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Abstract

In this paper, a polynomial-time algorithm is given to compute the generalized Hermite normal form for a
matrixF overZ[x], or equivalently, the reduced Gröbner basis of theZ[x]-module generated by the column
vectors ofF. The algorithm is also shown to be practically more efficientthan existing algorithms. The
algorithm is based on three key ingredients. First, an F4 style algorithm to compute the Gröbner basis
is adopted, where a novel prolongation is designed such thatthe coefficient matrices under consideration
have polynomial sizes. Second, fast algorithms to compute Hermite normal forms of matrices overZ are
used. Third, the complexity of the algorithm are guaranteedby a nice estimation for the degree and height
bounds of the polynomials in the generalized Hermite normalform.

Keywords: Z[x]module, Gröbner basis, generalized Hermite normal form, Hermite normal form, polynomial-
time algorithm.

1 Introduction

The Hermite normal form (abbr. HNF) is a standard representation for matrices over principal ideal do-
main(abbr. PID) such asZ andQ[x], which has a wide range of applications [4]. In this paper, generalized
Hermite normal form (abbr. GHNF) for matrices overZ[x] are studied. This is motivated by the recent work
on Laurent binomial difference ideals and toric differencevarieties [11], where properties of Laurent binomial
difference ideals and toric difference varieties are reduced to that of GHNFs for matrices overZ[x].

Note thatZ[x] is not a PID and a matrix overZ[x] cannot be reduced to an HNF in the general case. In [11],
the concept of GHNF is introduced and it is shown that any matrix over Z[x] can be reduced to a GHNF.
Furthermore, it is shown that a matrixF = [f1, . . . , fs] ∈ Z[x]n×s is a GHNF if and only if its columnsf =
{f1, . . . , fs} form a reduced Gröbner basis of theZ[x]-module generated byf in Z[x]n under certain monomial
order. Similar to the concept of lattice [4], aZ[x]-module inZ[x]n is called aZ[x]-lattice which plays the same
role as lattice does in the study of toric varieties [6]. Therefore, computing the GHNF of matrices overZ[x]
is equivalent to computing the reduced Gröbner basis for aZ[x]-lattice, which can be done with the Gröbner
basis methods for modules over rings [5,14].

The main contribution of this paper is to give an algorithm tocompute the GHNF of a matrixF ∈ Z[x]n×s

or the reduced Gröbner basis of theZ[x]-lattice generated by the column vectors ofF, which is both practically
efficient and has polynomial bit computational complexity.Note that the complexity of computing Gröbner
bases inQ[x1, . . . ,xn] is double exponential [17]. As far as we know, there is no study on the complexity of
Gröbner bases computation forZ[x]-modules inZ[x]n. The algorithm consists of three main ingredients which
will be explained below.

The first ingredient comes from the powerful idea in Faugère’s F4 algorithm [10] and the XL algorithm [7]
to compute Gröbner bases. To compute the Gröbner basis of theideal generated byp1, . . . , pm ∈Q[x1, . . . ,xn],
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these algorithms apply efficient elimination algorithms from linear algebra to the coefficient matrix ofxk
j pi

for certaink. Although the F4 algorithm can not improve the worst case complexity, it is generally faster
than the classical Buchberger algorithm [3]. In this paper,to compute the GHNF ofF = [f1, . . . , fs] ∈ Z[x]n×s

with columnsf i , due to the special structure of the Gröbner bases inZ[x], we design a novel method to do
certain prolongationsxkf i such that the sizes of the coefficient matrices of all thosex j f i under consideration
are bounded by a polynomial inn andd, whered is the degree of the polynomials inF.

The second ingredient is to use efficient algorithms to compute the HNF for matrices overZ. The compu-
tationally dominant step of our algorithm is to compute the HNF of the coefficient matrix of those prolonga-
tionsx j f i obtained in the first ingredient. Due to its importance, HNF computation is extensively studied and
there exist many efficient algorithms to compute HNFs for matrices overZ [4, 15, 19, 20] and matrices over
Q[x] [2,8,13,18]. Note that it is difficult to recover the GHNF fora matrix overZ[x] from its HNF overQ[x].
In the complexity analysis, we use the HNF algorithm with thebest bit complexity bound [19].

The third ingredient is a nice estimation for the degree and height bounds of the polynomials in the GHNF
G∈ Z[x]n×s of F ∈ Z[x]n×m. We show that the degrees and the heights of the key elements of G are bounded
by nd and 6n3d2(h+1+ log(n2d)), respectively, whered andh are the maximal degree and maximal height
of the polynomials inF, respectively. Furthermore, we show thatG = FU for a matrixU ∈ Z[x]m×s and
the degrees of the polynomials inU are bounded by a polynomial inn,d,h. These polynomial bounds along
already lead to a polynomial-time algorithm to compute the GHNF. But, in order to have an algorithm which
is both polynomial-time and practically efficient, the firsttwo ingredients are needed. The bounds about the
GHNF are obtained based on powerful methods introduced by Aschenbrenner in [1], where the first double
exponential algorithm for the ideal membership problem inZ[x1, . . . ,xn] is given. The key to the bound
estimation for GHNF is to find solutions to linear equations overZ[x], whose degree and height are bounded.
Due to the special structure of the Gröbner basis inZ[x], we can give better bounds than [1] for this problem.

The algorithm is implemented in Magma and Maple and their default HNF commands are used in our
implementation. In the case ofZ[x], our algorithm is shown to be more efficient than the Gröbner basis
algorithm in Magma and Maple, which are also based on HNF. In the general case, the proposed algorithm is
also very efficient in practice that quite large problems canbe solved.

The rest of this paper is organized as follows. In Section 2, we introduce several notations of Gröbner
bases forZ[x] lattices. In Section 3, we give degree and height bounds for the GHNF. In Section 4, we give
the algorithm to compute the GHNFs. Experimental results are shown in Section 5. Finally, conclusions are
presented in Section 6.

2 Preliminaries

In this section, some basic notations and properties about reduced Gröbner bases forZ[x] lattices will be given.
For more details, please refer to [1,5,11,14,16].

For brevity, aZ[x] module inZ[x]n is called aZ[x] lattice. Any Z[x] latticeL has a finite set of generators
{f1, . . . , fs} ⊆ Z[x]n and this fact is denoted as

L = SpanZ[x]{f1, . . . , fs}= (f1, . . . , fs).

If f i = [ f1,i , . . . , fn,i ]τ , then we callM = [ fi, j ]n×s apolynomial matrixof L=(f1, . . . , fs) or the sequencef1, . . . , fs.
Note thatf i is thei-th column ofM. For convenience, we also writeM = [f1, . . . , fs]. If n= 1, M is called the
polynomial vectorof (f1, . . . , fs) or f1, . . . , fs.

A monomialm in Z[x]n is an element of the formxkei ∈ Z[x]n, wherek ∈ N, andei is the canonicali-th
unit vector inZ[x]n. A termm in Z[x]n is a multiplication of an integera∈ Z and a monomialm, that isam.
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The admissible order≺ on monomials inZ[x]n can be defined naturally:xα ei ≺ xβ ej if

{
i < j, or
i = j andα < β (1)

The order≺ can be naturally extended to terms:axαei ≺ bxβ ej if and only if xα ei ≺ xβ ej or i = j, α =
β and|a|< |b|.

With the admissible order≺ defined by (1),f ∈ Z[x]n can be written in a unique way as aZ-linear combi-
nation of monomials,

f = ∑s
i=1 cimi,

whereci 6= 0 andm1 ≺ m2 ≺ ·· · ≺ ms. We define theleading coefficient, leading monomial, andleading term
of f asLC(f) = cs, LM (f) = ms, andLT (f) = csms, respectively.

The order≺ can be extended to elements ofZ[x]n in a natural way: forf,g ∈ Z[x]n, f ≺ g if and only if
LT (f)≺ LT (g). We will use the order≺ throughout this paper.

For two termsaxα ei andbxβ ej in Z[x]n, if i = j, α ≥ β and|a| ≥ |b|, let a= qb+ r, where 0≤ r < |b|.
Thenrxα ei = (axα −qxα−β ×bxβ )ei is said to bereduced with respect to bxβ ej or {bxβ ej}-reduced, denoted

by rxα ei = axα ei
bxβ ej . The quotient isqxα−β . Otherwise,axα ei is{bxβ ej}-reduced, and in this case we denote

axαei = axαei
bxβ ej and the quotient is zero. We use(axα ei

bxβ ej ,qxα−β ) = Reduce(axα ei ,bxβ ej) to denote this
procedure.

This concept can be extended to the elements inZ[x]n: for any f ∈ Z[x]n andg∈ Z[x]n, let h = f, q= 0.
While there exists a termm of h which is not{LT (g)}-reduced, letq1 be the quotient ofm reduced by
LT (g), h = h− q1g, q = q+ q1. This procedure will terminate in finite steps by the well-ordering given
before. When the above procedure ends,h is {g}-reduced and is denoted byh = f

g
andq is the corresponding

quotient, denoted by(h,q) = Reduce(f,g). Note thath andq satisfyh = f −qg. Moreover, forf ∈ Z[x]n and
G= [g1, . . . ,gm] ∈ Z[x]n×m with g1 ≺ . . .≺ gm, let hm+1 = f and fori = m,m−1, . . . ,1, set

(hi,ui) = Reduce(hi+1,gi).

Denote(h,U) = Reduce(f,G), whereh = h1 = f
G

andU = [u1, . . . ,um]
τ the corresponding quotient vector.

Thenh = f −GU.

ForF = [f1, . . . , fm1] ∈ Z[x]n×m1,G= [g1, . . . ,gm2] ∈ Z[x]n×m2 with g1 ≺ . . .≺ gm2, let [hi,Ui ] = Reduce(f i ,

G), i = 1, . . . ,m1. Then defineH = F
G
= [h1, . . . ,hm1] and[H,U ] = Reduce(F,G), whereU = [U1, . . . ,Um1] ∈

Z[x]m2×m1. We haveH = F −GU.

Definition 2.1. Let f,g∈ Z[x]n, LT (f) = axkei , LT (g) = bxsej , s≤ k. Then the S-vector off andg is defined
as follows: if i 6= j then S(f,g) = 0; otherwise





f − a
bxk−sg, if b|a;

b
af −xk−sg, if a|b;
uf +vxk−sg, if a ∤ b and b∤ a, where gcd(a,b) = ua+vb.

(2)

If n = 1, the S-vector can also be called S-polynomial, which is the same with the definition in [14].

Definition 2.2. A finite set G⊆ Z[x]n is called a Gröbner basis for theZ[x] lattice L generated by G if for
any f ∈ L, there existsg∈ G, such thatLT (g)|LT (f). A Gröbner basis G is called reduced if for anyg∈ G, g
is G\ {g}-reduced. A Gröbner basis G is called minimal if for anyg ∈ G, LT (g) is G\ {g}-reduced. By

Theorem 3.5 of [11], G is a Gröbner basis if and only ifS(f,g)
G
= 0 for all f,g∈ G.

3



Clearly, a reduced Gröbner basis must be a minimal one. We canobtain the reduced Gröbner basis from
a minimal one by reducing the non-leading terms of every element in it with every other element.

Gröbner bases in this paper are assumed to be ranked in an increasing order with respect to the admissible
order≺. That is, ifG= {g1, . . . ,gs} is a Gröbner basis, theng1 ≺ . . .≺ gs.

We first consider Gröbner bases inZ[x]. The following proposition shows the properties of the reduce
Gröbner basis of ideals inZ[x].

Proposition 2.3 ( [11]). Let B= {b1, . . . ,bk} be the reduced Gröbner basis of aZ[x] module inZ[x], b1 ≺
·· · ≺ bk, andLT (bi) = cixdi ∈ N[x]. Then

1. 0≤ d1 < · · ·< dk.

2. ck| · · · |c1 and ci 6= ci+1 for 1≤ i ≤ k−1.

3. ci
ck
|bi for 1≤ i < k. Moreover ifb̃1 is the primitive part of b1, thenb̃1|bi , for 1< i ≤ k.

4. The S-polynomial S(bi ,b j) can be reduced to zero by B for any i, j.

This proposition also applies to the minimal Gröbner bases.Here are three Gröbner bases inZ[x]: {2,x},
{12,6x+6,3x2 +3x,x3+x2}, {9x+3,3x2+4x+1}.

Now, we give a refined description of Gröbner bases for idealsin Z[x]. For a polynomial setF =
{ f1, . . . , fm} inZ[x], we denote by Content(F) the GCD of the contents offi as a polynomial inx, Primpart(F)=
gcd(F)/Content(F) the primitive part ofF.

The following proposition is mentioned in [16]. Now we give asimple proof for it which help us to
understand the structure of the Gröbner bases of ideals inZ[x].

Proposition 2.4 ( [16]). G = {g1, . . . ,gn} with deg(g1) < · · · < deg(gn) is the minimal Gröbner basis of
( f1, . . . , fm) in Z[x] if and only if

g1 = ab1 . . .bn−1g̃1, gn = ahng̃1, (3)

gi = abi . . .bn−1hi g̃1,2≤ i ≤ n−1

such that

i) a= Content( f1, . . . , fm);

ii) g̃1 = Primpart( f1, . . . , fm);

iii) hi ∈ Z[x] is monic with degree di , and0< d2 < · · ·< dn;

iv) bi ∈ Z,bi 6=±1, and hi+1 ∈ (hi ,bi−1hi−1, . . . ,b2 . . .bi−1h2,b1 . . .bi−1), for 1≤ i ≤ n−1, where h1 = 1.

Proof. By Proposition 2.3, ifG= {g1, . . . ,gn} is a minimal Gröbner basis, we can writeG as:

{ac1g̃,at2g̃, . . . ,atn−1g̃,atng̃},

wherea= Content(g1, . . . ,gn) ∈ Z, g̃= Primpart(g1, . . . ,gn) ∈ Z[x],

ti = cix
di +qi,di−1xdi−1+ · · ·+qi1x+qi0 ∈ Z[x], 2≤ i ≤ n

with cn−1|cn−2| . . . |c2|c1 and 0< d2 < d3 < · · · < dn. Since{ f1, . . . , fm} and{g1, . . . ,gn} are theZ[x] linear
combinations of each other, they have the same content and primitive part. So, i) and ii) follow easily. Without
loss of generality, we assumeag̃= 1 in the rest of the proof.
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To prove iii), we claimci |qi j for 2≤ i ≤ n,0≤ j ≤ di −1. We prove this claim by induction onn. If n= 2,
G= [c1, t2].

S(t2,c1) =
c1

c2
(c2xd2 +q2,d2−1xd2−1+ · · ·+q21x+q20)−c1xd2

=
c1

c2
q2,d2−1xd2−1+ · · ·+ c1

c2
q21x+

c1

c2
q20.

