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We identify a stationary expansion shock solution of a class of dispersive nonlinear wave equations
that include the BBM equation ut + uux = uxxt [1] and the Boussinesq equations of shallow water
wave theory. The persistence of the expansive shock in initial value problems is analyzed and
justified using matched asymptotic expansions and numerical simulations. We establish the algebraic
decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we
observe a robustness of the expansion shock in the presence of weak dissipation and in simulations
of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock.

In this paper, we consider a class of nonlinear, disper-
sive equations most concisely exemplified by a version of
the Benjamin-Bona-Mahoney (BBM) equation

ut + uux = uxxt. (1)

The original BBM equation, which contains an additional
ux term, is an important model for the description of uni-
directional propagation of weakly nonlinear, long waves
in the presence of dispersion. It first appeared in a nu-
merical study of shallow water undular bores [2] and later
was proposed in [1] as an analytically advantageous al-
ternative to the KdV equation

ut + uux = −uxxx. (2)

In the context of shallow water waves, the BBM and
KdV equations (1) and (2) are reduced, normalized ver-
sions of corresponding asymptotic models derived from
the general Euler equations of fluid mechanics using small
amplitude, long wave expansions. If δ � 1 is the ratio
of the undisturbed depth to a typical wave length and
ε � 1 is the ratio of a typical wave amplitude to the
undisturbed depth, then the asymptotic KdV and BBM
equations occur under the same balance ε ∼ δ2 [3] and
so can be used interchangeably within their common do-
main of asymptotic validity.

Despite asymptotic equivalence, the mathematical
properties of the BBM and KdV equations are very differ-
ent, which is acutely captured by their normalized ver-
sions (1) and (2). The KdV equation (2) is known to
be integrable via the inverse scattering transform and
to possess an infinite number of conservation laws. The
BBM equation (1), on the contrary, does not enjoy full
integrability and has only three independent conservation
laws. But as a mathematical model, it yields more satis-
factory short-wave behavior, regularizing the unbounded
growth of frequency, phase and group velocity values
present in the KdV equation.

Equations (1) and (2) describe two different dispersive
mechanisms to regularize the scalar conservation law, the

inviscid Burger’s equation

ut + ( 1
2u

2)x = 0. (3)

Dispersive regularization of hyperbolic conservation laws
is known to give rise to dispersive shock waves (DSWs),
which are in many respects very different from their diffu-
sive or diffusive-dispersive counterparts [4]. These DSWs
have a distinct oscillatory structure and expand with
time so that the Rankine-Hugoniot relations are not ap-
plicable to them. Instead, DSW closure is achieved via an
appropriate solution of the Whitham modulation equa-
tions obtained by a nonlinear wave averaging procedure
applied to the full dispersive equation [3, 5, 6]. Regu-
larizing DSWs are evolutionary if they satisfy causality
conditions [5] and thus represent dispersive counterparts
of classical, Lax shocks [7]. All shock solutions of the
KdV equation are evolutionary DSWs [4]. In contrast,
we show in this paper that the BBM equation (1) admits
a family of stationary (non-propagating), non-oscillatory
expansion shocks that (i) satisfy the Rankine-Hugoniot
jump condition, and (ii) violate causality. BBM expan-
sion shocks are very different from both classical shocks
of the inviscid Burger’s equation (3) and KdV (2) DSWs.

Nonlinear partial differential equations of hyperbolic
type, such as those modeling inviscid gas dynamics, e.g.,
(3), can have discontinuous solutions. These weak solu-
tions may or may not be physical, depending on whether
they are stable, or persist under small changes to ini-
tial conditions or the governing equations. Shock waves
are physical, discontinuous solutions that typically sat-
isfy side conditions associated with either a physical or
mathematical notion of entropy. In gas dynamics, these
conditions force shock waves to be compressive in that
they compress the gas as they pass a fixed location. This
kind of condition was expressed by Lax in the 1950s in
terms of characteristics, requiring that shock waves are
evolutionary, meaning that they are uniquely determined
from initial conditions.

