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In testing gravity a model-independent way, one of crucial tests is measuring the propagation
speed of a gravitational wave (GW). In general relativity, a GW propagates with the speed of light,
while in the alternative theories of gravity the propagation speed could deviate from the speed of
light due to the modification of gravity or spacetime structure at a quantum level. Previously we
proposed the method measuring the GW speed by directly comparing the arrival times between a
GW and a photon from the binary merger of neutron stars or neutron star and black hole, assuming
that it is associated with a short gamma-ray burst. The sensitivity is limited by the intrinsic time
delay between a GW and a photon at the source. In this paper, we extend the method to distinguish
the intrinsic time delay from the true signal caused by anomalous GW speed with multiple events at
cosmological distances, also considering the redshift distribution of GW sources, redshift-dependent
GW propagation speed, and the statistics of intrinsic time delays. We show that an advanced GW
detector such as Einstein Telescope will constrain the GW propagation speed at the precision of
∼ 10−16. We also discuss the optimal statistic to measure the GW speed, performing numerical
simulations.

I. INTRODUCTION

The second-generation laser-interferometric gravita-
tional wave (GW) detectors would accomplish the first
detection of a GW in the coming a few years and open up
GW astronomy [1]. After that, the detections of multi-
ple events at cosmological distance would be realized with
the third-generation ground-based GW detector such as
Einstein telescope (ET) [2] and 40-km LIGO [3]. The
GW observations enable us not only to gain information
about astronomical objects and cosmology [4] but also to
test gravity theories in strong and dynamical regimes of
gravity (for reviews, see [5–8]).
To test gravity with GWs, it is crucial to search for

anomalous deviation from general relativity (GR) in a
model-independent way. There have been many sugges-
tions of such methods: seeking for the deviation from
GR in GW phase evolution of compact-binary inspiral-
ing [9–12] and in GW waveforms of black-hole ringdown
[13, 14], and non-GR GW polarizations [15–18]. One
of other tests is measuring the propagation speed of a
GW. In GR, a GW propagates with the speed of light,
while in the alternative theories of gravity the propaga-
tion speed could deviate from the speed of light due to
the modification of gravity (see [19–21] for general for-
mulations, and for more specific cases, nonzero graviton
mass [22, 23] and extra dimensions [24]). Also the mod-
ification of spacetime structure at a quantum level may
affect the propagation of a GW [25, 26].
GW propagation speed has been constrained indirectly

from ultra-high energy cosmic rays. Assuming the cosmic
rays originate in our Galaxy, the absence of gravitational
Cherenkov radiation and the consequent observation of
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such cosmic rays on the Earth lead to the limit on GW
speed, c− υg < 2× 10−15c [27]. However, this constraint
can be applied only to subluminal case. No constraint has
been obtained for superluminal GWs. On the other hand,
since a GW has not been detected yet, the velocity of a
GW has not ever been measured directly. Therefore, the
direct measurement of GW propagation speed is crucial
in testing gravity theories.

So far there have been a few proposals to directly mea-
sure the GW propagation speed. One is comparing the
phases of a GW and its electromagnetic counterpart from
a periodic binary source [28, 29]. However, to eliminate
unknown intrinsic phase lag between the GW and the
electromagnetic wave at the source, two signals at differ-
ent times (e.g. a half year) on the Earth’s orbit around
the Sun have to be differentiated. Then the gain of the
differential signal is suppressed by the propagation dis-
tance of the order of ∼ 1AU. A similar method us-
ing the Rømer time delay has been suggested recently
[30]. A GW signal from a periodic GW source is mod-
ulated in phase due to the Earth revolution. Although
this method does not require any electromagnetic obser-
vation, the measurement precision is again determined
basically by the baseline of the solar system.

To extend the baseline and improve the sensitivity, in
our previous work [31], we have reported a simple method
directly comparing the arrival times between GWs, and
neutrinos or photons from supernovae (SN) and short
gamma-ray burst (SGRB), assuming that the SGRB is
associated with a NS-NS or NS-BH binary merger [32],
where NS and BH represent neutron star and black hole,
respectively. One might concern about unknown intrin-
sic time delay at the source, which depends on the emis-
sion mechanisms of GWs, neutrinos, and photons. How-
ever, numerical simulations have been well developed in
these days and start to allow us to predict the intrinsic
time delays. Thanks to the developments of numerical
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simulations, the future multimessenger observations of a
GW, neutrinos, and photons can test the GW propaga-
tion speed at the precision of ∼ 10−15, improving the
previous suggestions by 8-10 orders of magnitude. In
this paper, we extend the previous method to a multiple-
event case at cosmological distance, and show that the
intrinsic time delay can be distinguished from a true sig-
nal due to anomalous GW speed by considering their
redshift dependences. We also show that some combina-
tions of signals cancel out the intrinsic time delay and
give nearly optimal sensitivity.
This paper is organized as follows. In Sec. II, we

briefly review the method comparing the arrival times
of a GW and a high energy photon from a SGRB in or-
der to constrain GW propagation speed, extending the
previous formalism to compact binaries at cosmologi-
cal distance. In Sec. III, we introduce the framework
of Bayesian inference for parameter estimation of GW
propagation models. The method is numerically demon-
strated in Sec. IV, showing the expected constraints in
the future. In Sec. V, several details of the method are
discussed, taking into account more practical situations:
optimality of the statistic, scaling of sensitivity, and the
presence of high-z cutoff for SGRB detection and its ef-
fect on sensitivity. Finally, Sec. VI is devoted to a sum-
mary. In this paper, we use the unit c = 1.