SinceG is a Gröbner basis,S(t2,c1) can be reduced to zero byc1. So we obtainc2|q2 j for 0 ≤ j ≤ d2− 1.
Suppose the claim is valid forn≤ k−1. Forn= k we haveG= {c1, t2, . . . , tk}. Let

S(tk, tk−1) =
ck−1

ck
(ckx

dk +qk,dk−1xdk−1+ · · ·+qk0)−xdk−dk−1(ck−1xdk−1 +qk−1,dk−1−1xdk−1−1+ · · ·+qk−1,0)

= (
ck−1

ck
qk,dk−1−qk−1,dk−1−1)x

dk−1+ · · ·+(
ck−1

ck
qk,dk−dk−1 −qk−1,0)x

dk−dk−1+

ck−1

ck
qk,dk−dk−1−1xdk−dk−1−1+ · · ·+ ck−1

ck
qk,0.

SinceS(tk, tk−1) can be reduced to zero by{c1, t2, . . . , tk−1} andck|ck−1| . . . |c1, ck−1 must divide the coefficient
of every term ofS(tk, tk−1). Consideringck−1|qk−1, j for 0 ≤ j ≤ dk−1 − 1, we can easily obtainck|qk, j for
0≤ j ≤ dk−1. The claim is proved.

We can writeG as{b1 . . .bn−1,b2 . . .bn−1h2, . . . ,bn−1hn−1,hn}, wherehi = ti/ci is monic of degreedi and
bi = ci/ci+1 for 1≤ i ≤ n−1. SinceG is minimal, we havebi 6= 1 for 1≤ i ≤ n−1. iii) is proved.

We prove iv) by induction oni. Sinceh1 = 1, we haveh2 ∈ (h1) = Z[x] and iv) is valid fori = 1. Suppose
iv) is valid for i < j. G = {t1, t2, . . . , tn}, whereti = bi . . .bn−1hi for 1 ≤ i ≤ n− 1, tn = hn. S(t j , t j−1) =
b j−1 . . .bn−1(h j −xdj−dj−1h j−1). SinceS(t j , t j−1) can be reduced to zero by

G= {b1 . . .bn−1,b2 . . .bn−1h2, . . . ,b j−1 . . .bn−1h j−1},

it is easy to see that

h j ∈ (h j−1,b j−2h j−2, . . . ,b2 . . .b j−2h2,b1 . . .b j−2).

That is, ifG is a minimal Gröebner basis,G satisfies all the above conditions.

To prove the other direction, let us assume thatG has the above form and we takeG = {c1,c2h2, . . . ,
cn−1hn−1,hn}, whereci = bi . . .bn−1 for i = 1, . . . ,n− 1. To proveG is a Gröbner basis, it suffices to prove
that S(c jh j ,cihi) can be reduced to zero by{c1,c2h2, . . . ,c j−1h j−1} for 1 ≤ i < j ≤ n. Clearly, this is
valid when j = 2. Suppose it is valid forj < k. Then H = {c1,c2h2, . . . ,ck−1hk−1} is a Gröbner basis
for the Z[x] lattice (H). For anyi = 1, . . . ,k, S(ckhk,cihi) =

ci
ck

ckhk − xdk−di cihi = ci(hk − xdk−di hi). Since
hk ∈ (hk−1,bk−2hk−2, . . . ,b1 . . .bk−2) andck−1|ci ,

S(ckhk,cihi) ∈ (cihk−1,cibk−2hk−2, . . . ,cib1 . . .bk−2)⊆ (c1,c2h2, . . . ,ck−1hk−1).

So S(ckhk,cihi) can be reduced to zero by{c1,c2h2, . . . ,ck−1hk−1}. Sincebi 6= ±1, for 1 ≤ i ≤ n− 1 and
deg(h2)< · · ·< deg(hn), G is also a minimal Gröbner basis.
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Next, we introduce the concept of generalized Hermite normal form. Let

C =




c11 . . . c1,l1 c1,l1+1 . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cr1,1 . . . cr1,l1 cr1,l1+1 . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 cr1+1,1 . . . cr1+1,l2 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 cr2,1 . . . cr2,l2 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 0 . . . 0 crt−1+1,1 . . . crt−1+1,lt
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 0 . . . 0 crt ,1 . . . crt ,lt




n×m

(4)

whose elements are inZ[x]. It is clear thatn= rt ≤ m andm= ∑t
i=1 l i . We denote byck = cr i , j to be thek-th

column of the matrixC , wherek= l1+ · · ·+ l i−1+ j, 1≤ j ≤ l i . Assume

ci, j = ci, j,0xdi j + · · ·+ci, j,di j .

Then the leading term ofcr i , j is cr i , j,0xdri , j er i .

Definition 2.5. The matrixC is called a generalized Hermite normal form (GHNF) if it satisfies the following
conditions:

1) 0≤ dr i ,1 < dr i ,2 < · · ·< dr i ,li for any i.

2) cr i ,li ,0| . . . |cr i ,2,0|cr i ,1,0.

3) S(cr i , j1,cr i , j2) = xdri , j2−dri , j1cr i , j1 −
cr i , j1,0

cr i , j2,0
cr i , j2 can be reduced to zero by the column vectors of the matrix

for any1≤ i ≤ t, 1≤ j1 < j2 ≤ l i .

4) cr i , j is reduced with respect to the column vectors of the matrix other thancr i , j , for any1≤ i ≤ t,1≤ j ≤ l i .

Theorem 2.6( [11]). {f1, . . . , fs} ⊆ Z[x]n is a reduced Gröbner basis with order≺ such thatf1 ≺ f2 ≺ . . .≺ fs

if and only if the polynomial matrix[f1, . . . , fs] is a GHNF.

3 Degree and height bounds for the GHNF

In this section, we give the degree and height bounds for the GHNF .

Firstly, we give some notations which will be used in this section. Let f ∈ R[x], whereR is a subring ofC.
Denote by| f | the maximal absolute value of the coefficients off . Let height( f ) = log| f |, with height(0) = 0.
ForF = { f1, . . . , fm} ⊂ R[x], let deg(F) = max1≤i≤mdeg( fi) and height(F) = max1≤i≤mheight( fi).

For a primep ∈ Z, let Z(p) be the local ring ofZ at (p). For a= upt ∈ Z whereu is a unit inZ(p), let

vp(a) = t be thep-adic valuation. Let̂Z(p) be the completion [1, 9] ofZ(p) andẐ(p)[x] the polynomial ring

with coefficients in̂Z(p). Denote bŷZ(p)〈x〉 the completion of̂Z(p)[x].

3.1 Degree and height bounds inZ[x]

In this section, we will give the degree and height bounds forseveral basic algorithms, such as gcd and GHNF ,
in Z[x]. These results will be used to give degree and height bounds for the GHNF inZ[x]n.
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Lemma 3.1. Let k be a field, f1, . . . , fm ∈ k[x], and d= max1≤i≤mdeg( fi). Then there exist g1, . . . ,gm ∈ k[x]
with deg(gi)< d for any i, satisfyinggcd( f1, . . . , fm) = f1g1+ · · ·+ fmgm.

Proof. The bound can be obtained easily by the extended Euclidean algorithm.

In the following, we specializek = Q andk = Z/pZ in the above lemma, wherep is a prime inZ. The
following lemma will be used to bound the height of the GHNF .

Lemma 3.2. Suppose f1, . . . , fm ∈ Z[x], d = max1≤i≤mdeg( fi). If 1∈ ( f1, . . . , fm)Q[x], thenδ = f1g1+ · · ·+
fmgm for some g1, . . . ,gm ∈ Z[x] with degree< d and someδ ∈ Z\{0} with height(δ )≤ d(2h+ log(d+1)),
where h= height( f1, . . . , fm).

Proof. By Lemma 3.1, we have 1= f1u1 + · · ·+ fmum, whereui ∈ Q[x] of degree< d. Assumefi = ai0 +
· · ·+ aidxd, u j = b j0 + · · ·+ b j,d−1xd−1. Then we have the matrix equationAb= [1,0, . . . ,0]τ , whereA =
[A1, . . . ,Am],

Ai =




ai0

ai1 ai0
...

. . .

ai,d ai0

. . .
...

ai,d




2d×d

(5)

for i = 1, . . . ,m, andb= [b1,0, . . . ,b1,d−1, . . . ,bm,0, . . . ,bm,d−1]
τ ∈Qnd. Let rank(A) = t ≤ 2d. By the Cramer’s

rule, δ can be bounded by the nonzerot × t minors ofA. By the Hadamard’s inequality, we have 0< δ ≤
((d+1)a2)d, wherea= maxi, j |ai j |. So height(δ )≤ d(2h+ log(d+1)).

The following lemma is given by Gel’fond [12] and a simpler proof can be found in [22, p178].

Lemma 3.3. Let P1 and P2 be two monic polynomials inC[x], such thatdeg(P1)+deg(P2)= d. Then|P1||P2| ≤
(d+1)1/22d|P1P2|.

The following lemma gives a height bound for the gcd inZ[x].

Lemma 3.4. Let f1, . . . , fm∈Z[x] and g= gcd( f1, . . . , fm) inZ[x]. Then the height of g is bounded by1
2 log(d+

1)+d log2+h, where d= max1≤i≤mdeg( fi) and h= height( f1, . . . , fm).

Proof. Sinceg= gcd( f1, . . . , fm) is in Z[x], for eachi = 1, . . . ,m, there exists agi ∈ Z[x] such thatggi = fi .
Let g′ = g/LC(g) andg′i = gi/LC(gi). Then f ′i = fi/LC( fi) = fi/LC(g)LC(gi) and| fi |= | f ′i ||LC( fi)|. Let
di = deg( fi). By Lemma 3.3, we have|g′||g′i | ≤ (di +1)1/22di | f ′i | for each 1≤ i ≤m, wheredi = deg( fi). Then
|g||gi |= |LC(g)LC (gi)||g′||g′i | ≤ (di +1)1/22di |LC(g)LC(gi)|| f ′i |= (di +1)1/22di | fi |. We have

height(g) ≤ height(g)+height(gi)

≤ 1
2

log(di +1)+di log2+height( fi) for any i (6)

≤ 1
2

log(d+1)+d log2+h.

Remark 3.5. In the proof of Lemma 3.4, by the equation (6), we haveheight( fi/g)≤ 1
2 log(d+1)+d log2+h

for any i.
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We now give the degree and height bounds for the GHNF inZ[x]. Obviously, the degree bound of the
GHNF inZ[x] is d = deg(F) by the procedure of the Gröbner basiscomputation.

Lemma 3.6. For the polynomial vector F= [ f1, . . . , fm] overZ[x], the degree of itsGHNFcan be bounded by
d = deg(F).

The height bound is given in the following lemma.

Lemma 3.7. Let f1, . . . , fm∈Z[x], d=max1≤i≤mdeg( fi), h=max1≤i≤mheight( fi), and[g1, . . . ,gs] the GHNFof
[ f1, . . . , fm]. Thenheight(gi)≤ (2d+1)(h+d log2+ log(d+1)).

Proof. Let deg(g1)≤ ·· · ≤ deg(gs). By the properties of the GHNF , we have height(g1)=max1≤i≤sheight(gi).
Letg= gcd( f1, . . . , fm) inZ[x]. By Lemma 3.4 and Remark 3.5, we have height(g) and height( fi/g) both are≤
1
2 log(d+1)+d log2+h. Moreover, 1∈ ( f1/g, . . . , fm/g)Q[x]. By Lemma 3.2, height(gi/g)≤ d(2(1

2 log(d+
1)+d log2+h)+ log(d+1)) = 2d(h+d log2+ log(d+1). So, height(gi) ≤ 2d(h+d log2+ log(d+1))+
1
2 log(d+1)+d log2+h≤ (2d+1)(h+d log2+ log(d+1)).

Finally, we consider a special effective Nullstellensatz in Z[x], which based on the proof of Lemma 6.4
in [1].

Lemma 3.8. If 1∈ ( f1, . . . , fm)Z(p)[x], then there exist h1, . . . ,hn ∈ Z(p)[x] of degree at most3d2(2h+ log(d+
1))/ log p such that

1= f1h1+ · · ·+ fmhm.

Proof. Suppose 1∈ ( f1, . . . , fm)Z(p)[x], then 1∈ ( f1, . . . , fm)Q[x]. By Lemma 3.2, there existδ ∈Z\{0} with
height≤ d(2h+ log(d+1)) andg1, . . . ,gm ∈ Z[x] with degrees< d satisfying

δ = f1g1+ · · ·+ fmgm. (7)

Here and belowh= height( f1, . . . , fm). If δ is a unit inZ(p), then

1= f1(g1/δ )+ · · ·+ fm(gm/δ ).

Let hi = gi/δ for i = 1, . . . ,m, then we have the required properties. Suppose thatδ is not a unit. Let
µ = vp(δ )≥ 1. Clearly we have 1∈ ( f1, . . . , fm)(Z(p)/pZ(p))[x]. Then by the Extended Euclidean Algorithm,
there existr1, . . . , rm ∈ Z[x] with

1− (r1 f1+ · · ·+ rm fm) ∈ (p)Z(p)[x]

and deg(r j)< d for all j = 1, . . . ,m. So there existss1, . . . ,sm ∈ Z(p)[x] ands∈ (pµ)Z(p)[x] such that

1− ( f1s1+ · · ·+ fmsm) = s. (8)

We have deg(sj)≤ µ(2d−1)−d for all j; hence deg(s)≤ µ(2d−1). By equations (7) and (8), we have

1= f1s1+ · · ·+ fmsm+s= f1h1+ · · ·+ fmhm

with h j = sj +(s/δ )g j ∈ Z(p)[x]. We have

deg(sgj )≤ µ(2d−1)+d ≤ 3µd.

Since µ logp ≤ height(δ ) ≤ d(2h+ log(d+ 1)), it follows that deg(h j) is bounded by 3d2(2h+ log(d+
1))/ log p.

Then we can give the degree bound for the global case:
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Lemma 3.9. If 1∈ ( f1, . . . , fm)Z[x], then there exist h1, . . . ,hm ∈ Z[x] such that1= f1h1+ · · ·+ fmhm, with
deg(hi)≤ 3d2(2h+ log(d+1)) for i = 1, . . . ,m.

Proof. By Lemma 3.2, we haveg1, . . . ,gm ∈ Z[x] with degrees< d andδ ∈ Z satisfying

δ = f1g1+ · · ·+ fmgm.

