi > 1, we define a function
¢ ZX = Z[™
u o~ UOX® .y Yx Oy,

In particular, letgo : Z[X|™ — Z[x]™ be the identity map. Then, for amy> 0, we haveF ¢ (U1(i>) = F(O)U2(0>

X@ .. ufIx0Oul) = FOud) = 0, so,¢(U") C SyzF). Note thatF ¢; (US") = Gli+D).
We want to see when can we find a set of generators for the sympglyleSyz(F). First, we have the
following lemma on th&Z matrix:

Lemma 4.16. [4] Let A be an mx n matrix overZ, H = AU its column Hermite normal form with &
GLn(Z), and let r be such that the first r columns of H are equaDtdrhen aZ-basis for the kernel of A is
given by the first r columns of U.

Based on this, we have the following lemma:

Lemma4.17. Foranyu € SyzF) anddegu) =k, we havel € Span, (UK o ¢ (U1(i>)) for any k> 0. Moreover,
{ULo ¢ (UM} generates the syzygy mod@igz(F).

Proof. By Lemma[3.19Syz(F) can be generated by elementsZifx]™ with degrees< d. We only need to
show the first statement.

Clearly, we havé () = FU2X®...u{~YX D for anyi > 0. In particular, leF© = F,u®" = u.

By Lemma[4.16, the lemma is valid fér= 0. If degu) = k > 0, it suffices to show that, for any ©
i <k, there existaul)' e Z[x¥ with degu®’) < k—i, such thatu = ¢;(u®"). In which casefFVu) =
FUSOX@ ... uf VX Oyl = Fu=0. Itis valid fori = 0. Suppose itis also valid for, 1.,i —1. Letu(~%' e
Z[x%-1 with degu(~Y') < k—i+1, such thati = ¢;_ (u(-2") andF -0y = 0. Letu® = U Pul-2"
thenGWul®) = FI-DU{~Yyi-1" = 0. Letu® = [uy, ..., u,]", with deguy,) < k—i and degu;) < k—i+1
forl<j<v. Let

U1 = U100+ P1X,

Uy—1 = Uy-10+ Py—1X
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whereu; o € Z andp; € Z[x and degpj) < degu;j) —1<d—ifor1<j<vi—1. Takeu® =[uo,p1,..., W10,
Pu_1,U,]%, then degu') <d—iandu® = XOu®', Clearly, we havéu" = GHXHy) = gHu® =0,
This lemma is proved. O

4.2 HNF-based algorithm-theZ[x|" case

In this subsection, the GHNFRlgorithm will be given to compute the GHNFs for module<Zix|".

Given a polynomial matrid¥ = (fij)nxm = [f1,...,fm] € Z[x™™, denote bym = #(F) be the column
number ofF. Letv; = max<j<n(ded fjj)),

1 x ... x»
“ | | (18)

1 x ... x
nxs

wheres= 51 ;(vi+1). LetF = XH, we call theH € Z5*™the coefficient matrix oF . LetH’ be the Hermite
normal form ofH andF’ = XH'. F’ is called the PHNF oF. Denote byH = M(F) andF’ = PHNKF).

Denote byF (-,i) thei-th column ofF, F(i,-) thei-th row of F. Denote byf(t) the polynomial in the-th
row of f for any polynomial vectof.

Define the Algorithm Divide as followsi(Hj,...,Hn)=Divide(G), whereG = [g1,...,09s], & € Z[X",
Hi = [0k, -, 0k, Where 1< kg < --- <k <'s, gk(t) # 0 andgk(j) = O for anyk =k;, j >t.
The main algorithm is as following:

Algorithm 2 GHNF,(F)
Input:  F =[fy,....fn], fi € Z]X".
Output: G=]gy,...,0s, the GHNF ofF.
1: Gy = PHNKF),i=0.
2: (loop)i =i+1,;
(H1,...,Hn) = Divide(Gy), Hj = [ngj ,gj7kj+1,...,gj7sj] with deg@hk(j)) =kfork; <k<s;.
If (t—1)d <i<tdforsome 1<t <n, for j from 1ton—t, letH; = [Hj,xH;], for j fromn—t ton, let
Hj = [9i k- 9jmin(s;.(n-j+1)d) XDi k> -+ X9 min(s (n— -+ 1)) ~1]-
If i > nd, for j from 1 ton, letH; = [gj.kj 3+ -2 9j.min(sj, (n—j+1)d)> Xj kj» - - - >ng,min(sj.(nfj+1)d)fl]-
Let Fy = [Hy,...,Hy], G2 = PHNKF;). While G; andG, do not satisfy th&ermination condition T,
given below, letG; = G,, repeat Stepl2; otherwise, we obtain a polynomial ma®ix (Hy,...,Hn) =
Divide(Gs), and a condition number sgt, ..., ip).
3: Fort from 1 ton, letH; = [g1,...,0], B = [01];
for j from 2 toit, if LC(gj_1(t))1LC(gj(t)), R =R U{g;}.
LetR = ﬁ(Plruﬂ—l).
4. G= [P]_,...,Pn].
5. ReturnG

Termination condition T ,: For polynomial matrices andG, let(Hy,...,H,) =Divide(F), (Py,...,Py) =
Divide(G), for any 1<t < n satisfyingH; is not emptyH;(t,-) andR(t,-) satisfy theTermination condition
T. Along with theTermination condition T, we define the condition number dgt, ... ,i,] as follows: for
t=1,...,n,

1) if H; is not emptyij; is the corresponding condition number;

2) if H; is empty, definé; = 0 to be the corresponding condition number.
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Remark 4.18. One may usédj = [gj k- - 0j.min(s;,(n—j+1)d)> Xdj,15 - - - s XGj min(s;, (n— j+ 1)d) 1] 1O replace the
Hj in Step2 of GHNF, for any1 < j < n. Note that if the obtaine@HNF(Grobner basis) is as fornii4) and
p=dedc ) < (n—r;+1)d, one need not to multiply x to tie s, obtained in the loop since if something
new arise from the syzygy of F, 1, the g will renew automatically. Then, the correctness of thidaepment
is similar to the case df[x|.

2X+1 3 42
Example 4.19.F = 2 6x 8

0 1 1
2X+1 —P+8x+7 42%—8x—4
Step 1: G =PHNKF) = 2 6x 0
0 0 1

Step 2:1-th loop: (Hy,H2,H3) = Divide(G;), where

2X+1 —4x°+8x+7 4x% —8x—4
Hi=[], Ha= 2 6x , Hy = 0 ;

0 0 1
2X+1 —4P+8x+7 2P+X 4x% — 8x— 4
H =], Hé( 2 6x 2X , Hy = 0 :
0 0 0 1
102 —5x—7 2+1 2¢+x 42%—8x—4
Fp = [H],Hj, HY], G2 = PHNRR,) = 0 2 x 0 :
0 0 0 1

G and G do not satisfy th&ermination condition T 5, G = Go.
2-th loop: (H1,H2,Hs) = Divide(G; ), where

102 —5x— 7 2X+1 2%+X 4x2 — 8x— 4
Hy = 0 , Hy = 2 2X , Hy= 0 :
0 0 0 1

Hi = Hi, H; = Hp, H = Hs, I, = [H{,HJ,HZ], and G = PHNKF,) = F.. Hence, G and G satisfy the
Termination condition T, and[1,2,1] is the condition number set.

10x2 —5x— 7 2x+1 4x2 — 8x— 4
Step 3: R= 0 P = 2 ,Py= 0 )
0 0 1
2

106 —5x—7 2X+1 4x%—-8x—4
Step 4: TheGHNFof F is G= 0 2 0
0 0 1

In the Algorithm GHNE], for anyi > 1, denote byG(") and F() the G; and F; in the i-th loop, re-
spectively. Lety = #(G()), v = #F ). For thei-th loop of the Algorithm GHNF, let (H\",... H{") =
Divide(G()) and HJ() [gg Lj,gi LJ+1> ,gf'éj] with deg(gi'f(( k)) = k for kj <k <'sj. For 1§ j <n, de-

note byt]" = ([QELJ, O s e an) > O andtf” = maxo, #([gJ inasne G ]). LetX® =

DiagonalMatrix X, ), ,X,S )) be the diagonal matrix with blockxk 1<k<n, whereX() []if tj(i) =0,
otherwise,
1 X
X! = 1 x wheni > (n— j)d, (19)
1/ (2! 1)
Otf”'x(zt“) 1)
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and

X! = wheni < (n— j)d. (20)
1 X tj(i)xztjgi)