II. ARRIVAL TIME DELAYS

Let us start with a brief review of the method com-
paring the arrival times of a GW and a high-energy pho-
ton from the same source to constrain GW propagation
speed. As a source, in this paper we concentrate on a
SGRB, assuming that the SGRB is associated with a
NS-NS or NS-BH binary merger.
A GW is emitted at the time t = te and is detected on

the Earth at t = te+Tg, where the arrival time refers to,
for instance, the merger time of a NS binary and Tg is
the propagation time of the GW from the source to the
Earth. On the other hand, a γ-ray photon accompanying
to the prompt emission of SGRB is emitted at t = te+τint
with some intrinsic time delay τint and is detected at
t = te + τint + Tγ , where Tγ is the propagation time of
the photon from the source to the Earth. The observable
is the difference of the arrival times between the GW and
the photon and is given by

τobs = ∆T + τint . (1)

Here we defined ∆T ≡ Tγ −Tg, which vanishes when the
GW propagates with the speed of light. The sign of ∆T
can be both positive or negative, depending on whether
the propagation speed of the GW is superluminal or sub-
luminal, respectively.
In order that the finite time lag due to the anomalous

GW speed is detectable, ∆T has to exceed uncertainties
in the intrinsic time lag of the emissions, τint,min ≤ τint ≤
τint,max, and satisfy one of the following two conditions:

τint,max < ∆T + τint,min for ∆T > 0 and ∆T + τint,max <
τint,min for ∆T < 0, equivalently,

∆τint < |∆T | , (2)

with ∆τint ≡ τint,max − τint,min.
Note in the derivation of Eq. (2) that we have not taken

into account the detection timing errors of a GW and a
photon when they are detected on the Earth. The phase
error of a GW significantly depends on the signal-to-noise
ratio (SNR) and is given roughly by ∆φgw ∼ O(SNR)−1

[33]. For a NS binary merger detected by aLIGO, SNR
is typically ∼ 10 at 200Mpc. Then the detection timing
error of a GW is at most ∼ 10−3 sec. This is also true
for ET because of a similar SNR for a NS binary even
at a high redshift. Because the intrinsic uncertainty of
emission time, e.g. ∼ 10 sec or more for SGRB photons,
is much larger than the detection timing error, we can
neglect it when we consider the constraint on the GW
speed.
Next we derive the explicit expression of ∆T , tak-

ing into account the redshift effect due to the cosmo-
logical expansion, because the third-generation ground-
based GW detector such as ET enables us to observe
NS-NS binaries at cosmological distances up to z ∼ 2,
while for NS-BH binaries up to z ∼ 4 [34]. Let us assume
a flat Lambda Cold Dark Matter (ΛCDM) universe for
simplicity. Strictly speaking, this assumption is not valid
when we deal with modified gravity because dynamics of
the cosmic expansion is also modified. However, to be
consistent with observational data, the cosmic expansion
has to be close to that in ΛCDM universe and is well
approximated by ΛCDM model for our purpose here.
The comoving distance from the observer at zo to a

source at redshift z is

χ(zo, z) =

∫ z

zo

υg
H(z)

dz , (3)

and is written χ0(zo, z) when the GW propagation speed
is υg = c. Here H(z) is the Hubble parameter given by

H(z) = H0

√

Ωm(1 + z)3 +ΩΛ . (4)

where Ωm and ΩΛ = 1 − Ωm are the energy densities of
matter and a cosmological constant, and H0 is the Hub-
ble constant at present. In this paper, we use the cos-
mological parameters, H0 = 100 h0 kmMpc−1 s−1 with
h0 = 0.68, h2

0Ωm = 0.14 [35]. It is convenient to define
δg ≡ (c − υg)/c. The GW propagation speed υg is in
general time-dependent [19–21] and should deviate from
c in the current epoch of the Universe if modification
of gravity allows the GW speed to change and simulta-
neously explains the self-acceleration of the cosmic ex-
pansion [36]. Motivated by these facts, we parameterize
the functional form as δg = δ0(1 + z)−n, where δ0 is δg
at present and n = 0 corresponds to the constant case
δg = δ0. The index n is different in each gravity model
and has no preferred value from the observational point
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Figure 1. Arrival time lags due to GW speed δg and the
intrinsic time delay as a function of redshift. For illustration,
the parameters are chosen as δg = 10−15 and τ̃int = 10 sec.

of view, but as pointed out in [36] it might be increasing
faster than the decrease of the matter energy density to
affect the cosmic expansion of the current Universe. n
should not be large negative number so as not to diverge
at high redshifts. Therefore, we consider in this paper
the range −1 ≤ n ≤ 4. From χ(−∆z, z) = χ0(0, z), the
time delay (or advance) induced by δg is

∆T =
∆z

H0

= δ0

∫ z

0

dz

(1 + z)nH(z)
. (5)

Also the intrinsic time delay is redshifted. Denoting
the intrinsic time delay at the source as τ̃int, the time
delay we observe on the Earth is

τint(z) = (1 + z) τ̃int . (6)