Let p1, . . . , pk be all the prime factors ofδ . Since 1∈ ( f1, . . . , fm)Z[x], 1∈ ( f1, . . . , fm)Z(pi)[x]. By Lemma 3.8,

there existh(pi )
1 , . . . ,h(pi )

m ∈ Z[x] with degrees≤ 3d2(2h+ log(d+ 1))/ log pi andδ (pi) ∈ Z \ (p)Z satisfying

δ (pi) = f1h(pi )
1 + · · ·+ fmh(pi )

m . Then there exista,a1, . . . ,ak ∈ Z satisfying

1= aδ +a1δ (p1)+ · · ·+akδ (pk).

Hence lettingh j = agj +a1h(p1)
j + · · ·+akh

(pk)
j ∈ Z[x] for j = 1, . . . ,m, we get

1= f1h1+ · · ·+ fmhm.

From this, we can easily get deg(hi)≤ 3d2(2h+ log(d+1)) for i = 1, . . . ,m.

3.2 Degree and height bounds for solutions to linear equations overZ[x]

In this section, we show that the solutions to linear equations overZ[x] has bases whose degree and height can
be nicely bounded.

Throughout this section, letF = ( fi j ) ∈ Z[x]n×m. Denote byd = deg(F) the maximal degree of elements
in F andh = height(F) the maximal height of elements inF. Let SolR[x](F) be the solution module of the
homogeneous linear systemFy= 0, whereR is a subring ofC.

Let r be the rank ofF. Without loss of generality, we may assume that ther-th principal minor ofF
is non-zero. Then the lastn− r rows of F areQ(x) linear combinations of the firstr rows. SoFy = 0 is
equivalent to 


f11 · · · f1r · · · f1m
...

...
...

fr1 · · · frr · · · frm







y1
...

ym


=




0
...
0


 .

So, we may assumer = n unless we mention in particular.

For a primep, f = ∑∞
v=0 fvxv ∈ Ẑ(p)〈x〉 is calledregular of degree s with respect to p, or simply,regular

of degree swhen there is no confusion, if its reductionf ∈ Ẑ(p)〈x〉/pẐ(p)〈x〉 is unit-monic of degrees, that is,

(1) fs 6= 0, and

(2) vp( fi)> 0 for all i > s, wherevp is thep-valuation.

Now we describe the Weierstrass Division Theorem forẐ(p)〈x〉:

Theorem 3.10( [1,21]). Let g∈ Ẑ(p)〈x〉 be regular of degree s. Then for each f∈ Ẑ(p)〈x〉 there are uniquely

determined elements q∈ Ẑ(p)〈x〉 and r∈ Ẑ(p)[x] with deg(r)< s such that f= qg+ r.

Lemma 3.11. Sol̂
Z(p)〈x〉(F) has a set of generators inZ[x]m with degrees≤ nd.

Proof. Let △ be ann× n-submatrix ofF with δ = det(△) 6= 0 having the leastp-valuation among all the
nonzeron×n minors ofF. After permutating the unknowns ofy1, · · · ,ym in Fy = 0, we may assume△ =
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( fi j )1≤i, j≤n. Multiplying both sides ofFy= 0 on the left by the adjoint of△, the systemFy= 0 turns into the
system 


δ c1,n+1 · · · c1,m

. . .
...

...
δ cn,n+1 · · · cn,m







y1
...

ym


=




0
...
0


 (9)

whereδ and all theci j are inZ[x] with degrees≤ nd. Note that,vp(ci j ) ≥ vp(δ ) for all i, j, by the choice of
△. Let

v(1) =




−c1,n+1
...

−cn,n+1

δ
0
...
0




, . . . ,v(m−n) =




−c1,m
...

−cn,m

0
...
0
δ




. (10)

Then, Fv(i) = 0 for i = 1, . . . ,m− n and v(1), . . . ,v(m−n) are in theẐ(p)〈x〉-module Sol̂
Z(p)〈x〉(F). Let µ =

vp(δ ),u(i) = p−µv(i) for i = 1, . . . ,m− n. Thenu(1), . . . ,u(m−n) are also in Sol̂
Z(p)〈x〉(F). Multiplying the

equation (9) byp−µ , we haveBy= 0, whereB =




ε d1,n+1 · · · d1,m

. . .
...

...
ε dn,n+1 · · · dn,m


 and ε is regular of

degrees for some integers≤ nd. Clearly, the(n+ i)-th element ofu(i) is ε . Moreover,ε and all thedi j are in
Z[x] with degrees≤ nd

In the systemFy= 0, let
fi j = fi j0+ · · ·+ fi jdxd,

y j = y j0+ · · ·+y j,nd−1xnd−1

for 1≤ i ≤ n, 1 ≤ j ≤ m, where fi jk ∈ Z(p) andy jk are the new unknowns in̂Z(p)〈x〉. The i-th equation in
Fy= 0 may then be written as

k

∑
l=0

m

∑
j=1

fi jl y j,k−l = 0, 0≤ k< (n+1)d,

where we putfi jl = 0 for l > d and y jl = 0 for l ≥ nd. Then we obtain a new systemF ′y′ = 0, where

F ′ ∈ Z
(nd(n+1))×(mnd)
(p) , y′ = [y10, . . . ,y1,nd−1, . . . ,ym0, . . . ,ym,nd−1]

τ , whose solutions in̂Z(p) are one to one cor-

respondence with the solutions ofFy = 0 in Ẑ(p)[x] of degrees< nd. We have a set of finite generators for

F ′y′ = 0, thus we have finitely many solutionsy(1), . . . ,y(M
′) ∈ Z(p)[x]

m of Fy= 0 such that each solution to

Fy= 0 of degree< nd is aẐ(p) linear combination ofy(1), . . . ,y(M
′).

We claim thatu(1), . . . ,u(m−n),y(1), . . . ,y(M
′) generate thêZ(p)〈x〉-module Sol̂Z(p)〈x〉(F). So Sol̂Z(p)〈x〉(F)

can be generated by elements inZ(p)[x]
m of degrees≤ nd.

Now we prove the claim. Letw= [w1, . . . ,wm]
τ ∈ Ẑ(p)〈x〉m be any solution toFy= 0. Sinceε is regular

of degrees for some integers≤ nd, by Theorem 3.10, there existsQn+1, . . . ,Qm∈ Ẑ(p)〈x〉 andRn+1, . . . ,Rm∈
Ẑ(p)[x] whose degrees are less thanssuch thatRj =w j −Q jε for j = n+1, . . . ,m. Letz=w−Qn+1u(1)−·· ·−
Qmu(m−n) = [h1, . . . ,hn,Rn+1, . . . ,Rm], which is obvious a solution toBy= 0. So we haveεhi =−di,n+1Rn+1−
·· ·−di,mRm for i = 1, . . . ,n. Sinceε ,di j are inẐ(p)[x] with degrees≤ nd andRj ∈ Ẑ(p)[x] are of degrees< s, we

have deg(hi)< nd for i = 1, . . . ,n. Hence deg(z)< nd, therefore it can be expressed as theẐ(p)[x] combination
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of y(1), . . . ,y(M
′). Now it is clear thatw is theẐ(p)[x] combination ofu(1), . . . ,u(m−n),y(1), , . . . ,y(M

′). Hence

Sol̂
Z(p)〈x〉(F) as aẐ(p)〈x〉-module can be generated byu(1), . . . ,u(m−n),y(1), , . . . ,y(M

′).

In the proof of Lemma 3.11, if we choose△ to be anyn×n-submatrix ofF whose determinant is nonzero,
let µ = 0 and do the computations inQ[x], we can easily give the following lemma:

Lemma 3.12. SolQ[x](F) can be generated by elements inZ[x]m of degrees≤ nd.

Now we describe Corollary 2.7 of [1] in our notations:

Lemma 3.13( [1]). Let F be an n×m matrix overZ(p)[x]. If y(1), . . . ,y(L) ∈Z(p)[x]
m generate theQ[x]-module

SolQ[x](F) and z(1), . . . ,z(M) ∈ Z(p)[x]
m generate thêZ(p)〈x〉-moduleSol̂

Z(p)〈x〉(F). Then

y(1), . . . ,y(L),z(1), . . . ,z(M)

generate theZ(p)[x]-moduleSolZ(p)[x](F).

By Lemma 3.11, 3.12 and 3.13, we have the following corollary:

Corollary 3.14. SolZ(p)[x](F) can be generated by elements inZ[x]m of degrees≤ nd.

We describe Lemma 4.2 of [1] in our notations as follows:

Lemma 3.15. Let M be aZ[x]-submodule ofZ[x]m. For each maximal ideal(p) of Z, let u(1)p , . . . ,u
(Kp)
p ∈ M

generate theZ(p)[x]-submodule MZ(p)[x] of Z(p)[x]
m. Then u(1)p , . . . ,u

(Kp)
p , where(p) ranges over all maximal

ideals ofZ, generate theZ[x]-module M.

We now give a degree bound for the solutions of linear equations overZ[x].

Corollary 3.16. Let F= ( fi j ) ∈ Z[x]n×m and d= deg(F). ThenSolZ[x](F) can be generated by a finite set of
elements whose degrees are≤ nd.

Proof. By Corollary 3.14 and Lemma 3.15, we can easily know that SolZ[x](F) can be generated by elements
whose degrees are≤ nd. Since SolZ[x](F) ⊂ Z[x]m andZ[x]m is Noetherian, the set of generators must be
finite.

Remark 3.17. In Lemma 3.11, 3.12 and Corollary 3.14, 3.16, if F is of rank r,then the generators can be
bounded by rd.

In the rest of this section, we give height bounds for SolZ[x](F). By Lemma 5.1 and Remarks of Corollary
1.5 in [1], we have the following result.

Lemma 3.18( [1]). Let A∈ Zn×m, r = rank(A). ThenSolZ(A) can be generated by m− r many vectors whose
heights are bounded by2r(h+ logr +1), where h= height(A).

Let F ∈ Z[x]n×m, d = deg(F) andF is of full rank. Then, we have the following theorem:

Theorem 3.19. SolZ[x](F) can be generated by vectors whose degrees are bounded by nd and heights are
bounded by2(n(n+1)d+n)(h+ log(n(n+1)d+n)+1), where h= height(F).
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Proof. By the Corollary 3.16, SolZ[x](F) can be generated by elements of degrees≤ nd. Let [y1, . . . ,ym]
τ ∈

SolZ[x](F). Assumefi j = ai j0+ai j1x+ · · ·+ai jd xd, y j = y j0+y j1x+ · · ·+y j,ndxnd, whereai jk ∈ Z, y jk are the
unknowns ranging overZ. Then,Fy= 0 can be written as the following matrix equation




A1
...

An


y′ = 0, (11)

wherey′ = [y10, . . . ,y1d, . . . ,ym0, . . . ,ymd]
τ , Ai = [Ai1, . . . ,Aim]((n+1)d+1)×(m(nd+1)), and

Ai j =




ai j0

ai j1 ai j0
...

. . .

ai jd ai j0

. . .
...

ai jd




((n+1)d+1)×(nd+1)

for i = 1, . . . ,n. So




A1
...

An


 ∈ Z(n(n+1)d+n)×(m(nd+1)). By Lemma 3.18, we have the equation system (11) can

be generated by vectors whose heights are bounded by 2(n(n+1)d+n)(h+ log(n(n+1)d+n)+1), where
h= height(F).

Remark 3.20. In [1], Aschenbrenner gave the following degree bound and height bound for the generators of
the solutions to the equations Ay= 0, where A is a polynomial matrix over D= Z[x1, . . . ,xN] and A∈ Dn×m.
Let A∈ Dn×m. ThenSolD(A) as a D module has a set of generators with degree at most(2nd)2((N+1)N−1)

and height at most C2(2n(d+ 1))(N+1)O(N)
(h+ 1). Here C2 is a constant only depending on A, d= deg(A),

h= height(A). Setting N= 1 in these bounds, we obtain the degree and height bounds(2nd)2 and C2(2n(d+

1))2O(1)
(h+1), respectively, where d= deg(A), h= height(A). Our results are much better than that of [1] in

Z[x] case.

Let F ∈ Z[x]n×m, b∈ Z[x]m. We denote deg(F,b) = max(deg(F),deg(b)), height(F,b) = max(height(F),
height(b)). Based on the proof of Theorem 6.5 in [1], we have the followingdegree bound:

Theorem 3.21. Let F ∈ Z[x]n×m, b∈ Z[x]n, d = deg(F,b), and h= height(F,b). If the system Fy= b has a
solution inZ[x]m, then it has such a solution of degree≤ 3n2d2(h2+ log(nd+1))+nd, where h2 = 2(n(n+
1)d+n)(h+ log(n(n+1)d+n)+1).

Proof. By Theorem 3.19, there exist generatorsz(1), . . . ,z(K) for theZ[x]-module of solutions to the system of

(F,−b)z= 0, wherez(k) = [z(k)1 , . . . ,z(k)m+1]
τ is a vector ofm+1 unknowns, with

deg(z(k))≤ nd,

height(z(k))≤ 2(n(n+1)d+n)(h+ log(n(n+1)d+n)+1) = h2.

for all k = 1, . . . ,K. For eachk, let z(k)m+1 ∈ Z[x] be the last component ofz(k). Clearly,Fy= b is solvable in

Z[x] if and only if 1∈ (z(1)m+1, . . . ,z
(K)
m+1). Moreover, ifh1, . . . ,hK are elements ofZ[x] such that 1= h1z(1)m+1+

· · ·+hKz(K)
m+1, then[y,1]τ = h1z(1)+ · · ·+hKz(K) is a solution toFy= b. By Lemma 3.9, we have

deg(hk)≤ 3n2d2(2h2+ log(nd+1)),

whereh2 = 2(n(n+1)d+n)(h+ log(n(n+1)d+n)+1). It follows that deg(y)≤ 3n2d2(2h2+ log(nd+1))+
nd.
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Remark 3.22. By Theorem 6.5 of [1], if the system Fy= b has a solution inZ[x1, . . . ,xN], where F∈
Z[x1, . . . ,xN]

n×m, then it has such a solution of degree at most2(2ndeg(F,b))(N+1)O(N) · (height(F,b) + 1).
If we specialize N to 1 in these bounds, we obtain O((nd)2O(1)

h). While our degree bound in Theorem 3.21 is
equivalent to O(n4d3h).

3.3 Degree and height bounds for GHNF

In this section, we will give degree and height bounds for GHNF in Z[x]n.

In the whole section, we assumeF ∈ Z[x]n×m, d = deg(F), h= height(F), andF is of full rank. Denote
by deg(cr i ,li ) and height(cr i ,1) the degree and the height of ther i-row of the GHNFC in (4) respectively.
Note that, max1≤ j≤li deg(cr i , j) = deg(cr i ,li ), and by Proposition 2.4, max1≤ j≤li height(cr i , j) = height(cr i ,1) for
eachi. The degree of the GHNFC can be defined as maxi deg(cr i ,li ) and the height of it is defined to be
maxi height(cr i ,1).