In this paper, we show that a non-evolutionary sta-
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tionary shock wave of the BBM equation (1) persists but
decays algebraically in time. This example is surprising
because hyperbolic theory would suggest that the sta-
tionary shock would immediately give way to a continu-
ous solution, namely a rarefaction wave. The persistence
is explained through the interaction of the particular na-
ture of dispersion in the BBM equation and a length scale
associated with the stationary shock, that sets the time
scale for decay. Expansion shocks are not unique to the
BBM equation. We show that they also persist in one
of the versions of the classical bi-directional Boussinesq
equations for dispersive shallow-water waves [3, 8]. Sim-
ilar to the BBM equation, these Boussinesq equations
have the term uxxt in the momentum equation. More
broadly, we identify a large class of non-evolutionary par-
tial differential equations — i.e., equations not explicitly
resolvable with respect to the first time derivative [9] —
that exhibit decaying expansion shock solutions, indicat-
ing the ubiquity of these new solutions.

I. SHOCKS AND RAREFACTIONS

If the dispersive right hand side of the BBM (1) or
KdV (2) equation is deleted, we are left with the invis-
cid Burger’s equation (3), a scalar conservation law that
admits shock wave weak solutions

u(x, t) =

{
u−, x < st

u+, x > st,
(4)

provided the speed s is the average of the characteristic
speeds u± on either side of the shock: s = 1

2 (u+ + u−).
Such shocks are stable provided that characteristics enter
the shock from each side, u+ < u−, a condition known as
the Lax entropy condition [7]. In this case, the shock is
called an entropy shock, or by analogy with gas dynam-
ics, a compressive shock.

By contrast, a shock wave (4) solution of (3) is called
expansive if u− < u+. Expansive shocks are thought to
be unstable and to violate causality, because characteris-
tics leave rather than approach the shock. Instead of an
expansive shock, a self-similar rarefaction wave resolves
the discontinuity between u− and u+:

u(x, t) =


u−, x < u−t

x/t, u−t < x < u+t

u+, x > u+t.

(5)

When u+ = −u−, the shock wave (4) is stationary,
and hence is also a weak solution of the BBM equa-
tion (1). With u− > 0, the stable case, the station-
ary shock persists. However, for u− < 0, the unstable
case, hyperbolic theory would suggest that the jump is
immediately replaced by the self-similar rarefaction wave
(5) or some approximation to it. However, we find that
the BBM equation sustains solutions in which a station-
ary shock persists but decays algebraically, as shown in
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FIG. 1: Numerical (solid, blue) and asymptotic (dashed, red)
solutions of the initial value problem for eq. (1) with initial
data eq. (6) where ε = 0.1 and A = 1.

Fig. 1. More precisely, we study the initial value prob-
lem with initial data being a smoothed stationary shock,
with width ε > 0.

II. THE EXPANSION SHOCK.

To see the effect of dispersion on a stationary shock,
we pose initial data

u(x, 0) = A tanh
x

ε
, −∞ < x <∞, (6)

with amplitude A > 0 for the BBM equation (1). Thus,
as ε → 0, the initial data converge to a jump from
u = −A to u = A, representing a stationary expansive
shock solution to the inviscid Burger’s equation (3). The
numerical solution of (1),(6) is shown in Fig. 1. We ob-
serve the development of a rarefaction wave on either
side of a stationary but decaying shock. We analyze the
solution by matched asymptotics. First note that the ini-
tial function u(x, 0) is an odd function, and the solution
should therefore be an odd function.

A. The inner solution

To capture the inner solution, we introduce the short
space ξ = x/ε and long time T = εt scalings of the
independent variables x and t into eq. (1)

εuT +
1

ε
uuξ =

1

ε
uξξT . (7)

Expanding the dependent variable

u = u0(ξ, T ) + εu1(ξ, T ) + . . . , (8)

and substituting this ansatz into (7) yields the leading
order equation

u0∂ξu0 = ∂ξξTu0.
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This equation admits separated solutions u0(ξ, T ) =
f(ξ)a(T ), leading to

ffξa
2 = fξξaT ,

so that

aT
a2

=
ffξ
fξξ

= −K.

Thus,

a(T ) =
a0

1 + a0KT
,

and

f(ξ) =
√
c tanh

(√
c

2K
(ξ − ξ0)

)
.

In these formulas, K, a0, c and ξ0 are arbitrary constants.
To agree with the initial data (6), we set c = 1,K =
1
2 , a0 = A, and ξ0 = 0. Thus, the leading order inner
solution is

u ∼ uin(ξ, T ) =
A

1 + 1
2AT

tanh ξ. (9)

B. The outer solution

The outer solution has a different, long space and time
scaling

X = εx, T = εt.

This leads to the scaled equation

εuT + εuuX = ε3uXXT . (10)

With the expansion u(X,T ) = ũ0(X,T )+εũ1(X,T )+· · · ,
we have the leading order conservation law

∂T ũ0 + ũ0∂X ũ0 = 0.