The difference of arrival times observed on the Earth is

τobs(z) = ∆T (z) + τint(z) . (7)

In Fig. 1, the GW time delay due to δg and intrinsic
time delay are illustrated for the case of δg = 10−15 and
τ̃int = 10 sec. The GW time delay increases at low z, pro-
portional to the distance to the source. At high z, how-
ever, the cosmic expansion modifies the dependence of
the time delay on the distance (redshift) and the growth
of the time delay slows down. As the index n increases
from −1 to 4, the contribution of the time delay at high
z is more suppressed. On the other hand, the intrinsic
time delay is constant at low z but linearly increases at
high z.
We define the difference of arrival times in the source

frame by

∆T̃ (z) ≡ ∆T (z)

1 + z
, τ̃obs(z) ≡

τobs(z)

1 + z
. (8)

Then Eq. (7) converted to in a source frame is

τ̃obs(z) = ∆T̃ (z) + τ̃int . (9)

This expression is useful because only the signal depends
on redshift, not the noise. Furthermore, for the later use,
we write τ̃int as the sum of the expectation value 〈τ̃int〉
and a fluctuating part around the expectation value δτ̃int.
Then Eq. (9) can be separated into the systematic and
statistical terms:

τ̃obs(z) = 〈τ̃obs(z)〉+ δτ̃obs , (10)

〈τ̃obs(z)〉 ≡ ∆T̃ (z) + 〈τ̃int〉 , (11)

δτ̃obs ≡ δτ̃int . (12)

III. BAYESIAN INFERENCE

The detections of multiple events at cosmological
distance would be realized with the third-generation
ground-based GW detector such as ET. From the con-
sideration of the beaming angle of SGRB [37], more than
several tens of GW-SGRB coincidence events would be
observed with ET and gamma-ray detectors in a real-
istic observation time, e.g. 1 yr. With these coincidence
events, one can distinguish the true signal due to finite δg
from the intrinsic time delay of the emission at a source
by utilizing their redshift dependences. To utilize multi-
ple coincidence events of NS-NS binaries or NS-BH bina-
ries and SGRB for measuring the propagation speed of a
GW, we introduce the framework of Bayesian inference to
estimate errors in model parameters of GW propagation.
According to the Bayes theorem, the posterior proba-

bility distribution is given by

p(~θ|D,H) =
p(D|~θ,H)p(~θ|H)

p(D|H)
, (13)

where ~θ is a set of model parameters, H is a hypothesis,
and D is observational data. On the right-hand side of

Eq. (13), p(D|~θ,H) is the likelihood, p(~θ|H)) is the prior
distribution, and p(D|H) is the evidence. The evidence is
merely a normalization factor of the posterior probability
distribution and does not affect physical consequences.
We assume that the statistical fluctuation of the in-

trinsic time delay obeys the Gaussian distribution whose

variance is given by σ2
τ =

〈

(δτ̃int)
2
〉

. This assumption is

equivalent to writing the unnormalized likelihood proba-
bility of a single event using Eq. (10) as

exp

[

−{δτ̃obs,i}2
2σ2

τ

]

= exp

[

−{τ̃obs(zi)− 〈τ̃obs(zi)〉}2
2σ2

τ

]

,

(14)
where the index i discriminates each event. Since each
event is independent one another, the total likelihood is

p(D|~θ,H) ∝
∏

i

exp

[

−{τ̃obs(zi)− 〈τ̃obs(zi)〉}2
2σ2

τ

]

= exp

[

−
∑

i

{τ̃obs(zi)− 〈τ̃obs(zi)〉}2
2σ2

τ

]

. (15)
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In our case, the hypothesis H is that the Universe is
described by flat ΛCDM model. However, the cosmolog-
ical parameters in the flat ΛCDM model, H0 and Ωm,
are well determined within 5% precision from the cosmo-
logical observations [35] and their uncertainties do not
much affect the errors in the measurement of GW prop-
agation speed. Thus, we exclude H0 and Ωm from free

parameters in our analysis and take ~θ = {δ0, n, 〈τ̃int〉} as
free parameters. In other words, the priors on H0 and
Ωm are regarded as the delta functions. On the other
hand, we apply flat priors for δ0, n, and 〈τ̃int〉. Our fidu-
cial values for the model parameters are δ0 = 0, n = 0,
〈τ̃int〉 = 150 sec. The choice of 〈τ̃int〉 = 150 sec might
seem to be intentional. However, as discussed in Sec. VA,
it is irrelevant to constraining the GW speed because it
can always be eliminated by pairing the signals.

The magnitude of a measurement noise in the time-
delay signal is determined by στ , which depends on the
emission mechanism of SGRB. In this paper, we con-
sider three cases: στ = 10, 25, 50 sec. The reason of these
choice is because the duration of SGRB is typically less
than ∼ 2 sec and the fluctuations of τ̃int is expected to
be the same order of magnitude. However, to be conser-
vative, we consider not only 10 sec but also larger noises
25 sec and 50 sec.