We first give the degree bound of the GHNF . The following theorem gives the degree bound for the
GHNF of F.

Theorem 3.23. Let F = ( fi j ) ∈ Z[x]n×m with d = deg(F), andC , as described in (4), be theGHNFof F.
Thendeg(cr i ,li )≤ (n− r i +1)d for 1≤ i ≤ t.

Proof. It is obvious that deg(cr i , j)≤ deg(cr i ,li ) for anyi = 1, . . . , t, j = 1, . . . , l i . It suffices to prove the theorem
for r1 = 1, in which case we should prove deg(c1,l1)≤ nd.

For any[a,0, · · · ,0]τ ∈ (F), which is theZ[x] lattice generated by the columns ofF , there existu1, . . . ,um∈
Z[x] such that 




a= u1 f11+ · · ·+un f1,m
0= u1 f21+ · · ·+un f2,m
· · ·

0= u1 fn1+ · · ·+un fn,m.

(12)

Then,[u1, . . . ,um]
τ is a solution to SolZ[x](Fn−1), whereFn−1 is the matrix formed by the lastn− 1 rows of

F. By Corollary 3.16, SolZ[x](Fn−1) can be generated by elements of degrees≤ (n−1)d, say{v(1), . . . ,v(s)}.
Then,[u1, . . . ,um]

τ is aZ[x] linear combination of{v(1), . . . ,v(s)} ⊆ Z[x]m. Hence[a,0, . . . ,0]τ is aZ[x] linear
combination of{Fv(1), . . . ,Fv(s)}. Since deg(Fv(k))≤ nd andFv(k) has the form[b,0, . . . ,0]τ for any 1≤ k≤
s, by Lemma 3.6, we have deg([c1,l1 ,0, . . . ,0]

τ )≤ nd, i.e. deg(c1,l1)≤ nd.

Remark 3.24. Note that, since the last n− r i +1 rows of F have rank t− i +1, by the above proof, we can
easily see,deg(cr i ,li )≤ (t − i +1)d for 1≤ i ≤ t.

Now we can give the height bounds for the GHNF ofF.

Theorem 3.25. Let C be theGHNFof F, as described in (4). Thenheight(cr i , j) ≤ 6(n− r i +1)3d2(h+1+
log((n− r i +1)2d)) for any i= 1, . . . , t, j = 1, . . . , l i .

Proof. It is obvious that height(cr i , j) ≤ height(cr i ,1) for any i = 1, . . . , t, j = 1, . . . , l i . Following the proof
of Theorem 3.23, we need only to prove the theorem forr1 = 1, in which case height(c11) ≤ 6n3d2(h+1+
log(n2d)).

We know that[a,0, . . . ,0]τ ∈ (F) can be generated by{Fv(1), . . . ,Fv(s)}, where deg(v( j))≤ (n−1)d and

height(v( j))≤ h(1)1 whereh(1)1 = 2(n(n−1)d+(n−1))(h+ log(n(n−1)d+(n−1))+1). Hence deg(Fv( j))≤
nd and height(Fv( j)) ≤ h+ h(1)1 . Let (Fv( j))′ = Fv( j)/gcd(Fv(1), . . . ,Fv(s)). By Lemma 3.4 and Remark
3.5, we have height(gcd(Fv(1), . . . ,Fv(s))) and height((Fv( j))′) for j = 1, . . . ,s are both≤ 1

2 log(nd+ 1)+
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ndlog2+h+h(1)1 . Moreover, the first elementr of the GHNF of{(Fv(1))′, . . . ,(Fv(s))′} is in Z, by Lemma

3.2, we have height(r)≤ nd(2h+2h(1)1 +2log(nd+1)+2ndlog2). Then, we can easily get

height(c11)≤ nd(2h+2h(1)1 +2log(nd+1)+2ndlog2)+
1
2

log(nd+1)+ndlog2+h+h(1)1

= (2nd+1)(h+h(1)1 )+ (2nd+
1
2
) log(nd+1)+nd(2nd+1) log2

≤ (2nd+1)(h+2(nd+1)(n−1)(h+ log(n−1)(nd+1)+1)+ log(nd+1)+nd)

≤ 2n(2nd+1)(nd+1)(h+ log(n−1)(nd+1)+1)

≤ 6n3d2(h+1+ log(n2d)) for anyn≥ 4, d ≥ 1. (13)

It easily to verify height(c11)≤ 6n3d2(h+1+ log(n2d)) is also valid forn= 1,2,3 andd ≥ 1.

Remark 3.26. Note that, since the last n− r i +1 rows of F have rank t− i +1, by the above proof, we have
height(cr i ,1)≤ 6(t − i +1)3d2(h+1+ log((t − i +1)2d)) where h= height(F).

Combining Theorems 3.21, 3.23, and 3.25, we have the following degree bound for the transformation
matrixU , which satisfyingC = FU :

Theorem 3.27. Let F ∈ Z[x]n×m and C its GHNF. U ∈ Z[x]m×s is the transformation matrix satisfying
C = FU. Then,deg(U)≤ D, where D= 73n8d5(h+1+ log(n2d)).

Proof. By Theorems 3.23 and 3.25, we have deg(cr i , j) ≤ (n− r i + 1)d, height(cr i , j) ≤ 6(n− r i + 1)3d2(h+
1+ log((n− r i +1)2d)) for any i = 1, . . . , t, j = 1, . . . , l i . Denote byUr i , j the column vector ofU , satisfying
FUr i , j = [∗, . . . ,∗,cr i , j ,0, . . . ,0]

τ . ThenUr i , j is determined byFn−r i+1Ur i , j = [cr i , j ,0, . . . ,0]
τ , whereFn−r i+1

is the lastn− r i + 1 rows ofF. In Theorem 3.21, let deg(F,b) = maxi, j deg(F,cr i , j) ≤ nd, height(F,b) =
maxi, j height(F,cr i , j) ≤ 6n3d2(h+ 1+ log(n2d)). Then we have deg(U) ≤ 3n2d2(h2 + log(nd+ 1)) + nd,
whereh2 = 2(n(n+1)deg(F,b)+n)(height(F,b)+ log(n(n+1)deg(F,b)+n)+1). First, we have the fol-
lowing inequality:

h2 = 2(n(n+1)deg(F,b)+n)(height(F,b)+ log(n(n+1)deg(F,b)+n)+1)

≤ 2(n2(n+1)d+n)(6n3d2(h+1+ log(n2d))+ log(n2(n+1)d+n)+1)

≤ 24n6d3(h+1+ logn2d) for anyn≥ 2. (14)

One can verify that the above inequality is still valid forn= 1, in which case deg(F,b)≤ d and height(F,b)≤
d(2h+ log(d+1))+ 1

2 log(d+1)+d logd+h. So we have

deg(U)≤ 3n2d2h2+3n2d2 log(nd+1)+nd

≤ 73n8d5(h+1+ logn2d). (15)

We give an example to illustrate the main idea of the proof.

Example 3.28. Let F =

(
1 x

6x3+1 8x2

)
. Let h= 3log2= 3 be the height of F, where we choose the

logarithm with2 as a base.

If a = [a1,a2]
τ with a2 6= 0 as a column vector of G, then a2 is an element of theGHNFof [6x3+1,8x2].

Thus,deg(a2)≤ max(deg(6x3+1),deg(8x2)) = 3 and by Lemma 3.4,height(a2)≤ 4log2+h= 7.

If b = [b1,0]τ with b1 6= 0 is a column of G, there exists a U= [u1,u2]
τ ∈ Z[x]2 satisfying
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b= FU, i.e.

{
b1 = u1+xu2

0= (6x3+1)u1+8x2u2

Letg1, . . . ,gs be the generators of the solutions to0= (6x3+1)u1+8x2u2. By Theorem 3.19,deg(gi)≤ 3 and
height(gi) ≤ 14(h+ log7+1). Thus, b1 is an element of theGHNFof [1,x] · [g1, . . . ,gs] = [h1, . . . ,hs], where
deg(hi) ≤ 4, andheight(hi) ≤ 28(h+ log7+ 1) < 196. Hence, by Theorem 3.23,deg(d1) ≤ 4, by Theorem
3.25,height(d1) ≤ 432(h+1+ log12) < 3456. Moreover, by Theorem 3.27, we know that the degree bound
for the transformation matrix is D= 4478976(h+1+ log 12)< 35831808.

Actually, the solution to0= (6x3 +1)u1+8x2u2 can be generated by[8x2,−(6x3 +1)]τ . Thus, b1 is an
element of theGHNFof [1,x] · [8x2,−(6x3+1)]τ = [−6x4+8x2−x]. The GHNF

G=

(
6x4−8x2+x 3x8−4x6+5x5−6x3+1

0 1

)
,

with transformation matrix U=

(
−8x2 −4x6−6x3+1

6x3+1 3x7+5x4

)
.

From the above example, we can see that, although the degree bound in Theorem 3.27 is polynomial, it is
far from optimal.

4 GHNF Algorithm in matrix form

There exist efficient algorithms to compute the HNF of a matrix overZ [4]. The main idea of our algorithm
is to convert the computation of GHNF forZ[x] lattice into the computation of HNF overZ. In [10], Faugère
gave the famous F4 algorithm which converts the computationof Gröbner bases of polynomial systems to
matrix computation of their coefficients. The F4 algorithm computes successive truncated Gröbner bases
and it replaces the classical successive reduction in Buchberger algorithm by the Gauss elimination of the
coefficient matrix. Our algorithm could be considered as aZ[x]-lattice variant of the F4 algorithm, which is
specifically designed so that its complexity can be estimated.

Complexity cost: In this section, we measure the cost of our algorithms in number of bit operations. To
this end, we assign a functionM(k) :N 7→R≥0, which shows that the cost of basic operations of multiplications
and quotients of two integersa andb with |a|, |b| < 2k, can be computed inO(M(k)) bit operations. The
currently fastest algorithms allowsM(k) = k logk log logk. In the sequel we will give complexity results
in terms of the functionB(k) = M(k) logk = O(k(logk)2(log logk)). We use a parameterθ such that the
multiplication of twon×n integer matrices needsO(nθ ) basic operations. The currently best known upper
bound forθ is about 2.376.

4.1 HNF-based algorithm-theZ[x] case

Given a polynomial set{ f1, . . . , fm} ⊆ Z[x], with di = deg( fi), d = max1≤i≤mdi . F = [ f1, . . . , fm] is its corre-
sponding polynomial vector. Denote bym= #(F) the number of elements inF. H ∈Z(d+1)×m is called theco-
efficient matrixof F if its columns represent the polynomials inF satisfyingXH = F, whereX = [1,x, . . . ,xd].
Let H1 be the Hermite normal form ofH andF ′ = XH1 be the polynomial vector corresponding toH1. We
call F ′ the polynomial Hermite normal form(PHNF) of F. For simplicity, we denote byH = M(F) and
F ′ = PHNF(F). Here we should notice that ifH1 has zero columns,F ′ will contain zero elements. By the
action of PHNF, we omit all the zero elements.

For any polynomial vectorF = [ f1, . . . , fm], we also denoteLC(F) = [LC( f1), . . . ,LC( fm)], LC t(F) =
LC([ fi |deg( fi) = t]), wheret ranges over the degrees ofF .
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Example 4.1. F = [x2+3x+3,x3+5x2+4x+3]. The coefficient matrix of F is H= M(F) =




3 3
3 4
1 5
0 1


.

Moreover, H1 =




3 3
3 4
1 5
0 1


 is the Hermite normal form of H, so F1 = XH1 = [x2+3x+3,x3+5x2+4x+

3] = PHNF(F). LC(F1) = [1,1], LC2(F1) = 1, LC3(F1) = 1.

In the following of this subsection, we always assume the polynomials vector to be ranked in the increasing
orderw.r.t.≺ and for the input polynomial vector setF = [ f1, . . . , fm], fi ∈Z[x], we always denotedi = deg( fi)
for i = 1, . . . ,m.

Inspired by Chapter 3, we increase the total degree by 1 in each loop of our Algorithm GHNF1.

Algorithm 1 GHNF1(F)

Input: F = [ f1, . . . , fm], fi ∈ Z[x].
Output: G= [g1, . . . ,gs], the GHNF ofF.

1: Let G1 = PHNF(F) = [g1, . . . ,gt ].
2: (loop) F1 = [G1,xg1, . . . ,xgt−1], G2 = PHNF(F1).

While G1 andG2 do not satisfy theTermination condition T given below, letG1 = G2 = [g1, . . . ,gt ], re-
peat Step 2; otherwise, we get a polynomial vectorG1 = [g1, . . . ,gt ] and the condition numberi satisfying
Termination condition T , go to Step 3.

3: Let G= [g1].
For j from 2 to i, if LC(g j−1) ∤ LC(g j), G= G∪{g j}.

4: ReturnG.

Termination condition T : For two polynomial vectorsG= [g1, . . . ,gt ], H = [h1, . . . ,hs],

1. s= t;

2. let i be the largest integer such thatLC(g j) = LC(h j), j = 1, . . . , i, andLC(gi+1) 6= LC(hi+1), then
eitheri = t or LC(gk) = LC(hk+1) for k= i, . . . , t −1.

We call thei in the above conditioncondition number.

Now, we give two examples to illustrate our algorithm.

Example 4.2. F = [6x3+3x2+12,6x3+3x2+6x,6x3+15x2,6x3+3x2].

1-th loop: G1 = PHNF(F) = [12,6x,12x2,6x3+3x2],
F1 = [G1,12x,6x2,12x3],
G2 = PHNF(F1) = [12,6x,6x2,6x3+3x2].
G1 and G2 do not satisfy theTermination condition T .

2-th loop: G1 = G2,
F1 = [G1,12x,6x2,6x3],
G2 = PHNF(F1) = [12,6x,3x2,6x3];
G1 and G2 do not satisfy theTermination condition T .

3-th loop: G1 = G2,
F1 = [G1,12x,6x2,3x3],
G2 = PHNF(F1) = [12,6x,3x2,3x3];
G1 and G2 do not satisfy theTermination condition T .
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4-th loop: G1 = G2,
F1 = [G1,12x,6x2,3x3],
G2 = PHNF(F1) = [12,6x,3x2,3x3];
G1 and G2 satisfy theTermination condition T .

5-th loop: G= [12,6x,3x2] is the GHNFof F.

Example 4.3. F = [30x2+10,30x2+20x,30x2].