In particular, lef(© = F. Fori > 0, letM(V) be the coefficient matrix & V) and[0,H®] = M®U () be the
HNF of M®, whereU © = [U{" Ul"] satisfyingd = MOUY | HO = MOUL. ThenG(+Y) = PHNRF®) =
FOu,,

The loop can be expressed as the following diagram:

Uz ety X(I)EZ[X}W% E® UWez 1" ) x<2)eZ[x}V2X‘/2
remove O remove 0

loop, : F

Similar to the above lodpwe give the following loof:

loop, : F —2° G __2ddGh oy UY oy addxG?
remove 0 remove 0
Let (H{",...,HY) = Divide(G"), and (H."",... .H{"") = Divide(G""). Without loss of generality, we
assumet-(') > 0 for 1< j < n. For simplicity, denote by-lj(') = [ggtLJ,ggiLﬁl, . ,gf )SJ] HY = [QEIL,QE'LH,

j
.gx] for 1< j < n, where degg/y(J)) = deg(gj}()) = k. Then,F®) = Y. HY), whereH D =

.k
Hj(') j(') H J(I),XHJ(I)] if i <(n j)d,Hj() Uy J() [gEL ,gg'éj xgg'?(J xgg')s _Jifi>(n—j)d. And

FO' =Y H

H!
j
')],WhereHj(') =] j('),xHJ(')]for1<J<n LetP() [ggt) . 79§2mn( ¢ (nj+1)d ),xgg'jdj,

.,xg?é/j] forl1<j<n.

In order to show the the equivalence of Igagnd loop, for computing the GHNF, we define another
order as followingsx®e <’ xPe; if and only if a < B or a = 3, i < j. Similar to the order<, the order<’
can be extended to the polynomial vectorZof]". Moreover, leff,g € Z[x]™, the S-vector of, g is the same
with the order<. A good property of the ordex’ is: if max(degf),degg)) < d, then de¢S./(f,g)) <d. We
can easily get the following lemma:

Lemma 4.20. Let F € Z[x]™™, d = degF ), thenSyz(F) has a Grobner basis G with degreend wr.t. <’

Proof. Let S= {u|u € SyZF), degu) < nd}, then,Shas a Grobner basi& C Ssince the S-vector of any
u,v e Swrt. <'is also inS By Lemmd 3.IPSgenerateSyzF). The lemma is proved. O

LetR be the last rows of F, § = {u € Z[x™|u € SyzZ(R ), degu) <td}. By LemmdZ.2DS has a Grébner
basisG; C § and de¢G;) < td. For anyu € SyzR) with degu) <k, u € Span,(§,xS, ..., Xm0 k-t gy,
Moreover, we havéS;) O () 2 -+ 2 (S).

Similar to theZ|x] case, for the loop we define a sequence of maps

For eachi > 0, letU = V" V"], whereV," consists of column vectors &f() N Syz(Fy), HYVY) =
HY XAV = HITY. Let
@ Z[*) 5z
s VIOXE Dy

i-1)

In particular, letg : Z[X™ — Z[x]™ be the identity map. ThusFV( Oy Y --Vz( X,Si)vz(i) = H{"™ and

Fav,) = Fvox .y )Xrg')Vl() C span,(H{™Y ... HID) for each 0< i < d.
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Lemma 4.21. Let F € Z[x]™™. For anyu € Syz(F;) anddegu) = k, we haveu € Spa@(U!:O(n(Vl(i))) for
any k> 0.

Proof. This is similar to the proof of Lemnia4.17. O

Lemma 4.22. For anyl <t < nand k< td+ 1, we have Hk ) fori1<j<n-t.

Proof. First, lett = 1. In the loop and loop, GV = G’ = FUZ(O). Then,HJ(l) H-(l)/ for1<j<n.
This lemma is valid fokk = 1. Suppose it is valid fok =1 < d, i.e, HJ() H(') fori<j<n-—-1. We
need to shovsHj( >:Hj( Yifor 1< ] <n-1. For anyfeSparZ( . ,H(_1>)cSpari( )y =
Span,(F,xF,...,XF), there exists a1 € Z[X™, such thatf = Fu W|th degu) <, andu € SyzF;). B
LemmaZ.21L, we have € Span,(Ul_o@(V,")). Then,f = Fu e Span,(H\""™, .,Hr(]'fll)). Thus, we have

HJ-('“) = HJ-('”)/ for 1< j <n—1. The lemmais valid for = 1

Suppose the lemma is valid for= p— 1. Then we havdei((p_l)OI+1> Hj((p_l)dﬂy fori<j<n—p+1.