When δg is a time-varying function and contains two
free parameters, it is convenient to show the posterior
distribution by marginalizing over 〈τ̃int〉. The marginal-
ized distribution can be derived as follows. We write
q ≡ 〈τ̃int〉 and q̂i ≡ τ̃obs(zi)−∆T̃ (zi) for simplicity of no-
tation. From Eqs. (11), (13), and (15), the marginalized
posterior distribution is

p(~θ′|D,H) ∝
∫

dq exp

[

−
∑

i

{q̂i − q}2
2σ2

τ

]

= exp

[

− 1

2σ2
τ

(

Q̂2 −
Q̂2

1

Ntotal

)]

×
∫

dq exp



− 1

2σ2
τ

Ntotal

(

q − Q̂1

Ntotal

)2




∝ exp

[

− 1

2σ2
τ

(

Q̂2 −
Q̂2

1

Ntotal

)]

, (16)

Q̂1 ≡
∑

i

q̂i , Q̂2 ≡
∑

i

q̂2i ,

where ~θ′ = δ0, n andNtotal is the total number of sources.
Particularly, whenNtotal → ∞, Q̂1/Ntotal approaches the

Figure 2. Number of NS-NS binaries (in the unit of 104)
in each redshift bin of ∆z = 0.1 at a redshift z during 1 yr
observation.

expectation value q̄. Therefore,

p(~θ′|D,H) ∝ exp

[

− 1

2σ2
τ

∑

i

q̂i (q̂i − q̄)

]

= exp

[

− 1

2σ2
τ

{

∑

i

(q̂i − q̄)
2

+q̄
(

Q̂1 −Ntotal q̄
)}]

. (17)

By the definition of the expectation value, the second
term in the bracket vanishes. Thus, the marginalized pos-
terior distribution obeys the Gaussian distribution with
respect to q̂i. Namely, the logarithmic posterior distribu-
tion marginalized over 〈τ̃int〉 obeys χ2 distribution. The
above result is derived for infinite Ntotal. However, it is
expected that Eq. (17) also holds for the large number of
sources.

IV. NUMERICAL IMPLEMENTATION

In this section, we numerically generate mock data of
events and investigate expected constraints on model pa-
rameters, δ0, n, and 〈τ̃int〉, based on the Bayesian ap-
proach.

A. Procedures

The procedures of data analysis are composed of three
stages.

(i). Redshift distribution of NS binary merger events

ṅ(z) is the NS merger rate per unit comoving vol-
ume per unit proper time at a redshift z. The fit-
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ting formula based on the observation of star for-
mation history is given in [38] by

ṅ(z) = ṅ0 ×







1 + 2z (z ≤ 1)
3
4
(5− z) (1 < z ≤ 5)

0 (5 < z)
, (18)

where the quantity ṅ0 represents the merger rate
at present. Although the normalization of ṅ is still
largely uncertain, we adopt the intermediate value
of recent estimates, ṅ0 = 10−6Mpc−3 yr−1, as a
reliable estimate based on extrapolations from the
observed binary pulsars in our Galaxy [39]. The
number of NS binary merger in the redshift interval
[z, z+dz] observed during the observation time Tobs

is given by [38]

dN(z)

dz
= Tobs

4πr2(z)

H(z)

ṅ(z)

1 + z
, (19)

where r(z) is the comoving radial distance and is
related to the luminosity distance dL(z) by r(z) =
dL(z)/(1 + z) in the flat universe. In Fig. 2, using
Eq. (19), the redshift distribution of NS binaries
per year is shown.

To generate NS binary merger events that obeys
the redshift distribution in Eq. (19) from a homoge-
neous random distribution, we use the Box-Muller
method [40]. In our numerical simulation, we take
into account NS binary merger events only at the
redshift range z < 2, because the electromagnetic
identification of SGRB at higher redshifts would
be difficult and it seems to be realistic to assume
that sources at z < 2 can be identified as coin-
cident events between electromagnetic waves and
GWs. We denote the fraction of coincidence events
among all NS binary merger events by ǫ and use
ǫ = 10−3, which is estimated from the simple con-
sideration of SGRB jet opening angle [37]. Thus,
the cumulative number of coincidence events out to
a redshift z is ǫN(z) and the total number of co-
incidence events is Ntotal = ǫN(zmax), where N(z)
is the cumulative number of GW events out to a
redshift z and zmax is the maximum redshift that
an electromagnetic counterpart of a GW source is
detected.

(ii). Generating time delay signals

Time delay signals are generated using Eq. (7) for
fixed parameters δ0, n, and 〈τ̃int〉. The error of
the intrinsic time delay is added to each signal by
generating a Gaussian error with the standard de-
viation στ , for which we choose στ = 10, 25, 50 sec.
We fix the expectation value of an intrinsic time
delay to 〈τ̃int〉 = 150 sec. However, this does not
loose generality because as discussed in Sec. VA
the expectation value of an intrinsic time delay can
be canceled by taking the difference of two signals
at different redshifts.
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Figure 3. One realization of time delay signals as a function of
redshift when δg = 10−14 (n = 0), στ = 50 sec, and ǫ = 10−3.
The red points are mock time-delay signals and the dashed
curve is the time delay due to finite δg.

(iii). Computation of the posterior distribution

Since we apply flat priors for δ0, n, and 〈τ̃int〉, the
posterior distribution is obtained from the likeli-
hood distribution in Eq. (15) except for its nor-
malization. The posterior distribution marginal-
ized over 〈τ̃int〉 is given by Eq. (16). From these
posterior distributions, we compute parameter es-
timation errors at 68% CL. To suppress a sampling
error, we average the parameter estimation errors
over 100 realizations of the event list. As a result,
the averaged constraints are less fluctuating, but
still fluctuate by ∼ 5%, at most 10%.