1-th loop: G1 = PHNF(F) = [10,20x,30x2],
F1 = [G1,10x,20x2],
G2 = PHNF(F1) = [10,10x,10x2],
G1 and G2 do not satisfy theTermination condition T .

2-th loop: G1 = G2,
F1 = [G1,10x,10x2],
G2 = PHNF(F1) = [10,10x,10x2],
G1 and G2 satisfy theTermination condition T .

3-th loop: G= [10] is the GHNFof F.

We now show the correctness of the Algorithm GHNF1. Firstly, we give the following lemma:

Lemma 4.4. For any two polynomial vectors F and G, and any polynomial f∈ SpanZ(F), we have

LCdeg( f )(PHNF(F))|LC( f ).

Moreover,

1) if SpanZ(F) ⊆ SpanZ(G), thenLC t(PHNF(G))|LC t(PHNF(F)), where t ranges over the degrees of
PHNF(F);

2) if SpanZ(F)⊆ SpanZ(G) andLC(PHNF(F)) = LC(PHNF(G)), thenPHNF(F) = PHNF(G);

3) if SpanZ(F) = SpanZ(G), thenPHNF(F) = PHNF(G).

Proof. By the property of PHNF, we know thatf can be written as theZ linear combination of the elements
in PHNF(F), each of whom has different degree. SoLCdeg( f )(PHNF(F))|LC( f ).

1) For any f ∈ PHNF(F), f ∈ SpanZ(F) ⊆ SpanZ(G). SoLCdeg( f )(PHNF(G))|LC( f ). Hence, we have
LC t(PHNF(G))|LC t(PHNF(F)) for t ranging over the degrees of PHNF(F).

2) Let PHNF(F) = [ f1, . . . , ft ], PHNF(G) = [g1, . . . ,gs]. SinceLC(PHNF(F)) = LC(PHNF(G)), we
haves= t and deg( fi) = deg(gi) for 1 ≤ i ≤ t. Otherwise, since deg( f1) < · · · < deg( ft) and deg(g1) <
.. . < deg(gt), there must be an integerk : 1 ≤ k ≤ t, such that deg( fk) 6= deg(g j) for any 1≤ j ≤ t. But,
fk /∈SpanZ(PHNF(G))=SpanZ(G), which is contrary to the condition of 2). SoLT ( fi)= LT (gi) for 1≤ i ≤ t.
Supposek is the smallest integer, such thatgk 6= fk, thengk− fk ∈ SpanZ(g1, . . . ,gk−1) = SpanZ( f1, . . . , fk−1).
Let gk = fk +∑k−1

i=1 ui fi for some integersu1, . . . ,uk−1. If there existsui 6= 0, 1 ≤ i ≤ k− 1, thengk is not
reducedw.r.t. gi = fi . But by the property of the Hermite normal form for the integer matrix, gk is reduced
w.r.t. gi for 1≤ i ≤ k−1, hencegk = fk. By induction, we havegi = fi for 1≤ i ≤ t.

3) By 1), we haveLC(PHNF(F)) = LC(PHNF(G)). By 2), PHNF(F) = PHNF(G).

In the Algorithm GHNF1, let G(1) = [gk1, . . . ,gd] be the polynomial vectorG1 obtained by Step 1 of the
Algorithm GHNF1, where deg(g j) = j for k1 ≤ j ≤ d. We can explain the Step 2(loop) in the following chart:

loop: G(1)
add[xgk1

,...,xgd−1]
// F(1) PHNF

// G(2)
add[xhk2

,...,xhd−1]
// F (2) PHNF

// G(3)
// · · · (16)
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whereF(1) = [gk1, . . . ,gd,xgk1, . . . ,xgd−1], G(2) = [hk2, . . . ,hd], F(2) = [hk2, . . . ,hd,xhk2, . . . ,xhd−1].

The original idea of this algorithm is to lift the degrees oneby one,i.e. let Fi = [Fi−1,xiF], whereF0 = F.
This process is equivalent to substitute the Step 2 of the Algorithm GHNF1 with the following chart:

loop′ : G(1)
add[xgk1

,...,xgd−1,xgd]
// F(1)′ PHNF

// G(2)′
add[xh′k2

,...,xh′d,xh′d+1]
// F(2)′ PHNF

// G(3)′
// · · ·

whereF(1)′ = [gk1, . . . ,gd,xgk1 , . . . ,xgd], G(2)′ = [h′k2
, . . . ,h′d,h

′
d+1], F(2)′ = [h′k2

, . . . ,h′d+1,xh′k2
, . . . ,xh′d+1].

Now, we show that the above two processes are equivalent whenwe compute the GHNF forZ[x] case.

Lemma 4.5. Let G(i)′ = [gki , . . . ,gd+i ] and F(i)
′
= [gki , . . . ,gd+i ,xgki , . . . ,xgd+i ], where ki ≤ d anddeg(g j) =

j, ki ≤ j ≤ d+ i. Then,LC(gd)|LC(gd+1)| · · · |LC(gd+i) and for any f∈ SpanZ(F
(i)′), if deg( f )≤ k, d≤ k≤

d+ i +1, then, f∈ SpanZ(gki , . . . ,gd,xgki , . . . ,xgd−1,xgd, . . . ,xgk−1). That is, the above two processes, loop
and loop′, are equivalent for computing theGHNF.

Proof. Wheni = 1, we haveG(1) = [gk1, . . . ,gd], F(1)′ = [gk1, . . . ,gd,xgk1 , . . . ,xgd]. Then,k= d and the lemma
is valid.

Suppose it is valid fori = 1, . . . ,s.

Wheni = s+1, in order to distinguishG(s)′ andG(s+1)′, let G(s)′ = [gks, . . . ,gd+s] andG(s+1)′ = [hks+1, . . . ,

hd+s+1]. Then,F(s)′ = [gks, . . . ,gd+s,xgks, . . . ,xgd+s], F(s+1)′ = [hks+1, . . . ,hd+s+1,xhks+1, . . . ,xhd+s+1]. We need
to show thatLC(hd)|LC(hd+1)| · · · |LC(hd+s+1), and ford≤ k≤ d+s+2, if f ∈SpanZ(F

(s+1)′) and deg( f )≤
k, we havef ∈ SpanZ(hks+1, . . . ,hd,xhks+1, . . . ,xhd−1,xhd, . . . ,xhk−1).

By induction, we have ford+ 1 ≤ p ≤ d+ s+ 1, hp = xgp−1 + lp,hp+1 = xgp + lp+1 for some lp ∈
SpanZ(gks, . . . ,gd,xgks, . . . ,xgd−1,xgd, . . . ,xgp−2)⊆SpanZ(hks+1, . . . ,hp−1) andlp+1 ∈SpanZ(gks, . . . ,gd,xgks,
. . . ,xgd−1, xgd, . . . ,xgp−1) ⊆ SpanZ(hks+1, . . . ,hp). Hence,LC(hd+1)| · · · |LC(hd+s+1). Moreover, by induc-
tion we havehd ∈ SpanZ(gks, . . . ,gd,xgks, . . . ,xgd−1), andLC(hd)|LC(gd) = LC(hd+1) follows.

Let f = ∑q
p=ks+1

cphp +∑r
p=ks+1

dpxhp wherecp,dp ∈ Z. If q ≤ d, then r ≤ k− 1, we are done. Oth-
erwise, we rewrite the expression off . SinceLC(hd)|LC(hd+1)| · · · |LC(hd+s+1), we havehq − axhq−1 =

x(gq−1 − axgq−2) + lq − axlq−1 where a =
LC(hq)

LC(hq−1)
. Then deg(gq−1 − axgq−2) ≤ q− 2, we havegq−1 −

axgq−2 ∈ SpanZ(hks+1, . . . ,hq−2). Hence,hq ∈ SpanZ(hks+1, . . . ,hq−1,xhks+1, . . . ,xhq−2,xhq−1), that is, hq =

∑q−1
p=ks+1

aphp + ∑q−1
p=ks+1

bpxhp for someap,bp ∈ Z. Rewrite the expression off by the above equation,

we have f = ∑q−1
p=ks+1

c′php +∑r ′
p=ks+1

d′
pxhp for somec′p,d

′
p ∈ Z. Inductively, we havef = ∑d

p=ks+1
c′′php +

∑r ′′
p=ks+1

d′′
pxhp for somec′′p,d

′′
p ∈ Z. Since deg( f )≤ k, we haver ′′ ≤ k−1, f ∈ SpanZ(hks+1, . . . ,hd, xhks+1, . . . ,

xhd−1,xhd, . . . ,xhk−1).

Moreover, SpanZ(F
(s+1)′)=SpanZ(hks+1, . . . ,hd,xhks+1, . . . ,xhd−1,xhd, . . . ,xhd+s+1), that is, loop and loop′

are equivalent for computing the GHNF .

Remark 4.6. By the way we construct F1 in Step 2 of AlgorithmGHNF1, we know the maximal degree of
G1 and G2 are always d. Then#(G2) = #(G1) must be satisfied in some loop. In this case,mindeg(G1) =
mindeg(G2), M(G1) and M(G2) are upper triangulares with forms:




∗ · · · ∗
... · · · ∗
∗ · · · ∗
a1 · · · ∗

. . .
...
at




(d+1)×t

and




∗ · · · ∗
... · · · ∗
∗ · · · ∗
c1 · · · ∗

. . .
...
ct




(d+1)×t

,
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where t= #(G1) ≤ d+1 and aj ,c j 6= 0 for 1≤ j ≤ t. Note that in each loop, M(F1) is of size(d+1)×s for
some integer s≤ 2d+1, anddeg(g j) = deg(g j−1)+1,2≤ j ≤ t.

To show the correctness and the termination of this algorithm, we need only to consider the case thatG1

andG2 in the Step 2 of Algorithm GHNF1 has satisfied the condition 1 of theTermination condition T , i.e.
#(G2) = #(G1). In the following, we assume thatG1 = [g1, . . . ,gt ] with LC(G1) = [a1, . . . ,at ], G2 = [h1, . . . ,ht ]
with LC(G2) = [b1, . . . ,bt ]. Here, deg(g1) = deg(h1) = d− t +1.

Lemma 4.7. For the above G1 and G2, if there exists i: 1≤ i ≤ t satisfying aj = b j for 1≤ j ≤ i, then

1) ai |ai−1| · · · |a1;

2) gj = h j for 1≤ j ≤ i and xkgl ∈ SpanZ(g1, . . . ,gl+k) for any positive integers l,k: l +k≤ i;

3) {g1, . . . ,gi} is a Gröbner basis for theZ[x] lattice (g1, . . . ,gi).

Proof. 1) Sincexgl ∈ SpanZ(h1, . . . ,hl ,hl+1), by Lemma 4.4 we havebl+1 = LC(hl+1)|LC(xgl ) = al for
1≤ l ≤ t −1. Hence,a j = b j |a j−1, 2≤ j ≤ i andai |ai−1| · · · |a1 follows. The first statement is proved.

2) Since SpanZ(g1, . . . ,gi)⊆ SpanZ(h1, . . . ,hi) anda j = b j for j : 1≤ j ≤ i, by 2) of the Lemma 4.4, we
haveg j = h j for 1≤ j ≤ i.

For any positive integersl ,k: l +k≤ i

xgl ∈ SpanZ(h1, . . . ,hl+1) = SpanZ(g1, . . . ,gl+1)

x2gl ∈ SpanZ(xg1, . . . ,xgl+1)⊆ SpanZ(h1, . . . ,hl+2) = SpanZ(g1, . . . ,gl+2)

...

xkgl ∈ SpanZ(g1, . . . ,gl+k).

3) For any j, l : 1≤ j < l ≤ i, S(g j ,gl ) =
aj

al
gl −xl− jg j ∈ SpanZ(g1, . . . ,gl ). Considering that deg(g1)<

· · ·< deg(gl ), we can easily say thatS(g j ,gl ) can be reduced to 0 by{g1, . . . ,gl}.

Lemma 4.8. If G1 and G2 satisfy theTermination condition T , and i is the condition number, then

1) ai |ai+1| · · · |at ;

2) hk+1 ∈ SpanZ(g1, . . . ,gi ,xgi , . . . ,xgk−1,xgk) for i ≤ k≤ t −1

3) {g1, . . . ,gi} is a Gröbner basis for theZ[x] lattice (g1, . . . ,gt).

Proof. 1) Sincegl ∈ SpanZ(h1, . . . ,hl ), by Lemma 4.4 we havebl = LC(hl )|LC(gl ) = al for any l : 1≤ l ≤ t.
Fork : i ≤ k< t, ak = bk+1|ak+1. Hence we haveai |ai+1| · · · |at .

2) It is clear thathi+1 − xgi ∈ SpanZ(h1, . . . ,hi) = SpanZ(g1, . . . ,gi). So, hi+1 ∈ SpanZ(g1, . . . ,gi ,xgi).
Assumehl ∈ SpanZ(g1, . . . ,gi ,xgi , . . . ,xgl−1) for i + 1 ≤ l ≤ k < t. Sincehk+1 − xgk ∈ SpanZ(h1, . . . ,hk) ⊆
SpanZ(g1, . . . ,gi ,xgi , . . . ,xgk−1), we havehk+1 ∈ SpanZ(g1, . . . ,gi ,xgi , . . . ,xgk−1,xgk).

3) We only need to prove that fori +1≤ k< t, gk can be reduced to 0 by{g1, . . . ,gi}. For anyk : i +1≤
k< t, gk+1− ak+1

ak
xgk ∈ SpanZ(h1, . . . ,hk) = SpanZ(g1, . . . ,gi ,hi+1, . . . ,hk)⊆ SpanZ(g1, . . . ,gi ,xgi , . . . ,xgk−1).

Sogk+1 ∈ SpanZ(g1, . . . ,gi ,xgi , . . . ,xgk). It is obvious thatgk+1 can be reduced to 0 by{g1, . . . ,gk−1,gk}, i.e.
gk+1 can be reduced to 0 by{g1, . . . ,gi}. Now we can say that{g1, . . . ,gi} is a Gröbner basis for theZ[x]
lattice(g1, . . . ,gt).

As a direct consequence of Lemma 4.7 and 4.8, we have

19



Theorem 4.9. Algorithm GHNF1 is correct and terminated.

From the examples, we can see that theTermination condition T may not be achieved immediately when
we obtain the Gröbner basis ofF. The problem is that how many extra loops we need to do after weget the
Gröbner basis ofF.