FSp-1 € Spa(Hy P VY HIP Y — Span,(Q), whereQ = [Hl(p RAAR Hé(p;ﬂd“)]-

Whent = p, forany (p—1)d+ 1< k< pd+1 andf € Spargz(H1 Yo H( kY p) C Span, (F! DY, there
exists au € Z[x]™ with degu) < k—1, such thaf = Fu andu € Syz(F,) C Syz(Fp 1). By LemmdﬂDu €
SyzFp) = (Sp-1), hence we have € Span,(Sy_1, ..., X< (P~19-15) Thenf=Fuec Span(Q,...,x<(P~Dd-1Q),
Hence we havé= Qv for somev € SyzQ,) with degv) < k— (p—1)d — 1 andQ, being the lasp rows of
Q. Consider the algorithm GHNEQ), we have Spas(Q®)) C Span,(H{PDaH)  yl(p-DdtLH)y g4

n—p+1
i <d. Then, Spag(Qk—(P-Dd-1)) SparZ(Hik),...,H('f) ). Since the lasp— 1 rows ofQ are all zeros,

n—p+1
it can be reduced to the= 1 case. Hence, we ha¥e= Qv € Span,(Qk~(P~1d-1)), Thus,Hj(k) = Hj(k) for
1<j<n-p O
Lemma4.23.LetH=[H*™ _ H""™] Fork>td+1,0<t <n—1,wehave f, € (H{*D . HI4D),

In particular, for k>td+1,0<t < n—1, H¥, C Span,(H,xH,...,x9-1H) C Span,(H| k VR,

Proof. Letk > td+ 1. For anyf € Hn t C Span,(F&1'), there exists ai € Syz(R) with degu) < k-1,

such thatf = Fu. By Lemmal3.1Pu < (). By Lemma@Du € Span,(§,...,X<9-13). By Lemma
@,Hj(td“) (td“) for 1< j<n—t, 1<t <n. ThenFS C Span,(H{""™ ,...,Hr(ffjt*l) )) = Span,(H).
Thus,f=Fu C SparZ(H xH,...,x<4=1H) C (H).

To show the second statement, firstiettd + 2. Thenf € Span,(H,xH) = Span, (H{"""Y" ___ H{4™),

The, lemma is valid fok = td + 2. Suppose the lemma is valid fioe=1 > td+2. Then Hr(,'yt C Span,(H,xH,

Xty C spanHYY L HIY ) Cspan (HY . HYL). We need to showd (Y C Span, (H.”

L HY. Foranyf e H"Y' f € Span,(H,xH, ..., X '9H) = Span,(Span,(H,xH, ...,x t9~1H)UxSpan,(H
xH, X t4=1H)) € span,(HY . HL xHY . xHY)) = span,HY' ..., H}). The lemma is also valid
fork=1I1+1. O

Lemma 4.24. Span, (G*+1') = Span,(F®¥') = span,(P,...,R') for any k> 0.

Proof. We claim thaff = [fy,..., f,_,0,...,0]7 € Span,(H' ... . H{)), impliesf e span,(PY' ... P¥)).

First, lett =n—1. If k< (n—1)d, we havePl(k)/ ( “ Then,f e Spa@( ) Spa@( ) Oth-

ervise.k > (1~ 1)d, by LemmalZB1 € Spen(HIT) < (H{™ ) By Lemmelas, SparH{") =
Spa@(Pl(k)/). The lemmais valid fot = n— 1.
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Suppose the claim is valid far=1+1<n-1, i.e for anyf e Spa@(Hl(k)'w,,H(E),'_l) andk > 0,

fe Spa@(Pl(k) ,...,Pﬂ_l).