B. Expected errors of model parameters

In Fig. 3, the generated time-delay signals of events
are plotted as a function of redshift. Just for the illustra-
tive purpose, the parameters are chosen as δg = 10−14,
στ = 50 sec, and ǫ = 10−3 (Ntotal = 63). It is seen that
the intrinsic time delay in the observer’s frame is red-
shifted and larger at high z and that the more sources
are distributed at redshifts from 1 to 1.5 as expected from
the redshift distribution in Fig. 2.
The posterior distribution of δ0 and 〈τ̃int〉 in the case

of constant δg (n = 0) is shown in Fig. 4. The er-
rors in δ0 and 〈τ̃int〉 are strongly correlated. This is
because the larger 〈τ̃int〉 is equal to negative δ0 (su-
perluminal propagation) in the observational signal in
Eq. (7). However, they do not completely degenerate
because of different redshift dependence. The expected
constraints on δg (68% CL) are −0.6 < δg/10

−16 < 0.8,
−2.0 < δg/10

−16 < 1.7, and −3.6 < δg/10
−16 < 3.5 for

στ = 10, 25, and 50 sec.
In Fig. 5, the posterior distribution marginalized over



6

Figure 4. Constraint on constant case δg = δ0 and 〈τ̃int〉 when
ǫ = 10−3 (Ntotal = 63). The fiducial parameters are chosen
δg = δ0 = 0 and 〈τ̃int〉 = 150 sec, represented by a black point
at the center of the figure. From the smaller ellipses to the
larger, the fluctuations of intrinsic time delays are στ = 10,
25, and 50 sec.

〈τ̃int〉 is shown. The constraint is tighter at smaller n
just because of the redshift dependence of δg. When n
is negative, the absolute value of δg increases at higher
redshifts. On the other hand, when n is positive, |δg| is
suppressed at higher redshifts and becomes more difficult
to detect. In Table I, the projected constraints on δ0 for
different στ and n are listed. It should be noted that the
constraints on δ0 for n 6= 0 are those obtained when the
fiducial parameters are δ0 = 0 and n = 0. In other words,
those are what is derived from the data when no positive
detection is achieved and true parameters are δ0 = 0 and
n = 0.

Figure 5. Constraint on δ0 and n when 〈τ̃int〉 distribution
is marginalized and ǫ = 10−3 (Ntotal = 63). The fiducial
parameters are chosen δ0 = 0, n = 0, and 〈τ̃int〉 = 150 sec,
represented by a black point at the center of the figure. The
fluctuations of intrinsic time delays are στ = 10 (red, solid),
25 (green, dotted), and 50 sec (blue, dashed).

στ = 10 sec στ = 25 sec στ = 50 sec

n = −1 −0.3 < δ0 < 0.4 −1.0 < δ0 < 0.9 −1.8 < δ0 < 2.0

n = 0 −0.8 < δ0 < 1.0 −2.2 < δ0 < 2.0 −4.8 < δ0 < 4.7

n = 1 −2.1 < δ0 < 2.1 −4.9 < δ0 < 5.3 −10.2 < δ0 < 10.0

n = 2 −2.9 < δ0 < 2.6 −6.1 < δ0 < 7.5 −13.8 < δ0 < 12.8

n = 4 −3.1 < δ0 < 2.9 −6.8 < δ0 < 8.0 −15.0 < δ0 < 14.9

Table I. Expected constraint on δ0 (68% CL) for different στ

and n in the redshift-dependent δg case with fiducial param-
eters δ0 = 0 and n = 0. The values of δ0 is in the unit of
10−16.

Figure 6. A differential signal of arrival time delays
|〈s(z1, z2)〉| in the unit of sec when δg = 10−15 (n = 0). The
diagonal line is z1 = z2.

V. DISCUSSIONS

In this section, we focus on the case of constant δg
(n = 0) and investigate physical aspects of sensitivity
and a concrete statistic to interpret the results.

A. Optimal statistic

If one has multiple SGRB events observed coinciden-
tally by GW and γ-ray detectors, one can distinguish the
true signal due to finite δg and the intrinsic time delay
at a source by looking at the redshift dependence. To
do so, we consider a new statistic that could be used in
a real data analysis. The observed quantity is the ar-
rival time delay τ̃obs, from which we can construct the
following statistic:

s(zi, zj) ≡ τ̃obs(zi)− τ̃obs(zj)

= ∆T̃ (zi)−∆T̃ (zj) + δτ̃int,i − δτ̃int,j . (20)



7

Figure 7. Constraints to constant δg = δ0 as a function of the
number of event pairs for στ = 50, 25, and 10 sec from the
top to the bottom, respectively. m represents event pairs and
runs from the largest redshift-separation pair to the smallest
one.

where i and j denote i-th and j-th events. The second
term is stochastic with zero mean, while there remains
finite contribution from GW. Therefore, we have

〈s(zi, zj)〉 = ∆T̃ (zi)−∆T̃ (zj) . (21)

Var[s(zi, zj)] = 〈(s(zi, zj)− 〈s(zi, zj)〉)2〉
= 2〈δτ̃2int〉
= 2σ2

τ (22)