If {g1, . . . ,gi} is already the Gröbner basis ofF for some 1≤ i ≤ t, we haveai |ai−1| · · · |a1 andb j = a j

for 1 ≤ j ≤ i. Moreover,bi+1 = ai sincebi+1|ai . So, after one loop, we haveai |ai−1| · · · |a1 andai+1 = ai .
After t − i loops, we haveai |ai−1| · · · |a1 andai = ai+1 = · · · = at . Until now, theTermination condition T
holds. This is to say, our algorithm may do at most extrat− i loops after we get the Gröbner basis ofF. Since
deg(gt)= d, we havet ≤ d+1. So we may do at most extrad loops after we get the Gröbner basis ofF. By the
analysis of Section 3, we can surely get the Gröbner basis after D1-th loop, whereD1 = 73d5(h+ logd+1).
Hence, theTermination condition T can be surely achieved ins-th loop, wheres≤ D1+d.

Corollary 4.10. The AlgorithmGHNF1 terminates in D1+d loops, where D1 = 73d5(h+ logd+1).

To estimate the complexity of algorithm GHNF1, we need the complexity of computing HNF, which is
given in the following theorem.

Theorem 4.11( [19]). Let A∈ Zn×m with rank r. Then the complexity to compute the HNF of H is O(mnrθ−2

(logβ )M(log logβ )/ log logβ +mnlogrB(logβ )), whereβ = (
√

r ‖ A ‖)r , ‖ A ‖ is the maximal absolute of
A.

Theorem 4.12.The worst case bit size complexity of AlgorithmGHNF1 is O(d7+θ+ε(h+d)1+ε(h+ logd)+
d7+ε(h+ logd)B(d2(h+d))), where h= height(F) andε > 0 is any sufficiently small number.

Proof. By Lemma 3.7, we know that the height bound for the GHNF ofF is (2d+1)(h+d log2+ log(d+
1)) := h1. In each loop, we need to compute the Hermite normal form of aninteger matrix with size
(d + 1)× s for somes ≤ 2d + 1. Let k = d + 1,n = 2d + 1, r = d + 1, then the logβ in Lemma 4.11
is logβ = r(1

2 logr + h1) = O(d2(h+ d)). To simplify the formula for the complexity bound, we replace
O(log2(s) log log(s) log log log(s)) by O(sε) for an sufficiently small numberε , sayε = 0.01. Hence, the
complexity for each loop is

O(knrθ−2(logβ )M(log logβ )/ log logβ +knlogrB(logβ ))
≤ O(d2+θ+ε(h+d)1+ε +d2+εB(d2(h+d))) for anyε > 0.

So the worst complexity of the Algorithm GHNF1 is (D1 + d)O(d2+θ+ε(h+ d)1+ε + d2+εB(d2(h+ d))) =
O(d7+θ+ε(h+d)1+ε(h+ logd)+d7+ε(h+ logd)B(d2(h+d))).

In Theorem 4.12, settingθ = 2.376 andε = 0.004 and noticing thatd7+ε(h+ logd)B(d2(h+d))) can be
omitted now comparing to the first term, we have

Corollary 4.13. The worst case bit size complexity of AlgorithmGHNF1 is O(d9.38(h+d)1.004(h+ logd)).

Remark 4.14. The number m in the input of AlgorithmGHNF1 is not in the complexity bound. The reason
is that the size of the polynomial vector F1 in Step 2 of the algorithm depends on d only. Only the complexity
of Step 1 depends on m and by Theorem 4.11, the complexity of this step is O∼(mdθ+1(h+ d)) which is
comparable to the complexity bound given in Theorem 4.12 only when m= O∼(d6). We therefore omit this
term.

Remark 4.15. In AlgorithmGHNF1, to avoid the extra loops, we can check for k: i +1≤ k≤ t, whether or
not gk can be reduced to 0 by{g1, . . . ,gi}, where i is the largest number such that aj = b j for 1≤ j ≤ i.
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Next, we show some properties of the syzygy modules of theZ[x] ideals. In the Algorithm GHNF1, for any

i ≥ 1, denote byG(i) = [g(i)1 , . . . ,g(i)vi ] andF(i) theG1 andF1 used in thei-th loop of the Algorithm GHNF1, re-

spectively. Herevi = #(G(i)), then #(F (i))= 2vi −1 := v′i . LetX(i)=




1 x
1 x

. . .

1 x
1




vi×(2vi−1)

,

thenF(i) = G(i)X(i). Since deg(g(i)1 )< · · ·< deg(g(i)vi ) = d, we have deg(F(i))≤ d. In particular, letF(0) = F.
For anyi ≥ 0, let M(i) be the coefficient matrix ofF(i) and [0,H(i)] = M(i)U (i) be the HNF ofM(i), where

U (i) = [U (i)
1 ,U (i)

2 ] satisfying0 = M(i)U (i)
1 , H(i) = M(i)U (i)

2 . Then,G(i+1) = PHNF(F(i)) = F (i)U (i)
2 . We can

express the loop in Algorithm GHNF1 in the following diagram, which is equivalent to (16): (Denote by
v′0 = m)

F(0) U (0)∈Zv′0×v′0

remove0
// G(1) X(1)∈Z[x]v1×v′1

// F(1) U (1)∈Zv′1×v′1

remove0
// G(2) X(2)∈Z[x]v2×v′2

// · · · (17)

For anyi ≥ 1, we define a function

ϕi : Z[x]v
′
i → Z[x]m

u 7→U (0)
2 X(1) · · ·U (i−1)

2 X(i)u.

In particular, letϕ0 : Z[x]m → Z[x]m be the identity map. Then, for anyi ≥ 0, we haveFϕi(U
(i)
1 ) = F(0)U (0)

2

X(1) · · ·U (i−1)
2 X(i)U (i)

1 = F(i)U (i)
1 = 0, so,ϕi(U

(i)
1 )⊆ Syz(F). Note thatFϕi(U

(i)
2 ) = G(i+1).

We want to see when can we find a set of generators for the syzygymoduleSyz(F). First, we have the
following lemma on theZ matrix:

Lemma 4.16. [4] Let A be an m× n matrix overZ, H = AU its column Hermite normal form with U∈
GLn(Z), and let r be such that the first r columns of H are equal to0. Then aZ-basis for the kernel of A is
given by the first r columns of U.

Based on this, we have the following lemma:

Lemma 4.17.For anyu∈Syz(F) anddeg(u)= k, we haveu∈SpanZ(
⋃k

i=0 ϕi(U
(i)
1 )) for any k> 0. Moreover,

{⋃d
i=0 ϕi(U

(i)
1 )} generates the syzygy moduleSyz(F).

Proof. By Lemma 3.19,Syz(F) can be generated by elements inZ[x]m with degrees≤ d. We only need to
show the first statement.

Clearly, we haveF(i) = FU (0)
2 X(1) · · ·U (i−1)

2 X(i) for any i > 0. In particular, letF(0) = F, u(0)′ = u.

By Lemma 4.16, the lemma is valid fork = 0. If deg(u) = k > 0, it suffices to show that, for any 0≤
i ≤ k, there existsu(i)′ ∈ Z[x]v

′
i with deg(u(i)′) ≤ k− i, such thatu = ϕi(u(i)′). In which case,F(i)u(i)′ =

FU (0)
2 X(1) · · ·U (i−1)

2 X(i)u(i)′ =Fu= 0. It is valid for i = 0. Suppose it is also valid for 1, . . . , i−1. Letu(i−1)′ ∈
Z[x]v

′
i−1 with deg(u(i−1)′)≤ k− i+1, such thatu= ϕi−1(u(i−1)′) andF(i−1)u(i−1)′ = 0. Letu(i) =U (i−1)

2 u(i−1)′,

thenG(i)u(i) = F(i−1)U (i−1)
2 u(i−1)′ = 0. Letu(i) = [u1, . . . ,uvi ]

τ , with deg(uvi )≤ k− i and deg(u j)≤ k− i +1
for 1≤ j < vi . Let

u1 = u1,0+ p1x,

...

uvi−1 = uvi−1,0+ pvi−1x,
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whereu j,0 ∈Z andp j ∈Z[x] and deg(p j)≤ deg(u j)−1≤ d− i for 1≤ j ≤ vi−1. Takeu(i)′ = [u1,0, p1, . . . ,uvi−1,0,
pvi−1,uvi ]

τ , then deg(u(i)′)≤ d− i andu(i) = X(i)u(i)′ . Clearly, we haveF(i)u(i)′ = G(i)X(i)u(i)′ = G(i)u(i) = 0.
This lemma is proved.

4.2 HNF-based algorithm-theZ[x]n case

In this subsection, the GHNFn algorithm will be given to compute the GHNFs for modules inZ[x]n.

Given a polynomial matrixF = ( fi j )n×m = [f1, . . . , fm] ∈ Z[x]n×m, denote bym= #(F) be the column
number ofF. Let vi = max1≤ j≤n(deg( fi j )),

X =




1 x . . . xv1

1 x . . . xv2

. . .

1 x . . . xvn




n×s

, (18)

wheres= ∑n
i=1(vi +1). Let F = XH, we call theH ∈ Zs×m the coefficient matrix ofF . Let H ′ be the Hermite

normal form ofH andF ′ = XH′. F ′ is called the PHNF ofF . Denote byH = M(F) andF ′ = PHNF(F).

Denote byF(·, i) the i-th column ofF , F(i, ·) the i-th row of F. Denote byf(t) the polynomial in thet-th
row of f for any polynomial vectorf.

Define the Algorithm Divide as follows:(H1, . . . ,Hn)=Divide(G), whereG = [g1, . . . ,gs], gt ∈ Z[x]n,
Ht = [gk1, . . . ,gkt ], where 1≤ k1 < · · ·< kt ≤ s, gk(t) 6= 0 andgk( j) = 0 for anyk= ki , j > t.

The main algorithm is as following:

Algorithm 2 GHNFn(F)

Input: F = [f1, . . . , fm], f i ∈ Z[x]n.
Output: G= [g1, . . . ,gs], the GHNF ofF.

1: G1 = PHNF(F), i = 0.
2: (loop) i = i +1;

(H1, . . . ,Hn) = Divide(G1), H j = [g j,kj ,g j,kj+1, . . . ,g j,sj ] with deg(g j,k( j)) = k for k j ≤ k≤ sj .
If (t −1)d < i ≤ td for some 1≤ t ≤ n, for j from 1 ton− t, let H j = [H j ,xHj ], for j from n− t to n, let
H j = [g j,kj , . . . ,g j,min(sj ,(n− j+1)d),xg j,kj , . . . ,xg j,min(sj ,(n− j+1)d)−1].
If i > nd, for j from 1 ton, let H j = [g j,kj , . . . ,g j,min(sj ,(n− j+1)d),xg j,kj , . . . ,xg j,min(sj ,(n− j+1)d)−1].
Let F1 = [H1, . . . ,Hn], G2 = PHNF(F1). While G1 andG2 do not satisfy theTermination condition T n

given below, letG1 = G2, repeat Step 2; otherwise, we obtain a polynomial matrixG1, (H1, . . . ,Hn) =
Divide(G1), and a condition number set[i1, . . . , in].

3: For t from 1 ton, let Ht = [g1, . . . ,gt ], Pt = [g1];
for j from 2 to it , if LC(g j−1(t)) ∤ LC(g j(t)), Pt = Pt ∪{g j}.

Let Pt = Pt
(P1,...,Pt−1).

4: G= [P1, . . . ,Pn].
5: ReturnG

Termination condition T n: For polynomial matricesF andG, let(H1, . . . ,Hn)=Divide(F), (P1, . . . ,Pn)=
Divide(G), for any 1≤ t ≤ n satisfyingHt is not empty,Ht(t, ·) andPt(t, ·) satisfy theTermination condition
T. Along with theTermination condition T n, we define the condition number set[i1, . . . , in] as follows: for
t = 1, . . . ,n,

1) if Ht is not empty,it is the corresponding condition number;

2) if Ht is empty, defineit = 0 to be the corresponding condition number.
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Remark 4.18. One may useH j = [g j,kj , . . . ,g j,min(sj ,(n− j+1)d),xg j,1, . . . ,xg j,min(sj ,(n− j+1)d)−1] to replace the
H j in Step2 of GHNFn for any1≤ j ≤ n. Note that if the obtainedGHNF(Gröbner basis) is as form (4) and
p= deg(cr i ,li )< (n− r i +1)d, one need not to multiply x to thegr i ,sri

obtained in the loop since if something
new arise from the syzygy of Fn−r i+1, the sj will renew automatically. Then, the correctness of this replacement
is similar to the case ofZ[x].

Example 4.19.F =




2x+1 3 4x2

2 6x 8
0 1 1


.

Step 1: G1 = PHNF(F) =




2x+1 −4x2+8x+7 4x2−8x−4
2 6x 0
0 0 1


 .

Step 2:1-th loop: (H1,H2,H3) = Divide(G1), where

H1 = [ ], H2 =




2x+1 −4x2+8x+7
2 6x
0 0


 , H3 =




4x2−8x−4
0
1


 ;

H ′
1 = [ ], H ′

2 =




2x+1 −4x2+8x+7 2x2+x
2 6x 2x
0 0 0


 , H ′

3 =




4x2−8x−4
0
1


 ;

F2 = [H ′
1,H

′
2,H

′
3], G2 = PHNF(F2) =




10x2−5x−7 2x+1 2x2+x 4x2−8x−4
0 2 2x 0
0 0 0 1


 ;

G1 and G2 do not satisfy theTermination condition T n, G1 = G2.
2-th loop: (H1,H2,H3) = Divide(G1), where

H1 =




10x2−5x−7
0
0


 , H2 =




2x+1 2x2+x
2 2x
0 0


 , H3 =




4x2−8x−4
0
1


 ;

H ′
1 = H1, H′

2 = H2, H′
3 = H3, F2 = [H ′

1,H
′
2,H

′
3], and G2 = PHNF(F2) = F2. Hence, G1 and G2 satisfy the

Termination condition T n and [1,2,1] is the condition number set.

Step 3: P1 =




10x2−5x−7
0
0


 , P2 =




2x+1
2
0


 , P3 =




4x2−8x−4
0
1


 .

Step 4: TheGHNFof F is G=




10x2−5x−7 2x+1 4x2−8x−4
0 2 0
0 0 1


 .

In the Algorithm GHNFn, for any i ≥ 1, denote byG(i) and F(i) the G1 and F1 in the i-th loop, re-
spectively. Letvi = #(G(i)), v′i = #(F (i)). For thei-th loop of the Algorithm GHNFn, let (H(i)

1 , . . . ,H(i)
n ) =

Divide(G(i)) and H(i)
j = [g(i)j,kj

,g(i)j,kj+1, . . . ,g
(i)
j,sj

] with deg(g(i)j,k(k)) = k for k j ≤ k ≤ sj . For 1≤ j ≤ n, de-

note byt(i)j = #([g(i)j,kj
, . . . ,g(i)j,min(sj ,(n− j+1)d)]) ≥ 0 andt(i)

′

j = max(0,#([g(i)j,(n− j+1)d+1, . . . ,g
(i)
j,sj

])). Let X(i) =

DiagonalMatrix(X(i)
1 , . . . ,X(i)

n ) be the diagonal matrix with blocksX(i)
k ,1≤ k≤ n, whereX(i)

j = [ ] if t(i)j = 0,
otherwise,

X(i)
j =







1 x
. . .