Lett=1,f=[f,..., fr1,0,...,0]7 € Span,(HY¥,...,H®). If k< 1d, then,P™ = H! for 1< j <
n—I. Thus,fc Spap,(PY,....PY). Otherwise,k > Id. If f, =0, f € Spag(H*™ ... HIY),
If k< (I +1)d PY =HM =H® for 1< j <n—1-1be LemmdZ422f € Spap,(H.....H)) =
Spari( k' ,P,ﬁ” Hr@() gSpari(Pl(ky,...,Prgf){) by Lemma4.21. Ik > (I +1)d, by Len Lemm@fe
Spa@( Hrg) 1)- By induction,f € Span, (P Pl ,Prfk), 1) If fa #0, feSpa@( Hr(]k),/)c
(H('d”), ~..,H{4") be Lemm4dZ23. Theri,c Span,(HY',... . H¥' | PX)) for k> Id, by Lemmdﬂll.
Thus, by mductlonf € Spari( (et ) ,...,PrEkT”) The claim is proved We have S@e(hi . ,% 4 ) C
span(PL’.....R{). since Span(P¥',....R¥") C span, (..., H{"") = Span, (GH+Y) = Sparz<F<k>’>.
The lemmais valid. O

Lemma 4.25. loop, and loog}, are equivalent for computing th& HNF.

Proof. By Lemma4.24[g € Ht sdegg(t)) < (n—t)d] = Ht(i> for anyt andi. When we check th&ermi-
nation condition T in two different procedures logmnd loog), they terminate at the same time. O

From now on, letG; and G, be the outputs of the Stép 2H,,...,Hy) = Divide(Gy), (Hy,...,H}) =
Divide(G,). Similar to theZ[x] case, to prove the correctness of this algorithm, we asstine #H,. Denote

by Hi = [0t.1,---,Gk]s H{ = [ht1,...,hex] @andLC (He(t,-)) = [@.1,- .. 8k ], LC(H{(t,)) = [b1,...,btk].
LetL ={01,---, 0k}, Lt = {ht1,.... e} forI<t<n.

Lemma 4.26. For the above @ and G, if there exists a set of numb@, ... ,in], such that g; = by ; for
1<j<i, 1<t <n,then

1) ajlagj,—1]---|a1forl<t<nm;

2) 0j =hy; modSpan(Ly,...,L{_;)forl<j<i,2<t<n.
Moreover, %gi; € Span,(UjZi LY, xUZi LY, ... X T U ZT LS, Guas -, Guik) for any positive integers
Kl k+I<i,1<t<n;

Proof. 1) By Lemmd4.7, lis valid for 1<t <n.

2) For1<t<n,1<j<i, letg,, h; be thet-th elements ofy j, h; j respectively. Then, we have
Span,(G1,---,0i) € Span,(h1,....h;) andLC ([0t 1,...,0)) = LC([h1,....h;]) for 1<t <n. By
Lemmée 4.4, we havg, j =hjfor 1< j <i;, 1<t <n. So,hyj—0aj€Span(Ly,....L_1) i.e gj=h;
mod Span(L},...,L{ ;) for1<j<i,2<t<n.

For anyt, such that; is not empty, we have

r—1 r-1
xas € Span(|JLi,hea,....hesa) =Span (| L, -, Guiga), for 1< <ig—1;
t=1 t=1
r—1 r—1 r—1
Xy € Spany (x| JL{,Xg1, .., X0+1) € Span (| Lt x (Lt G-+ Gir), for 1< 1 <ig—2;
t=1 t=1 t=1
r—1 r—1 r—1
Xg € Span(JL.xUJL,- XYL, 01 Gusk), for 1< <ig—k;.
t=1 t=1 t=1
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O

Lemma 4.27. When theTermination condition T, holds and]is,...,in] is the condition number set, then,

1) ajlai+1] - lak fori<t<n;
2) hyy € Span, (LY, .., Lf 1,061+ Otis Xt Xt +1, - - -, X0t 1 —1) forie <1 <k, 1<t <n;
3) Ut 1{Gt1,---,0ti } is a Grobner basis for th&[x] lattice (Uf_; Lt).

Proof. 1) By Lemmd4.8, lis valid for 1<t <n.

2) For anyt, hyj 11— X0, € Span,(Ly,....L{_;,heq,....hei) = Span,(LY,...,L{_1,0t1,---,0ti)- SO,
htj+1 € Span,(LY,...,L{_1,0t1,---,0i» X0, )- Suppose Ris valid fori; < j <I—1. Thenh;j —xg -1 €
Span,(LY,...,L{_1,he1,...,hei—1) € Spany(Ly....L 1,01, Gtic» Xt - - - - XGt1—2). SO, we havehy €
Span, (L7 ..., L 1,0t1,- - 0tics Xt - - - Xt 1—2, X0 1—1), Which is valid fori; <1 <k, 1<t <n.