In Fig. 6, we show the redshift dependence of |〈s(zi, zj)〉|.
Since the noise δτ̃int does not depend on a redshift, the
redshift dependence of the SNR is identical to that of
a signal. This implies two crucial facts to construct an
optimal statistic. Firstly, it hardly depends on the red-
shift for z > 1. In other words, high-z sources at z & 2,
for which it is more difficult to have an electromagnetic
counterpart, do not play an important role in obtaining
large SNR. Secondly, since ∆T̃ (z) is monotonously in-
creasing (decreasing) function for positive (negative) δg
below z = 1, the largest SNR is obtained by taking the
difference of time delays at largely separating redshifts,
|zi − zj | & 1. Thus, when one has multiple events, the
tightest constraint on δg would be imposed by a part of
event pairs whose redshift difference is large.
One possible way to combine all signals at different

redshifts is summing the signals over zi > zj. However,
this is suboptimal because the signals are redundantly
added. Indeed, for the event pairs with small redshift
separation, the signals are canceled out and only noises
are added. Then SNR is not improved at all. Thus, the
efficient way of the summation is pairing the events from
the highest and lowest redshifts and adding them in turn.
This order of summation is also computationally efficient
to reach the maximum sensitivity on δg and would be
useful in a practical data analysis. The SNR for all pair

of events is

SNR2 =
∑

m

[∑ 〈sm〉√
2 στ

]2

, (23)

where m represents event pairs and runs from the largest
redshift-separation pair to the smallest one.
We numerically generate mock data of events the same

way as in Sec. IVA to show explicitly that the new statis-
tic is efficient in computation and gives almost optimal
constraint on δg with the small number of signal pairs.
In Fig. 7, constraints on δg = δ0 (n = 0) as a function
of the number of event pairs for different στ are shown.
It indicates that the SNR is dominated by only several
event pairs m with large redshift separation and is not
improved by adding event pairs with smaller redshift sep-
aration. These asymptotic values of the constraints on
δg = δ0 agree well with the error ellipses in Fig. 4. This
means that the statistic introduced in this subsection has
almost optimal sensitivity to δg.

B. Scaling of SNR

From some consideration about signal and noise, we
can derive scaling relations with model parameters. Since
the observable is given by Eq. (20), we do not have to
care about 〈τ̃int〉. Only noise scales with στ and the SNR
scales with σ−1

τ from Eq. (23). Then the constraint on
δg linearly scales with στ . As for the number of events

or ǫ, the scaling of δg is simply ǫ−1/2 because ǫ does not
change the redshift dependence of the source distribution
but its normalization. Therefore, the scaling relation for
the constraint on δ0 in the case of constant δg is

|δ0| ≤ 6× 10−17

(

10−3

ǫ

)1/2
( στ

10 sec

)

. (24)

This formula agrees well with the errors in Fig. 7 and the
errors from Bayesian inference in Fig. 4 except for some
statistical fluctuations. The scaling also holds for the case
of nonzero n. In Table I, the scaling of the constraints
with στ agree well. However, the magnitudes of the errors
deteriorate because of some parameter degeneracies.

C. Maximum redshift dependence

It may happen that SGRB events are seen only at low
redshifts, having low-z cutoff at z < 2. In this case,
the constraint on δg is degraded in two ways. Firstly,
the number of sources decreases, as shown in Fig. 8 as a
function of maximum redshift zmax. Secondly, the signal
〈s(zi, zj)〉 in Eq. (21) is likely to be small due to lack
of high-z sources. By these two effects, the constraint is
degraded in a nontrivial way as zmax decreases. As shown
in the Fig. 9, the sensitivity to δg is drastically degraded if
there is a cutoff at the redshift less than z = 1. However,



8

Figure 8. The total number of sources up to z = zmax when
ǫ = 10−3.

Figure 9. Constraint on constant δg = δ0 as a function of
zmax for στ = 50, 25, and 10 sec from the top to the bottom,
respectively. ǫ = 10−3.

interestingly, the degradation is modest for the cutoff at
z > 1 because SNR is almost constant for sources at
z > 1, as shown in Fig. 6. Therefore, we conclude that

we do not necessarily have to see high-z SGRBs around
z = 2 or higher, but those at 1 . z . 1.5 are crucial.

VI. CONCLUSION

In this paper, we have extensively studied the method
measuring the GW propagation speed by directly com-
paring the arrival times between GWs and photons
from NS binary mergers associated with SGRB. Partic-
ularly we have considered multiple coincidence events at
cosmological distance, the redshift distribution of GW
sources, redshift-dependent GW propagation speed, and
the statistics of intrinsic time delays. Based on the
Bayesian parameter inference in the realistic observa-
tional situation with ET, we have obtained the expected
constraints on δg (68% CL): −0.6 < δg/10

−16 < 0.8,
−2.0 < δg/10

−16 < 1.7, and −3.6 < δg/10
−16 < 3.5

when στ = 10, 25, and 50 sec, respectively, for constant
δg (n = 0), and the similar values of the same order in
Table I for time-varying GW propagation speed (nonzero
n). Furthermore, we have proposed an optimal statistic
that would be useful in a real data analysis. From nu-
merical investigation of this statistic, we have shown that
a systematic part of the intrinsic time delay can be can-
celed out from signals, distinguishing it from a true signal
due to finite δg, and that the statistic gives nearly opti-
mal sensitivity. We also have shown that by changing
the maximum redshift below which coincidence events
are available, high-z SGRB around z = 2 or higher affect
the sensitivity modestly, while those at 1 . z . 1.5 are
crucial in constraining δg.