1 x
1




t(i)j ×(2t(i)j −1)

0
t(i)

′
j ×(2t(i)j −1)




wheni > (n− j)d, (19)
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and

X(i)
j =




1 x
. . .

1 x




t(i)j ×2t(i)j

wheni ≤ (n− j)d. (20)

In particular, letF (0) = F. For i ≥ 0, letM(i) be the coefficient matrix ofF(i) and[0,H(i)] =M(i)U (i) be the

HNF of M(i), whereU (i) = [U (i)
1 ,U (i)

2 ] satisfying0= M(i)U (i)
1 , H(i) = M(i)U (i)

2 . ThenG(i+1) = PHNF(F (i)) =

F(i)U (i)
2 .

The loop can be expressed as the following diagram:

loopn : F U (0)∈Zv′0×v′0

remove 0
// G(1) X(1)∈Z[x]v1×v′1

// F(1) U (1)∈Zv′1×v′1

remove 0
// G(2) X(2)∈Z[x]v2×v′2

// · · ·

Similar to the above loop′, we give the following loop′n:

loop′n : F U (0)

remove 0
// G(1) addxG(1)

// F(1)′ U (1)′

remove 0
// G(2)′ addxG(2)′

// · · ·

Let (H(i)
1 , . . . ,H(i)

n ) = Divide(G(i)), and(H(i)′

1 , . . . ,H(i)′
n ) = Divide(G(i)′). Without loss of generality, we

assumet(i)j > 0 for 1≤ j ≤ n. For simplicity, denote byH(i)
j = [g(i)j,kj

,g(i)j,kj+1, . . . ,g
(i)
j,sj

], H(i)′

j = [g(i)
′

j,k′j
,g(i)

′

j,k′j+1,

. . . ,g(i)
′

j,s′j
] for 1 ≤ j ≤ n, where deg(g(i)j,k( j)) = deg(g(i)

′

j,k ( j)) = k. Then,F(i) = [H(i)
1 , . . . ,H(i)

n ], whereH(i)
j =

H(i)
j X(i)

j = [H(i)
j ,xH(i)

j ] if i ≤ (n− j)d, H(i)
j =H(i)

j X(i)
j = [g(i)j,kj

, . . . ,g(i)j,sj
,xg(i)j,kj

, . . . ,xg(i)j,sj−1] if i > (n− j)d. And

F(i)′ = [H(i)′

1 , . . . ,H(i)′
n ], whereH(i)′

j = [H(i)′

j ,xH(i)′

j ] for 1≤ j ≤ n. LetP(i)′

j = [g(i)
′

j,k′j
, . . . , g(i)

′

j,min(s′j ,(n− j+1)d),xg(i)
′

j,k′j
,

. . . ,xg(i)
′

j,s′j
] for 1≤ j ≤ n.

In order to show the the equivalence of loopn and loop′n for computing the GHNF , we define another
order as followings:xα ei ≺′ xβ ej if and only if α < β or α = β , i < j. Similar to the order≺, the order≺′

can be extended to the polynomial vectors ofZ[x]n. Moreover, letf,g∈ Z[x]m, the S-vector off,g is the same
with the order≺. A good property of the order≺′ is: if max(deg(f),deg(g))≤ d, then deg(S≺′(f,g))≤ d. We
can easily get the following lemma:

Lemma 4.20. Let F∈ Z[x]n×m, d = deg(F), thenSyz(F) has a Gröbner basis G with degree≤ nd w.r.t.≺′.

Proof. Let S= {u|u ∈ Syz(F), deg(u) ≤ nd}, then,Shas a Gröbner basisG⊆ Ssince the S-vector of any
u,v ∈ S w.r.t. ≺′ is also inS. By Lemma 3.19,SgeneratesSyz(F). The lemma is proved.

LetFt be the lastt rows ofF, St = {u∈Z[x]m|u∈Syz(Ft),deg(u)≤ td}. By Lemma 4.20,St has a Gröbner
basisGt ⊆ St and deg(Gt)≤ td. For anyu ∈ Syz(Ft) with deg(u)≤ k, u ∈ SpanZ(St ,xSt , . . . ,xmax(0, k−td)St).
Moreover, we have(S1)⊇ (S2)⊇ ·· · ⊇ (Sn).

Similar to theZ[x] case, for the loopn, we define a sequence of mapsφi :

For eachi > 0, letU (i) = [V(i)
1 ,V(i)

2 ], whereV(i)
1 consists of column vectors ofU (i) ∩Syz(F1), H(i)

n V(i)
2 =

H(i)
n X(i)

n V(i)
2 = H(i+1)

n . Let

φi : Z[x]#(X
(i)
n ) → Z[x]m

u 7→V(0)
2 X(1)

n · · ·V(i−1)
2 X(i)

n u.

In particular, letφ0 : Z[x]m → Z[x]m be the identity map. Thus,FV(0)
2 X(1)

n · · ·V(i−1)
2 X(i)

n V(i)
2 = H(i+1)

n and

Fφi(V
(i)
1 ) = FV(0)

2 X(1)
n · · ·V(i−1)

2 X(i)
n V(i)

1 ⊆ SpanZ(H
(i+1)
1 , . . . ,H(i+1)

n−1 ) for each 0≤ i ≤ d.
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Lemma 4.21. Let F ∈ Z[x]n×m. For anyu ∈ Syz(F1) anddeg(u) = k, we haveu ∈ SpanZ(
⋃l

i=0φi(V
(i)
1 )) for

any k> 0.

Proof. This is similar to the proof of Lemma 4.17.

Lemma 4.22. For any1≤ t ≤ n and k≤ td+1, we have H(k)j = H(k)′

j for 1≤ j ≤ n− t.

Proof. First, let t = 1. In the loopn and loop′n, G(1) = G(1)′ = FU (0)
2 . Then,H(1)

j = H(1)′

j for 1 ≤ j ≤ n.

This lemma is valid fork = 1. Suppose it is valid fork = l ≤ d, i.e., H(l)
j = H(l)′

j for 1 ≤ j ≤ n− 1. We

need to showH(l+1)
j = H(l+1)′

j for 1 ≤ j ≤ n− 1. For anyf ∈ SpanZ(H
(l+1)′

1 , . . . ,H(l+1)′

n−1 ) ⊂ SpanZ(F
(l)′) =

SpanZ(F,xF, . . . ,xl F), there exists au ∈ Z[x]m, such thatf = Fu with deg(u) ≤ l , and u ∈ Syz(F1). By

Lemma 4.21, we haveu ∈ SpanZ(
⋃l

i=0 φi(V
(i)
1 )). Then,f = Fu ∈ SpanZ(H

(l+1)
1 , . . . ,H(l+1)

n−1 ). Thus, we have

H(l+1)
j = H(l+1)′

j for 1≤ j ≤ n−1. The lemma is valid fort = 1.

Suppose the lemma is valid fort = p−1. Then we haveH((p−1)d+1)
j = H((p−1)d+1)′

j for 1≤ j ≤ n− p+1.

FSp−1 ⊆ SpanZ(H
((p−1)d+1)′

1 , . . . ,H((p−1)d+1)′

n−p+1 ) = SpanZ(Q), whereQ= [H((p−1)d+1)
1 , . . . ,H((p−1)d+1)

n−p+1 ].

Whent = p, for any(p−1)d+1< k ≤ pd+1 andf ∈ SpanZ(H
(k)′

1 , . . . ,H(k)′

n−p) ⊆ SpanZ(F
(k−1)′), there

exists au ∈ Z[x]m with deg(u)≤ k−1, such thatf = Fu andu ∈ Syz(Fp)⊆ Syz(Fp−1). By Lemma 4.20,u ∈
Syz(Fp)= (Sp−1), hence we haveu∈SpanZ(Sp−1, . . . ,xk−(p−1)d−1Sp). Then,f =Fu∈SpanZ(Q, . . . ,xk−(p−1)d−1Q).
Hence we havef = Qv for somev∈ Syz(Qp) with deg(v)≤ k− (p−1)d−1 andQp being the lastp rows of

Q. Consider the algorithm GHNFn(Q), we have SpanZ(Q
(i)) ⊆ SpanZ(H

((p−1)d+1+i)
1 , . . . ,H((p−1)d+1+i)

n−p+1 ) for

i ≤ d. Then, SpanZ(Q
(k−(p−1)d−1)) ⊂ SpanZ(H

(k)
1 , . . . ,H(k)

n−p+1). Since the lastp−1 rows ofQ are all zeros,

it can be reduced to thet = 1 case. Hence, we havef = Qv ∈ SpanZ(Q
(k−(p−1)d−1)). Thus,H(k)

j = H(k)′

j for
1≤ j ≤ n− p.

Lemma 4.23.Let H= [H(td+1)
1 , . . . ,H(td+1)

n−t ]. For k> td+1, 0≤ t ≤ n−1, we have H(k)
′

n−t ⊆ (H(td+1)
1 , . . . ,H(td+1)

n−t ).

In particular, for k> td+1, 0≤ t ≤ n−1, H(k)′

n−t ⊆SpanZ(H,xH, . . . ,xk−td−1H)⊆SpanZ(H
(k−1)′

1 , . . . ,H(k−1)′
n−t ).

Proof. Let k > td+ 1. For anyf ∈ H(k)′

n−t ⊆ SpanZ(F
(k−1)′), there exists au ∈ Syz(Ft) with deg(u) ≤ k− 1,

such thatf = Fu. By Lemma 3.19,u ∈ (St). By Lemma 4.20,u ∈ SpanZ(St , . . . ,xk−td−1St). By Lemma

4.22,H(td+1)
j = H(td+1)′

j for 1≤ j ≤ n− t, 1≤ t ≤ n. Then,FSt ⊆ SpanZ(H
(td+1)′

1 , . . . ,H(td+1)′

n−t )) =SpanZ(H).

Thus,f = Fu ⊆ SpanZ(H,xH, . . . ,xk−td−1H)⊆ (H).

To show the second statement, first, letk= td+2. Then,f ∈SpanZ(H,xH)=SpanZ(H
(td+1)′

1 , . . . ,H(td+1)′
n−t )).

The, lemma is valid fork= td+2. Suppose the lemma is valid fork= l > td+2. Then,H(l)′

n−t ⊆SpanZ(H,xH,

. . . ,xl−td−1H)⊆SpanZ(H
(l−1)′

1 , . . . ,H(l−1)′
n−t )⊆SpanZ(H

(l)′

1 , . . . ,H(l)′

n−t). We need to showH(l+1)′

n−t ⊆SpanZ(H
(l)′

1 ,

. . . ,H(l)′
n−t). For anyf ∈H(l+1)′

n−t , f ∈SpanZ(H,xH, . . . ,xl−tdH)=SpanZ(SpanZ(H,xH, . . . ,xl−td−1H)∪xSpanZ(H,

xH,xl−td−1H))⊆ SpanZ(H
(l)′

1 , . . . ,H(l)′

n−t ,xH(l)′

1 , . . . ,xH(l)′

n−t) = SpanZ(H
(l)′

1 , . . . ,H(l)′
n−t). The lemma is also valid

for k= l +1.

Lemma 4.24. SpanZ(G
(k+1)′) = SpanZ(F

(k)′) = SpanZ(P
(k)′

1 , . . . ,P(k)′
n ) for any k> 0.

Proof. We claim thatf = [ f1, . . . , fn−t ,0, . . . ,0]τ ∈ SpanZ(H
(k)′

1 , . . . ,H(k)′
n−t), impliesf ∈ SpanZ(P

(k)′

1 , . . . ,P(k)′

n−t ).

First, let t = n− 1. If k ≤ (n− 1)d, we haveP(k)′

1 = H(k)′

1 .Then,f ∈ SpanZ(H
(k)′

1 ) = SpanZ(P
(k)′

1 ). Oth-

erwise,k > (n− 1)d, by Lemma 4.23,f ∈ SpanZ(H
(k)′

1 ) ⊆ (H((n−1)d+1)
1 ). By Lemma 4.5, SpanZ(H

(k)′

1 ) =

SpanZ(P
(k)′

1 ). The lemma is valid fort = n−1.
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Suppose the claim is valid fort = l + 1 ≤ n− 1, i.e. for any f ∈ SpanZ(H
(k)′

1 , . . . ,H(k)′

n−l−1) and k > 0,

f ∈ SpanZ(P
(k)′

1 , . . . ,P(k)′

n−l−1).

Let t = l , f = [ f1, . . . , fn−l ,0, . . . ,0]τ ∈ SpanZ(H
(k)′

1 , . . . ,H(k)′

n−l ). If k ≤ ld, then,P(k)′

j = H(k)′
j for 1≤ j ≤

n− l . Thus, f ∈ SpanZ(P
(k)′

1 , . . . ,P(k)′

n−l ). Otherwise,k > ld. If fn−l = 0, f ∈ SpanZ(H
(k+1)′

1 , . . . ,H(k+1)′

n−l−1).

If k ≤ (l + 1)d, P(k)′

j = H(k)′

j = H(k)
j for 1 ≤ j ≤ n− l − 1 be Lemma 4.22.f ∈ SpanZ(H

(k)′

1 , . . . ,H(k)′

n−l ) =

SpanZ(P
(k)′

1 , . . . ,P(k)′

n−l−1,H
(k)′

n−l )⊆ SpanZ(P
(k)′

1 , . . . ,P(k)′

n−l ) by Lemma 4.21. Ifk> (l +1)d, by Lemma 4.23,f ∈
SpanZ(H

(k)′

1 , . . . ,H(k)′

n−l−1). By induction,f ∈SpanZ(P
(k)′

1 , . . . ,P(k)′

n−l−1). If fn−l 6= 0, f ∈SpanZ(H
(k)′

1 , . . . ,H(k)′

n−l )⊆
(H(ld+1)

1 , . . . ,H(ld+1)
n−l ) be Lemma 4.23. Then,f ∈ SpanZ(H

(k)′

1 , . . . ,H(k)′

n−l−1,P
(k)′

n−l ) for k> ld, by Lemma 4.21.

Thus, by induction,f ∈ SpanZ(P
(k+1)′

1 , . . . ,P(k+1)′

n−l ). The claim is proved. We have SpanZ(H
(k)′

1 , . . . ,H(k)′
n ) ⊆

SpanZ(P
(k)′

1 , . . . ,P(k)′
n ). Since SpanZ(P

(k)′

1 , . . . ,P(k)′
n )⊆SpanZ(H

(k)′

1 , . . . ,H(k)′
n )=SpanZ(G

(k+1)′)=SpanZ(F
(k)′).