3) We prove this by induction. Without loss of generality, wswaseL; is not empty. By Lemma 418,
{911,.-.,0ui, } is a Grobner basis for trg[x] lattice (L1). SupposeJi_1{g1,- .-, } is a Grébner basis for
the Z[X lattice of (J{Z{L;). We need to show th&{_;{g1,...,0, } is a Grébner basis for tHg[x lattice
of (Ui=1{9t1,---,0 }) andg, can be reduced ©by U{_1{01,...,0, } forir <I <k.

By LemmdﬂﬁS(gl’JO gl’J) = g_i:(gﬂ - Xlikglﬂk S Spa%(ug;i Lé7XU{;]:!- Lé7 R 7X|7k71 U{;]% L{J gl’717 e 7gl'7|)
forany 1< k < | <i,. So, there exists a sequence of integgrs..,u;, such that

r—1 r—1 r—1 r—1
S(Grk, Or) — (UaGra + -+ uidy) € Span,(|J L, x| JL,....x * L) € (L)
t=1 t=1 t=1 t=1

By assumption{J{_1{g1,...,0 } iS a Grobner basis for th&[x| lattice of (J{_{L:). SO S(Grk,0r) —
(UrGr1 + -+~ +ugr) can be reduced t6 by Ui _1{Gt1,-..,Gi }. Hence, we have)i_,{g1,...,0i} is @
Grobner basis for th&([x] lattice (U{_1{G1,-- -, })-

By 2),
ar|
gr,l - ﬁxgﬂfl S Spa%( 3.7 sy :‘—17 hl’.la ey hl’,|) g Spa%( 3.7 sy L:‘—lagl’.ly o 7gl',ir 7Xgl’,ir PR 7Xgl’,|7l)
for i, <| <k:.. So there exists a sequence of integers..,u;,Vi,...,Vi_1, such thaty,| — a,afflxgnl—l -

i UGk — Yhot igrk € Spany(Ly,... L) € (UiZiL) = (UiZi{o1.---, G })- Hence,g;; can be
reduced to0 by Ui_1{%1,---.Gi.}- Then,Ui—1{G1,....0 } is a Grobner basis for thE[X| lattice of

(Ut=1 Lo)- 0

Theorem 4.28. Algorithm GHNF, is correct and terminated.

Proof. It is a direct consequence by Lemma 4.26 andl4.27. O
Similar to Corollary 4.10, we have

Corollary 4.29. The AlgorithmGHNF, ends in at most B- nd loops, where B= 73n8d°(h+ (logn?d) + 1).

Theorem 4.30.The worst case bit size complexity of Algorit@HNF, is O(n?0+26+ed12+6+¢ (h 1 Jog(n?d))?+¢

+n%1Y(logn?d)B(n°d3(h+ logn?d))), where h= heightF) and& > Qiis a sufficiently small number.

Proof. By Lemma3.25, the height bound for the GHNFrofs 6nd?(h+- (logn?d) + 1) := h,. Consider the
Step 2 of the Algorithm GHNE, we know that in thé-th loop, we need to compute the HNF of an integer ma-
trix with size at most(d +k+ 1) x (n(n+1)d +n), whose rank is no more thét(n+1)d +n). The logB in
Lemmal[4.Il can be taken as Bg= (n(n+ 1)d + n)(3log(n(n+ 1)d + n) + hy) = O(n°d3(h + logn?d)).
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The complexity in thek-th loop is O(n(d +k + 1) - (n(n+ 1)d + n)®~1(logB)M(loglogB)/(loglogB) +
n(d+k+1)-(n(n+1)d 4+ n)log(n(n+1)d +n)B(log B)) = (d + k+ 1)O(n*+20+ed2+6+¢(h 1 logn2d) 1+ +
n3d(logn?d)B(n°d®(h+logn?d))), for anye > 0. Hence, the total complexity is,
D+nd
Y (d+k+1)O(n*29+¢d> 0% (htlogn?d)*** + n°d(logn’d)B(n°d*(h+ logn’d)))
k=0

— O(n?0+20+6q12+6+¢ (h 4 1ogn?d)?+¢ + ' (logn?d)B(n°d*(h+logn?d))), for anye > 0.