ACKNOWLEDGMENTS

A. N. is supported by JSPS Postdoctoral Fellowships
for Research Abroad.

[1] M. Evans, General Relativity and Gravitation 46, 1778 (2014).
[2] M. Punturo, M. Abernathy, F. Acernese, B. Allen, N. An-

dersson, et al., Class.Quant.Grav. 27, 084007 (2010).
[3] S. Dwyer, D. Sigg, S. W. Ballmer, L. Barsotti, N. Maval-

vala, and M. Evans, Phys. Rev. D 91, 082001 (2015),
arXiv:1410.0612 [astro-ph.IM].

[4] B. Sathyaprakash and B. Schutz, Living Rev.Rel. 12, 2
(2009), arXiv:0903.0338 [gr-qc].

[5] C. M. Will, (2014), arXiv:1403.7377 [gr-qc].
[6] N. Yunes and X. Siemens, Living Rev.Rel. 16, 9 (2013),

arXiv:1304.3473 [gr-qc].
[7] J. R. Gair, M. Vallisneri, S. L. Larson, and J. G. Baker,

Living Rev.Rel. 16, 7 (2013), arXiv:1212.5575 [gr-qc].
[8] E. Berti et al., Classical and Quantum Gravity 32, 243001 (2015),

arXiv:1501.07274 [gr-qc].

[9] C. K. Mishra, K. Arun, B. R. Iyer, and
B. Sathyaprakash, Phys.Rev. D82, 064010 (2010),
arXiv:1005.0304 [gr-qc].

[10] T. Li, W. Del Pozzo, S. Vitale, C. Van Den Broeck,
M. Agathos, et al., Phys.Rev. D85, 082003 (2012),
arXiv:1110.0530 [gr-qc].

[11] N. Yunes and F. Pretorius,
Phys.Rev. D80, 122003 (2009), arXiv:0909.3328 [gr-qc].

[12] N. Cornish, L. Sampson, N. Yunes, and F. Pretorius,
Phys.Rev. D84, 062003 (2011), arXiv:1105.2088 [gr-qc].

[13] S. Gossan, J. Veitch, and B. S.
Sathyaprakash, Phys. Rev. D 85, 124056 (2012),
arXiv:1111.5819 [gr-qc].

[14] J. Meidam, M. Agathos, C. Van
Den Broeck, J. Veitch, and B. S.
Sathyaprakash, Phys. Rev. D 90, 064009 (2014),

http://dx.doi.org/10.1007/s10714-014-1778-z
http://dx.doi.org/10.1088/0264-9381/27/8/084007
http://dx.doi.org/ 10.1103/PhysRevD.91.082001
http://arxiv.org/abs/1410.0612
http://arxiv.org/abs/0903.0338
http://arxiv.org/abs/1403.7377
http://dx.doi.org/10.12942/lrr-2013-9
http://arxiv.org/abs/1304.3473
http://dx.doi.org/10.12942/lrr-2013-7
http://arxiv.org/abs/1212.5575
http://dx.doi.org/10.1088/0264-9381/32/24/243001
http://arxiv.org/abs/1501.07274
http://dx.doi.org/10.1103/PhysRevD.82.064010
http://arxiv.org/abs/1005.0304
http://dx.doi.org/10.1103/PhysRevD.85.082003
http://arxiv.org/abs/1110.0530
http://dx.doi.org/10.1103/PhysRevD.80.122003
http://arxiv.org/abs/0909.3328
http://dx.doi.org/ 10.1103/PhysRevD.84.062003
http://arxiv.org/abs/1105.2088
http://dx.doi.org/10.1103/PhysRevD.85.124056
http://arxiv.org/abs/1111.5819
http://dx.doi.org/10.1103/PhysRevD.90.064009


9

arXiv:1406.3201 [gr-qc].
[15] N. Seto and A. Taruya,

Phys.Rev.Lett. 99, 121101 (2007),
arXiv:0707.0535 [astro-ph].

[16] A. Nishizawa, A. Taruya, K. Hayama, S. Kawamura,
and M.-a. Sakagami, Phys.Rev. D79, 082002 (2009),
arXiv:0903.0528 [astro-ph.CO].

[17] K. Hayama and A. Nishizawa,
Phys.Rev. D87, 062003 (2013), arXiv:1208.4596 [gr-qc].

[18] K. Chatziioannou, N. Yunes, and N. Cornish,
Phys.Rev. D86, 022004 (2012), arXiv:1204.2585 [gr-qc].

[19] I. D. Saltas, I. Sawicki, L. Amendola, and M. Kunz,
(2014), arXiv:1406.7139 [astro-ph.CO].

[20] E. Bellini and I. Sawicki, JCAP 7, 050 (2014),
arXiv:1404.3713.

[21] J. Gleyzes, D. Langlois, and F. Vernizzi,
International Journal of Modern Physics D 23, 1443010 (2014),
arXiv:1411.3712 [hep-th].

[22] A. E. Gumrukcuoglu, C. Lin, and S. Mukohyama,
JCAP 1203, 006 (2012), arXiv:1111.4107 [hep-th].