We write the general, implicit solution by characteristics
in the form

ũ0(X,T ) = f(T − X

ũ0
).

Matching to the inner solution, we have, for x > 0,

lim
X→0+

ũ0(X,T ) = f(T ) = lim
ξ→∞

u0(ξ, T ) =
A

1 + 1
2AT

.

The matching for x < 0 is similar, giving an odd function
for the outer solution.

ũ0 =
A sgn(X)

1 + 1
2A(T − X

ũ0
)
.

Solving for ũ0, we find the leading order outer solution

u ∼ uout(X,T ) =
A( 1

2X + sgn(X))

1 + 1
2AT

, |X| < AT. (11)

Matching to the constant, far field conditions we obtain

uout(X,T ) = sgn(X)A, |X| ≥ AT. (12)
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FIG. 2: Pointwise error between the uniform asymptotic ex-
pansion and numerical solution of Fig. 1 at t = 100 with
ε = 0.1, and A = 1.

C. Uniformly valid asymptotic solution

Using the standard technique from asymptotics, we
can formulate a composite solution that is asymptoti-
cally valid over the entire range of x. Based on the outer
solution (11), (12), we define

F (x, t, ε) =


−A, x < −At

A( 1
2εx+ sgn(εx))

1 + 1
2Aεt

, |x| < At

A, x > At

Then the uniformly valid asymptotic solution is

u(x, t) =
A

1 + 1
2Aεt

(
tanh

x

ε
− sgn(x)

)
+F (x, t, ε). (13)

A comparison of the uniform asymptotic expansion to
the numerical solution is shown in Fig. 1. The two solu-
tions are hardly distinguishable. Figure 2 displays the
absolute error. Note that the largest error occurs at
the outermost edges of the rarefaction wave where the
asymptotic solution has a weak discontinuity. The error
in the inner solution is approximately ε3 = 10−3, which
can be formally identified by going to higher order terms
in eq. (7). In Fig. 3(b) we show characteristics calcu-
lated from the outer solution (11), (12) with ε = 0.1 and
A = 1.

D. Boussinesq equations

The Boussinesq equations, formulated in the 1870s [8],
can take a variety of asymptotically equivalent forms [3].
While having the same level of accuracy as the KdV and
BBM equations in reproducing dispersive shallow water
dynamics, the Boussinesq equations have the advantage
of bi-directionality. The system considered here

ht + (uh)x = 0

ut + uux + hx − 1
3uxxt = 0,

(14)
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FIG. 3: Characteristics for: (a) the compressive shock solu-
tion of equation (3);
(b) the expansion shock solution of equation (1).

is a reduced, normalized version of the equation analyzed
by Bona et al [10], which includes a ux term in the dy-
namical equation for h. The nondimensional variables
h, u represent the height of the water free surface above
a flat horizontal bottom, and the depth-averaged hori-
zontal component of the water velocity, respectively. A
stationary shock solution of this system

h(x, t) =

{
h−, x < 0

h+, x > 0,
u(x, t) =

{
u−, x < 0

u+, x > 0,
(15)

will satisfy Rankine-Hugoniot (RH) jump conditions de-
rived from the time-independent equations,

h+u+ = h−u−; h+ + 1
2u

2
+ = h− + 1

2u
2
−. (16)

The RH conditions (16) are attained for the two-
parameter loci of states

u± = h∓

(
2

h− + h+

)1/2

, (17)

with arbitrary, positive total water depths h±. In Fig. 4,
we show the result of a numerical simulation demonstrat-
ing the persistence of a stationary shock wave for the
Boussinesq system (14).

The characteristic speeds for the dispersionless system
((14) with uxxt → 0) are λ±(h, u) = u ±

√
h. Therefore,

if u± ≥ 0 as in the loci (17), then the characteristics with
speed λ+ pass through the stationary shock from left to
right. However, the characteristics with speed λ− leave
the shock on both sides if u− <

√
h− and u+ >

√
h+.

This is the case for the choices of h±, u± in Fig. 4. These
choices also satisfy the Rankine-Hugoniot conditions for
a stationary shock (16). To see that similar data with
u < 0 can make a stationary shock expansive in the λ+
characteristic family, note that the system (14) is un-
changed under the transformation x→ −x, u→ −u.
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FIG. 4: Evolution of h (left) and u (right) in an expansion
shock for the Boussinesq system with h− = 2, h+ = 1 and
u−, u+ given by eq. (17). Jump initial data is smoothed by
tanh(x/ε), as in eq. (6), with ε = 0.1.