The lemma is valid.

Lemma 4.25. loopn and loop′n are equivalent for computing theGHNF.

Proof. By Lemma 4.24,[g∈ H(i)′
t : deg(g(t)) ≤ (n− t)d] = H(i)

t for any t andi. When we check theTermi-
nation condition Tn in two different procedures loopn and loop′n, they terminate at the same time.

From now on, letG1 and G2 be the outputs of the Step 2,(H1, . . . ,Hn) = Divide(G1), (H ′
1, . . . ,H

′
n) =

Divide(G2). Similar to theZ[x] case, to prove the correctness of this algorithm, we assume #Ht = #H ′
t . Denote

by Ht = [gt,1, . . . ,gt,kt ], H ′
t = [ht,1, . . . ,ht,kt ] andLC(Ht(t, ·)) = [at,1, . . . ,at,kt ], LC(H ′

t (t, ·)) = [bt,1, . . . ,bt,kt ].
Let Lt = {gt,1, . . . ,gt,kt}, L′

t = {ht,1, . . . ,ht,kt} for 1≤ t ≤ n.

Lemma 4.26. For the above G1 and G2, if there exists a set of number[i1, . . . , in], such that at, j = bt, j for
1≤ j ≤ it , 1≤ t ≤ n, then

1) at,it |at,it−1| · · · |at,1 for 1≤ t ≤ n;

2) gt, j = ht, j mod SpanZ(L
′
1, . . . ,L

′
t−1) for 1≤ j ≤ it , 2≤ t ≤ n.

Moreover, xkgt,l ∈ SpanZ(
⋃t−1

j=1 L′
j ,x

⋃t−1
j=1 L′

j , . . . ,x
k−1⋃t−1

j=1L′
j ,gt,1, . . . ,gt,l+k) for any positive integers

k, l : k+ l ≤ it , 1≤ t ≤ n ;

Proof. 1) By Lemma 4.7, 1) is valid for 1≤ t ≤ n.

2) For 1≤ t ≤ n, 1≤ j ≤ it , let gt, j , ht, j be thet-th elements ofgt, j , ht, j respectively. Then, we have
SpanZ(gt,1, . . . ,gt,it ) ⊆ SpanZ(ht,1, . . . ,ht,it ) and LC([gt,1, . . . ,gt,it ]) = LC([ht,1, . . . ,ht,it ]) for 1 ≤ t ≤ n. By
Lemma 4.4, we havegt, j = ht, j for 1≤ j ≤ it , 1≤ t ≤ n. So,ht, j −gt, j ∈ SpanZ(L

′
1, . . . ,L

′
t−1), i.e. gt, j = ht, j

mod SpanZ(L
′
1, . . . ,L

′
t−1) for 1≤ j ≤ it , 2≤ t ≤ n.

For anyt, such thatLt is not empty, we have

xgt,l ∈ SpanZ(
r−1⋃

t=1

L′
t ,ht,1, . . . ,ht,l+1) = SpanZ(

r−1⋃

t=1

L′
t ,gt,1, . . . ,gt,l+1), for 1≤ l ≤ it −1;

x2gt,l ∈ SpanZ(x
r−1⋃

t=1

L′
t ,xgt,1, . . . ,xgt,l+1)⊆ SpanZ(

r−1⋃

t=1

L′
t ,x

r−1⋃

t=1

L′
t ,gt,1, . . . ,gt,l+2), for 1≤ l ≤ it −2;

...

xkgt,l ∈ SpanZ(
r−1⋃

t=1

L′
t ,x

r−1⋃

t=1

L′
t , . . . ,x

k−1
r−1⋃

t=1

L′
t ,gt,1, . . . ,gt,l+k), for 1≤ l ≤ it −k; .
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Lemma 4.27. When theTermination condition T n holds and[i1, . . . , in] is the condition number set, then,

1) at,it |at,it+1| · · · |at,kt for 1≤ t ≤ n;

2) ht,l ∈ SpanZ(L
′
1, . . . ,L

′
t−1,gt,1, . . . ,gt,it ,xgt,it ,xgt,it+1, . . . ,xgt,l−1) for it < l ≤ kt , 1≤ t ≤ n;

3)
⋃n

t=1{gt,1, . . . ,gt,it } is a Gröbner basis for theZ[x] lattice (
⋃n

t=1Lt).

Proof. 1) By Lemma 4.8, 1) is valid for 1≤ t ≤ n.

2) For anyt, ht,it+1 − xgt,it ∈ SpanZ(L
′
1, . . . ,L

′
t−1,ht,1, . . . ,ht,it ) = SpanZ(L

′
1, . . . ,L

′
t−1,gt,1, . . . ,gt,it ). So,

ht,it+1 ∈ SpanZ(L
′
1, . . . ,L

′
t−1,gt,1, . . . ,gt,it ,xgt,it ). Suppose 2) is valid for it < j ≤ l −1. Then,ht,l − xgt,l−1 ∈

SpanZ(L
′
1, . . . ,L

′
t−1,ht,1, . . . ,ht,l−1) ⊆ SpanZ(L

′
1 . . . ,L

′
t−1,gt,1, . . . ,gt,it ,xgt,it , . . . ,xgt,l−2). So, we haveht,l ∈

SpanZ(L
′
1 . . . ,L

′
t−1,gt,1, . . . ,gt,it ,xgt,it , . . . ,xgt,l−2,xgt,l−1), which is valid forit < l ≤ kt , 1≤ t ≤ n.

3) We prove this by induction. Without loss of generality, we assumeL1 is not empty. By Lemma 4.8,
{g1,1, . . . ,g1,i1} is a Gröbner basis for theZ[x] lattice(L1). Suppose

⋃r−1
t=1{gt,1, . . . ,gt,it } is a Gröbner basis for

theZ[x] lattice of(
⋃r−1

t=1 Lt). We need to show that
⋃r

t=1{gt,1, . . . ,gt,it} is a Gröbner basis for theZ[x] lattice
of (

⋃r
t=1{gt,1, . . . ,gt,it}) andgr,l can be reduced to0 by

⋃r
t=1{gt,1, . . . ,gt,it} for ir < l ≤ kr .

By Lemma 4.26,S(gr,k,gr,l )=
ar,k

ar,l
gr,l −xl−kgr,k ∈SpanZ(

⋃r−1
t=1 L′

t ,x
⋃r−1

t=1 L′
t , . . . ,x

l−k−1⋃r−1
t=1 L′

t ,gr,1, . . . ,gr,l )

for any 1≤ k< l ≤ ir . So, there exists a sequence of integersu1, . . . ,ul , such that

S(gr,k,gr,l )− (u1gr,1+ · · ·+ul gr,l ) ∈ SpanZ(
r−1⋃

t=1

L′
t ,x

r−1⋃

t=1

L′
t , . . . ,x

l−k−1
r−1⋃

t=1

L′
t)⊆ (

r−1⋃

t=1

Lt).

By assumption,
⋃r−1

t=1{gt,1, . . . ,gt,it} is a Gröbner basis for theZ[x] lattice of (
⋃r−1

t=1 Lt). So S(gr,k,gr,l )−
(u1gr,1 + · · ·+ ul gr,l ) can be reduced to0 by

⋃r−1
t=1{gt,1, . . . ,gt,it }. Hence, we have

⋃r
t=1{gt,1, . . . ,gt,it} is a

Gröbner basis for theZ[x] lattice(
⋃r

t=1{gt,1, . . . ,gt,it}).
By 2),

gr,l −
ar,l

ar,l−1
xgr,l−1 ∈ SpanZ(L

′
1, . . . ,L

′
r−1,hr,1, . . . ,hr,l )⊆ SpanZ(L

′
1, . . . ,L

′
r−1,gr,1, . . . ,gr,ir ,xgr,ir , . . . ,xgr,l−1)

for ir < l ≤ kr . So there exists a sequence of integersu1, . . . ,uir ,vir , . . . ,vl−1, such thatgr,l − ar,l

ar,l−1
xgr,l−1 −

∑ir
k=1ukgr,k − ∑l−1

k=ir
vkxgr,k ∈ SpanZ(L

′
1, . . . ,L

′
r−1) ⊆ (

⋃r−1
t=1 Lt) = (

⋃r−1
t=1{gt,1, . . . ,gt,it}). Hence,gr,l can be

reduced to0 by
⋃r

t=1{gt,1, . . . ,gt,it}. Then,
⋃r

t=1{gt,1, . . . ,gt,it} is a Gröbner basis for theZ[x] lattice of
(
⋃r

t=1Lt).

Theorem 4.28.AlgorithmGHNFn is correct and terminated.

Proof. It is a direct consequence by Lemma 4.26 and 4.27.

Similar to Corollary 4.10, we have

Corollary 4.29. The AlgorithmGHNFn ends in at most D+nd loops, where D= 73n8d5(h+(logn2d)+1).

Theorem 4.30.The worst case bit size complexity of AlgorithmGHNFn is O(n20+2θ+εd12+θ+ε(h+ log(n2d))2+ε

+n19d11(logn2d)B(n5d3(h+ logn2d))), where h= height(F) andε > 0 is a sufficiently small number.

Proof. By Lemma 3.25, the height bound for the GHNF ofF is 6n3d2(h+(logn2d)+1) := h2. Consider the
Step 2 of the Algorithm GHNFn, we know that in thek-th loop, we need to compute the HNF of an integer ma-
trix with size at mostn(d+k+1)× (n(n+1)d+n), whose rank is no more that(n(n+1)d+n). The logβ in
Lemma 4.11 can be taken as logβ = (n(n+ 1)d+ n)(1

2 log(n(n+ 1)d+ n) + h2) = O(n5d3(h+ logn2d)).
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The complexity in thek-th loop is O(n(d + k+ 1) · (n(n+ 1)d + n)θ−1(logβ )M(log logβ )/(log logβ ) +
n(d+k+1) · (n(n+1)d+n) log(n(n+1)d+n)B(logβ )) = (d+k+1)O(n4+2θ+εd2+θ+ε(h+ logn2d)1+ε +
n3d(logn2d)B(n5d3(h+ logn2d))), for anyε > 0. Hence, the total complexity is,

D+nd

∑
k=0

(d+k+1)O(n4+2θ+εd2+θ+ε(h+ logn2d)1+ε +n3d(logn2d)B(n5d3(h+ logn2d)))

= O(n20+2θ+εd12+θ+ε(h+ logn2d)2+ε +n19d11(logn2d)B(n5d3(h+ logn2d))), for anyε > 0.

Similar to Corollary 4.13, by settingθ = 2.376 andε = 0.001, we have

Corollary 4.31. The worst case bit size complexity of AlgorithmGHNFn is O(n24.753d14.377(h+ logn2d)2.001).

Similar to Remark 4.14, the numberm in the input is omitted in the complexity bound.

5 Experimental results

The algorithms presented in Section 4 have been implementedin both Maple 18 and Magma 2.21-7. The
timings given in this section are collected on a PC with Intel(R) Xeon(R) CPU E7-4809 with 1.90GHz. For
each set of inpute parameters, we use the average timing of ten experiments for random polynomials with
coefficients between[−100,100].

Figure 1 shows the timings of the Algorithm GHNF1 in Magma 2.21-7 and Maple 18, and that of the
GröbnerBasis command in Magma 2.21-7. From Theorem 4.12, the degree of the input polynomials is the the
dominant factor in the computational complexity of the algorithm. In the experiments, the length of the input
polynomial vectors is fixed to be 3. The degrees are in the range [45,80].

From the figure, we see that our algorithm is much more efficient than the GröbnerBasis algorithm in
Magma. As far as we know, the GröbnerBasis algorithm in Magmaalso uses an F4 style algorithm to compute
the Gröbner basis and is also based on the computation of HNF of the coefficient matrices. In other words, the
GröbnerBasis algorithm in Magma is quite similar to our algorithm and the comparison is fair. The reason for
Algorithm GHNF1 to be more efficient is due to the way how the prolongation is done in Step 2 of algorithm
GHNF1. By prolongingg1, . . . ,gt−1 instead of the original polynomials and notgt , the size of the coefficient
matrices is nice controlled. This fact is more important in algorithm GHNn.

The difference for the timings of Algorithm GHNF1 in Magma and Maple is mainly due to the different
implementations of the HNF algorithms.

Figure 1: Comparison of GHNF1 and GröbnerBasis in Magma and Maple: theZ[x] case

In Table 1, we give the timings for several input where the polynomials have larger degrees. Other param-
eters are the same. We see that for input polynomials with degree larger than 150, the GröbnerBasis algorithm
in Magma cannot compute in the GHNF in reasonable time.
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d GHNF1 in Maple 18 GHNF1 in Magma 2.21-7 GB in Magma 2.21-7
100 50.5932 19.048 214.91
150 202.8135 104.827 >1000
200 590.7763 384.946 >1000

Table 1: Comparison of GHNF1 and GröbnerBasis in Magma and Maple: theZ[x] case

Figure 2 plots the timings of Algorithm GHNFn implemented in Magma 2.21-7 and Maple 18, where the
input random polynomial matrices are of size 3× 3 with degrees in[2,30]. There is no implementation of
Gröbner bases methods in Magma forZ[x]-modules, so we cannot make a comparison with Magma in this
case. In line with our complexity analysis given in Section 4, algorithm GHNFn slows down rapidly when
n> 1.

Figure 2: Timings of GHNFn in Magma and Maple

In Table 2, we list the timings of Algorithm GHNFn for several examples with larger degrees. This shows
the polynomial-time natural of the algorithm, because the algorithm works for quite larged. Also, for large
d, the Maple implementation becomes faster.

d GHNFn in Maple 18 GHNFn in Magma 2.21-7
40 245.689 236.029
50 554.452 637.05

Table 2: Timings of GHNFn in Magma and Maple

6 Conclusion

In this paper, a polynomial-time algorithm is given to compute the GHNFs of matrices overZ[x], or equiv-
alently, the reduced Gröbner basis of aZ[x]-lattice. The algorithm adopts the F4 strategy to compute Gröb-
ner bases, where a novel prolongation is designed so that thecoefficient matrices under consideration have
polynomial sizes. Existing efficient algorithms are used tocompute the HNF for these coefficient matrices.
Finally, nice degree and height bounds of elements of the reduced Gröbner basis are given. The algorithm is
implemented and is shown to be more efficient than existing algorithms.

Acknowledgement.We would like to thank Dr. Jianwei Li for provide us information on the complexity of
computing Hermite normal forms.
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