[23] A. De Felice, T. Nakamura, and T. Tanaka,
PTEP 2014, 043E01 (2014), arXiv:1304.3920 [gr-qc].

[24] A. Sefiedgar, K. Nozari, and H. Sepangi,
Phys.Lett. B696, 119 (2011), arXiv:1012.1406 [gr-qc].

[25] G. Amelino-Camelia, J. R. Ellis, N. Mavromatos, D. V.
Nanopoulos, and S. Sarkar, Nature 393, 763 (1998),
arXiv:astro-ph/9712103 [astro-ph].

[26] G. Amelino-Camelia, Living Rev.Rel. 16, 5 (2013),
arXiv:0806.0339 [gr-qc].

[27] G. D. Moore and A. E. Nelson, JHEP 0109, 023 (2001),
arXiv:hep-ph/0106220 [hep-ph].

[28] S. L. Larson and W. A. His-
cock, Phys.Rev. D61, 104008 (2000),
arXiv:gr-qc/9912102 [gr-qc].

[29] C. Cutler, W. A. Hiscock, and S. L.
Larson, Phys.Rev. D67, 024015 (2003),
arXiv:gr-qc/0209101 [gr-qc].

[30] L. S. Finn and J. D. Romano,
Phys.Rev. D88, 022001 (2013), arXiv:1304.0369 [gr-qc].

[31] A. Nishizawa and T. Naka-
mura, Phys. Rev. D 90, 044048 (2014),
arXiv:1406.5544 [gr-qc].

[32] E. Berger, (2013), arXiv:1311.2603 [astro-ph.HE].
[33] C. Cutler and E. E. Flana-

gan, Phys.Rev. D49, 2658 (1994),
arXiv:gr-qc/9402014 [gr-qc].

[34] B. Sathyaprakash, B. Schutz, and C. Van
Den Broeck, Class.Quant.Grav. 27, 215006 (2010),
arXiv:0906.4151 [astro-ph.CO].

[35] P. Ade et al. (Planck Collaboration), (2013),
arXiv:1303.5076 [astro-ph.CO].

[36] L. Lombriser and A. Taylor, ArXiv e-prints (2015),
arXiv:1509.08458.

[37] A. Nishizawa, K. Yagi, A. Taruya, and
T. Tanaka, Phys. Rev. D85, 044047 (2012),
arXiv:1110.2865 [astro-ph.CO].

[38] C. Cutler and J. Harms,
Phys. Rev. D 73, 042001 (2006), gr-qc/0511092.

[39] J. Abadie et al. (LIGO Scientific Collaboration, Virgo
Collaboration), Class.Quant.Grav. 27, 173001 (2010),
arXiv:1003.2480 [astro-ph.HE].

[40] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, Cambridge: University Press, —c1992,

2nd ed. (1992).

http://arxiv.org/abs/1406.3201
http://dx.doi.org/10.1103/PhysRevLett.99.121101
http://arxiv.org/abs/0707.0535
http://dx.doi.org/ 10.1103/PhysRevD.79.082002
http://arxiv.org/abs/0903.0528
http://dx.doi.org/10.1103/PhysRevD.87.062003
http://arxiv.org/abs/1208.4596
http://dx.doi.org/10.1103/PhysRevD.86.022004
http://arxiv.org/abs/1204.2585
http://arxiv.org/abs/1406.7139
http://dx.doi.org/10.1088/1475-7516/2014/07/050
http://arxiv.org/abs/1404.3713
http://dx.doi.org/10.1142/S021827181443010X
http://arxiv.org/abs/1411.3712
http://dx.doi.org/10.1088/1475-7516/2012/03/006
http://arxiv.org/abs/1111.4107
http://dx.doi.org/10.1093/ptep/ptu024
http://arxiv.org/abs/1304.3920
http://dx.doi.org/10.1016/j.physletb.2010.11.067
http://arxiv.org/abs/1012.1406
http://dx.doi.org/10.1038/31647
http://arxiv.org/abs/astro-ph/9712103
http://dx.doi.org/10.12942/lrr-2013-5
http://arxiv.org/abs/0806.0339
http://dx.doi.org/10.1088/1126-6708/2001/09/023
http://arxiv.org/abs/hep-ph/0106220
http://dx.doi.org/10.1103/PhysRevD.61.104008
http://arxiv.org/abs/gr-qc/9912102
http://dx.doi.org/10.1103/PhysRevD.67.024015
http://arxiv.org/abs/gr-qc/0209101
http://dx.doi.org/10.1103/PhysRevD.88.022001
http://arxiv.org/abs/1304.0369
http://dx.doi.org/10.1103/PhysRevD.90.044048
http://arxiv.org/abs/1406.5544
http://arxiv.org/abs/1311.2603
http://dx.doi.org/10.1103/PhysRevD.49.2658
http://arxiv.org/abs/gr-qc/9402014
http://dx.doi.org/10.1088/0264-9381/27/21/215006
http://arxiv.org/abs/0906.4151
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1509.08458
http://dx.doi.org/ 10.1103/PhysRevD.85.044047
http://arxiv.org/abs/1110.2865
http://dx.doi.org/10.1103/PhysRevD.73.042001
http://arxiv.org/abs/gr-qc/0511092
http://dx.doi.org/ 10.1088/0264-9381/27/17/173001
http://arxiv.org/abs/1003.2480