Similar to Corollary 4.1B, by settin§ = 2.376 ands = 0.001, we have
Corollary 4.31. The worst case bit size complexity of Algorit@ANF, is O(n?*753d14377(h+logn?d)%01).

Similar to Remark 4.14, the numberin the input is omitted in the complexity bound.

5 Experimental results

The algorithms presented in Section 4 have been implemantbdth Maple 18 and Magma 2.21-7. The
timings given in this section are collected on a PC with [[RglXeon(R) CPU E7-4809 with 1.90GHz. For
each set of inpute parameters, we use the average timing @xggeriments for random polynomials with
coefficients betweep-100,100.

Figure[1 shows the timings of the Algorithm GHNF Magma 2.21-7 and Maple 18, and that of the
GrobnerBasis command in Magma 2.21-7. From Thedrem 4.&2i¢bree of the input polynomials is the the
dominant factor in the computational complexity of the aidpn. In the experiments, the length of the input
polynomial vectors is fixed to be 3. The degrees are in theerg#g80].

From the figure, we see that our algorithm is much more effidiesn the GrébnerBasis algorithm in
Magma. As far as we know, the GrobnerBasis algorithm in Magl®sauses an F4 style algorithm to compute
the Grobner basis and is also based on the computation of HHE ooefficient matrices. In other words, the
GrobnerBasis algorithm in Magma is quite similar to our aillpon and the comparison is fair. The reason for
Algorithm GHNF, to be more efficient is due to the way how the prolongation seda Step 2 of algorithm
GHNF;. By prolonginggs,...,g—1 instead of the original polynomials and rgpt the size of the coefficient
matrices is nice controlled. This fact is more importantlgoathm GHN,.

The difference for the timings of Algorithm GHNRn Magma and Maple is mainly due to the different
implementations of the HNF algorithms.

20

10

50 60 70 80
degree

GBin Magma —— HNF1 in Magma
— HNF1 in Maple

Figure 1: Comparison of GHNFand GrobnerBasis in Magma and Maple: #ig| case

In Table[1, we give the timings for several input where theypoimials have larger degrees. Other param-
eters are the same. We see that for input polynomials witlegdgrger than 150, the GrébnerBasis algorithm
in Magma cannot compute in the GHNF in reasonable time.
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d | GHNFyin Maple 18| GHNF; in Magma 2.21-7| GB in Magma 2.21-7
100 50.5932 19.048 214.91
150 202.8135 104.827 >1000
200 590.7763 384.946 >1000

Table 1: Comparison of GHNFand GrébnerBasis in Magma and Maple: #ig] case

Figurel2 plots the timings of Algorithm GHNFmplemented in Magma 2.21-7 and Maple 18, where the
input random polynomial matrices are of sizex3 with degrees if2,30]. There is no implementation of
Grobner bases methods in Magma #jx|-modules, so we cannot make a comparison with Magma in this
case. In line with our complexity analysis given in Sectigraljorithm GHNF slows down rapidly when
n>1.

5 10 15 20 25 30
degree

\— HNFn in Magma — HNFn in Maple\

Figure 2: Timings of GHNFin Magma and Maple

In Table(2, we list the timings of Algorithm GHNFor several examples with larger degrees. This shows
the polynomial-time natural of the algorithm, because tlger&ghm works for quite largel. Also, for large
d, the Maple implementation becomes faster.

d | GHNF, in Maple 18| GHNF, in Magma 2.21-7
40 245.689 236.029
50 554.452 637.05

Table 2: Timings of GHNFin Magma and Maple

6 Conclusion

In this paper, a polynomial-time algorithm is given to corgpthe GHNFs of matrices ovéi[x], or equiv-
alently, the reduced Grobner basis df l-lattice. The algorithm adopts the F4 strategy to computbGr
ner bases, where a novel prolongation is designed so thabtféicient matrices under consideration have
polynomial sizes. Existing efficient algorithms are useddmpute the HNF for these coefficient matrices.
Finally, nice degree and height bounds of elements of thecestl Grobner basis are given. The algorithm is
implemented and is shown to be more efficient than existiggrahms.
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computing Hermite normal forms.
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