E. Discussion

The expansion shock solutions we have discovered here
do decay slowly in time, but their persistence in the face
of the usual rules of causality is a surprise. For the BBM
expansion shock, we can identify further robustness to
perturbation by considering the asymmetric initial con-
dition passing through zero

u(x, 0) = 1
2

(
(u+ − u−) tanh(

x

ε
) + u+ + u−

)
,

where u− < 0 < u+. The numerical simulation of eq. (1)
with this asymmetric data is shown in Fig. 5. As t in-
creases, the solution quickly develops a stationary, ex-
pansion shock with initial amplitude A = min{u+, |u−|},
that decays according to the inner solution (9). However,
the solution also sheds a train of rank ordered solitons.

The expansion shock also persists in the presence of
weak dissipation in the BBM-Burger’s equation

ut + uux = uxxt + νuxx, (18)

where ν > 0 is the dissipation coefficient. If we con-
sider the initial data (6) for (18), then the inner solution
exhibits exponential temporal decay

uin(ξ, T ) =
Ae−νT/ε

1 + Aε
2ν (1− e−νT/ε)

tanh ξ. (19)

Thus, for ν = O(ε), the expansion shock decays expo-
nentially as t → ∞, rather than the algebraic decay in
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FIG. 5: Expansion shock and solitons as components of the
initial value problem u(x, 0) = 0.55tanh(x/ε)−0.45 for eq. (1)
where ε = 0.1.

the absence of diffusion. In fact, if ν � ε, then (19) is
asymptotically equivalent to (9).

The construction presented here can be generalized to
higher order nonlinearity f(u) and higher order, positive
differential operators L in the form

L[ut] + f(u)x = νuxx, (20)

so long as the non-evolutionary, dispersive character is
maintained. For example, L = 1− ∂xx and f(u) = u4 or
L = 1+∂xxxx and f(u) = u2 admit expansion shock solu-
tions that can be approximated with matched asymptotic
methods.

F. Conclusions

We have identified decaying expansion shocks as ro-
bust solutions to conservation laws of non-evolutionary
type, even in the presence of weak dissipation. These
models include versions of the well-known BBM and
Boussinesq equations, which are weakly nonlinear mod-
els for uni-directional and bi-directional long wave prop-
agation, respectively. Expansion shocks represent a new
class of purely dispersive and diffusive-dispersive shock
waves. We stress, however, that the presented expansion
shock solutions constitute a formal mathematical result
inspired by, but not directly applicable to, shallow water
wave theory because the BBM (1) and Boussinesq (14)
equations as written are not asymptotically resolved with

respect to the small dispersion parameter. The solutions
obtained here are therefore outside the asymptotic valid-
ity of the equations as shallow water models. An impor-
tant open question is whether expansion shock solutions
can be physically realized in other systems exhibiting a
similar dispersive regularization mechanism.

Appendix

The numerical methods utilized here for both the BBM
(1) and Boussinesq (14) equations incorporate a stan-
dard fourth order Runge-Kutta timestepper (RK4) and
a pseudospectral Fourier spatial discretization, similar
to the method described in [4]. We briefly describe the
method for BBM here.

We are interested in solutions u(x, t) to (1) that rapidly
decay to the far field boundary conditions u(±∞, t) =
u±. The derivative v = ux therefore rapidly decays to
zero and satisfies

(1− ∂xx)vt + (uv)x = 0, (21)

where u(x, t) =
∫ x
−L v(y, t) dy + u−. The Fourier trans-

form (written f̂(k) with wavenumber k for a function
f(x)) of eq. (21) can therefore be written

d

dt
v̂ = − ik

1 + k2
ûv. (22)

The term ûv is well-defined because the function uv
is rapidly decaying. Suitable truncation of the spatial
and Fourier domains turn eq. (22) into a nonlinear sys-
tem of ordinary differential equations, which we tem-
porally evolve according to RK4. The computation of
the nonlinear term in (22) is efficiently implemented us-
ing the fast Fourier transform (see [4] for further de-
tails). The numerical computations were performed on
the domain x ∈ [−L,L] with N Fourier modes and the
timestep ∆t. For BBM, (L,N,∆t) = (200, 215, 0.01)
(Figs. 1, 2), (300, 215, 0.01) (Fig. 5). For Boussinesq,
(L,N,∆t) = (100, 214, 0.005).
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